uvm_km.c revision 1.125 1 /* $NetBSD: uvm_km.c,v 1.125 2012/04/13 15:34:42 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
37 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
38 *
39 *
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
48 *
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 *
53 * Carnegie Mellon requests users of this software to return to
54 *
55 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 * School of Computer Science
57 * Carnegie Mellon University
58 * Pittsburgh PA 15213-3890
59 *
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
62 */
63
64 /*
65 * uvm_km.c: handle kernel memory allocation and management
66 */
67
68 /*
69 * overview of kernel memory management:
70 *
71 * the kernel virtual address space is mapped by "kernel_map." kernel_map
72 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
73 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
74 *
75 * the kernel_map has several "submaps." submaps can only appear in
76 * the kernel_map (user processes can't use them). submaps "take over"
77 * the management of a sub-range of the kernel's address space. submaps
78 * are typically allocated at boot time and are never released. kernel
79 * virtual address space that is mapped by a submap is locked by the
80 * submap's lock -- not the kernel_map's lock.
81 *
82 * thus, the useful feature of submaps is that they allow us to break
83 * up the locking and protection of the kernel address space into smaller
84 * chunks.
85 *
86 * the vm system has several standard kernel submaps, including:
87 * pager_map => used to map "buf" structures into kernel space
88 * exec_map => used during exec to handle exec args
89 * etc...
90 *
91 * the kernel allocates its private memory out of special uvm_objects whose
92 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
93 * are "special" and never die). all kernel objects should be thought of
94 * as large, fixed-sized, sparsely populated uvm_objects. each kernel
95 * object is equal to the size of kernel virtual address space (i.e. the
96 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
97 *
98 * note that just because a kernel object spans the entire kernel virtual
99 * address space doesn't mean that it has to be mapped into the entire space.
100 * large chunks of a kernel object's space go unused either because
101 * that area of kernel VM is unmapped, or there is some other type of
102 * object mapped into that range (e.g. a vnode). for submap's kernel
103 * objects, the only part of the object that can ever be populated is the
104 * offsets that are managed by the submap.
105 *
106 * note that the "offset" in a kernel object is always the kernel virtual
107 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
108 * example:
109 * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
110 * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
111 * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
112 * then that means that the page at offset 0x235000 in kernel_object is
113 * mapped at 0xf8235000.
114 *
115 * kernel object have one other special property: when the kernel virtual
116 * memory mapping them is unmapped, the backing memory in the object is
117 * freed right away. this is done with the uvm_km_pgremove() function.
118 * this has to be done because there is no backing store for kernel pages
119 * and no need to save them after they are no longer referenced.
120 */
121
122 #include <sys/cdefs.h>
123 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.125 2012/04/13 15:34:42 yamt Exp $");
124
125 #include "opt_uvmhist.h"
126
127 #include "opt_kmempages.h"
128
129 #ifndef NKMEMPAGES
130 #define NKMEMPAGES 0
131 #endif
132
133 /*
134 * Defaults for lower and upper-bounds for the kmem_arena page count.
135 * Can be overridden by kernel config options.
136 */
137 #ifndef NKMEMPAGES_MIN
138 #define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
139 #endif
140
141 #ifndef NKMEMPAGES_MAX
142 #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
143 #endif
144
145
146 #include <sys/param.h>
147 #include <sys/systm.h>
148 #include <sys/proc.h>
149 #include <sys/pool.h>
150 #include <sys/vmem.h>
151 #include <sys/kmem.h>
152
153 #include <uvm/uvm.h>
154
155 /*
156 * global data structures
157 */
158
159 struct vm_map *kernel_map = NULL;
160
161 /*
162 * local data structues
163 */
164
165 static struct vm_map kernel_map_store;
166 static struct vm_map_entry kernel_image_mapent_store;
167 static struct vm_map_entry kernel_kmem_mapent_store;
168
169 int nkmempages = 0;
170 vaddr_t kmembase;
171 vsize_t kmemsize;
172
173 vmem_t *kmem_arena;
174 vmem_t *kmem_va_arena;
175
176 /*
177 * kmeminit_nkmempages: calculate the size of kmem_arena.
178 */
179 void
180 kmeminit_nkmempages(void)
181 {
182 int npages;
183
184 if (nkmempages != 0) {
185 /*
186 * It's already been set (by us being here before)
187 * bail out now;
188 */
189 return;
190 }
191
192 #if defined(PMAP_MAP_POOLPAGE)
193 npages = (physmem / 4);
194 #else
195 npages = (physmem / 3) * 2;
196 #endif /* defined(PMAP_MAP_POOLPAGE) */
197
198 #ifndef NKMEMPAGES_MAX_UNLIMITED
199 if (npages > NKMEMPAGES_MAX)
200 npages = NKMEMPAGES_MAX;
201 #endif
202
203 if (npages < NKMEMPAGES_MIN)
204 npages = NKMEMPAGES_MIN;
205
206 nkmempages = npages;
207 }
208
209 /*
210 * uvm_km_bootstrap: init kernel maps and objects to reflect reality (i.e.
211 * KVM already allocated for text, data, bss, and static data structures).
212 *
213 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
214 * we assume that [vmin -> start] has already been allocated and that
215 * "end" is the end.
216 */
217
218 void
219 uvm_km_bootstrap(vaddr_t start, vaddr_t end)
220 {
221 bool kmem_arena_small;
222 vaddr_t base = VM_MIN_KERNEL_ADDRESS;
223 struct uvm_map_args args;
224 int error;
225
226 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
227 UVMHIST_LOG(maphist, "start=%"PRIxVADDR" end=%#"PRIxVADDR,
228 start, end, 0,0);
229
230 kmeminit_nkmempages();
231 kmemsize = (vsize_t)nkmempages * PAGE_SIZE;
232 kmem_arena_small = kmemsize < 64 * 1024 * 1024;
233
234 UVMHIST_LOG(maphist, "kmemsize=%#"PRIxVSIZE, kmemsize, 0,0,0);
235
236 /*
237 * next, init kernel memory objects.
238 */
239
240 /* kernel_object: for pageable anonymous kernel memory */
241 uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
242 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
243
244 /*
245 * init the map and reserve any space that might already
246 * have been allocated kernel space before installing.
247 */
248
249 uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
250 kernel_map_store.pmap = pmap_kernel();
251 if (start != base) {
252 error = uvm_map_prepare(&kernel_map_store,
253 base, start - base,
254 NULL, UVM_UNKNOWN_OFFSET, 0,
255 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
256 UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
257 if (!error) {
258 kernel_image_mapent_store.flags =
259 UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
260 error = uvm_map_enter(&kernel_map_store, &args,
261 &kernel_image_mapent_store);
262 }
263
264 if (error)
265 panic(
266 "uvm_km_bootstrap: could not reserve space for kernel");
267
268 kmembase = args.uma_start + args.uma_size;
269 } else {
270 kmembase = base;
271 }
272
273 error = uvm_map_prepare(&kernel_map_store,
274 kmembase, kmemsize,
275 NULL, UVM_UNKNOWN_OFFSET, 0,
276 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
277 UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
278 if (!error) {
279 kernel_kmem_mapent_store.flags =
280 UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
281 error = uvm_map_enter(&kernel_map_store, &args,
282 &kernel_kmem_mapent_store);
283 }
284
285 if (error)
286 panic("uvm_km_bootstrap: could not reserve kernel kmem");
287
288 /*
289 * install!
290 */
291
292 kernel_map = &kernel_map_store;
293
294 pool_subsystem_init();
295 vmem_bootstrap();
296
297 kmem_arena = vmem_create("kmem", kmembase, kmemsize, PAGE_SIZE,
298 NULL, NULL, NULL,
299 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
300
301 vmem_init(kmem_arena);
302
303 UVMHIST_LOG(maphist, "kmem vmem created (base=%#"PRIxVADDR
304 ", size=%#"PRIxVSIZE, kmembase, kmemsize, 0,0);
305
306 kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
307 vmem_alloc, vmem_free, kmem_arena,
308 (kmem_arena_small ? 4 : 8) * PAGE_SIZE,
309 VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
310
311 UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
312 }
313
314 /*
315 * uvm_km_init: init the kernel maps virtual memory caches
316 * and start the pool/kmem allocator.
317 */
318 void
319 uvm_km_init(void)
320 {
321
322 kmem_init();
323
324 kmeminit(); // killme
325 }
326
327 /*
328 * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
329 * is allocated all references to that area of VM must go through it. this
330 * allows the locking of VAs in kernel_map to be broken up into regions.
331 *
332 * => if `fixed' is true, *vmin specifies where the region described
333 * pager_map => used to map "buf" structures into kernel space
334 * by the submap must start
335 * => if submap is non NULL we use that as the submap, otherwise we
336 * alloc a new map
337 */
338
339 struct vm_map *
340 uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
341 vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
342 struct vm_map *submap)
343 {
344 int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
345 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
346
347 KASSERT(vm_map_pmap(map) == pmap_kernel());
348
349 size = round_page(size); /* round up to pagesize */
350
351 /*
352 * first allocate a blank spot in the parent map
353 */
354
355 if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
356 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
357 UVM_ADV_RANDOM, mapflags)) != 0) {
358 panic("%s: unable to allocate space in parent map", __func__);
359 }
360
361 /*
362 * set VM bounds (vmin is filled in by uvm_map)
363 */
364
365 *vmax = *vmin + size;
366
367 /*
368 * add references to pmap and create or init the submap
369 */
370
371 pmap_reference(vm_map_pmap(map));
372 if (submap == NULL) {
373 submap = kmem_alloc(sizeof(*submap), KM_SLEEP);
374 if (submap == NULL)
375 panic("uvm_km_suballoc: unable to create submap");
376 }
377 uvm_map_setup(submap, *vmin, *vmax, flags);
378 submap->pmap = vm_map_pmap(map);
379
380 /*
381 * now let uvm_map_submap plug in it...
382 */
383
384 if (uvm_map_submap(map, *vmin, *vmax, submap) != 0)
385 panic("uvm_km_suballoc: submap allocation failed");
386
387 return(submap);
388 }
389
390 /*
391 * uvm_km_pgremove: remove pages from a kernel uvm_object and KVA.
392 */
393
394 void
395 uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
396 {
397 struct uvm_object * const uobj = uvm_kernel_object;
398 const voff_t start = startva - vm_map_min(kernel_map);
399 const voff_t end = endva - vm_map_min(kernel_map);
400 struct vm_page *pg;
401 voff_t curoff, nextoff;
402 int swpgonlydelta = 0;
403 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
404
405 KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
406 KASSERT(startva < endva);
407 KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
408
409 mutex_enter(uobj->vmobjlock);
410 pmap_remove(pmap_kernel(), startva, endva);
411 for (curoff = start; curoff < end; curoff = nextoff) {
412 nextoff = curoff + PAGE_SIZE;
413 pg = uvm_pagelookup(uobj, curoff);
414 if (pg != NULL && pg->flags & PG_BUSY) {
415 pg->flags |= PG_WANTED;
416 UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, 0,
417 "km_pgrm", 0);
418 mutex_enter(uobj->vmobjlock);
419 nextoff = curoff;
420 continue;
421 }
422
423 /*
424 * free the swap slot, then the page.
425 */
426
427 if (pg == NULL &&
428 uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
429 swpgonlydelta++;
430 }
431 uao_dropswap(uobj, curoff >> PAGE_SHIFT);
432 if (pg != NULL) {
433 mutex_enter(&uvm_pageqlock);
434 uvm_pagefree(pg);
435 mutex_exit(&uvm_pageqlock);
436 }
437 }
438 mutex_exit(uobj->vmobjlock);
439
440 if (swpgonlydelta > 0) {
441 mutex_enter(&uvm_swap_data_lock);
442 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
443 uvmexp.swpgonly -= swpgonlydelta;
444 mutex_exit(&uvm_swap_data_lock);
445 }
446 }
447
448
449 /*
450 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
451 * regions.
452 *
453 * => when you unmap a part of anonymous kernel memory you want to toss
454 * the pages right away. (this is called from uvm_unmap_...).
455 * => none of the pages will ever be busy, and none of them will ever
456 * be on the active or inactive queues (because they have no object).
457 */
458
459 void
460 uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
461 {
462 #define __PGRM_BATCH 16
463 struct vm_page *pg;
464 paddr_t pa[__PGRM_BATCH];
465 int npgrm, i;
466 vaddr_t va, batch_vastart;
467
468 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
469
470 KASSERT(VM_MAP_IS_KERNEL(map));
471 KASSERT(vm_map_min(map) <= start);
472 KASSERT(start < end);
473 KASSERT(end <= vm_map_max(map));
474
475 for (va = start; va < end;) {
476 batch_vastart = va;
477 /* create a batch of at most __PGRM_BATCH pages to free */
478 for (i = 0;
479 i < __PGRM_BATCH && va < end;
480 va += PAGE_SIZE) {
481 if (!pmap_extract(pmap_kernel(), va, &pa[i])) {
482 continue;
483 }
484 i++;
485 }
486 npgrm = i;
487 /* now remove the mappings */
488 pmap_kremove(batch_vastart, va - batch_vastart);
489 /* and free the pages */
490 for (i = 0; i < npgrm; i++) {
491 pg = PHYS_TO_VM_PAGE(pa[i]);
492 KASSERT(pg);
493 KASSERT(pg->uobject == NULL && pg->uanon == NULL);
494 KASSERT((pg->flags & PG_BUSY) == 0);
495 uvm_pagefree(pg);
496 }
497 }
498 #undef __PGRM_BATCH
499 }
500
501 #if defined(DEBUG)
502 void
503 uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
504 {
505 struct vm_page *pg;
506 vaddr_t va;
507 paddr_t pa;
508 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
509
510 KDASSERT(VM_MAP_IS_KERNEL(map));
511 KDASSERT(vm_map_min(map) <= start);
512 KDASSERT(start < end);
513 KDASSERT(end <= vm_map_max(map));
514
515 for (va = start; va < end; va += PAGE_SIZE) {
516 if (pmap_extract(pmap_kernel(), va, &pa)) {
517 panic("uvm_km_check_empty: va %p has pa 0x%llx",
518 (void *)va, (long long)pa);
519 }
520 mutex_enter(uvm_kernel_object->vmobjlock);
521 pg = uvm_pagelookup(uvm_kernel_object,
522 va - vm_map_min(kernel_map));
523 mutex_exit(uvm_kernel_object->vmobjlock);
524 if (pg) {
525 panic("uvm_km_check_empty: "
526 "has page hashed at %p", (const void *)va);
527 }
528 }
529 }
530 #endif /* defined(DEBUG) */
531
532 /*
533 * uvm_km_alloc: allocate an area of kernel memory.
534 *
535 * => NOTE: we can return 0 even if we can wait if there is not enough
536 * free VM space in the map... caller should be prepared to handle
537 * this case.
538 * => we return KVA of memory allocated
539 */
540
541 vaddr_t
542 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
543 {
544 vaddr_t kva, loopva;
545 vaddr_t offset;
546 vsize_t loopsize;
547 struct vm_page *pg;
548 struct uvm_object *obj;
549 int pgaflags;
550 vm_prot_t prot;
551 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
552
553 KASSERT(vm_map_pmap(map) == pmap_kernel());
554 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
555 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
556 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
557 KASSERT((flags & UVM_KMF_VAONLY) != 0 || (flags & UVM_KMF_COLORMATCH) == 0);
558 KASSERT((flags & UVM_KMF_COLORMATCH) == 0 || (flags & UVM_KMF_VAONLY) != 0);
559
560 /*
561 * setup for call
562 */
563
564 kva = vm_map_min(map); /* hint */
565 size = round_page(size);
566 obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
567 UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
568 map, obj, size, flags);
569
570 /*
571 * allocate some virtual space
572 */
573
574 if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
575 align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
576 UVM_ADV_RANDOM,
577 (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA
578 | UVM_KMF_COLORMATCH)))) != 0)) {
579 UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
580 return(0);
581 }
582
583 /*
584 * if all we wanted was VA, return now
585 */
586
587 if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
588 UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
589 return(kva);
590 }
591
592 /*
593 * recover object offset from virtual address
594 */
595
596 offset = kva - vm_map_min(kernel_map);
597 UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
598
599 /*
600 * now allocate and map in the memory... note that we are the only ones
601 * whom should ever get a handle on this area of VM.
602 */
603
604 loopva = kva;
605 loopsize = size;
606
607 pgaflags = UVM_FLAG_COLORMATCH;
608 if (flags & UVM_KMF_NOWAIT)
609 pgaflags |= UVM_PGA_USERESERVE;
610 if (flags & UVM_KMF_ZERO)
611 pgaflags |= UVM_PGA_ZERO;
612 prot = VM_PROT_READ | VM_PROT_WRITE;
613 if (flags & UVM_KMF_EXEC)
614 prot |= VM_PROT_EXECUTE;
615 while (loopsize) {
616 KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
617 "loopva=%#"PRIxVADDR, loopva);
618
619 pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
620 #ifdef UVM_KM_VMFREELIST
621 UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
622 #else
623 UVM_PGA_STRAT_NORMAL, 0
624 #endif
625 );
626
627 /*
628 * out of memory?
629 */
630
631 if (__predict_false(pg == NULL)) {
632 if ((flags & UVM_KMF_NOWAIT) ||
633 ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
634 /* free everything! */
635 uvm_km_free(map, kva, size,
636 flags & UVM_KMF_TYPEMASK);
637 return (0);
638 } else {
639 uvm_wait("km_getwait2"); /* sleep here */
640 continue;
641 }
642 }
643
644 pg->flags &= ~PG_BUSY; /* new page */
645 UVM_PAGE_OWN(pg, NULL);
646
647 /*
648 * map it in
649 */
650
651 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
652 prot, PMAP_KMPAGE);
653 loopva += PAGE_SIZE;
654 offset += PAGE_SIZE;
655 loopsize -= PAGE_SIZE;
656 }
657
658 pmap_update(pmap_kernel());
659
660 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
661 return(kva);
662 }
663
664 /*
665 * uvm_km_free: free an area of kernel memory
666 */
667
668 void
669 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
670 {
671 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
672
673 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
674 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
675 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
676 KASSERT((addr & PAGE_MASK) == 0);
677 KASSERT(vm_map_pmap(map) == pmap_kernel());
678
679 size = round_page(size);
680
681 if (flags & UVM_KMF_PAGEABLE) {
682 uvm_km_pgremove(addr, addr + size);
683 } else if (flags & UVM_KMF_WIRED) {
684 /*
685 * Note: uvm_km_pgremove_intrsafe() extracts mapping, thus
686 * remove it after. See comment below about KVA visibility.
687 */
688 uvm_km_pgremove_intrsafe(map, addr, addr + size);
689 }
690
691 /*
692 * Note: uvm_unmap_remove() calls pmap_update() for us, before
693 * KVA becomes globally available.
694 */
695
696 uvm_unmap1(map, addr, addr + size, UVM_FLAG_VAONLY);
697 }
698
699 /* Sanity; must specify both or none. */
700 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
701 (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
702 #error Must specify MAP and UNMAP together.
703 #endif
704
705 int
706 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
707 vmem_addr_t *addr)
708 {
709 struct vm_page *pg;
710 vmem_addr_t va;
711 int rc;
712 vaddr_t loopva;
713 vsize_t loopsize;
714
715 size = round_page(size);
716
717 #if defined(PMAP_MAP_POOLPAGE)
718 if (size == PAGE_SIZE) {
719 again:
720 #ifdef PMAP_ALLOC_POOLPAGE
721 pg = PMAP_ALLOC_POOLPAGE((flags & VM_SLEEP) ?
722 0 : UVM_PGA_USERESERVE);
723 #else
724 pg = uvm_pagealloc(NULL, 0, NULL,
725 (flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE);
726 #endif /* PMAP_ALLOC_POOLPAGE */
727 if (__predict_false(pg == NULL)) {
728 if (flags & VM_SLEEP) {
729 uvm_wait("plpg");
730 goto again;
731 }
732 return ENOMEM;
733 }
734 va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
735 if (__predict_false(va == 0)) {
736 uvm_pagefree(pg);
737 return ENOMEM;
738 }
739 *addr = va;
740 return 0;
741 }
742 #endif /* PMAP_MAP_POOLPAGE */
743
744 rc = vmem_alloc(vm, size, flags, &va);
745 if (rc != 0)
746 return rc;
747
748 loopva = va;
749 loopsize = size;
750
751 while (loopsize) {
752 KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
753 "loopva=%#"PRIxVADDR" loopsize=%#"PRIxVSIZE" vmem=%p",
754 loopva, loopsize, vm);
755
756 pg = uvm_pagealloc(NULL, loopva, NULL,
757 UVM_FLAG_COLORMATCH
758 | ((flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE));
759 if (__predict_false(pg == NULL)) {
760 if (flags & VM_SLEEP) {
761 uvm_wait("plpg");
762 continue;
763 } else {
764 uvm_km_pgremove_intrsafe(kernel_map, va,
765 va + size);
766 vmem_free(vm, va, size);
767 return ENOMEM;
768 }
769 }
770
771 pg->flags &= ~PG_BUSY; /* new page */
772 UVM_PAGE_OWN(pg, NULL);
773 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
774 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
775
776 loopva += PAGE_SIZE;
777 loopsize -= PAGE_SIZE;
778 }
779 pmap_update(pmap_kernel());
780
781 *addr = va;
782
783 return 0;
784 }
785
786 void
787 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, size_t size)
788 {
789
790 size = round_page(size);
791 #if defined(PMAP_UNMAP_POOLPAGE)
792 if (size == PAGE_SIZE) {
793 paddr_t pa;
794
795 pa = PMAP_UNMAP_POOLPAGE(addr);
796 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
797 return;
798 }
799 #endif /* PMAP_UNMAP_POOLPAGE */
800 uvm_km_pgremove_intrsafe(kernel_map, addr, addr + size);
801 pmap_update(pmap_kernel());
802
803 vmem_free(vm, addr, size);
804 }
805
806 bool
807 uvm_km_va_starved_p(void)
808 {
809 vmem_size_t total;
810 vmem_size_t free;
811
812 total = vmem_size(kmem_arena, VMEM_ALLOC|VMEM_FREE);
813 free = vmem_size(kmem_arena, VMEM_FREE);
814
815 return (free < (total / 10));
816 }
817