uvm_km.c revision 1.126 1 /* $NetBSD: uvm_km.c,v 1.126 2012/06/02 08:42:37 para Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
37 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
38 *
39 *
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
48 *
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 *
53 * Carnegie Mellon requests users of this software to return to
54 *
55 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 * School of Computer Science
57 * Carnegie Mellon University
58 * Pittsburgh PA 15213-3890
59 *
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
62 */
63
64 /*
65 * uvm_km.c: handle kernel memory allocation and management
66 */
67
68 /*
69 * overview of kernel memory management:
70 *
71 * the kernel virtual address space is mapped by "kernel_map." kernel_map
72 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
73 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
74 *
75 * the kernel_map has several "submaps." submaps can only appear in
76 * the kernel_map (user processes can't use them). submaps "take over"
77 * the management of a sub-range of the kernel's address space. submaps
78 * are typically allocated at boot time and are never released. kernel
79 * virtual address space that is mapped by a submap is locked by the
80 * submap's lock -- not the kernel_map's lock.
81 *
82 * thus, the useful feature of submaps is that they allow us to break
83 * up the locking and protection of the kernel address space into smaller
84 * chunks.
85 *
86 * the vm system has several standard kernel submaps/arenas, including:
87 * kmem_arena => used for kmem/pool (memoryallocators(9))
88 * pager_map => used to map "buf" structures into kernel space
89 * exec_map => used during exec to handle exec args
90 * etc...
91 *
92 * the kmem_arena is a "special submap", as it lives a fixed map entry
93 * within the kernel_map and controlled by vmem(9).
94 *
95 * the kernel allocates its private memory out of special uvm_objects whose
96 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
97 * are "special" and never die). all kernel objects should be thought of
98 * as large, fixed-sized, sparsely populated uvm_objects. each kernel
99 * object is equal to the size of kernel virtual address space (i.e. the
100 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
101 *
102 * note that just because a kernel object spans the entire kernel virtual
103 * address space doesn't mean that it has to be mapped into the entire space.
104 * large chunks of a kernel object's space go unused either because
105 * that area of kernel VM is unmapped, or there is some other type of
106 * object mapped into that range (e.g. a vnode). for submap's kernel
107 * objects, the only part of the object that can ever be populated is the
108 * offsets that are managed by the submap.
109 *
110 * note that the "offset" in a kernel object is always the kernel virtual
111 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
112 * example:
113 * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
114 * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
115 * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
116 * then that means that the page at offset 0x235000 in kernel_object is
117 * mapped at 0xf8235000.
118 *
119 * kernel object have one other special property: when the kernel virtual
120 * memory mapping them is unmapped, the backing memory in the object is
121 * freed right away. this is done with the uvm_km_pgremove() function.
122 * this has to be done because there is no backing store for kernel pages
123 * and no need to save them after they are no longer referenced.
124 *
125 * kmem_arena: main arena controlling the kernel kva used by other arenas.
126 * kmem_va_arena: it utilizes quantum caching for fast allocations and to
127 * lower fragmentation. the pool and kmem allocate from this arena
128 * except for some pool meta-data.
129 *
130 * arenas for metadata allocations used by vmem(9) and pool(9)
131 * note: these arenas can't use quantum caching, the kmem_va_meta_arena
132 * compensates for this by importing larger chunks from kmem_arena.
133 *
134 * kmem_va_meta_arena: space for metadata is allocated from this arena.
135 * kmem_meta_arena: imports from kmem_va_meta_arena.
136 * allocations from this arena are backed with vm_pages.
137 *
138 * arena stacking:
139 * kmem_arena
140 * kmem_va_arena
141 * kmem_va_meta_arena
142 * kmem_meta_arena
143 *
144 */
145
146 #include <sys/cdefs.h>
147 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.126 2012/06/02 08:42:37 para Exp $");
148
149 #include "opt_uvmhist.h"
150
151 #include "opt_kmempages.h"
152
153 #ifndef NKMEMPAGES
154 #define NKMEMPAGES 0
155 #endif
156
157 /*
158 * Defaults for lower and upper-bounds for the kmem_arena page count.
159 * Can be overridden by kernel config options.
160 */
161 #ifndef NKMEMPAGES_MIN
162 #define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
163 #endif
164
165 #ifndef NKMEMPAGES_MAX
166 #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
167 #endif
168
169
170 #include <sys/param.h>
171 #include <sys/systm.h>
172 #include <sys/proc.h>
173 #include <sys/pool.h>
174 #include <sys/vmem.h>
175 #include <sys/kmem.h>
176
177 #include <uvm/uvm.h>
178
179 /*
180 * global data structures
181 */
182
183 struct vm_map *kernel_map = NULL;
184
185 /*
186 * local data structues
187 */
188
189 static struct vm_map kernel_map_store;
190 static struct vm_map_entry kernel_image_mapent_store;
191 static struct vm_map_entry kernel_kmem_mapent_store;
192
193 int nkmempages = 0;
194 vaddr_t kmembase;
195 vsize_t kmemsize;
196
197 vmem_t *kmem_arena;
198 vmem_t *kmem_va_arena;
199
200 /*
201 * kmeminit_nkmempages: calculate the size of kmem_arena.
202 */
203 void
204 kmeminit_nkmempages(void)
205 {
206 int npages;
207
208 if (nkmempages != 0) {
209 /*
210 * It's already been set (by us being here before)
211 * bail out now;
212 */
213 return;
214 }
215
216 #if defined(PMAP_MAP_POOLPAGE)
217 npages = (physmem / 4);
218 #else
219 npages = (physmem / 3) * 2;
220 #endif /* defined(PMAP_MAP_POOLPAGE) */
221
222 #ifndef NKMEMPAGES_MAX_UNLIMITED
223 if (npages > NKMEMPAGES_MAX)
224 npages = NKMEMPAGES_MAX;
225 #endif
226
227 if (npages < NKMEMPAGES_MIN)
228 npages = NKMEMPAGES_MIN;
229
230 nkmempages = npages;
231 }
232
233 /*
234 * uvm_km_bootstrap: init kernel maps and objects to reflect reality (i.e.
235 * KVM already allocated for text, data, bss, and static data structures).
236 *
237 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
238 * we assume that [vmin -> start] has already been allocated and that
239 * "end" is the end.
240 */
241
242 void
243 uvm_km_bootstrap(vaddr_t start, vaddr_t end)
244 {
245 bool kmem_arena_small;
246 vaddr_t base = VM_MIN_KERNEL_ADDRESS;
247 struct uvm_map_args args;
248 int error;
249
250 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
251 UVMHIST_LOG(maphist, "start=%"PRIxVADDR" end=%#"PRIxVADDR,
252 start, end, 0,0);
253
254 kmeminit_nkmempages();
255 kmemsize = (vsize_t)nkmempages * PAGE_SIZE;
256 kmem_arena_small = kmemsize < 64 * 1024 * 1024;
257
258 UVMHIST_LOG(maphist, "kmemsize=%#"PRIxVSIZE, kmemsize, 0,0,0);
259
260 /*
261 * next, init kernel memory objects.
262 */
263
264 /* kernel_object: for pageable anonymous kernel memory */
265 uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
266 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
267
268 /*
269 * init the map and reserve any space that might already
270 * have been allocated kernel space before installing.
271 */
272
273 uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
274 kernel_map_store.pmap = pmap_kernel();
275 if (start != base) {
276 error = uvm_map_prepare(&kernel_map_store,
277 base, start - base,
278 NULL, UVM_UNKNOWN_OFFSET, 0,
279 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
280 UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
281 if (!error) {
282 kernel_image_mapent_store.flags =
283 UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
284 error = uvm_map_enter(&kernel_map_store, &args,
285 &kernel_image_mapent_store);
286 }
287
288 if (error)
289 panic(
290 "uvm_km_bootstrap: could not reserve space for kernel");
291
292 kmembase = args.uma_start + args.uma_size;
293 } else {
294 kmembase = base;
295 }
296
297 error = uvm_map_prepare(&kernel_map_store,
298 kmembase, kmemsize,
299 NULL, UVM_UNKNOWN_OFFSET, 0,
300 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
301 UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
302 if (!error) {
303 kernel_kmem_mapent_store.flags =
304 UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
305 error = uvm_map_enter(&kernel_map_store, &args,
306 &kernel_kmem_mapent_store);
307 }
308
309 if (error)
310 panic("uvm_km_bootstrap: could not reserve kernel kmem");
311
312 /*
313 * install!
314 */
315
316 kernel_map = &kernel_map_store;
317
318 pool_subsystem_init();
319 vmem_bootstrap();
320
321 kmem_arena = vmem_create("kmem", kmembase, kmemsize, PAGE_SIZE,
322 NULL, NULL, NULL,
323 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
324
325 vmem_init(kmem_arena);
326
327 UVMHIST_LOG(maphist, "kmem vmem created (base=%#"PRIxVADDR
328 ", size=%#"PRIxVSIZE, kmembase, kmemsize, 0,0);
329
330 kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
331 vmem_alloc, vmem_free, kmem_arena,
332 (kmem_arena_small ? 4 : 8) * PAGE_SIZE,
333 VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
334
335 UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
336 }
337
338 /*
339 * uvm_km_init: init the kernel maps virtual memory caches
340 * and start the pool/kmem allocator.
341 */
342 void
343 uvm_km_init(void)
344 {
345
346 kmem_init();
347
348 kmeminit(); // killme
349 }
350
351 /*
352 * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
353 * is allocated all references to that area of VM must go through it. this
354 * allows the locking of VAs in kernel_map to be broken up into regions.
355 *
356 * => if `fixed' is true, *vmin specifies where the region described
357 * pager_map => used to map "buf" structures into kernel space
358 * by the submap must start
359 * => if submap is non NULL we use that as the submap, otherwise we
360 * alloc a new map
361 */
362
363 struct vm_map *
364 uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
365 vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
366 struct vm_map *submap)
367 {
368 int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
369 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
370
371 KASSERT(vm_map_pmap(map) == pmap_kernel());
372
373 size = round_page(size); /* round up to pagesize */
374
375 /*
376 * first allocate a blank spot in the parent map
377 */
378
379 if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
380 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
381 UVM_ADV_RANDOM, mapflags)) != 0) {
382 panic("%s: unable to allocate space in parent map", __func__);
383 }
384
385 /*
386 * set VM bounds (vmin is filled in by uvm_map)
387 */
388
389 *vmax = *vmin + size;
390
391 /*
392 * add references to pmap and create or init the submap
393 */
394
395 pmap_reference(vm_map_pmap(map));
396 if (submap == NULL) {
397 submap = kmem_alloc(sizeof(*submap), KM_SLEEP);
398 if (submap == NULL)
399 panic("uvm_km_suballoc: unable to create submap");
400 }
401 uvm_map_setup(submap, *vmin, *vmax, flags);
402 submap->pmap = vm_map_pmap(map);
403
404 /*
405 * now let uvm_map_submap plug in it...
406 */
407
408 if (uvm_map_submap(map, *vmin, *vmax, submap) != 0)
409 panic("uvm_km_suballoc: submap allocation failed");
410
411 return(submap);
412 }
413
414 /*
415 * uvm_km_pgremove: remove pages from a kernel uvm_object and KVA.
416 */
417
418 void
419 uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
420 {
421 struct uvm_object * const uobj = uvm_kernel_object;
422 const voff_t start = startva - vm_map_min(kernel_map);
423 const voff_t end = endva - vm_map_min(kernel_map);
424 struct vm_page *pg;
425 voff_t curoff, nextoff;
426 int swpgonlydelta = 0;
427 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
428
429 KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
430 KASSERT(startva < endva);
431 KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
432
433 mutex_enter(uobj->vmobjlock);
434 pmap_remove(pmap_kernel(), startva, endva);
435 for (curoff = start; curoff < end; curoff = nextoff) {
436 nextoff = curoff + PAGE_SIZE;
437 pg = uvm_pagelookup(uobj, curoff);
438 if (pg != NULL && pg->flags & PG_BUSY) {
439 pg->flags |= PG_WANTED;
440 UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, 0,
441 "km_pgrm", 0);
442 mutex_enter(uobj->vmobjlock);
443 nextoff = curoff;
444 continue;
445 }
446
447 /*
448 * free the swap slot, then the page.
449 */
450
451 if (pg == NULL &&
452 uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
453 swpgonlydelta++;
454 }
455 uao_dropswap(uobj, curoff >> PAGE_SHIFT);
456 if (pg != NULL) {
457 mutex_enter(&uvm_pageqlock);
458 uvm_pagefree(pg);
459 mutex_exit(&uvm_pageqlock);
460 }
461 }
462 mutex_exit(uobj->vmobjlock);
463
464 if (swpgonlydelta > 0) {
465 mutex_enter(&uvm_swap_data_lock);
466 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
467 uvmexp.swpgonly -= swpgonlydelta;
468 mutex_exit(&uvm_swap_data_lock);
469 }
470 }
471
472
473 /*
474 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
475 * regions.
476 *
477 * => when you unmap a part of anonymous kernel memory you want to toss
478 * the pages right away. (this is called from uvm_unmap_...).
479 * => none of the pages will ever be busy, and none of them will ever
480 * be on the active or inactive queues (because they have no object).
481 */
482
483 void
484 uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
485 {
486 #define __PGRM_BATCH 16
487 struct vm_page *pg;
488 paddr_t pa[__PGRM_BATCH];
489 int npgrm, i;
490 vaddr_t va, batch_vastart;
491
492 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
493
494 KASSERT(VM_MAP_IS_KERNEL(map));
495 KASSERT(vm_map_min(map) <= start);
496 KASSERT(start < end);
497 KASSERT(end <= vm_map_max(map));
498
499 for (va = start; va < end;) {
500 batch_vastart = va;
501 /* create a batch of at most __PGRM_BATCH pages to free */
502 for (i = 0;
503 i < __PGRM_BATCH && va < end;
504 va += PAGE_SIZE) {
505 if (!pmap_extract(pmap_kernel(), va, &pa[i])) {
506 continue;
507 }
508 i++;
509 }
510 npgrm = i;
511 /* now remove the mappings */
512 pmap_kremove(batch_vastart, va - batch_vastart);
513 /* and free the pages */
514 for (i = 0; i < npgrm; i++) {
515 pg = PHYS_TO_VM_PAGE(pa[i]);
516 KASSERT(pg);
517 KASSERT(pg->uobject == NULL && pg->uanon == NULL);
518 KASSERT((pg->flags & PG_BUSY) == 0);
519 uvm_pagefree(pg);
520 }
521 }
522 #undef __PGRM_BATCH
523 }
524
525 #if defined(DEBUG)
526 void
527 uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
528 {
529 struct vm_page *pg;
530 vaddr_t va;
531 paddr_t pa;
532 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
533
534 KDASSERT(VM_MAP_IS_KERNEL(map));
535 KDASSERT(vm_map_min(map) <= start);
536 KDASSERT(start < end);
537 KDASSERT(end <= vm_map_max(map));
538
539 for (va = start; va < end; va += PAGE_SIZE) {
540 if (pmap_extract(pmap_kernel(), va, &pa)) {
541 panic("uvm_km_check_empty: va %p has pa 0x%llx",
542 (void *)va, (long long)pa);
543 }
544 mutex_enter(uvm_kernel_object->vmobjlock);
545 pg = uvm_pagelookup(uvm_kernel_object,
546 va - vm_map_min(kernel_map));
547 mutex_exit(uvm_kernel_object->vmobjlock);
548 if (pg) {
549 panic("uvm_km_check_empty: "
550 "has page hashed at %p", (const void *)va);
551 }
552 }
553 }
554 #endif /* defined(DEBUG) */
555
556 /*
557 * uvm_km_alloc: allocate an area of kernel memory.
558 *
559 * => NOTE: we can return 0 even if we can wait if there is not enough
560 * free VM space in the map... caller should be prepared to handle
561 * this case.
562 * => we return KVA of memory allocated
563 */
564
565 vaddr_t
566 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
567 {
568 vaddr_t kva, loopva;
569 vaddr_t offset;
570 vsize_t loopsize;
571 struct vm_page *pg;
572 struct uvm_object *obj;
573 int pgaflags;
574 vm_prot_t prot;
575 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
576
577 KASSERT(vm_map_pmap(map) == pmap_kernel());
578 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
579 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
580 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
581 KASSERT((flags & UVM_KMF_VAONLY) != 0 || (flags & UVM_KMF_COLORMATCH) == 0);
582 KASSERT((flags & UVM_KMF_COLORMATCH) == 0 || (flags & UVM_KMF_VAONLY) != 0);
583
584 /*
585 * setup for call
586 */
587
588 kva = vm_map_min(map); /* hint */
589 size = round_page(size);
590 obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
591 UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
592 map, obj, size, flags);
593
594 /*
595 * allocate some virtual space
596 */
597
598 if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
599 align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
600 UVM_ADV_RANDOM,
601 (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA
602 | UVM_KMF_COLORMATCH)))) != 0)) {
603 UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
604 return(0);
605 }
606
607 /*
608 * if all we wanted was VA, return now
609 */
610
611 if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
612 UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
613 return(kva);
614 }
615
616 /*
617 * recover object offset from virtual address
618 */
619
620 offset = kva - vm_map_min(kernel_map);
621 UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
622
623 /*
624 * now allocate and map in the memory... note that we are the only ones
625 * whom should ever get a handle on this area of VM.
626 */
627
628 loopva = kva;
629 loopsize = size;
630
631 pgaflags = UVM_FLAG_COLORMATCH;
632 if (flags & UVM_KMF_NOWAIT)
633 pgaflags |= UVM_PGA_USERESERVE;
634 if (flags & UVM_KMF_ZERO)
635 pgaflags |= UVM_PGA_ZERO;
636 prot = VM_PROT_READ | VM_PROT_WRITE;
637 if (flags & UVM_KMF_EXEC)
638 prot |= VM_PROT_EXECUTE;
639 while (loopsize) {
640 KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
641 "loopva=%#"PRIxVADDR, loopva);
642
643 pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
644 #ifdef UVM_KM_VMFREELIST
645 UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
646 #else
647 UVM_PGA_STRAT_NORMAL, 0
648 #endif
649 );
650
651 /*
652 * out of memory?
653 */
654
655 if (__predict_false(pg == NULL)) {
656 if ((flags & UVM_KMF_NOWAIT) ||
657 ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
658 /* free everything! */
659 uvm_km_free(map, kva, size,
660 flags & UVM_KMF_TYPEMASK);
661 return (0);
662 } else {
663 uvm_wait("km_getwait2"); /* sleep here */
664 continue;
665 }
666 }
667
668 pg->flags &= ~PG_BUSY; /* new page */
669 UVM_PAGE_OWN(pg, NULL);
670
671 /*
672 * map it in
673 */
674
675 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
676 prot, PMAP_KMPAGE);
677 loopva += PAGE_SIZE;
678 offset += PAGE_SIZE;
679 loopsize -= PAGE_SIZE;
680 }
681
682 pmap_update(pmap_kernel());
683
684 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
685 return(kva);
686 }
687
688 /*
689 * uvm_km_free: free an area of kernel memory
690 */
691
692 void
693 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
694 {
695 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
696
697 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
698 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
699 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
700 KASSERT((addr & PAGE_MASK) == 0);
701 KASSERT(vm_map_pmap(map) == pmap_kernel());
702
703 size = round_page(size);
704
705 if (flags & UVM_KMF_PAGEABLE) {
706 uvm_km_pgremove(addr, addr + size);
707 } else if (flags & UVM_KMF_WIRED) {
708 /*
709 * Note: uvm_km_pgremove_intrsafe() extracts mapping, thus
710 * remove it after. See comment below about KVA visibility.
711 */
712 uvm_km_pgremove_intrsafe(map, addr, addr + size);
713 }
714
715 /*
716 * Note: uvm_unmap_remove() calls pmap_update() for us, before
717 * KVA becomes globally available.
718 */
719
720 uvm_unmap1(map, addr, addr + size, UVM_FLAG_VAONLY);
721 }
722
723 /* Sanity; must specify both or none. */
724 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
725 (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
726 #error Must specify MAP and UNMAP together.
727 #endif
728
729 int
730 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
731 vmem_addr_t *addr)
732 {
733 struct vm_page *pg;
734 vmem_addr_t va;
735 int rc;
736 vaddr_t loopva;
737 vsize_t loopsize;
738
739 size = round_page(size);
740
741 #if defined(PMAP_MAP_POOLPAGE)
742 if (size == PAGE_SIZE) {
743 again:
744 #ifdef PMAP_ALLOC_POOLPAGE
745 pg = PMAP_ALLOC_POOLPAGE((flags & VM_SLEEP) ?
746 0 : UVM_PGA_USERESERVE);
747 #else
748 pg = uvm_pagealloc(NULL, 0, NULL,
749 (flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE);
750 #endif /* PMAP_ALLOC_POOLPAGE */
751 if (__predict_false(pg == NULL)) {
752 if (flags & VM_SLEEP) {
753 uvm_wait("plpg");
754 goto again;
755 }
756 return ENOMEM;
757 }
758 va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
759 if (__predict_false(va == 0)) {
760 uvm_pagefree(pg);
761 return ENOMEM;
762 }
763 *addr = va;
764 return 0;
765 }
766 #endif /* PMAP_MAP_POOLPAGE */
767
768 rc = vmem_alloc(vm, size, flags, &va);
769 if (rc != 0)
770 return rc;
771
772 loopva = va;
773 loopsize = size;
774
775 while (loopsize) {
776 KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
777 "loopva=%#"PRIxVADDR" loopsize=%#"PRIxVSIZE" vmem=%p",
778 loopva, loopsize, vm);
779
780 pg = uvm_pagealloc(NULL, loopva, NULL,
781 UVM_FLAG_COLORMATCH
782 | ((flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE));
783 if (__predict_false(pg == NULL)) {
784 if (flags & VM_SLEEP) {
785 uvm_wait("plpg");
786 continue;
787 } else {
788 uvm_km_pgremove_intrsafe(kernel_map, va,
789 va + size);
790 vmem_free(vm, va, size);
791 return ENOMEM;
792 }
793 }
794
795 pg->flags &= ~PG_BUSY; /* new page */
796 UVM_PAGE_OWN(pg, NULL);
797 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
798 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
799
800 loopva += PAGE_SIZE;
801 loopsize -= PAGE_SIZE;
802 }
803 pmap_update(pmap_kernel());
804
805 *addr = va;
806
807 return 0;
808 }
809
810 void
811 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, size_t size)
812 {
813
814 size = round_page(size);
815 #if defined(PMAP_UNMAP_POOLPAGE)
816 if (size == PAGE_SIZE) {
817 paddr_t pa;
818
819 pa = PMAP_UNMAP_POOLPAGE(addr);
820 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
821 return;
822 }
823 #endif /* PMAP_UNMAP_POOLPAGE */
824 uvm_km_pgremove_intrsafe(kernel_map, addr, addr + size);
825 pmap_update(pmap_kernel());
826
827 vmem_free(vm, addr, size);
828 }
829
830 bool
831 uvm_km_va_starved_p(void)
832 {
833 vmem_size_t total;
834 vmem_size_t free;
835
836 total = vmem_size(kmem_arena, VMEM_ALLOC|VMEM_FREE);
837 free = vmem_size(kmem_arena, VMEM_FREE);
838
839 return (free < (total / 10));
840 }
841