uvm_km.c revision 1.134 1 /* $NetBSD: uvm_km.c,v 1.134 2012/09/04 13:37:41 matt Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
37 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
38 *
39 *
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
48 *
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 *
53 * Carnegie Mellon requests users of this software to return to
54 *
55 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 * School of Computer Science
57 * Carnegie Mellon University
58 * Pittsburgh PA 15213-3890
59 *
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
62 */
63
64 /*
65 * uvm_km.c: handle kernel memory allocation and management
66 */
67
68 /*
69 * overview of kernel memory management:
70 *
71 * the kernel virtual address space is mapped by "kernel_map." kernel_map
72 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
73 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
74 *
75 * the kernel_map has several "submaps." submaps can only appear in
76 * the kernel_map (user processes can't use them). submaps "take over"
77 * the management of a sub-range of the kernel's address space. submaps
78 * are typically allocated at boot time and are never released. kernel
79 * virtual address space that is mapped by a submap is locked by the
80 * submap's lock -- not the kernel_map's lock.
81 *
82 * thus, the useful feature of submaps is that they allow us to break
83 * up the locking and protection of the kernel address space into smaller
84 * chunks.
85 *
86 * the vm system has several standard kernel submaps/arenas, including:
87 * kmem_arena => used for kmem/pool (memoryallocators(9))
88 * pager_map => used to map "buf" structures into kernel space
89 * exec_map => used during exec to handle exec args
90 * etc...
91 *
92 * The kmem_arena is a "special submap", as it lives in a fixed map entry
93 * within the kernel_map and is controlled by vmem(9).
94 *
95 * the kernel allocates its private memory out of special uvm_objects whose
96 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
97 * are "special" and never die). all kernel objects should be thought of
98 * as large, fixed-sized, sparsely populated uvm_objects. each kernel
99 * object is equal to the size of kernel virtual address space (i.e. the
100 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
101 *
102 * note that just because a kernel object spans the entire kernel virtual
103 * address space doesn't mean that it has to be mapped into the entire space.
104 * large chunks of a kernel object's space go unused either because
105 * that area of kernel VM is unmapped, or there is some other type of
106 * object mapped into that range (e.g. a vnode). for submap's kernel
107 * objects, the only part of the object that can ever be populated is the
108 * offsets that are managed by the submap.
109 *
110 * note that the "offset" in a kernel object is always the kernel virtual
111 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
112 * example:
113 * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
114 * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
115 * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
116 * then that means that the page at offset 0x235000 in kernel_object is
117 * mapped at 0xf8235000.
118 *
119 * kernel object have one other special property: when the kernel virtual
120 * memory mapping them is unmapped, the backing memory in the object is
121 * freed right away. this is done with the uvm_km_pgremove() function.
122 * this has to be done because there is no backing store for kernel pages
123 * and no need to save them after they are no longer referenced.
124 *
125 * Generic arenas:
126 *
127 * kmem_arena:
128 * Main arena controlling the kernel KVA used by other arenas.
129 *
130 * kmem_va_arena:
131 * Implements quantum caching in order to speedup allocations and
132 * reduce fragmentation. The pool(9), unless created with a custom
133 * meta-data allocator, and kmem(9) subsystems use this arena.
134 *
135 * Arenas for meta-data allocations are used by vmem(9) and pool(9).
136 * These arenas cannot use quantum cache. However, kmem_va_meta_arena
137 * compensates this by importing larger chunks from kmem_arena.
138 *
139 * kmem_va_meta_arena:
140 * Space for meta-data.
141 *
142 * kmem_meta_arena:
143 * Imports from kmem_va_meta_arena. Allocations from this arena are
144 * backed with the pages.
145 *
146 * Arena stacking:
147 *
148 * kmem_arena
149 * kmem_va_arena
150 * kmem_va_meta_arena
151 * kmem_meta_arena
152 */
153
154 #include <sys/cdefs.h>
155 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.134 2012/09/04 13:37:41 matt Exp $");
156
157 #include "opt_uvmhist.h"
158
159 #include "opt_kmempages.h"
160
161 #ifndef NKMEMPAGES
162 #define NKMEMPAGES 0
163 #endif
164
165 /*
166 * Defaults for lower and upper-bounds for the kmem_arena page count.
167 * Can be overridden by kernel config options.
168 */
169 #ifndef NKMEMPAGES_MIN
170 #define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
171 #endif
172
173 #ifndef NKMEMPAGES_MAX
174 #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
175 #endif
176
177
178 #include <sys/param.h>
179 #include <sys/systm.h>
180 #include <sys/proc.h>
181 #include <sys/pool.h>
182 #include <sys/vmem.h>
183 #include <sys/kmem.h>
184
185 #include <uvm/uvm.h>
186
187 /*
188 * global data structures
189 */
190
191 struct vm_map *kernel_map = NULL;
192
193 /*
194 * local data structues
195 */
196
197 static struct vm_map kernel_map_store;
198 static struct vm_map_entry kernel_image_mapent_store;
199 static struct vm_map_entry kernel_kmem_mapent_store;
200
201 int nkmempages = 0;
202 vaddr_t kmembase;
203 vsize_t kmemsize;
204
205 vmem_t *kmem_arena;
206 vmem_t *kmem_va_arena;
207
208 /*
209 * kmeminit_nkmempages: calculate the size of kmem_arena.
210 */
211 void
212 kmeminit_nkmempages(void)
213 {
214 int npages;
215
216 if (nkmempages != 0) {
217 /*
218 * It's already been set (by us being here before)
219 * bail out now;
220 */
221 return;
222 }
223
224 #if defined(PMAP_MAP_POOLPAGE)
225 npages = (physmem / 4);
226 #else
227 npages = (physmem / 3) * 2;
228 #endif /* defined(PMAP_MAP_POOLPAGE) */
229
230 #ifndef NKMEMPAGES_MAX_UNLIMITED
231 if (npages > NKMEMPAGES_MAX)
232 npages = NKMEMPAGES_MAX;
233 #endif
234
235 if (npages < NKMEMPAGES_MIN)
236 npages = NKMEMPAGES_MIN;
237
238 nkmempages = npages;
239 }
240
241 /*
242 * uvm_km_bootstrap: init kernel maps and objects to reflect reality (i.e.
243 * KVM already allocated for text, data, bss, and static data structures).
244 *
245 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
246 * we assume that [vmin -> start] has already been allocated and that
247 * "end" is the end.
248 */
249
250 void
251 uvm_km_bootstrap(vaddr_t start, vaddr_t end)
252 {
253 bool kmem_arena_small;
254 vaddr_t base = VM_MIN_KERNEL_ADDRESS;
255 struct uvm_map_args args;
256 int error;
257
258 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
259 UVMHIST_LOG(maphist, "start=%"PRIxVADDR" end=%#"PRIxVADDR,
260 start, end, 0,0);
261
262 kmeminit_nkmempages();
263 kmemsize = (vsize_t)nkmempages * PAGE_SIZE;
264 kmem_arena_small = kmemsize < 64 * 1024 * 1024;
265
266 UVMHIST_LOG(maphist, "kmemsize=%#"PRIxVSIZE, kmemsize, 0,0,0);
267
268 /*
269 * next, init kernel memory objects.
270 */
271
272 /* kernel_object: for pageable anonymous kernel memory */
273 uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
274 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
275
276 /*
277 * init the map and reserve any space that might already
278 * have been allocated kernel space before installing.
279 */
280
281 uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
282 kernel_map_store.pmap = pmap_kernel();
283 if (start != base) {
284 error = uvm_map_prepare(&kernel_map_store,
285 base, start - base,
286 NULL, UVM_UNKNOWN_OFFSET, 0,
287 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
288 UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
289 if (!error) {
290 kernel_image_mapent_store.flags =
291 UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
292 error = uvm_map_enter(&kernel_map_store, &args,
293 &kernel_image_mapent_store);
294 }
295
296 if (error)
297 panic(
298 "uvm_km_bootstrap: could not reserve space for kernel");
299
300 kmembase = args.uma_start + args.uma_size;
301 } else {
302 kmembase = base;
303 }
304
305 error = uvm_map_prepare(&kernel_map_store,
306 kmembase, kmemsize,
307 NULL, UVM_UNKNOWN_OFFSET, 0,
308 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
309 UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
310 if (!error) {
311 kernel_kmem_mapent_store.flags =
312 UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
313 error = uvm_map_enter(&kernel_map_store, &args,
314 &kernel_kmem_mapent_store);
315 }
316
317 if (error)
318 panic("uvm_km_bootstrap: could not reserve kernel kmem");
319
320 /*
321 * install!
322 */
323
324 kernel_map = &kernel_map_store;
325
326 pool_subsystem_init();
327 vmem_bootstrap();
328
329 kmem_arena = vmem_create("kmem", kmembase, kmemsize, PAGE_SIZE,
330 NULL, NULL, NULL,
331 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
332
333 vmem_init(kmem_arena);
334
335 UVMHIST_LOG(maphist, "kmem vmem created (base=%#"PRIxVADDR
336 ", size=%#"PRIxVSIZE, kmembase, kmemsize, 0,0);
337
338 kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
339 vmem_alloc, vmem_free, kmem_arena,
340 (kmem_arena_small ? 4 : 8) * PAGE_SIZE,
341 VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
342
343 UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
344 }
345
346 /*
347 * uvm_km_init: init the kernel maps virtual memory caches
348 * and start the pool/kmem allocator.
349 */
350 void
351 uvm_km_init(void)
352 {
353
354 kmem_init();
355
356 kmeminit(); // killme
357 }
358
359 /*
360 * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
361 * is allocated all references to that area of VM must go through it. this
362 * allows the locking of VAs in kernel_map to be broken up into regions.
363 *
364 * => if `fixed' is true, *vmin specifies where the region described
365 * pager_map => used to map "buf" structures into kernel space
366 * by the submap must start
367 * => if submap is non NULL we use that as the submap, otherwise we
368 * alloc a new map
369 */
370
371 struct vm_map *
372 uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
373 vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
374 struct vm_map *submap)
375 {
376 int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
377 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
378
379 KASSERT(vm_map_pmap(map) == pmap_kernel());
380
381 size = round_page(size); /* round up to pagesize */
382
383 /*
384 * first allocate a blank spot in the parent map
385 */
386
387 if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
388 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
389 UVM_ADV_RANDOM, mapflags)) != 0) {
390 panic("%s: unable to allocate space in parent map", __func__);
391 }
392
393 /*
394 * set VM bounds (vmin is filled in by uvm_map)
395 */
396
397 *vmax = *vmin + size;
398
399 /*
400 * add references to pmap and create or init the submap
401 */
402
403 pmap_reference(vm_map_pmap(map));
404 if (submap == NULL) {
405 submap = kmem_alloc(sizeof(*submap), KM_SLEEP);
406 if (submap == NULL)
407 panic("uvm_km_suballoc: unable to create submap");
408 }
409 uvm_map_setup(submap, *vmin, *vmax, flags);
410 submap->pmap = vm_map_pmap(map);
411
412 /*
413 * now let uvm_map_submap plug in it...
414 */
415
416 if (uvm_map_submap(map, *vmin, *vmax, submap) != 0)
417 panic("uvm_km_suballoc: submap allocation failed");
418
419 return(submap);
420 }
421
422 /*
423 * uvm_km_pgremove: remove pages from a kernel uvm_object and KVA.
424 */
425
426 void
427 uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
428 {
429 struct uvm_object * const uobj = uvm_kernel_object;
430 const voff_t start = startva - vm_map_min(kernel_map);
431 const voff_t end = endva - vm_map_min(kernel_map);
432 struct vm_page *pg;
433 voff_t curoff, nextoff;
434 int swpgonlydelta = 0;
435 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
436
437 KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
438 KASSERT(startva < endva);
439 KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
440
441 mutex_enter(uobj->vmobjlock);
442 pmap_remove(pmap_kernel(), startva, endva);
443 for (curoff = start; curoff < end; curoff = nextoff) {
444 nextoff = curoff + PAGE_SIZE;
445 pg = uvm_pagelookup(uobj, curoff);
446 if (pg != NULL && pg->flags & PG_BUSY) {
447 pg->flags |= PG_WANTED;
448 UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, 0,
449 "km_pgrm", 0);
450 mutex_enter(uobj->vmobjlock);
451 nextoff = curoff;
452 continue;
453 }
454
455 /*
456 * free the swap slot, then the page.
457 */
458
459 if (pg == NULL &&
460 uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
461 swpgonlydelta++;
462 }
463 uao_dropswap(uobj, curoff >> PAGE_SHIFT);
464 if (pg != NULL) {
465 mutex_enter(&uvm_pageqlock);
466 uvm_pagefree(pg);
467 mutex_exit(&uvm_pageqlock);
468 }
469 }
470 mutex_exit(uobj->vmobjlock);
471
472 if (swpgonlydelta > 0) {
473 mutex_enter(&uvm_swap_data_lock);
474 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
475 uvmexp.swpgonly -= swpgonlydelta;
476 mutex_exit(&uvm_swap_data_lock);
477 }
478 }
479
480
481 /*
482 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
483 * regions.
484 *
485 * => when you unmap a part of anonymous kernel memory you want to toss
486 * the pages right away. (this is called from uvm_unmap_...).
487 * => none of the pages will ever be busy, and none of them will ever
488 * be on the active or inactive queues (because they have no object).
489 */
490
491 void
492 uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
493 {
494 #define __PGRM_BATCH 16
495 struct vm_page *pg;
496 paddr_t pa[__PGRM_BATCH];
497 int npgrm, i;
498 vaddr_t va, batch_vastart;
499
500 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
501
502 KASSERT(VM_MAP_IS_KERNEL(map));
503 KASSERTMSG(vm_map_min(map) <= start,
504 "vm_map_min(map) [%#"PRIxVADDR"] <= start [%#"PRIxVADDR"]"
505 " (size=%#"PRIxVSIZE")",
506 vm_map_min(map), start, end - start);
507 KASSERT(start < end);
508 KASSERT(end <= vm_map_max(map));
509
510 for (va = start; va < end;) {
511 batch_vastart = va;
512 /* create a batch of at most __PGRM_BATCH pages to free */
513 for (i = 0;
514 i < __PGRM_BATCH && va < end;
515 va += PAGE_SIZE) {
516 if (!pmap_extract(pmap_kernel(), va, &pa[i])) {
517 continue;
518 }
519 i++;
520 }
521 npgrm = i;
522 /* now remove the mappings */
523 pmap_kremove(batch_vastart, va - batch_vastart);
524 /* and free the pages */
525 for (i = 0; i < npgrm; i++) {
526 pg = PHYS_TO_VM_PAGE(pa[i]);
527 KASSERT(pg);
528 KASSERT(pg->uobject == NULL && pg->uanon == NULL);
529 KASSERT((pg->flags & PG_BUSY) == 0);
530 uvm_pagefree(pg);
531 }
532 }
533 #undef __PGRM_BATCH
534 }
535
536 #if defined(DEBUG)
537 void
538 uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
539 {
540 struct vm_page *pg;
541 vaddr_t va;
542 paddr_t pa;
543 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
544
545 KDASSERT(VM_MAP_IS_KERNEL(map));
546 KDASSERT(vm_map_min(map) <= start);
547 KDASSERT(start < end);
548 KDASSERT(end <= vm_map_max(map));
549
550 for (va = start; va < end; va += PAGE_SIZE) {
551 if (pmap_extract(pmap_kernel(), va, &pa)) {
552 panic("uvm_km_check_empty: va %p has pa 0x%llx",
553 (void *)va, (long long)pa);
554 }
555 mutex_enter(uvm_kernel_object->vmobjlock);
556 pg = uvm_pagelookup(uvm_kernel_object,
557 va - vm_map_min(kernel_map));
558 mutex_exit(uvm_kernel_object->vmobjlock);
559 if (pg) {
560 panic("uvm_km_check_empty: "
561 "has page hashed at %p", (const void *)va);
562 }
563 }
564 }
565 #endif /* defined(DEBUG) */
566
567 /*
568 * uvm_km_alloc: allocate an area of kernel memory.
569 *
570 * => NOTE: we can return 0 even if we can wait if there is not enough
571 * free VM space in the map... caller should be prepared to handle
572 * this case.
573 * => we return KVA of memory allocated
574 */
575
576 vaddr_t
577 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
578 {
579 vaddr_t kva, loopva;
580 vaddr_t offset;
581 vsize_t loopsize;
582 struct vm_page *pg;
583 struct uvm_object *obj;
584 int pgaflags;
585 vm_prot_t prot;
586 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
587
588 KASSERT(vm_map_pmap(map) == pmap_kernel());
589 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
590 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
591 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
592 KASSERT((flags & UVM_KMF_VAONLY) != 0 || (flags & UVM_KMF_COLORMATCH) == 0);
593 KASSERT((flags & UVM_KMF_COLORMATCH) == 0 || (flags & UVM_KMF_VAONLY) != 0);
594
595 /*
596 * setup for call
597 */
598
599 kva = vm_map_min(map); /* hint */
600 size = round_page(size);
601 obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
602 UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
603 map, obj, size, flags);
604
605 /*
606 * allocate some virtual space
607 */
608
609 if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
610 align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
611 UVM_ADV_RANDOM,
612 (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA
613 | UVM_KMF_COLORMATCH)))) != 0)) {
614 UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
615 return(0);
616 }
617
618 /*
619 * if all we wanted was VA, return now
620 */
621
622 if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
623 UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
624 return(kva);
625 }
626
627 /*
628 * recover object offset from virtual address
629 */
630
631 offset = kva - vm_map_min(kernel_map);
632 UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
633
634 /*
635 * now allocate and map in the memory... note that we are the only ones
636 * whom should ever get a handle on this area of VM.
637 */
638
639 loopva = kva;
640 loopsize = size;
641
642 pgaflags = UVM_FLAG_COLORMATCH;
643 if (flags & UVM_KMF_NOWAIT)
644 pgaflags |= UVM_PGA_USERESERVE;
645 if (flags & UVM_KMF_ZERO)
646 pgaflags |= UVM_PGA_ZERO;
647 prot = VM_PROT_READ | VM_PROT_WRITE;
648 if (flags & UVM_KMF_EXEC)
649 prot |= VM_PROT_EXECUTE;
650 while (loopsize) {
651 KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
652 "loopva=%#"PRIxVADDR, loopva);
653
654 pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
655 #ifdef UVM_KM_VMFREELIST
656 UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
657 #else
658 UVM_PGA_STRAT_NORMAL, 0
659 #endif
660 );
661
662 /*
663 * out of memory?
664 */
665
666 if (__predict_false(pg == NULL)) {
667 if ((flags & UVM_KMF_NOWAIT) ||
668 ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
669 /* free everything! */
670 uvm_km_free(map, kva, size,
671 flags & UVM_KMF_TYPEMASK);
672 return (0);
673 } else {
674 uvm_wait("km_getwait2"); /* sleep here */
675 continue;
676 }
677 }
678
679 pg->flags &= ~PG_BUSY; /* new page */
680 UVM_PAGE_OWN(pg, NULL);
681
682 /*
683 * map it in
684 */
685
686 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
687 prot, PMAP_KMPAGE);
688 loopva += PAGE_SIZE;
689 offset += PAGE_SIZE;
690 loopsize -= PAGE_SIZE;
691 }
692
693 pmap_update(pmap_kernel());
694
695 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
696 return(kva);
697 }
698
699 /*
700 * uvm_km_free: free an area of kernel memory
701 */
702
703 void
704 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
705 {
706 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
707
708 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
709 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
710 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
711 KASSERT((addr & PAGE_MASK) == 0);
712 KASSERT(vm_map_pmap(map) == pmap_kernel());
713
714 size = round_page(size);
715
716 if (flags & UVM_KMF_PAGEABLE) {
717 uvm_km_pgremove(addr, addr + size);
718 } else if (flags & UVM_KMF_WIRED) {
719 /*
720 * Note: uvm_km_pgremove_intrsafe() extracts mapping, thus
721 * remove it after. See comment below about KVA visibility.
722 */
723 uvm_km_pgremove_intrsafe(map, addr, addr + size);
724 }
725
726 /*
727 * Note: uvm_unmap_remove() calls pmap_update() for us, before
728 * KVA becomes globally available.
729 */
730
731 uvm_unmap1(map, addr, addr + size, UVM_FLAG_VAONLY);
732 }
733
734 /* Sanity; must specify both or none. */
735 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
736 (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
737 #error Must specify MAP and UNMAP together.
738 #endif
739
740 int
741 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
742 vmem_addr_t *addr)
743 {
744 struct vm_page *pg;
745 vmem_addr_t va;
746 int rc;
747 vaddr_t loopva;
748 vsize_t loopsize;
749
750 size = round_page(size);
751
752 #if defined(PMAP_MAP_POOLPAGE)
753 if (size == PAGE_SIZE) {
754 again:
755 #ifdef PMAP_ALLOC_POOLPAGE
756 pg = PMAP_ALLOC_POOLPAGE((flags & VM_SLEEP) ?
757 0 : UVM_PGA_USERESERVE);
758 #else
759 pg = uvm_pagealloc(NULL, 0, NULL,
760 (flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE);
761 #endif /* PMAP_ALLOC_POOLPAGE */
762 if (__predict_false(pg == NULL)) {
763 if (flags & VM_SLEEP) {
764 uvm_wait("plpg");
765 goto again;
766 }
767 return ENOMEM;
768 }
769 va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
770 if (__predict_false(va == 0)) {
771 uvm_pagefree(pg);
772 return ENOMEM;
773 }
774 *addr = va;
775 return 0;
776 }
777 #endif /* PMAP_MAP_POOLPAGE */
778
779 rc = vmem_alloc(vm, size, flags, &va);
780 if (rc != 0)
781 return rc;
782
783 #ifdef PMAP_GROWKERNEL
784 /*
785 * These VA allocations happen independently of uvm_map so if this allocation
786 * extends beyond the current limit, then allocate more resources for it.
787 * This can only happen while the kmem_map is the only map entry in the
788 * kernel_map because as soon as another map entry is created, uvm_map_prepare
789 * will set uvm_maxkaddr to an address beyond the kmem_map.
790 */
791 if (uvm_maxkaddr < va + size) {
792 uvm_maxkaddr = pmap_growkernel(va + size);
793 KASSERTMSG(uvm_maxkaddr >= va + size,
794 "%#"PRIxVADDR" %#"PRIxPTR" %#zx",
795 uvm_maxkaddr, va, size);
796 }
797 #endif
798
799 loopva = va;
800 loopsize = size;
801
802 while (loopsize) {
803 #ifdef DIAGNOSTIC
804 paddr_t pa;
805 #endif
806 KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, &pa),
807 "loopva=%#"PRIxVADDR" loopsize=%#"PRIxVSIZE
808 " pa=%#"PRIxPADDR" vmem=%p",
809 loopva, loopsize, pa, vm);
810
811 pg = uvm_pagealloc(NULL, loopva, NULL,
812 UVM_FLAG_COLORMATCH
813 | ((flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE));
814 if (__predict_false(pg == NULL)) {
815 if (flags & VM_SLEEP) {
816 uvm_wait("plpg");
817 continue;
818 } else {
819 uvm_km_pgremove_intrsafe(kernel_map, va,
820 va + size);
821 vmem_free(vm, va, size);
822 return ENOMEM;
823 }
824 }
825
826 pg->flags &= ~PG_BUSY; /* new page */
827 UVM_PAGE_OWN(pg, NULL);
828 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
829 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
830
831 loopva += PAGE_SIZE;
832 loopsize -= PAGE_SIZE;
833 }
834 pmap_update(pmap_kernel());
835
836 *addr = va;
837
838 return 0;
839 }
840
841 void
842 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, size_t size)
843 {
844
845 size = round_page(size);
846 #if defined(PMAP_UNMAP_POOLPAGE)
847 if (size == PAGE_SIZE) {
848 paddr_t pa;
849
850 pa = PMAP_UNMAP_POOLPAGE(addr);
851 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
852 return;
853 }
854 #endif /* PMAP_UNMAP_POOLPAGE */
855 uvm_km_pgremove_intrsafe(kernel_map, addr, addr + size);
856 pmap_update(pmap_kernel());
857
858 vmem_free(vm, addr, size);
859 }
860
861 bool
862 uvm_km_va_starved_p(void)
863 {
864 vmem_size_t total;
865 vmem_size_t free;
866
867 total = vmem_size(kmem_arena, VMEM_ALLOC|VMEM_FREE);
868 free = vmem_size(kmem_arena, VMEM_FREE);
869
870 return (free < (total / 10));
871 }
872