Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.135
      1 /*	$NetBSD: uvm_km.c,v 1.135 2012/09/07 06:45:04 para Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     37  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     38  *
     39  *
     40  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     41  * All rights reserved.
     42  *
     43  * Permission to use, copy, modify and distribute this software and
     44  * its documentation is hereby granted, provided that both the copyright
     45  * notice and this permission notice appear in all copies of the
     46  * software, derivative works or modified versions, and any portions
     47  * thereof, and that both notices appear in supporting documentation.
     48  *
     49  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     50  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     51  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     52  *
     53  * Carnegie Mellon requests users of this software to return to
     54  *
     55  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     56  *  School of Computer Science
     57  *  Carnegie Mellon University
     58  *  Pittsburgh PA 15213-3890
     59  *
     60  * any improvements or extensions that they make and grant Carnegie the
     61  * rights to redistribute these changes.
     62  */
     63 
     64 /*
     65  * uvm_km.c: handle kernel memory allocation and management
     66  */
     67 
     68 /*
     69  * overview of kernel memory management:
     70  *
     71  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     72  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     73  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     74  *
     75  * the kernel_map has several "submaps."   submaps can only appear in
     76  * the kernel_map (user processes can't use them).   submaps "take over"
     77  * the management of a sub-range of the kernel's address space.  submaps
     78  * are typically allocated at boot time and are never released.   kernel
     79  * virtual address space that is mapped by a submap is locked by the
     80  * submap's lock -- not the kernel_map's lock.
     81  *
     82  * thus, the useful feature of submaps is that they allow us to break
     83  * up the locking and protection of the kernel address space into smaller
     84  * chunks.
     85  *
     86  * the vm system has several standard kernel submaps/arenas, including:
     87  *   kmem_arena => used for kmem/pool (memoryallocators(9))
     88  *   pager_map => used to map "buf" structures into kernel space
     89  *   exec_map => used during exec to handle exec args
     90  *   etc...
     91  *
     92  * The kmem_arena is a "special submap", as it lives in a fixed map entry
     93  * within the kernel_map and is controlled by vmem(9).
     94  *
     95  * the kernel allocates its private memory out of special uvm_objects whose
     96  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
     97  * are "special" and never die).   all kernel objects should be thought of
     98  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
     99  * object is equal to the size of kernel virtual address space (i.e. the
    100  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    101  *
    102  * note that just because a kernel object spans the entire kernel virtual
    103  * address space doesn't mean that it has to be mapped into the entire space.
    104  * large chunks of a kernel object's space go unused either because
    105  * that area of kernel VM is unmapped, or there is some other type of
    106  * object mapped into that range (e.g. a vnode).    for submap's kernel
    107  * objects, the only part of the object that can ever be populated is the
    108  * offsets that are managed by the submap.
    109  *
    110  * note that the "offset" in a kernel object is always the kernel virtual
    111  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    112  * example:
    113  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    114  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    115  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    116  *   then that means that the page at offset 0x235000 in kernel_object is
    117  *   mapped at 0xf8235000.
    118  *
    119  * kernel object have one other special property: when the kernel virtual
    120  * memory mapping them is unmapped, the backing memory in the object is
    121  * freed right away.   this is done with the uvm_km_pgremove() function.
    122  * this has to be done because there is no backing store for kernel pages
    123  * and no need to save them after they are no longer referenced.
    124  *
    125  * Generic arenas:
    126  *
    127  * kmem_arena:
    128  *	Main arena controlling the kernel KVA used by other arenas.
    129  *
    130  * kmem_va_arena:
    131  *	Implements quantum caching in order to speedup allocations and
    132  *	reduce fragmentation.  The pool(9), unless created with a custom
    133  *	meta-data allocator, and kmem(9) subsystems use this arena.
    134  *
    135  * Arenas for meta-data allocations are used by vmem(9) and pool(9).
    136  * These arenas cannot use quantum cache.  However, kmem_va_meta_arena
    137  * compensates this by importing larger chunks from kmem_arena.
    138  *
    139  * kmem_va_meta_arena:
    140  *	Space for meta-data.
    141  *
    142  * kmem_meta_arena:
    143  *	Imports from kmem_va_meta_arena.  Allocations from this arena are
    144  *	backed with the pages.
    145  *
    146  * Arena stacking:
    147  *
    148  *	kmem_arena
    149  *		kmem_va_arena
    150  *		kmem_va_meta_arena
    151  *			kmem_meta_arena
    152  */
    153 
    154 #include <sys/cdefs.h>
    155 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.135 2012/09/07 06:45:04 para Exp $");
    156 
    157 #include "opt_uvmhist.h"
    158 
    159 #include "opt_kmempages.h"
    160 
    161 #ifndef NKMEMPAGES
    162 #define NKMEMPAGES 0
    163 #endif
    164 
    165 /*
    166  * Defaults for lower and upper-bounds for the kmem_arena page count.
    167  * Can be overridden by kernel config options.
    168  */
    169 #ifndef NKMEMPAGES_MIN
    170 #define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
    171 #endif
    172 
    173 #ifndef NKMEMPAGES_MAX
    174 #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
    175 #endif
    176 
    177 
    178 #include <sys/param.h>
    179 #include <sys/systm.h>
    180 #include <sys/proc.h>
    181 #include <sys/pool.h>
    182 #include <sys/vmem.h>
    183 #include <sys/kmem.h>
    184 
    185 #include <uvm/uvm.h>
    186 
    187 /*
    188  * global data structures
    189  */
    190 
    191 struct vm_map *kernel_map = NULL;
    192 
    193 /*
    194  * local data structues
    195  */
    196 
    197 static struct vm_map		kernel_map_store;
    198 static struct vm_map_entry	kernel_image_mapent_store;
    199 static struct vm_map_entry	kernel_kmem_mapent_store;
    200 
    201 int nkmempages = 0;
    202 vaddr_t kmembase;
    203 vsize_t kmemsize;
    204 
    205 vmem_t *kmem_arena = NULL;
    206 vmem_t *kmem_va_arena;
    207 
    208 /*
    209  * kmeminit_nkmempages: calculate the size of kmem_arena.
    210  */
    211 void
    212 kmeminit_nkmempages(void)
    213 {
    214 	int npages;
    215 
    216 	if (nkmempages != 0) {
    217 		/*
    218 		 * It's already been set (by us being here before)
    219 		 * bail out now;
    220 		 */
    221 		return;
    222 	}
    223 
    224 #if defined(PMAP_MAP_POOLPAGE)
    225 	npages = (physmem / 4);
    226 #else
    227 	npages = (physmem / 3) * 2;
    228 #endif /* defined(PMAP_MAP_POOLPAGE) */
    229 
    230 #ifndef NKMEMPAGES_MAX_UNLIMITED
    231 	if (npages > NKMEMPAGES_MAX)
    232 		npages = NKMEMPAGES_MAX;
    233 #endif
    234 
    235 	if (npages < NKMEMPAGES_MIN)
    236 		npages = NKMEMPAGES_MIN;
    237 
    238 	nkmempages = npages;
    239 }
    240 
    241 /*
    242  * uvm_km_bootstrap: init kernel maps and objects to reflect reality (i.e.
    243  * KVM already allocated for text, data, bss, and static data structures).
    244  *
    245  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    246  *    we assume that [vmin -> start] has already been allocated and that
    247  *    "end" is the end.
    248  */
    249 
    250 void
    251 uvm_km_bootstrap(vaddr_t start, vaddr_t end)
    252 {
    253 	bool kmem_arena_small;
    254 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    255 	struct uvm_map_args args;
    256 	int error;
    257 
    258 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    259 	UVMHIST_LOG(maphist, "start=%"PRIxVADDR" end=%#"PRIxVADDR,
    260 	    start, end, 0,0);
    261 
    262 	kmeminit_nkmempages();
    263 	kmemsize = (vsize_t)nkmempages * PAGE_SIZE;
    264 	kmem_arena_small = kmemsize < 64 * 1024 * 1024;
    265 
    266 	UVMHIST_LOG(maphist, "kmemsize=%#"PRIxVSIZE, kmemsize, 0,0,0);
    267 
    268 	/*
    269 	 * next, init kernel memory objects.
    270 	 */
    271 
    272 	/* kernel_object: for pageable anonymous kernel memory */
    273 	uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    274 				VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    275 
    276 	/*
    277 	 * init the map and reserve any space that might already
    278 	 * have been allocated kernel space before installing.
    279 	 */
    280 
    281 	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
    282 	kernel_map_store.pmap = pmap_kernel();
    283 	if (start != base) {
    284 		error = uvm_map_prepare(&kernel_map_store,
    285 		    base, start - base,
    286 		    NULL, UVM_UNKNOWN_OFFSET, 0,
    287 		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    288 		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
    289 		if (!error) {
    290 			kernel_image_mapent_store.flags =
    291 			    UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
    292 			error = uvm_map_enter(&kernel_map_store, &args,
    293 			    &kernel_image_mapent_store);
    294 		}
    295 
    296 		if (error)
    297 			panic(
    298 			    "uvm_km_bootstrap: could not reserve space for kernel");
    299 
    300 		kmembase = args.uma_start + args.uma_size;
    301 	} else {
    302 		kmembase = base;
    303 	}
    304 
    305 	error = uvm_map_prepare(&kernel_map_store,
    306 	    kmembase, kmemsize,
    307 	    NULL, UVM_UNKNOWN_OFFSET, 0,
    308 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    309 	    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
    310 	if (!error) {
    311 		kernel_kmem_mapent_store.flags =
    312 		    UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
    313 		error = uvm_map_enter(&kernel_map_store, &args,
    314 		    &kernel_kmem_mapent_store);
    315 	}
    316 
    317 	if (error)
    318 		panic("uvm_km_bootstrap: could not reserve kernel kmem");
    319 
    320 	/*
    321 	 * install!
    322 	 */
    323 
    324 	kernel_map = &kernel_map_store;
    325 
    326 	pool_subsystem_init();
    327 	vmem_bootstrap();
    328 
    329 	kmem_arena = vmem_create("kmem", kmembase, kmemsize, PAGE_SIZE,
    330 	    NULL, NULL, NULL,
    331 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    332 #ifdef PMAP_GROWKERNEL
    333 	/*
    334 	 * kmem_arena VA allocations happen independently of uvm_map.
    335 	 * grow kernel to accommodate the kmem_arena.
    336 	 */
    337 	if (uvm_maxkaddr < kmembase + kmemsize) {
    338 		uvm_maxkaddr = pmap_growkernel(kmembase + kmemsize);
    339 		KASSERTMSG(uvm_maxkaddr >= kmembase + kmemsize,
    340 		    "%#"PRIxVADDR" %#"PRIxVADDR" %#"PRIxVSIZE,
    341 		    uvm_maxkaddr, kmembase, kmemsize);
    342 	}
    343 #endif
    344 
    345 	vmem_init(kmem_arena);
    346 
    347 	UVMHIST_LOG(maphist, "kmem vmem created (base=%#"PRIxVADDR
    348 	    ", size=%#"PRIxVSIZE, kmembase, kmemsize, 0,0);
    349 
    350 	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
    351 	    vmem_alloc, vmem_free, kmem_arena,
    352 	    (kmem_arena_small ? 4 : 8) * PAGE_SIZE,
    353 	    VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    354 
    355 	UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
    356 }
    357 
    358 /*
    359  * uvm_km_init: init the kernel maps virtual memory caches
    360  * and start the pool/kmem allocator.
    361  */
    362 void
    363 uvm_km_init(void)
    364 {
    365 
    366 	kmem_init();
    367 
    368 	kmeminit(); // killme
    369 }
    370 
    371 /*
    372  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    373  * is allocated all references to that area of VM must go through it.  this
    374  * allows the locking of VAs in kernel_map to be broken up into regions.
    375  *
    376  * => if `fixed' is true, *vmin specifies where the region described
    377  *   pager_map => used to map "buf" structures into kernel space
    378  *      by the submap must start
    379  * => if submap is non NULL we use that as the submap, otherwise we
    380  *	alloc a new map
    381  */
    382 
    383 struct vm_map *
    384 uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
    385     vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
    386     struct vm_map *submap)
    387 {
    388 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    389 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    390 
    391 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    392 
    393 	size = round_page(size);	/* round up to pagesize */
    394 
    395 	/*
    396 	 * first allocate a blank spot in the parent map
    397 	 */
    398 
    399 	if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
    400 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    401 	    UVM_ADV_RANDOM, mapflags)) != 0) {
    402 		panic("%s: unable to allocate space in parent map", __func__);
    403 	}
    404 
    405 	/*
    406 	 * set VM bounds (vmin is filled in by uvm_map)
    407 	 */
    408 
    409 	*vmax = *vmin + size;
    410 
    411 	/*
    412 	 * add references to pmap and create or init the submap
    413 	 */
    414 
    415 	pmap_reference(vm_map_pmap(map));
    416 	if (submap == NULL) {
    417 		submap = kmem_alloc(sizeof(*submap), KM_SLEEP);
    418 		if (submap == NULL)
    419 			panic("uvm_km_suballoc: unable to create submap");
    420 	}
    421 	uvm_map_setup(submap, *vmin, *vmax, flags);
    422 	submap->pmap = vm_map_pmap(map);
    423 
    424 	/*
    425 	 * now let uvm_map_submap plug in it...
    426 	 */
    427 
    428 	if (uvm_map_submap(map, *vmin, *vmax, submap) != 0)
    429 		panic("uvm_km_suballoc: submap allocation failed");
    430 
    431 	return(submap);
    432 }
    433 
    434 /*
    435  * uvm_km_pgremove: remove pages from a kernel uvm_object and KVA.
    436  */
    437 
    438 void
    439 uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
    440 {
    441 	struct uvm_object * const uobj = uvm_kernel_object;
    442 	const voff_t start = startva - vm_map_min(kernel_map);
    443 	const voff_t end = endva - vm_map_min(kernel_map);
    444 	struct vm_page *pg;
    445 	voff_t curoff, nextoff;
    446 	int swpgonlydelta = 0;
    447 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    448 
    449 	KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
    450 	KASSERT(startva < endva);
    451 	KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
    452 
    453 	mutex_enter(uobj->vmobjlock);
    454 	pmap_remove(pmap_kernel(), startva, endva);
    455 	for (curoff = start; curoff < end; curoff = nextoff) {
    456 		nextoff = curoff + PAGE_SIZE;
    457 		pg = uvm_pagelookup(uobj, curoff);
    458 		if (pg != NULL && pg->flags & PG_BUSY) {
    459 			pg->flags |= PG_WANTED;
    460 			UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, 0,
    461 				    "km_pgrm", 0);
    462 			mutex_enter(uobj->vmobjlock);
    463 			nextoff = curoff;
    464 			continue;
    465 		}
    466 
    467 		/*
    468 		 * free the swap slot, then the page.
    469 		 */
    470 
    471 		if (pg == NULL &&
    472 		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
    473 			swpgonlydelta++;
    474 		}
    475 		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
    476 		if (pg != NULL) {
    477 			mutex_enter(&uvm_pageqlock);
    478 			uvm_pagefree(pg);
    479 			mutex_exit(&uvm_pageqlock);
    480 		}
    481 	}
    482 	mutex_exit(uobj->vmobjlock);
    483 
    484 	if (swpgonlydelta > 0) {
    485 		mutex_enter(&uvm_swap_data_lock);
    486 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
    487 		uvmexp.swpgonly -= swpgonlydelta;
    488 		mutex_exit(&uvm_swap_data_lock);
    489 	}
    490 }
    491 
    492 
    493 /*
    494  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
    495  *    regions.
    496  *
    497  * => when you unmap a part of anonymous kernel memory you want to toss
    498  *    the pages right away.    (this is called from uvm_unmap_...).
    499  * => none of the pages will ever be busy, and none of them will ever
    500  *    be on the active or inactive queues (because they have no object).
    501  */
    502 
    503 void
    504 uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
    505 {
    506 #define __PGRM_BATCH 16
    507 	struct vm_page *pg;
    508 	paddr_t pa[__PGRM_BATCH];
    509 	int npgrm, i;
    510 	vaddr_t va, batch_vastart;
    511 
    512 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    513 
    514 	KASSERT(VM_MAP_IS_KERNEL(map));
    515 	KASSERTMSG(vm_map_min(map) <= start,
    516 	    "vm_map_min(map) [%#"PRIxVADDR"] <= start [%#"PRIxVADDR"]"
    517 	    " (size=%#"PRIxVSIZE")",
    518 	    vm_map_min(map), start, end - start);
    519 	KASSERT(start < end);
    520 	KASSERT(end <= vm_map_max(map));
    521 
    522 	for (va = start; va < end;) {
    523 		batch_vastart = va;
    524 		/* create a batch of at most __PGRM_BATCH pages to free */
    525 		for (i = 0;
    526 		     i < __PGRM_BATCH && va < end;
    527 		     va += PAGE_SIZE) {
    528 			if (!pmap_extract(pmap_kernel(), va, &pa[i])) {
    529 				continue;
    530 			}
    531 			i++;
    532 		}
    533 		npgrm = i;
    534 		/* now remove the mappings */
    535 		pmap_kremove(batch_vastart, va - batch_vastart);
    536 		/* and free the pages */
    537 		for (i = 0; i < npgrm; i++) {
    538 			pg = PHYS_TO_VM_PAGE(pa[i]);
    539 			KASSERT(pg);
    540 			KASSERT(pg->uobject == NULL && pg->uanon == NULL);
    541 			KASSERT((pg->flags & PG_BUSY) == 0);
    542 			uvm_pagefree(pg);
    543 		}
    544 	}
    545 #undef __PGRM_BATCH
    546 }
    547 
    548 #if defined(DEBUG)
    549 void
    550 uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
    551 {
    552 	struct vm_page *pg;
    553 	vaddr_t va;
    554 	paddr_t pa;
    555 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    556 
    557 	KDASSERT(VM_MAP_IS_KERNEL(map));
    558 	KDASSERT(vm_map_min(map) <= start);
    559 	KDASSERT(start < end);
    560 	KDASSERT(end <= vm_map_max(map));
    561 
    562 	for (va = start; va < end; va += PAGE_SIZE) {
    563 		if (pmap_extract(pmap_kernel(), va, &pa)) {
    564 			panic("uvm_km_check_empty: va %p has pa 0x%llx",
    565 			    (void *)va, (long long)pa);
    566 		}
    567 		mutex_enter(uvm_kernel_object->vmobjlock);
    568 		pg = uvm_pagelookup(uvm_kernel_object,
    569 		    va - vm_map_min(kernel_map));
    570 		mutex_exit(uvm_kernel_object->vmobjlock);
    571 		if (pg) {
    572 			panic("uvm_km_check_empty: "
    573 			    "has page hashed at %p", (const void *)va);
    574 		}
    575 	}
    576 }
    577 #endif /* defined(DEBUG) */
    578 
    579 /*
    580  * uvm_km_alloc: allocate an area of kernel memory.
    581  *
    582  * => NOTE: we can return 0 even if we can wait if there is not enough
    583  *	free VM space in the map... caller should be prepared to handle
    584  *	this case.
    585  * => we return KVA of memory allocated
    586  */
    587 
    588 vaddr_t
    589 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    590 {
    591 	vaddr_t kva, loopva;
    592 	vaddr_t offset;
    593 	vsize_t loopsize;
    594 	struct vm_page *pg;
    595 	struct uvm_object *obj;
    596 	int pgaflags;
    597 	vm_prot_t prot;
    598 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    599 
    600 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    601 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
    602 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
    603 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
    604 	KASSERT((flags & UVM_KMF_VAONLY) != 0 || (flags & UVM_KMF_COLORMATCH) == 0);
    605 	KASSERT((flags & UVM_KMF_COLORMATCH) == 0 || (flags & UVM_KMF_VAONLY) != 0);
    606 
    607 	/*
    608 	 * setup for call
    609 	 */
    610 
    611 	kva = vm_map_min(map);	/* hint */
    612 	size = round_page(size);
    613 	obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
    614 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
    615 		    map, obj, size, flags);
    616 
    617 	/*
    618 	 * allocate some virtual space
    619 	 */
    620 
    621 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    622 	    align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    623 	    UVM_ADV_RANDOM,
    624 	    (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA
    625 	     | UVM_KMF_COLORMATCH)))) != 0)) {
    626 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    627 		return(0);
    628 	}
    629 
    630 	/*
    631 	 * if all we wanted was VA, return now
    632 	 */
    633 
    634 	if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
    635 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
    636 		return(kva);
    637 	}
    638 
    639 	/*
    640 	 * recover object offset from virtual address
    641 	 */
    642 
    643 	offset = kva - vm_map_min(kernel_map);
    644 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
    645 
    646 	/*
    647 	 * now allocate and map in the memory... note that we are the only ones
    648 	 * whom should ever get a handle on this area of VM.
    649 	 */
    650 
    651 	loopva = kva;
    652 	loopsize = size;
    653 
    654 	pgaflags = UVM_FLAG_COLORMATCH;
    655 	if (flags & UVM_KMF_NOWAIT)
    656 		pgaflags |= UVM_PGA_USERESERVE;
    657 	if (flags & UVM_KMF_ZERO)
    658 		pgaflags |= UVM_PGA_ZERO;
    659 	prot = VM_PROT_READ | VM_PROT_WRITE;
    660 	if (flags & UVM_KMF_EXEC)
    661 		prot |= VM_PROT_EXECUTE;
    662 	while (loopsize) {
    663 		KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
    664 		    "loopva=%#"PRIxVADDR, loopva);
    665 
    666 		pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
    667 #ifdef UVM_KM_VMFREELIST
    668 		   UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
    669 #else
    670 		   UVM_PGA_STRAT_NORMAL, 0
    671 #endif
    672 		   );
    673 
    674 		/*
    675 		 * out of memory?
    676 		 */
    677 
    678 		if (__predict_false(pg == NULL)) {
    679 			if ((flags & UVM_KMF_NOWAIT) ||
    680 			    ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
    681 				/* free everything! */
    682 				uvm_km_free(map, kva, size,
    683 				    flags & UVM_KMF_TYPEMASK);
    684 				return (0);
    685 			} else {
    686 				uvm_wait("km_getwait2");	/* sleep here */
    687 				continue;
    688 			}
    689 		}
    690 
    691 		pg->flags &= ~PG_BUSY;	/* new page */
    692 		UVM_PAGE_OWN(pg, NULL);
    693 
    694 		/*
    695 		 * map it in
    696 		 */
    697 
    698 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    699 		    prot, PMAP_KMPAGE);
    700 		loopva += PAGE_SIZE;
    701 		offset += PAGE_SIZE;
    702 		loopsize -= PAGE_SIZE;
    703 	}
    704 
    705 	pmap_update(pmap_kernel());
    706 
    707 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    708 	return(kva);
    709 }
    710 
    711 /*
    712  * uvm_km_free: free an area of kernel memory
    713  */
    714 
    715 void
    716 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
    717 {
    718 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    719 
    720 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
    721 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
    722 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
    723 	KASSERT((addr & PAGE_MASK) == 0);
    724 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    725 
    726 	size = round_page(size);
    727 
    728 	if (flags & UVM_KMF_PAGEABLE) {
    729 		uvm_km_pgremove(addr, addr + size);
    730 	} else if (flags & UVM_KMF_WIRED) {
    731 		/*
    732 		 * Note: uvm_km_pgremove_intrsafe() extracts mapping, thus
    733 		 * remove it after.  See comment below about KVA visibility.
    734 		 */
    735 		uvm_km_pgremove_intrsafe(map, addr, addr + size);
    736 	}
    737 
    738 	/*
    739 	 * Note: uvm_unmap_remove() calls pmap_update() for us, before
    740 	 * KVA becomes globally available.
    741 	 */
    742 
    743 	uvm_unmap1(map, addr, addr + size, UVM_FLAG_VAONLY);
    744 }
    745 
    746 /* Sanity; must specify both or none. */
    747 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    748     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    749 #error Must specify MAP and UNMAP together.
    750 #endif
    751 
    752 int
    753 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
    754     vmem_addr_t *addr)
    755 {
    756 	struct vm_page *pg;
    757 	vmem_addr_t va;
    758 	int rc;
    759 	vaddr_t loopva;
    760 	vsize_t loopsize;
    761 
    762 	size = round_page(size);
    763 
    764 #if defined(PMAP_MAP_POOLPAGE)
    765 	if (size == PAGE_SIZE) {
    766 again:
    767 #ifdef PMAP_ALLOC_POOLPAGE
    768 		pg = PMAP_ALLOC_POOLPAGE((flags & VM_SLEEP) ?
    769 		   0 : UVM_PGA_USERESERVE);
    770 #else
    771 		pg = uvm_pagealloc(NULL, 0, NULL,
    772 		   (flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE);
    773 #endif /* PMAP_ALLOC_POOLPAGE */
    774 		if (__predict_false(pg == NULL)) {
    775 			if (flags & VM_SLEEP) {
    776 				uvm_wait("plpg");
    777 				goto again;
    778 			}
    779 			return ENOMEM;
    780 		}
    781 		va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    782 		if (__predict_false(va == 0)) {
    783 			uvm_pagefree(pg);
    784 			return ENOMEM;
    785 		}
    786 		*addr = va;
    787 		return 0;
    788 	}
    789 #endif /* PMAP_MAP_POOLPAGE */
    790 
    791 	rc = vmem_alloc(vm, size, flags, &va);
    792 	if (rc != 0)
    793 		return rc;
    794 
    795 #ifdef PMAP_GROWKERNEL
    796 	/*
    797 	 * These VA allocations happen independently of uvm_map
    798 	 * so this allocation must not extend beyond the current limit.
    799 	 */
    800 	KASSERTMSG(uvm_maxkaddr >= va + size,
    801 	    "%#"PRIxVADDR" %#"PRIxPTR" %#zx",
    802 	    uvm_maxkaddr, va, size);
    803 #endif
    804 
    805 	loopva = va;
    806 	loopsize = size;
    807 
    808 	while (loopsize) {
    809 #ifdef DIAGNOSTIC
    810 		paddr_t pa;
    811 #endif
    812 		KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, &pa),
    813 		    "loopva=%#"PRIxVADDR" loopsize=%#"PRIxVSIZE
    814 		    " pa=%#"PRIxPADDR" vmem=%p",
    815 		    loopva, loopsize, pa, vm);
    816 
    817 		pg = uvm_pagealloc(NULL, loopva, NULL,
    818 		    UVM_FLAG_COLORMATCH
    819 		    | ((flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE));
    820 		if (__predict_false(pg == NULL)) {
    821 			if (flags & VM_SLEEP) {
    822 				uvm_wait("plpg");
    823 				continue;
    824 			} else {
    825 				uvm_km_pgremove_intrsafe(kernel_map, va,
    826 				    va + size);
    827 				vmem_free(vm, va, size);
    828 				return ENOMEM;
    829 			}
    830 		}
    831 
    832 		pg->flags &= ~PG_BUSY;	/* new page */
    833 		UVM_PAGE_OWN(pg, NULL);
    834 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    835 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
    836 
    837 		loopva += PAGE_SIZE;
    838 		loopsize -= PAGE_SIZE;
    839 	}
    840 	pmap_update(pmap_kernel());
    841 
    842 	*addr = va;
    843 
    844 	return 0;
    845 }
    846 
    847 void
    848 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, size_t size)
    849 {
    850 
    851 	size = round_page(size);
    852 #if defined(PMAP_UNMAP_POOLPAGE)
    853 	if (size == PAGE_SIZE) {
    854 		paddr_t pa;
    855 
    856 		pa = PMAP_UNMAP_POOLPAGE(addr);
    857 		uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    858 		return;
    859 	}
    860 #endif /* PMAP_UNMAP_POOLPAGE */
    861 	uvm_km_pgremove_intrsafe(kernel_map, addr, addr + size);
    862 	pmap_update(pmap_kernel());
    863 
    864 	vmem_free(vm, addr, size);
    865 }
    866 
    867 bool
    868 uvm_km_va_starved_p(void)
    869 {
    870 	vmem_size_t total;
    871 	vmem_size_t free;
    872 
    873 	if (kmem_arena == NULL)
    874 		return false;
    875 
    876 	total = vmem_size(kmem_arena, VMEM_ALLOC|VMEM_FREE);
    877 	free = vmem_size(kmem_arena, VMEM_FREE);
    878 
    879 	return (free < (total / 10));
    880 }
    881