uvm_km.c revision 1.144 1 /* $NetBSD: uvm_km.c,v 1.144 2017/10/28 00:37:13 pgoyette Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
37 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
38 *
39 *
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
48 *
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 *
53 * Carnegie Mellon requests users of this software to return to
54 *
55 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 * School of Computer Science
57 * Carnegie Mellon University
58 * Pittsburgh PA 15213-3890
59 *
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
62 */
63
64 /*
65 * uvm_km.c: handle kernel memory allocation and management
66 */
67
68 /*
69 * overview of kernel memory management:
70 *
71 * the kernel virtual address space is mapped by "kernel_map." kernel_map
72 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
73 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
74 *
75 * the kernel_map has several "submaps." submaps can only appear in
76 * the kernel_map (user processes can't use them). submaps "take over"
77 * the management of a sub-range of the kernel's address space. submaps
78 * are typically allocated at boot time and are never released. kernel
79 * virtual address space that is mapped by a submap is locked by the
80 * submap's lock -- not the kernel_map's lock.
81 *
82 * thus, the useful feature of submaps is that they allow us to break
83 * up the locking and protection of the kernel address space into smaller
84 * chunks.
85 *
86 * the vm system has several standard kernel submaps/arenas, including:
87 * kmem_arena => used for kmem/pool (memoryallocators(9))
88 * pager_map => used to map "buf" structures into kernel space
89 * exec_map => used during exec to handle exec args
90 * etc...
91 *
92 * The kmem_arena is a "special submap", as it lives in a fixed map entry
93 * within the kernel_map and is controlled by vmem(9).
94 *
95 * the kernel allocates its private memory out of special uvm_objects whose
96 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
97 * are "special" and never die). all kernel objects should be thought of
98 * as large, fixed-sized, sparsely populated uvm_objects. each kernel
99 * object is equal to the size of kernel virtual address space (i.e. the
100 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
101 *
102 * note that just because a kernel object spans the entire kernel virtual
103 * address space doesn't mean that it has to be mapped into the entire space.
104 * large chunks of a kernel object's space go unused either because
105 * that area of kernel VM is unmapped, or there is some other type of
106 * object mapped into that range (e.g. a vnode). for submap's kernel
107 * objects, the only part of the object that can ever be populated is the
108 * offsets that are managed by the submap.
109 *
110 * note that the "offset" in a kernel object is always the kernel virtual
111 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
112 * example:
113 * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
114 * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
115 * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
116 * then that means that the page at offset 0x235000 in kernel_object is
117 * mapped at 0xf8235000.
118 *
119 * kernel object have one other special property: when the kernel virtual
120 * memory mapping them is unmapped, the backing memory in the object is
121 * freed right away. this is done with the uvm_km_pgremove() function.
122 * this has to be done because there is no backing store for kernel pages
123 * and no need to save them after they are no longer referenced.
124 *
125 * Generic arenas:
126 *
127 * kmem_arena:
128 * Main arena controlling the kernel KVA used by other arenas.
129 *
130 * kmem_va_arena:
131 * Implements quantum caching in order to speedup allocations and
132 * reduce fragmentation. The pool(9), unless created with a custom
133 * meta-data allocator, and kmem(9) subsystems use this arena.
134 *
135 * Arenas for meta-data allocations are used by vmem(9) and pool(9).
136 * These arenas cannot use quantum cache. However, kmem_va_meta_arena
137 * compensates this by importing larger chunks from kmem_arena.
138 *
139 * kmem_va_meta_arena:
140 * Space for meta-data.
141 *
142 * kmem_meta_arena:
143 * Imports from kmem_va_meta_arena. Allocations from this arena are
144 * backed with the pages.
145 *
146 * Arena stacking:
147 *
148 * kmem_arena
149 * kmem_va_arena
150 * kmem_va_meta_arena
151 * kmem_meta_arena
152 */
153
154 #include <sys/cdefs.h>
155 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.144 2017/10/28 00:37:13 pgoyette Exp $");
156
157 #include "opt_uvmhist.h"
158
159 #include "opt_kmempages.h"
160
161 #ifndef NKMEMPAGES
162 #define NKMEMPAGES 0
163 #endif
164
165 /*
166 * Defaults for lower and upper-bounds for the kmem_arena page count.
167 * Can be overridden by kernel config options.
168 */
169 #ifndef NKMEMPAGES_MIN
170 #define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
171 #endif
172
173 #ifndef NKMEMPAGES_MAX
174 #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
175 #endif
176
177
178 #include <sys/param.h>
179 #include <sys/systm.h>
180 #include <sys/proc.h>
181 #include <sys/pool.h>
182 #include <sys/vmem.h>
183 #include <sys/vmem_impl.h>
184 #include <sys/kmem.h>
185
186 #include <uvm/uvm.h>
187
188 /*
189 * global data structures
190 */
191
192 struct vm_map *kernel_map = NULL;
193
194 /*
195 * local data structues
196 */
197
198 static struct vm_map kernel_map_store;
199 static struct vm_map_entry kernel_image_mapent_store;
200 static struct vm_map_entry kernel_kmem_mapent_store;
201
202 int nkmempages = 0;
203 vaddr_t kmembase;
204 vsize_t kmemsize;
205
206 static struct vmem kmem_arena_store;
207 vmem_t *kmem_arena = NULL;
208 static struct vmem kmem_va_arena_store;
209 vmem_t *kmem_va_arena;
210
211 /*
212 * kmeminit_nkmempages: calculate the size of kmem_arena.
213 */
214 void
215 kmeminit_nkmempages(void)
216 {
217 int npages;
218
219 if (nkmempages != 0) {
220 /*
221 * It's already been set (by us being here before)
222 * bail out now;
223 */
224 return;
225 }
226
227 #if defined(PMAP_MAP_POOLPAGE)
228 npages = (physmem / 4);
229 #else
230 npages = (physmem / 3) * 2;
231 #endif /* defined(PMAP_MAP_POOLPAGE) */
232
233 #ifndef NKMEMPAGES_MAX_UNLIMITED
234 if (npages > NKMEMPAGES_MAX)
235 npages = NKMEMPAGES_MAX;
236 #endif
237
238 if (npages < NKMEMPAGES_MIN)
239 npages = NKMEMPAGES_MIN;
240
241 nkmempages = npages;
242 }
243
244 /*
245 * uvm_km_bootstrap: init kernel maps and objects to reflect reality (i.e.
246 * KVM already allocated for text, data, bss, and static data structures).
247 *
248 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
249 * we assume that [vmin -> start] has already been allocated and that
250 * "end" is the end.
251 */
252
253 void
254 uvm_km_bootstrap(vaddr_t start, vaddr_t end)
255 {
256 bool kmem_arena_small;
257 vaddr_t base = VM_MIN_KERNEL_ADDRESS;
258 struct uvm_map_args args;
259 int error;
260
261 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
262 UVMHIST_LOG(maphist, "start=%#jx end=%#jx", start, end, 0,0);
263
264 kmeminit_nkmempages();
265 kmemsize = (vsize_t)nkmempages * PAGE_SIZE;
266 kmem_arena_small = kmemsize < 64 * 1024 * 1024;
267
268 UVMHIST_LOG(maphist, "kmemsize=%#jx", kmemsize, 0,0,0);
269
270 /*
271 * next, init kernel memory objects.
272 */
273
274 /* kernel_object: for pageable anonymous kernel memory */
275 uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
276 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
277
278 /*
279 * init the map and reserve any space that might already
280 * have been allocated kernel space before installing.
281 */
282
283 uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
284 kernel_map_store.pmap = pmap_kernel();
285 if (start != base) {
286 error = uvm_map_prepare(&kernel_map_store,
287 base, start - base,
288 NULL, UVM_UNKNOWN_OFFSET, 0,
289 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
290 UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
291 if (!error) {
292 kernel_image_mapent_store.flags =
293 UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
294 error = uvm_map_enter(&kernel_map_store, &args,
295 &kernel_image_mapent_store);
296 }
297
298 if (error)
299 panic(
300 "uvm_km_bootstrap: could not reserve space for kernel");
301
302 kmembase = args.uma_start + args.uma_size;
303 } else {
304 kmembase = base;
305 }
306
307 error = uvm_map_prepare(&kernel_map_store,
308 kmembase, kmemsize,
309 NULL, UVM_UNKNOWN_OFFSET, 0,
310 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
311 UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
312 if (!error) {
313 kernel_kmem_mapent_store.flags =
314 UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
315 error = uvm_map_enter(&kernel_map_store, &args,
316 &kernel_kmem_mapent_store);
317 }
318
319 if (error)
320 panic("uvm_km_bootstrap: could not reserve kernel kmem");
321
322 /*
323 * install!
324 */
325
326 kernel_map = &kernel_map_store;
327
328 pool_subsystem_init();
329
330 kmem_arena = vmem_init(&kmem_arena_store, "kmem",
331 kmembase, kmemsize, PAGE_SIZE, NULL, NULL, NULL,
332 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
333 #ifdef PMAP_GROWKERNEL
334 /*
335 * kmem_arena VA allocations happen independently of uvm_map.
336 * grow kernel to accommodate the kmem_arena.
337 */
338 if (uvm_maxkaddr < kmembase + kmemsize) {
339 uvm_maxkaddr = pmap_growkernel(kmembase + kmemsize);
340 KASSERTMSG(uvm_maxkaddr >= kmembase + kmemsize,
341 "%#"PRIxVADDR" %#"PRIxVADDR" %#"PRIxVSIZE,
342 uvm_maxkaddr, kmembase, kmemsize);
343 }
344 #endif
345
346 vmem_subsystem_init(kmem_arena);
347
348 UVMHIST_LOG(maphist, "kmem vmem created (base=%#jx, size=%#jx",
349 kmembase, kmemsize, 0,0);
350
351 kmem_va_arena = vmem_init(&kmem_va_arena_store, "kva",
352 0, 0, PAGE_SIZE, vmem_alloc, vmem_free, kmem_arena,
353 (kmem_arena_small ? 4 : VMEM_QCACHE_IDX_MAX) * PAGE_SIZE,
354 VM_NOSLEEP, IPL_VM);
355
356 UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
357 }
358
359 /*
360 * uvm_km_init: init the kernel maps virtual memory caches
361 * and start the pool/kmem allocator.
362 */
363 void
364 uvm_km_init(void)
365 {
366 kmem_init();
367 }
368
369 /*
370 * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
371 * is allocated all references to that area of VM must go through it. this
372 * allows the locking of VAs in kernel_map to be broken up into regions.
373 *
374 * => if `fixed' is true, *vmin specifies where the region described
375 * pager_map => used to map "buf" structures into kernel space
376 * by the submap must start
377 * => if submap is non NULL we use that as the submap, otherwise we
378 * alloc a new map
379 */
380
381 struct vm_map *
382 uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
383 vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
384 struct vm_map *submap)
385 {
386 int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
387 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
388
389 KASSERT(vm_map_pmap(map) == pmap_kernel());
390
391 size = round_page(size); /* round up to pagesize */
392
393 /*
394 * first allocate a blank spot in the parent map
395 */
396
397 if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
398 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
399 UVM_ADV_RANDOM, mapflags)) != 0) {
400 panic("%s: unable to allocate space in parent map", __func__);
401 }
402
403 /*
404 * set VM bounds (vmin is filled in by uvm_map)
405 */
406
407 *vmax = *vmin + size;
408
409 /*
410 * add references to pmap and create or init the submap
411 */
412
413 pmap_reference(vm_map_pmap(map));
414 if (submap == NULL) {
415 submap = kmem_alloc(sizeof(*submap), KM_SLEEP);
416 }
417 uvm_map_setup(submap, *vmin, *vmax, flags);
418 submap->pmap = vm_map_pmap(map);
419
420 /*
421 * now let uvm_map_submap plug in it...
422 */
423
424 if (uvm_map_submap(map, *vmin, *vmax, submap) != 0)
425 panic("uvm_km_suballoc: submap allocation failed");
426
427 return(submap);
428 }
429
430 /*
431 * uvm_km_pgremove: remove pages from a kernel uvm_object and KVA.
432 */
433
434 void
435 uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
436 {
437 struct uvm_object * const uobj = uvm_kernel_object;
438 const voff_t start = startva - vm_map_min(kernel_map);
439 const voff_t end = endva - vm_map_min(kernel_map);
440 struct vm_page *pg;
441 voff_t curoff, nextoff;
442 int swpgonlydelta = 0;
443 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
444
445 KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
446 KASSERT(startva < endva);
447 KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
448
449 mutex_enter(uobj->vmobjlock);
450 pmap_remove(pmap_kernel(), startva, endva);
451 for (curoff = start; curoff < end; curoff = nextoff) {
452 nextoff = curoff + PAGE_SIZE;
453 pg = uvm_pagelookup(uobj, curoff);
454 if (pg != NULL && pg->flags & PG_BUSY) {
455 pg->flags |= PG_WANTED;
456 UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, 0,
457 "km_pgrm", 0);
458 mutex_enter(uobj->vmobjlock);
459 nextoff = curoff;
460 continue;
461 }
462
463 /*
464 * free the swap slot, then the page.
465 */
466
467 if (pg == NULL &&
468 uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
469 swpgonlydelta++;
470 }
471 uao_dropswap(uobj, curoff >> PAGE_SHIFT);
472 if (pg != NULL) {
473 mutex_enter(&uvm_pageqlock);
474 uvm_pagefree(pg);
475 mutex_exit(&uvm_pageqlock);
476 }
477 }
478 mutex_exit(uobj->vmobjlock);
479
480 if (swpgonlydelta > 0) {
481 mutex_enter(&uvm_swap_data_lock);
482 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
483 uvmexp.swpgonly -= swpgonlydelta;
484 mutex_exit(&uvm_swap_data_lock);
485 }
486 }
487
488
489 /*
490 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
491 * regions.
492 *
493 * => when you unmap a part of anonymous kernel memory you want to toss
494 * the pages right away. (this is called from uvm_unmap_...).
495 * => none of the pages will ever be busy, and none of them will ever
496 * be on the active or inactive queues (because they have no object).
497 */
498
499 void
500 uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
501 {
502 #define __PGRM_BATCH 16
503 struct vm_page *pg;
504 paddr_t pa[__PGRM_BATCH];
505 int npgrm, i;
506 vaddr_t va, batch_vastart;
507
508 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
509
510 KASSERT(VM_MAP_IS_KERNEL(map));
511 KASSERTMSG(vm_map_min(map) <= start,
512 "vm_map_min(map) [%#"PRIxVADDR"] <= start [%#"PRIxVADDR"]"
513 " (size=%#"PRIxVSIZE")",
514 vm_map_min(map), start, end - start);
515 KASSERT(start < end);
516 KASSERT(end <= vm_map_max(map));
517
518 for (va = start; va < end;) {
519 batch_vastart = va;
520 /* create a batch of at most __PGRM_BATCH pages to free */
521 for (i = 0;
522 i < __PGRM_BATCH && va < end;
523 va += PAGE_SIZE) {
524 if (!pmap_extract(pmap_kernel(), va, &pa[i])) {
525 continue;
526 }
527 i++;
528 }
529 npgrm = i;
530 /* now remove the mappings */
531 pmap_kremove(batch_vastart, va - batch_vastart);
532 /* and free the pages */
533 for (i = 0; i < npgrm; i++) {
534 pg = PHYS_TO_VM_PAGE(pa[i]);
535 KASSERT(pg);
536 KASSERT(pg->uobject == NULL && pg->uanon == NULL);
537 KASSERT((pg->flags & PG_BUSY) == 0);
538 uvm_pagefree(pg);
539 }
540 }
541 #undef __PGRM_BATCH
542 }
543
544 #if defined(DEBUG)
545 void
546 uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
547 {
548 struct vm_page *pg;
549 vaddr_t va;
550 paddr_t pa;
551 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
552
553 KDASSERT(VM_MAP_IS_KERNEL(map));
554 KDASSERT(vm_map_min(map) <= start);
555 KDASSERT(start < end);
556 KDASSERT(end <= vm_map_max(map));
557
558 for (va = start; va < end; va += PAGE_SIZE) {
559 if (pmap_extract(pmap_kernel(), va, &pa)) {
560 panic("uvm_km_check_empty: va %p has pa 0x%llx",
561 (void *)va, (long long)pa);
562 }
563 mutex_enter(uvm_kernel_object->vmobjlock);
564 pg = uvm_pagelookup(uvm_kernel_object,
565 va - vm_map_min(kernel_map));
566 mutex_exit(uvm_kernel_object->vmobjlock);
567 if (pg) {
568 panic("uvm_km_check_empty: "
569 "has page hashed at %p", (const void *)va);
570 }
571 }
572 }
573 #endif /* defined(DEBUG) */
574
575 /*
576 * uvm_km_alloc: allocate an area of kernel memory.
577 *
578 * => NOTE: we can return 0 even if we can wait if there is not enough
579 * free VM space in the map... caller should be prepared to handle
580 * this case.
581 * => we return KVA of memory allocated
582 */
583
584 vaddr_t
585 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
586 {
587 vaddr_t kva, loopva;
588 vaddr_t offset;
589 vsize_t loopsize;
590 struct vm_page *pg;
591 struct uvm_object *obj;
592 int pgaflags;
593 vm_prot_t prot, vaprot;
594 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
595
596 KASSERT(vm_map_pmap(map) == pmap_kernel());
597 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
598 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
599 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
600 KASSERT((flags & UVM_KMF_VAONLY) != 0 || (flags & UVM_KMF_COLORMATCH) == 0);
601 KASSERT((flags & UVM_KMF_COLORMATCH) == 0 || (flags & UVM_KMF_VAONLY) != 0);
602
603 /*
604 * setup for call
605 */
606
607 kva = vm_map_min(map); /* hint */
608 size = round_page(size);
609 obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
610 UVMHIST_LOG(maphist," (map=0x%#jx, obj=0x%#jx, size=0x%jx, flags=%jd)",
611 (uintptr_t)map, (uintptr_t)obj, size, flags);
612
613 /*
614 * allocate some virtual space
615 */
616
617 vaprot = (flags & UVM_KMF_EXEC) ? UVM_PROT_ALL : UVM_PROT_RW;
618 if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
619 align, UVM_MAPFLAG(vaprot, UVM_PROT_ALL, UVM_INH_NONE,
620 UVM_ADV_RANDOM,
621 (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA
622 | UVM_KMF_COLORMATCH)))) != 0)) {
623 UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
624 return(0);
625 }
626
627 /*
628 * if all we wanted was VA, return now
629 */
630
631 if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
632 UVMHIST_LOG(maphist,"<- done valloc (kva=0x%jx)", kva,0,0,0);
633 return(kva);
634 }
635
636 /*
637 * recover object offset from virtual address
638 */
639
640 offset = kva - vm_map_min(kernel_map);
641 UVMHIST_LOG(maphist, " kva=0x%jx, offset=0x%jx", kva, offset,0,0);
642
643 /*
644 * now allocate and map in the memory... note that we are the only ones
645 * whom should ever get a handle on this area of VM.
646 */
647
648 loopva = kva;
649 loopsize = size;
650
651 pgaflags = UVM_FLAG_COLORMATCH;
652 if (flags & UVM_KMF_NOWAIT)
653 pgaflags |= UVM_PGA_USERESERVE;
654 if (flags & UVM_KMF_ZERO)
655 pgaflags |= UVM_PGA_ZERO;
656 prot = VM_PROT_READ | VM_PROT_WRITE;
657 if (flags & UVM_KMF_EXEC)
658 prot |= VM_PROT_EXECUTE;
659 while (loopsize) {
660 KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
661 "loopva=%#"PRIxVADDR, loopva);
662
663 pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
664 #ifdef UVM_KM_VMFREELIST
665 UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
666 #else
667 UVM_PGA_STRAT_NORMAL, 0
668 #endif
669 );
670
671 /*
672 * out of memory?
673 */
674
675 if (__predict_false(pg == NULL)) {
676 if ((flags & UVM_KMF_NOWAIT) ||
677 ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
678 /* free everything! */
679 uvm_km_free(map, kva, size,
680 flags & UVM_KMF_TYPEMASK);
681 return (0);
682 } else {
683 uvm_wait("km_getwait2"); /* sleep here */
684 continue;
685 }
686 }
687
688 pg->flags &= ~PG_BUSY; /* new page */
689 UVM_PAGE_OWN(pg, NULL);
690
691 /*
692 * map it in
693 */
694
695 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
696 prot, PMAP_KMPAGE);
697 loopva += PAGE_SIZE;
698 offset += PAGE_SIZE;
699 loopsize -= PAGE_SIZE;
700 }
701
702 pmap_update(pmap_kernel());
703
704 UVMHIST_LOG(maphist,"<- done (kva=0x%jx)", kva,0,0,0);
705 return(kva);
706 }
707
708 /*
709 * uvm_km_protect: change the protection of an allocated area
710 */
711
712 int
713 uvm_km_protect(struct vm_map *map, vaddr_t addr, vsize_t size, vm_prot_t prot)
714 {
715 return uvm_map_protect(map, addr, addr + round_page(size), prot, false);
716 }
717
718 /*
719 * uvm_km_free: free an area of kernel memory
720 */
721
722 void
723 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
724 {
725 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
726
727 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
728 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
729 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
730 KASSERT((addr & PAGE_MASK) == 0);
731 KASSERT(vm_map_pmap(map) == pmap_kernel());
732
733 size = round_page(size);
734
735 if (flags & UVM_KMF_PAGEABLE) {
736 uvm_km_pgremove(addr, addr + size);
737 } else if (flags & UVM_KMF_WIRED) {
738 /*
739 * Note: uvm_km_pgremove_intrsafe() extracts mapping, thus
740 * remove it after. See comment below about KVA visibility.
741 */
742 uvm_km_pgremove_intrsafe(map, addr, addr + size);
743 }
744
745 /*
746 * Note: uvm_unmap_remove() calls pmap_update() for us, before
747 * KVA becomes globally available.
748 */
749
750 uvm_unmap1(map, addr, addr + size, UVM_FLAG_VAONLY);
751 }
752
753 /* Sanity; must specify both or none. */
754 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
755 (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
756 #error Must specify MAP and UNMAP together.
757 #endif
758
759 int
760 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
761 vmem_addr_t *addr)
762 {
763 struct vm_page *pg;
764 vmem_addr_t va;
765 int rc;
766 vaddr_t loopva;
767 vsize_t loopsize;
768
769 size = round_page(size);
770
771 #if defined(PMAP_MAP_POOLPAGE)
772 if (size == PAGE_SIZE) {
773 again:
774 #ifdef PMAP_ALLOC_POOLPAGE
775 pg = PMAP_ALLOC_POOLPAGE((flags & VM_SLEEP) ?
776 0 : UVM_PGA_USERESERVE);
777 #else
778 pg = uvm_pagealloc(NULL, 0, NULL,
779 (flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE);
780 #endif /* PMAP_ALLOC_POOLPAGE */
781 if (__predict_false(pg == NULL)) {
782 if (flags & VM_SLEEP) {
783 uvm_wait("plpg");
784 goto again;
785 }
786 return ENOMEM;
787 }
788 va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
789 if (__predict_false(va == 0)) {
790 uvm_pagefree(pg);
791 return ENOMEM;
792 }
793 *addr = va;
794 return 0;
795 }
796 #endif /* PMAP_MAP_POOLPAGE */
797
798 rc = vmem_alloc(vm, size, flags, &va);
799 if (rc != 0)
800 return rc;
801
802 #ifdef PMAP_GROWKERNEL
803 /*
804 * These VA allocations happen independently of uvm_map
805 * so this allocation must not extend beyond the current limit.
806 */
807 KASSERTMSG(uvm_maxkaddr >= va + size,
808 "%#"PRIxVADDR" %#"PRIxPTR" %#zx",
809 uvm_maxkaddr, va, size);
810 #endif
811
812 loopva = va;
813 loopsize = size;
814
815 while (loopsize) {
816 paddr_t pa __diagused;
817 KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, &pa),
818 "loopva=%#"PRIxVADDR" loopsize=%#"PRIxVSIZE
819 " pa=%#"PRIxPADDR" vmem=%p",
820 loopva, loopsize, pa, vm);
821
822 pg = uvm_pagealloc(NULL, loopva, NULL,
823 UVM_FLAG_COLORMATCH
824 | ((flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE));
825 if (__predict_false(pg == NULL)) {
826 if (flags & VM_SLEEP) {
827 uvm_wait("plpg");
828 continue;
829 } else {
830 uvm_km_pgremove_intrsafe(kernel_map, va,
831 va + size);
832 vmem_free(vm, va, size);
833 return ENOMEM;
834 }
835 }
836
837 pg->flags &= ~PG_BUSY; /* new page */
838 UVM_PAGE_OWN(pg, NULL);
839 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
840 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
841
842 loopva += PAGE_SIZE;
843 loopsize -= PAGE_SIZE;
844 }
845 pmap_update(pmap_kernel());
846
847 *addr = va;
848
849 return 0;
850 }
851
852 void
853 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, size_t size)
854 {
855
856 size = round_page(size);
857 #if defined(PMAP_UNMAP_POOLPAGE)
858 if (size == PAGE_SIZE) {
859 paddr_t pa;
860
861 pa = PMAP_UNMAP_POOLPAGE(addr);
862 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
863 return;
864 }
865 #endif /* PMAP_UNMAP_POOLPAGE */
866 uvm_km_pgremove_intrsafe(kernel_map, addr, addr + size);
867 pmap_update(pmap_kernel());
868
869 vmem_free(vm, addr, size);
870 }
871
872 bool
873 uvm_km_va_starved_p(void)
874 {
875 vmem_size_t total;
876 vmem_size_t free;
877
878 if (kmem_arena == NULL)
879 return false;
880
881 total = vmem_size(kmem_arena, VMEM_ALLOC|VMEM_FREE);
882 free = vmem_size(kmem_arena, VMEM_FREE);
883
884 return (free < (total / 10));
885 }
886