Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.155
      1 /*	$NetBSD: uvm_km.c,v 1.155 2020/02/23 15:46:43 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     37  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     38  *
     39  *
     40  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     41  * All rights reserved.
     42  *
     43  * Permission to use, copy, modify and distribute this software and
     44  * its documentation is hereby granted, provided that both the copyright
     45  * notice and this permission notice appear in all copies of the
     46  * software, derivative works or modified versions, and any portions
     47  * thereof, and that both notices appear in supporting documentation.
     48  *
     49  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     50  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     51  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     52  *
     53  * Carnegie Mellon requests users of this software to return to
     54  *
     55  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     56  *  School of Computer Science
     57  *  Carnegie Mellon University
     58  *  Pittsburgh PA 15213-3890
     59  *
     60  * any improvements or extensions that they make and grant Carnegie the
     61  * rights to redistribute these changes.
     62  */
     63 
     64 /*
     65  * uvm_km.c: handle kernel memory allocation and management
     66  */
     67 
     68 /*
     69  * overview of kernel memory management:
     70  *
     71  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     72  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     73  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     74  *
     75  * the kernel_map has several "submaps."   submaps can only appear in
     76  * the kernel_map (user processes can't use them).   submaps "take over"
     77  * the management of a sub-range of the kernel's address space.  submaps
     78  * are typically allocated at boot time and are never released.   kernel
     79  * virtual address space that is mapped by a submap is locked by the
     80  * submap's lock -- not the kernel_map's lock.
     81  *
     82  * thus, the useful feature of submaps is that they allow us to break
     83  * up the locking and protection of the kernel address space into smaller
     84  * chunks.
     85  *
     86  * the vm system has several standard kernel submaps/arenas, including:
     87  *   kmem_arena => used for kmem/pool (memoryallocators(9))
     88  *   pager_map => used to map "buf" structures into kernel space
     89  *   exec_map => used during exec to handle exec args
     90  *   etc...
     91  *
     92  * The kmem_arena is a "special submap", as it lives in a fixed map entry
     93  * within the kernel_map and is controlled by vmem(9).
     94  *
     95  * the kernel allocates its private memory out of special uvm_objects whose
     96  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
     97  * are "special" and never die).   all kernel objects should be thought of
     98  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
     99  * object is equal to the size of kernel virtual address space (i.e. the
    100  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    101  *
    102  * note that just because a kernel object spans the entire kernel virtual
    103  * address space doesn't mean that it has to be mapped into the entire space.
    104  * large chunks of a kernel object's space go unused either because
    105  * that area of kernel VM is unmapped, or there is some other type of
    106  * object mapped into that range (e.g. a vnode).    for submap's kernel
    107  * objects, the only part of the object that can ever be populated is the
    108  * offsets that are managed by the submap.
    109  *
    110  * note that the "offset" in a kernel object is always the kernel virtual
    111  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    112  * example:
    113  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    114  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    115  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    116  *   then that means that the page at offset 0x235000 in kernel_object is
    117  *   mapped at 0xf8235000.
    118  *
    119  * kernel object have one other special property: when the kernel virtual
    120  * memory mapping them is unmapped, the backing memory in the object is
    121  * freed right away.   this is done with the uvm_km_pgremove() function.
    122  * this has to be done because there is no backing store for kernel pages
    123  * and no need to save them after they are no longer referenced.
    124  *
    125  * Generic arenas:
    126  *
    127  * kmem_arena:
    128  *	Main arena controlling the kernel KVA used by other arenas.
    129  *
    130  * kmem_va_arena:
    131  *	Implements quantum caching in order to speedup allocations and
    132  *	reduce fragmentation.  The pool(9), unless created with a custom
    133  *	meta-data allocator, and kmem(9) subsystems use this arena.
    134  *
    135  * Arenas for meta-data allocations are used by vmem(9) and pool(9).
    136  * These arenas cannot use quantum cache.  However, kmem_va_meta_arena
    137  * compensates this by importing larger chunks from kmem_arena.
    138  *
    139  * kmem_va_meta_arena:
    140  *	Space for meta-data.
    141  *
    142  * kmem_meta_arena:
    143  *	Imports from kmem_va_meta_arena.  Allocations from this arena are
    144  *	backed with the pages.
    145  *
    146  * Arena stacking:
    147  *
    148  *	kmem_arena
    149  *		kmem_va_arena
    150  *		kmem_va_meta_arena
    151  *			kmem_meta_arena
    152  */
    153 
    154 #include <sys/cdefs.h>
    155 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.155 2020/02/23 15:46:43 ad Exp $");
    156 
    157 #include "opt_uvmhist.h"
    158 
    159 #include "opt_kmempages.h"
    160 
    161 #ifndef NKMEMPAGES
    162 #define NKMEMPAGES 0
    163 #endif
    164 
    165 /*
    166  * Defaults for lower and upper-bounds for the kmem_arena page count.
    167  * Can be overridden by kernel config options.
    168  */
    169 #ifndef NKMEMPAGES_MIN
    170 #define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
    171 #endif
    172 
    173 #ifndef NKMEMPAGES_MAX
    174 #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
    175 #endif
    176 
    177 
    178 #include <sys/param.h>
    179 #include <sys/systm.h>
    180 #include <sys/atomic.h>
    181 #include <sys/proc.h>
    182 #include <sys/pool.h>
    183 #include <sys/vmem.h>
    184 #include <sys/vmem_impl.h>
    185 #include <sys/kmem.h>
    186 #include <sys/msan.h>
    187 
    188 #include <uvm/uvm.h>
    189 
    190 /*
    191  * global data structures
    192  */
    193 
    194 struct vm_map *kernel_map = NULL;
    195 
    196 /*
    197  * local data structues
    198  */
    199 
    200 static struct vm_map		kernel_map_store;
    201 static struct vm_map_entry	kernel_image_mapent_store;
    202 static struct vm_map_entry	kernel_kmem_mapent_store;
    203 
    204 int nkmempages = 0;
    205 vaddr_t kmembase;
    206 vsize_t kmemsize;
    207 
    208 static struct vmem kmem_arena_store;
    209 vmem_t *kmem_arena = NULL;
    210 static struct vmem kmem_va_arena_store;
    211 vmem_t *kmem_va_arena;
    212 
    213 /*
    214  * kmeminit_nkmempages: calculate the size of kmem_arena.
    215  */
    216 void
    217 kmeminit_nkmempages(void)
    218 {
    219 	int npages;
    220 
    221 	if (nkmempages != 0) {
    222 		/*
    223 		 * It's already been set (by us being here before)
    224 		 * bail out now;
    225 		 */
    226 		return;
    227 	}
    228 
    229 #if defined(KMSAN)
    230 	npages = (physmem / 8);
    231 #elif defined(PMAP_MAP_POOLPAGE)
    232 	npages = (physmem / 4);
    233 #else
    234 	npages = (physmem / 3) * 2;
    235 #endif /* defined(PMAP_MAP_POOLPAGE) */
    236 
    237 #ifndef NKMEMPAGES_MAX_UNLIMITED
    238 	if (npages > NKMEMPAGES_MAX)
    239 		npages = NKMEMPAGES_MAX;
    240 #endif
    241 
    242 	if (npages < NKMEMPAGES_MIN)
    243 		npages = NKMEMPAGES_MIN;
    244 
    245 	nkmempages = npages;
    246 }
    247 
    248 /*
    249  * uvm_km_bootstrap: init kernel maps and objects to reflect reality (i.e.
    250  * KVM already allocated for text, data, bss, and static data structures).
    251  *
    252  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    253  *    we assume that [vmin -> start] has already been allocated and that
    254  *    "end" is the end.
    255  */
    256 
    257 void
    258 uvm_km_bootstrap(vaddr_t start, vaddr_t end)
    259 {
    260 	bool kmem_arena_small;
    261 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    262 	struct uvm_map_args args;
    263 	int error;
    264 
    265 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    266 	UVMHIST_LOG(maphist, "start=%#jx end=%#jx", start, end, 0,0);
    267 
    268 	kmeminit_nkmempages();
    269 	kmemsize = (vsize_t)nkmempages * PAGE_SIZE;
    270 	kmem_arena_small = kmemsize < 64 * 1024 * 1024;
    271 
    272 	UVMHIST_LOG(maphist, "kmemsize=%#jx", kmemsize, 0,0,0);
    273 
    274 	/*
    275 	 * next, init kernel memory objects.
    276 	 */
    277 
    278 	/* kernel_object: for pageable anonymous kernel memory */
    279 	uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    280 				VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    281 
    282 	/*
    283 	 * init the map and reserve any space that might already
    284 	 * have been allocated kernel space before installing.
    285 	 */
    286 
    287 	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
    288 	kernel_map_store.pmap = pmap_kernel();
    289 	if (start != base) {
    290 		error = uvm_map_prepare(&kernel_map_store,
    291 		    base, start - base,
    292 		    NULL, UVM_UNKNOWN_OFFSET, 0,
    293 		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    294 		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
    295 		if (!error) {
    296 			kernel_image_mapent_store.flags =
    297 			    UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
    298 			error = uvm_map_enter(&kernel_map_store, &args,
    299 			    &kernel_image_mapent_store);
    300 		}
    301 
    302 		if (error)
    303 			panic(
    304 			    "uvm_km_bootstrap: could not reserve space for kernel");
    305 
    306 		kmembase = args.uma_start + args.uma_size;
    307 	} else {
    308 		kmembase = base;
    309 	}
    310 
    311 	error = uvm_map_prepare(&kernel_map_store,
    312 	    kmembase, kmemsize,
    313 	    NULL, UVM_UNKNOWN_OFFSET, 0,
    314 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    315 	    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
    316 	if (!error) {
    317 		kernel_kmem_mapent_store.flags =
    318 		    UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
    319 		error = uvm_map_enter(&kernel_map_store, &args,
    320 		    &kernel_kmem_mapent_store);
    321 	}
    322 
    323 	if (error)
    324 		panic("uvm_km_bootstrap: could not reserve kernel kmem");
    325 
    326 	/*
    327 	 * install!
    328 	 */
    329 
    330 	kernel_map = &kernel_map_store;
    331 
    332 	pool_subsystem_init();
    333 
    334 	kmem_arena = vmem_init(&kmem_arena_store, "kmem",
    335 	    kmembase, kmemsize, PAGE_SIZE, NULL, NULL, NULL,
    336 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    337 #ifdef PMAP_GROWKERNEL
    338 	/*
    339 	 * kmem_arena VA allocations happen independently of uvm_map.
    340 	 * grow kernel to accommodate the kmem_arena.
    341 	 */
    342 	if (uvm_maxkaddr < kmembase + kmemsize) {
    343 		uvm_maxkaddr = pmap_growkernel(kmembase + kmemsize);
    344 		KASSERTMSG(uvm_maxkaddr >= kmembase + kmemsize,
    345 		    "%#"PRIxVADDR" %#"PRIxVADDR" %#"PRIxVSIZE,
    346 		    uvm_maxkaddr, kmembase, kmemsize);
    347 	}
    348 #endif
    349 
    350 	vmem_subsystem_init(kmem_arena);
    351 
    352 	UVMHIST_LOG(maphist, "kmem vmem created (base=%#jx, size=%#jx",
    353 	    kmembase, kmemsize, 0,0);
    354 
    355 	kmem_va_arena = vmem_init(&kmem_va_arena_store, "kva",
    356 	    0, 0, PAGE_SIZE, vmem_alloc, vmem_free, kmem_arena,
    357 	    (kmem_arena_small ? 4 : VMEM_QCACHE_IDX_MAX) * PAGE_SIZE,
    358 	    VM_NOSLEEP, IPL_VM);
    359 
    360 	UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
    361 }
    362 
    363 /*
    364  * uvm_km_init: init the kernel maps virtual memory caches
    365  * and start the pool/kmem allocator.
    366  */
    367 void
    368 uvm_km_init(void)
    369 {
    370 	kmem_init();
    371 }
    372 
    373 /*
    374  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    375  * is allocated all references to that area of VM must go through it.  this
    376  * allows the locking of VAs in kernel_map to be broken up into regions.
    377  *
    378  * => if `fixed' is true, *vmin specifies where the region described
    379  *   pager_map => used to map "buf" structures into kernel space
    380  *      by the submap must start
    381  * => if submap is non NULL we use that as the submap, otherwise we
    382  *	alloc a new map
    383  */
    384 
    385 struct vm_map *
    386 uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
    387     vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
    388     struct vm_map *submap)
    389 {
    390 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    391 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    392 
    393 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    394 
    395 	size = round_page(size);	/* round up to pagesize */
    396 
    397 	/*
    398 	 * first allocate a blank spot in the parent map
    399 	 */
    400 
    401 	if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
    402 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    403 	    UVM_ADV_RANDOM, mapflags)) != 0) {
    404 		panic("%s: unable to allocate space in parent map", __func__);
    405 	}
    406 
    407 	/*
    408 	 * set VM bounds (vmin is filled in by uvm_map)
    409 	 */
    410 
    411 	*vmax = *vmin + size;
    412 
    413 	/*
    414 	 * add references to pmap and create or init the submap
    415 	 */
    416 
    417 	pmap_reference(vm_map_pmap(map));
    418 	if (submap == NULL) {
    419 		submap = kmem_alloc(sizeof(*submap), KM_SLEEP);
    420 	}
    421 	uvm_map_setup(submap, *vmin, *vmax, flags);
    422 	submap->pmap = vm_map_pmap(map);
    423 
    424 	/*
    425 	 * now let uvm_map_submap plug in it...
    426 	 */
    427 
    428 	if (uvm_map_submap(map, *vmin, *vmax, submap) != 0)
    429 		panic("uvm_km_suballoc: submap allocation failed");
    430 
    431 	return(submap);
    432 }
    433 
    434 /*
    435  * uvm_km_pgremove: remove pages from a kernel uvm_object and KVA.
    436  */
    437 
    438 void
    439 uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
    440 {
    441 	struct uvm_object * const uobj = uvm_kernel_object;
    442 	const voff_t start = startva - vm_map_min(kernel_map);
    443 	const voff_t end = endva - vm_map_min(kernel_map);
    444 	struct vm_page *pg;
    445 	voff_t curoff, nextoff;
    446 	int swpgonlydelta = 0;
    447 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    448 
    449 	KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
    450 	KASSERT(startva < endva);
    451 	KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
    452 
    453 	rw_enter(uobj->vmobjlock, RW_WRITER);
    454 	pmap_remove(pmap_kernel(), startva, endva);
    455 	for (curoff = start; curoff < end; curoff = nextoff) {
    456 		nextoff = curoff + PAGE_SIZE;
    457 		pg = uvm_pagelookup(uobj, curoff);
    458 		if (pg != NULL && pg->flags & PG_BUSY) {
    459 			pg->flags |= PG_WANTED;
    460 			UVM_UNLOCK_AND_WAIT_RW(pg, uobj->vmobjlock, 0,
    461 				    "km_pgrm", 0);
    462 			rw_enter(uobj->vmobjlock, RW_WRITER);
    463 			nextoff = curoff;
    464 			continue;
    465 		}
    466 
    467 		/*
    468 		 * free the swap slot, then the page.
    469 		 */
    470 
    471 		if (pg == NULL &&
    472 		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
    473 			swpgonlydelta++;
    474 		}
    475 		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
    476 		if (pg != NULL) {
    477 			uvm_pagefree(pg);
    478 		}
    479 	}
    480 	rw_exit(uobj->vmobjlock);
    481 
    482 	if (swpgonlydelta > 0) {
    483 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
    484 		atomic_add_int(&uvmexp.swpgonly, -swpgonlydelta);
    485 	}
    486 }
    487 
    488 
    489 /*
    490  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
    491  *    regions.
    492  *
    493  * => when you unmap a part of anonymous kernel memory you want to toss
    494  *    the pages right away.    (this is called from uvm_unmap_...).
    495  * => none of the pages will ever be busy, and none of them will ever
    496  *    be on the active or inactive queues (because they have no object).
    497  */
    498 
    499 void
    500 uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
    501 {
    502 #define __PGRM_BATCH 16
    503 	struct vm_page *pg;
    504 	paddr_t pa[__PGRM_BATCH];
    505 	int npgrm, i;
    506 	vaddr_t va, batch_vastart;
    507 
    508 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    509 
    510 	KASSERT(VM_MAP_IS_KERNEL(map));
    511 	KASSERTMSG(vm_map_min(map) <= start,
    512 	    "vm_map_min(map) [%#"PRIxVADDR"] <= start [%#"PRIxVADDR"]"
    513 	    " (size=%#"PRIxVSIZE")",
    514 	    vm_map_min(map), start, end - start);
    515 	KASSERT(start < end);
    516 	KASSERT(end <= vm_map_max(map));
    517 
    518 	for (va = start; va < end;) {
    519 		batch_vastart = va;
    520 		/* create a batch of at most __PGRM_BATCH pages to free */
    521 		for (i = 0;
    522 		     i < __PGRM_BATCH && va < end;
    523 		     va += PAGE_SIZE) {
    524 			if (!pmap_extract(pmap_kernel(), va, &pa[i])) {
    525 				continue;
    526 			}
    527 			i++;
    528 		}
    529 		npgrm = i;
    530 		/* now remove the mappings */
    531 		pmap_kremove(batch_vastart, va - batch_vastart);
    532 		/* and free the pages */
    533 		for (i = 0; i < npgrm; i++) {
    534 			pg = PHYS_TO_VM_PAGE(pa[i]);
    535 			KASSERT(pg);
    536 			KASSERT(pg->uobject == NULL && pg->uanon == NULL);
    537 			KASSERT((pg->flags & PG_BUSY) == 0);
    538 			uvm_pagefree(pg);
    539 		}
    540 	}
    541 #undef __PGRM_BATCH
    542 }
    543 
    544 #if defined(DEBUG)
    545 void
    546 uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
    547 {
    548 	vaddr_t va;
    549 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    550 
    551 	KDASSERT(VM_MAP_IS_KERNEL(map));
    552 	KDASSERT(vm_map_min(map) <= start);
    553 	KDASSERT(start < end);
    554 	KDASSERT(end <= vm_map_max(map));
    555 
    556 	for (va = start; va < end; va += PAGE_SIZE) {
    557 		paddr_t pa;
    558 
    559 		if (pmap_extract(pmap_kernel(), va, &pa)) {
    560 			panic("uvm_km_check_empty: va %p has pa 0x%llx",
    561 			    (void *)va, (long long)pa);
    562 		}
    563 		/*
    564 		 * kernel_object should not have pages for the corresponding
    565 		 * region.  check it.
    566 		 *
    567 		 * why trylock?  because:
    568 		 * - caller might not want to block.
    569 		 * - we can recurse when allocating radix_node for
    570 		 *   kernel_object.
    571 		 */
    572 		if (rw_tryenter(uvm_kernel_object->vmobjlock, RW_WRITER)) {
    573 			struct vm_page *pg;
    574 
    575 			pg = uvm_pagelookup(uvm_kernel_object,
    576 			    va - vm_map_min(kernel_map));
    577 			rw_exit(uvm_kernel_object->vmobjlock);
    578 			if (pg) {
    579 				panic("uvm_km_check_empty: "
    580 				    "has page hashed at %p",
    581 				    (const void *)va);
    582 			}
    583 		}
    584 	}
    585 }
    586 #endif /* defined(DEBUG) */
    587 
    588 /*
    589  * uvm_km_alloc: allocate an area of kernel memory.
    590  *
    591  * => NOTE: we can return 0 even if we can wait if there is not enough
    592  *	free VM space in the map... caller should be prepared to handle
    593  *	this case.
    594  * => we return KVA of memory allocated
    595  */
    596 
    597 vaddr_t
    598 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    599 {
    600 	vaddr_t kva, loopva;
    601 	vaddr_t offset;
    602 	vsize_t loopsize;
    603 	struct vm_page *pg;
    604 	struct uvm_object *obj;
    605 	int pgaflags;
    606 	vm_prot_t prot, vaprot;
    607 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    608 
    609 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    610 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
    611 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
    612 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
    613 	KASSERT((flags & UVM_KMF_VAONLY) != 0 || (flags & UVM_KMF_COLORMATCH) == 0);
    614 	KASSERT((flags & UVM_KMF_COLORMATCH) == 0 || (flags & UVM_KMF_VAONLY) != 0);
    615 
    616 	/*
    617 	 * setup for call
    618 	 */
    619 
    620 	kva = vm_map_min(map);	/* hint */
    621 	size = round_page(size);
    622 	obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
    623 	UVMHIST_LOG(maphist,"  (map=0x%#jx, obj=0x%#jx, size=0x%jx, flags=%jd)",
    624 	    (uintptr_t)map, (uintptr_t)obj, size, flags);
    625 
    626 	/*
    627 	 * allocate some virtual space
    628 	 */
    629 
    630 	vaprot = (flags & UVM_KMF_EXEC) ? UVM_PROT_ALL : UVM_PROT_RW;
    631 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    632 	    align, UVM_MAPFLAG(vaprot, UVM_PROT_ALL, UVM_INH_NONE,
    633 	    UVM_ADV_RANDOM,
    634 	    (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA
    635 	     | UVM_KMF_COLORMATCH)))) != 0)) {
    636 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    637 		return(0);
    638 	}
    639 
    640 	/*
    641 	 * if all we wanted was VA, return now
    642 	 */
    643 
    644 	if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
    645 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%jx)", kva,0,0,0);
    646 		return(kva);
    647 	}
    648 
    649 	/*
    650 	 * recover object offset from virtual address
    651 	 */
    652 
    653 	offset = kva - vm_map_min(kernel_map);
    654 	UVMHIST_LOG(maphist, "  kva=0x%jx, offset=0x%jx", kva, offset,0,0);
    655 
    656 	/*
    657 	 * now allocate and map in the memory... note that we are the only ones
    658 	 * whom should ever get a handle on this area of VM.
    659 	 */
    660 
    661 	loopva = kva;
    662 	loopsize = size;
    663 
    664 	pgaflags = UVM_FLAG_COLORMATCH;
    665 	if (flags & UVM_KMF_NOWAIT)
    666 		pgaflags |= UVM_PGA_USERESERVE;
    667 	if (flags & UVM_KMF_ZERO)
    668 		pgaflags |= UVM_PGA_ZERO;
    669 	prot = VM_PROT_READ | VM_PROT_WRITE;
    670 	if (flags & UVM_KMF_EXEC)
    671 		prot |= VM_PROT_EXECUTE;
    672 	while (loopsize) {
    673 		KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
    674 		    "loopva=%#"PRIxVADDR, loopva);
    675 
    676 		pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
    677 #ifdef UVM_KM_VMFREELIST
    678 		   UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
    679 #else
    680 		   UVM_PGA_STRAT_NORMAL, 0
    681 #endif
    682 		   );
    683 
    684 		/*
    685 		 * out of memory?
    686 		 */
    687 
    688 		if (__predict_false(pg == NULL)) {
    689 			if ((flags & UVM_KMF_NOWAIT) ||
    690 			    ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
    691 				/* free everything! */
    692 				uvm_km_free(map, kva, size,
    693 				    flags & UVM_KMF_TYPEMASK);
    694 				return (0);
    695 			} else {
    696 				uvm_wait("km_getwait2");	/* sleep here */
    697 				continue;
    698 			}
    699 		}
    700 
    701 		pg->flags &= ~PG_BUSY;	/* new page */
    702 		UVM_PAGE_OWN(pg, NULL);
    703 
    704 		/*
    705 		 * map it in
    706 		 */
    707 
    708 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    709 		    prot, PMAP_KMPAGE);
    710 		loopva += PAGE_SIZE;
    711 		offset += PAGE_SIZE;
    712 		loopsize -= PAGE_SIZE;
    713 	}
    714 
    715 	pmap_update(pmap_kernel());
    716 
    717 	if ((flags & UVM_KMF_ZERO) == 0) {
    718 		kmsan_orig((void *)kva, size, KMSAN_TYPE_UVM, __RET_ADDR);
    719 		kmsan_mark((void *)kva, size, KMSAN_STATE_UNINIT);
    720 	}
    721 
    722 	UVMHIST_LOG(maphist,"<- done (kva=0x%jx)", kva,0,0,0);
    723 	return(kva);
    724 }
    725 
    726 /*
    727  * uvm_km_protect: change the protection of an allocated area
    728  */
    729 
    730 int
    731 uvm_km_protect(struct vm_map *map, vaddr_t addr, vsize_t size, vm_prot_t prot)
    732 {
    733 	return uvm_map_protect(map, addr, addr + round_page(size), prot, false);
    734 }
    735 
    736 /*
    737  * uvm_km_free: free an area of kernel memory
    738  */
    739 
    740 void
    741 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
    742 {
    743 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    744 
    745 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
    746 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
    747 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
    748 	KASSERT((addr & PAGE_MASK) == 0);
    749 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    750 
    751 	size = round_page(size);
    752 
    753 	if (flags & UVM_KMF_PAGEABLE) {
    754 		uvm_km_pgremove(addr, addr + size);
    755 	} else if (flags & UVM_KMF_WIRED) {
    756 		/*
    757 		 * Note: uvm_km_pgremove_intrsafe() extracts mapping, thus
    758 		 * remove it after.  See comment below about KVA visibility.
    759 		 */
    760 		uvm_km_pgremove_intrsafe(map, addr, addr + size);
    761 	}
    762 
    763 	/*
    764 	 * Note: uvm_unmap_remove() calls pmap_update() for us, before
    765 	 * KVA becomes globally available.
    766 	 */
    767 
    768 	uvm_unmap1(map, addr, addr + size, UVM_FLAG_VAONLY);
    769 }
    770 
    771 /* Sanity; must specify both or none. */
    772 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    773     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    774 #error Must specify MAP and UNMAP together.
    775 #endif
    776 
    777 #if defined(PMAP_ALLOC_POOLPAGE) && \
    778     !defined(PMAP_MAP_POOLPAGE) && !defined(PMAP_UNMAP_POOLPAGE)
    779 #error Must specify ALLOC with MAP and UNMAP
    780 #endif
    781 
    782 int
    783 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
    784     vmem_addr_t *addr)
    785 {
    786 	struct vm_page *pg;
    787 	vmem_addr_t va;
    788 	int rc;
    789 	vaddr_t loopva;
    790 	vsize_t loopsize;
    791 
    792 	size = round_page(size);
    793 
    794 #if defined(PMAP_MAP_POOLPAGE)
    795 	if (size == PAGE_SIZE) {
    796 again:
    797 #ifdef PMAP_ALLOC_POOLPAGE
    798 		pg = PMAP_ALLOC_POOLPAGE((flags & VM_SLEEP) ?
    799 		   0 : UVM_PGA_USERESERVE);
    800 #else
    801 		pg = uvm_pagealloc(NULL, 0, NULL,
    802 		   (flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE);
    803 #endif /* PMAP_ALLOC_POOLPAGE */
    804 		if (__predict_false(pg == NULL)) {
    805 			if (flags & VM_SLEEP) {
    806 				uvm_wait("plpg");
    807 				goto again;
    808 			}
    809 			return ENOMEM;
    810 		}
    811 		va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    812 		KASSERT(va != 0);
    813 		*addr = va;
    814 		return 0;
    815 	}
    816 #endif /* PMAP_MAP_POOLPAGE */
    817 
    818 	rc = vmem_alloc(vm, size, flags, &va);
    819 	if (rc != 0)
    820 		return rc;
    821 
    822 #ifdef PMAP_GROWKERNEL
    823 	/*
    824 	 * These VA allocations happen independently of uvm_map
    825 	 * so this allocation must not extend beyond the current limit.
    826 	 */
    827 	KASSERTMSG(uvm_maxkaddr >= va + size,
    828 	    "%#"PRIxVADDR" %#"PRIxPTR" %#zx",
    829 	    uvm_maxkaddr, va, size);
    830 #endif
    831 
    832 	loopva = va;
    833 	loopsize = size;
    834 
    835 	while (loopsize) {
    836 		paddr_t pa __diagused;
    837 		KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, &pa),
    838 		    "loopva=%#"PRIxVADDR" loopsize=%#"PRIxVSIZE
    839 		    " pa=%#"PRIxPADDR" vmem=%p",
    840 		    loopva, loopsize, pa, vm);
    841 
    842 		pg = uvm_pagealloc(NULL, loopva, NULL,
    843 		    UVM_FLAG_COLORMATCH
    844 		    | ((flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE));
    845 		if (__predict_false(pg == NULL)) {
    846 			if (flags & VM_SLEEP) {
    847 				uvm_wait("plpg");
    848 				continue;
    849 			} else {
    850 				uvm_km_pgremove_intrsafe(kernel_map, va,
    851 				    va + size);
    852 				vmem_free(vm, va, size);
    853 				return ENOMEM;
    854 			}
    855 		}
    856 
    857 		pg->flags &= ~PG_BUSY;	/* new page */
    858 		UVM_PAGE_OWN(pg, NULL);
    859 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    860 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
    861 
    862 		loopva += PAGE_SIZE;
    863 		loopsize -= PAGE_SIZE;
    864 	}
    865 	pmap_update(pmap_kernel());
    866 
    867 	*addr = va;
    868 
    869 	return 0;
    870 }
    871 
    872 void
    873 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, size_t size)
    874 {
    875 
    876 	size = round_page(size);
    877 #if defined(PMAP_UNMAP_POOLPAGE)
    878 	if (size == PAGE_SIZE) {
    879 		paddr_t pa;
    880 
    881 		pa = PMAP_UNMAP_POOLPAGE(addr);
    882 		uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    883 		return;
    884 	}
    885 #endif /* PMAP_UNMAP_POOLPAGE */
    886 	uvm_km_pgremove_intrsafe(kernel_map, addr, addr + size);
    887 	pmap_update(pmap_kernel());
    888 
    889 	vmem_free(vm, addr, size);
    890 }
    891 
    892 bool
    893 uvm_km_va_starved_p(void)
    894 {
    895 	vmem_size_t total;
    896 	vmem_size_t free;
    897 
    898 	if (kmem_arena == NULL)
    899 		return false;
    900 
    901 	total = vmem_size(kmem_arena, VMEM_ALLOC|VMEM_FREE);
    902 	free = vmem_size(kmem_arena, VMEM_FREE);
    903 
    904 	return (free < (total / 10));
    905 }
    906