uvm_km.c revision 1.155 1 /* $NetBSD: uvm_km.c,v 1.155 2020/02/23 15:46:43 ad Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
37 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
38 *
39 *
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
48 *
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 *
53 * Carnegie Mellon requests users of this software to return to
54 *
55 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 * School of Computer Science
57 * Carnegie Mellon University
58 * Pittsburgh PA 15213-3890
59 *
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
62 */
63
64 /*
65 * uvm_km.c: handle kernel memory allocation and management
66 */
67
68 /*
69 * overview of kernel memory management:
70 *
71 * the kernel virtual address space is mapped by "kernel_map." kernel_map
72 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
73 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
74 *
75 * the kernel_map has several "submaps." submaps can only appear in
76 * the kernel_map (user processes can't use them). submaps "take over"
77 * the management of a sub-range of the kernel's address space. submaps
78 * are typically allocated at boot time and are never released. kernel
79 * virtual address space that is mapped by a submap is locked by the
80 * submap's lock -- not the kernel_map's lock.
81 *
82 * thus, the useful feature of submaps is that they allow us to break
83 * up the locking and protection of the kernel address space into smaller
84 * chunks.
85 *
86 * the vm system has several standard kernel submaps/arenas, including:
87 * kmem_arena => used for kmem/pool (memoryallocators(9))
88 * pager_map => used to map "buf" structures into kernel space
89 * exec_map => used during exec to handle exec args
90 * etc...
91 *
92 * The kmem_arena is a "special submap", as it lives in a fixed map entry
93 * within the kernel_map and is controlled by vmem(9).
94 *
95 * the kernel allocates its private memory out of special uvm_objects whose
96 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
97 * are "special" and never die). all kernel objects should be thought of
98 * as large, fixed-sized, sparsely populated uvm_objects. each kernel
99 * object is equal to the size of kernel virtual address space (i.e. the
100 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
101 *
102 * note that just because a kernel object spans the entire kernel virtual
103 * address space doesn't mean that it has to be mapped into the entire space.
104 * large chunks of a kernel object's space go unused either because
105 * that area of kernel VM is unmapped, or there is some other type of
106 * object mapped into that range (e.g. a vnode). for submap's kernel
107 * objects, the only part of the object that can ever be populated is the
108 * offsets that are managed by the submap.
109 *
110 * note that the "offset" in a kernel object is always the kernel virtual
111 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
112 * example:
113 * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
114 * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
115 * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
116 * then that means that the page at offset 0x235000 in kernel_object is
117 * mapped at 0xf8235000.
118 *
119 * kernel object have one other special property: when the kernel virtual
120 * memory mapping them is unmapped, the backing memory in the object is
121 * freed right away. this is done with the uvm_km_pgremove() function.
122 * this has to be done because there is no backing store for kernel pages
123 * and no need to save them after they are no longer referenced.
124 *
125 * Generic arenas:
126 *
127 * kmem_arena:
128 * Main arena controlling the kernel KVA used by other arenas.
129 *
130 * kmem_va_arena:
131 * Implements quantum caching in order to speedup allocations and
132 * reduce fragmentation. The pool(9), unless created with a custom
133 * meta-data allocator, and kmem(9) subsystems use this arena.
134 *
135 * Arenas for meta-data allocations are used by vmem(9) and pool(9).
136 * These arenas cannot use quantum cache. However, kmem_va_meta_arena
137 * compensates this by importing larger chunks from kmem_arena.
138 *
139 * kmem_va_meta_arena:
140 * Space for meta-data.
141 *
142 * kmem_meta_arena:
143 * Imports from kmem_va_meta_arena. Allocations from this arena are
144 * backed with the pages.
145 *
146 * Arena stacking:
147 *
148 * kmem_arena
149 * kmem_va_arena
150 * kmem_va_meta_arena
151 * kmem_meta_arena
152 */
153
154 #include <sys/cdefs.h>
155 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.155 2020/02/23 15:46:43 ad Exp $");
156
157 #include "opt_uvmhist.h"
158
159 #include "opt_kmempages.h"
160
161 #ifndef NKMEMPAGES
162 #define NKMEMPAGES 0
163 #endif
164
165 /*
166 * Defaults for lower and upper-bounds for the kmem_arena page count.
167 * Can be overridden by kernel config options.
168 */
169 #ifndef NKMEMPAGES_MIN
170 #define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
171 #endif
172
173 #ifndef NKMEMPAGES_MAX
174 #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
175 #endif
176
177
178 #include <sys/param.h>
179 #include <sys/systm.h>
180 #include <sys/atomic.h>
181 #include <sys/proc.h>
182 #include <sys/pool.h>
183 #include <sys/vmem.h>
184 #include <sys/vmem_impl.h>
185 #include <sys/kmem.h>
186 #include <sys/msan.h>
187
188 #include <uvm/uvm.h>
189
190 /*
191 * global data structures
192 */
193
194 struct vm_map *kernel_map = NULL;
195
196 /*
197 * local data structues
198 */
199
200 static struct vm_map kernel_map_store;
201 static struct vm_map_entry kernel_image_mapent_store;
202 static struct vm_map_entry kernel_kmem_mapent_store;
203
204 int nkmempages = 0;
205 vaddr_t kmembase;
206 vsize_t kmemsize;
207
208 static struct vmem kmem_arena_store;
209 vmem_t *kmem_arena = NULL;
210 static struct vmem kmem_va_arena_store;
211 vmem_t *kmem_va_arena;
212
213 /*
214 * kmeminit_nkmempages: calculate the size of kmem_arena.
215 */
216 void
217 kmeminit_nkmempages(void)
218 {
219 int npages;
220
221 if (nkmempages != 0) {
222 /*
223 * It's already been set (by us being here before)
224 * bail out now;
225 */
226 return;
227 }
228
229 #if defined(KMSAN)
230 npages = (physmem / 8);
231 #elif defined(PMAP_MAP_POOLPAGE)
232 npages = (physmem / 4);
233 #else
234 npages = (physmem / 3) * 2;
235 #endif /* defined(PMAP_MAP_POOLPAGE) */
236
237 #ifndef NKMEMPAGES_MAX_UNLIMITED
238 if (npages > NKMEMPAGES_MAX)
239 npages = NKMEMPAGES_MAX;
240 #endif
241
242 if (npages < NKMEMPAGES_MIN)
243 npages = NKMEMPAGES_MIN;
244
245 nkmempages = npages;
246 }
247
248 /*
249 * uvm_km_bootstrap: init kernel maps and objects to reflect reality (i.e.
250 * KVM already allocated for text, data, bss, and static data structures).
251 *
252 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
253 * we assume that [vmin -> start] has already been allocated and that
254 * "end" is the end.
255 */
256
257 void
258 uvm_km_bootstrap(vaddr_t start, vaddr_t end)
259 {
260 bool kmem_arena_small;
261 vaddr_t base = VM_MIN_KERNEL_ADDRESS;
262 struct uvm_map_args args;
263 int error;
264
265 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
266 UVMHIST_LOG(maphist, "start=%#jx end=%#jx", start, end, 0,0);
267
268 kmeminit_nkmempages();
269 kmemsize = (vsize_t)nkmempages * PAGE_SIZE;
270 kmem_arena_small = kmemsize < 64 * 1024 * 1024;
271
272 UVMHIST_LOG(maphist, "kmemsize=%#jx", kmemsize, 0,0,0);
273
274 /*
275 * next, init kernel memory objects.
276 */
277
278 /* kernel_object: for pageable anonymous kernel memory */
279 uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
280 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
281
282 /*
283 * init the map and reserve any space that might already
284 * have been allocated kernel space before installing.
285 */
286
287 uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
288 kernel_map_store.pmap = pmap_kernel();
289 if (start != base) {
290 error = uvm_map_prepare(&kernel_map_store,
291 base, start - base,
292 NULL, UVM_UNKNOWN_OFFSET, 0,
293 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
294 UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
295 if (!error) {
296 kernel_image_mapent_store.flags =
297 UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
298 error = uvm_map_enter(&kernel_map_store, &args,
299 &kernel_image_mapent_store);
300 }
301
302 if (error)
303 panic(
304 "uvm_km_bootstrap: could not reserve space for kernel");
305
306 kmembase = args.uma_start + args.uma_size;
307 } else {
308 kmembase = base;
309 }
310
311 error = uvm_map_prepare(&kernel_map_store,
312 kmembase, kmemsize,
313 NULL, UVM_UNKNOWN_OFFSET, 0,
314 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
315 UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
316 if (!error) {
317 kernel_kmem_mapent_store.flags =
318 UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
319 error = uvm_map_enter(&kernel_map_store, &args,
320 &kernel_kmem_mapent_store);
321 }
322
323 if (error)
324 panic("uvm_km_bootstrap: could not reserve kernel kmem");
325
326 /*
327 * install!
328 */
329
330 kernel_map = &kernel_map_store;
331
332 pool_subsystem_init();
333
334 kmem_arena = vmem_init(&kmem_arena_store, "kmem",
335 kmembase, kmemsize, PAGE_SIZE, NULL, NULL, NULL,
336 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
337 #ifdef PMAP_GROWKERNEL
338 /*
339 * kmem_arena VA allocations happen independently of uvm_map.
340 * grow kernel to accommodate the kmem_arena.
341 */
342 if (uvm_maxkaddr < kmembase + kmemsize) {
343 uvm_maxkaddr = pmap_growkernel(kmembase + kmemsize);
344 KASSERTMSG(uvm_maxkaddr >= kmembase + kmemsize,
345 "%#"PRIxVADDR" %#"PRIxVADDR" %#"PRIxVSIZE,
346 uvm_maxkaddr, kmembase, kmemsize);
347 }
348 #endif
349
350 vmem_subsystem_init(kmem_arena);
351
352 UVMHIST_LOG(maphist, "kmem vmem created (base=%#jx, size=%#jx",
353 kmembase, kmemsize, 0,0);
354
355 kmem_va_arena = vmem_init(&kmem_va_arena_store, "kva",
356 0, 0, PAGE_SIZE, vmem_alloc, vmem_free, kmem_arena,
357 (kmem_arena_small ? 4 : VMEM_QCACHE_IDX_MAX) * PAGE_SIZE,
358 VM_NOSLEEP, IPL_VM);
359
360 UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
361 }
362
363 /*
364 * uvm_km_init: init the kernel maps virtual memory caches
365 * and start the pool/kmem allocator.
366 */
367 void
368 uvm_km_init(void)
369 {
370 kmem_init();
371 }
372
373 /*
374 * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
375 * is allocated all references to that area of VM must go through it. this
376 * allows the locking of VAs in kernel_map to be broken up into regions.
377 *
378 * => if `fixed' is true, *vmin specifies where the region described
379 * pager_map => used to map "buf" structures into kernel space
380 * by the submap must start
381 * => if submap is non NULL we use that as the submap, otherwise we
382 * alloc a new map
383 */
384
385 struct vm_map *
386 uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
387 vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
388 struct vm_map *submap)
389 {
390 int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
391 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
392
393 KASSERT(vm_map_pmap(map) == pmap_kernel());
394
395 size = round_page(size); /* round up to pagesize */
396
397 /*
398 * first allocate a blank spot in the parent map
399 */
400
401 if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
402 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
403 UVM_ADV_RANDOM, mapflags)) != 0) {
404 panic("%s: unable to allocate space in parent map", __func__);
405 }
406
407 /*
408 * set VM bounds (vmin is filled in by uvm_map)
409 */
410
411 *vmax = *vmin + size;
412
413 /*
414 * add references to pmap and create or init the submap
415 */
416
417 pmap_reference(vm_map_pmap(map));
418 if (submap == NULL) {
419 submap = kmem_alloc(sizeof(*submap), KM_SLEEP);
420 }
421 uvm_map_setup(submap, *vmin, *vmax, flags);
422 submap->pmap = vm_map_pmap(map);
423
424 /*
425 * now let uvm_map_submap plug in it...
426 */
427
428 if (uvm_map_submap(map, *vmin, *vmax, submap) != 0)
429 panic("uvm_km_suballoc: submap allocation failed");
430
431 return(submap);
432 }
433
434 /*
435 * uvm_km_pgremove: remove pages from a kernel uvm_object and KVA.
436 */
437
438 void
439 uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
440 {
441 struct uvm_object * const uobj = uvm_kernel_object;
442 const voff_t start = startva - vm_map_min(kernel_map);
443 const voff_t end = endva - vm_map_min(kernel_map);
444 struct vm_page *pg;
445 voff_t curoff, nextoff;
446 int swpgonlydelta = 0;
447 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
448
449 KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
450 KASSERT(startva < endva);
451 KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
452
453 rw_enter(uobj->vmobjlock, RW_WRITER);
454 pmap_remove(pmap_kernel(), startva, endva);
455 for (curoff = start; curoff < end; curoff = nextoff) {
456 nextoff = curoff + PAGE_SIZE;
457 pg = uvm_pagelookup(uobj, curoff);
458 if (pg != NULL && pg->flags & PG_BUSY) {
459 pg->flags |= PG_WANTED;
460 UVM_UNLOCK_AND_WAIT_RW(pg, uobj->vmobjlock, 0,
461 "km_pgrm", 0);
462 rw_enter(uobj->vmobjlock, RW_WRITER);
463 nextoff = curoff;
464 continue;
465 }
466
467 /*
468 * free the swap slot, then the page.
469 */
470
471 if (pg == NULL &&
472 uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
473 swpgonlydelta++;
474 }
475 uao_dropswap(uobj, curoff >> PAGE_SHIFT);
476 if (pg != NULL) {
477 uvm_pagefree(pg);
478 }
479 }
480 rw_exit(uobj->vmobjlock);
481
482 if (swpgonlydelta > 0) {
483 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
484 atomic_add_int(&uvmexp.swpgonly, -swpgonlydelta);
485 }
486 }
487
488
489 /*
490 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
491 * regions.
492 *
493 * => when you unmap a part of anonymous kernel memory you want to toss
494 * the pages right away. (this is called from uvm_unmap_...).
495 * => none of the pages will ever be busy, and none of them will ever
496 * be on the active or inactive queues (because they have no object).
497 */
498
499 void
500 uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
501 {
502 #define __PGRM_BATCH 16
503 struct vm_page *pg;
504 paddr_t pa[__PGRM_BATCH];
505 int npgrm, i;
506 vaddr_t va, batch_vastart;
507
508 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
509
510 KASSERT(VM_MAP_IS_KERNEL(map));
511 KASSERTMSG(vm_map_min(map) <= start,
512 "vm_map_min(map) [%#"PRIxVADDR"] <= start [%#"PRIxVADDR"]"
513 " (size=%#"PRIxVSIZE")",
514 vm_map_min(map), start, end - start);
515 KASSERT(start < end);
516 KASSERT(end <= vm_map_max(map));
517
518 for (va = start; va < end;) {
519 batch_vastart = va;
520 /* create a batch of at most __PGRM_BATCH pages to free */
521 for (i = 0;
522 i < __PGRM_BATCH && va < end;
523 va += PAGE_SIZE) {
524 if (!pmap_extract(pmap_kernel(), va, &pa[i])) {
525 continue;
526 }
527 i++;
528 }
529 npgrm = i;
530 /* now remove the mappings */
531 pmap_kremove(batch_vastart, va - batch_vastart);
532 /* and free the pages */
533 for (i = 0; i < npgrm; i++) {
534 pg = PHYS_TO_VM_PAGE(pa[i]);
535 KASSERT(pg);
536 KASSERT(pg->uobject == NULL && pg->uanon == NULL);
537 KASSERT((pg->flags & PG_BUSY) == 0);
538 uvm_pagefree(pg);
539 }
540 }
541 #undef __PGRM_BATCH
542 }
543
544 #if defined(DEBUG)
545 void
546 uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
547 {
548 vaddr_t va;
549 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
550
551 KDASSERT(VM_MAP_IS_KERNEL(map));
552 KDASSERT(vm_map_min(map) <= start);
553 KDASSERT(start < end);
554 KDASSERT(end <= vm_map_max(map));
555
556 for (va = start; va < end; va += PAGE_SIZE) {
557 paddr_t pa;
558
559 if (pmap_extract(pmap_kernel(), va, &pa)) {
560 panic("uvm_km_check_empty: va %p has pa 0x%llx",
561 (void *)va, (long long)pa);
562 }
563 /*
564 * kernel_object should not have pages for the corresponding
565 * region. check it.
566 *
567 * why trylock? because:
568 * - caller might not want to block.
569 * - we can recurse when allocating radix_node for
570 * kernel_object.
571 */
572 if (rw_tryenter(uvm_kernel_object->vmobjlock, RW_WRITER)) {
573 struct vm_page *pg;
574
575 pg = uvm_pagelookup(uvm_kernel_object,
576 va - vm_map_min(kernel_map));
577 rw_exit(uvm_kernel_object->vmobjlock);
578 if (pg) {
579 panic("uvm_km_check_empty: "
580 "has page hashed at %p",
581 (const void *)va);
582 }
583 }
584 }
585 }
586 #endif /* defined(DEBUG) */
587
588 /*
589 * uvm_km_alloc: allocate an area of kernel memory.
590 *
591 * => NOTE: we can return 0 even if we can wait if there is not enough
592 * free VM space in the map... caller should be prepared to handle
593 * this case.
594 * => we return KVA of memory allocated
595 */
596
597 vaddr_t
598 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
599 {
600 vaddr_t kva, loopva;
601 vaddr_t offset;
602 vsize_t loopsize;
603 struct vm_page *pg;
604 struct uvm_object *obj;
605 int pgaflags;
606 vm_prot_t prot, vaprot;
607 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
608
609 KASSERT(vm_map_pmap(map) == pmap_kernel());
610 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
611 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
612 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
613 KASSERT((flags & UVM_KMF_VAONLY) != 0 || (flags & UVM_KMF_COLORMATCH) == 0);
614 KASSERT((flags & UVM_KMF_COLORMATCH) == 0 || (flags & UVM_KMF_VAONLY) != 0);
615
616 /*
617 * setup for call
618 */
619
620 kva = vm_map_min(map); /* hint */
621 size = round_page(size);
622 obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
623 UVMHIST_LOG(maphist," (map=0x%#jx, obj=0x%#jx, size=0x%jx, flags=%jd)",
624 (uintptr_t)map, (uintptr_t)obj, size, flags);
625
626 /*
627 * allocate some virtual space
628 */
629
630 vaprot = (flags & UVM_KMF_EXEC) ? UVM_PROT_ALL : UVM_PROT_RW;
631 if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
632 align, UVM_MAPFLAG(vaprot, UVM_PROT_ALL, UVM_INH_NONE,
633 UVM_ADV_RANDOM,
634 (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA
635 | UVM_KMF_COLORMATCH)))) != 0)) {
636 UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
637 return(0);
638 }
639
640 /*
641 * if all we wanted was VA, return now
642 */
643
644 if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
645 UVMHIST_LOG(maphist,"<- done valloc (kva=0x%jx)", kva,0,0,0);
646 return(kva);
647 }
648
649 /*
650 * recover object offset from virtual address
651 */
652
653 offset = kva - vm_map_min(kernel_map);
654 UVMHIST_LOG(maphist, " kva=0x%jx, offset=0x%jx", kva, offset,0,0);
655
656 /*
657 * now allocate and map in the memory... note that we are the only ones
658 * whom should ever get a handle on this area of VM.
659 */
660
661 loopva = kva;
662 loopsize = size;
663
664 pgaflags = UVM_FLAG_COLORMATCH;
665 if (flags & UVM_KMF_NOWAIT)
666 pgaflags |= UVM_PGA_USERESERVE;
667 if (flags & UVM_KMF_ZERO)
668 pgaflags |= UVM_PGA_ZERO;
669 prot = VM_PROT_READ | VM_PROT_WRITE;
670 if (flags & UVM_KMF_EXEC)
671 prot |= VM_PROT_EXECUTE;
672 while (loopsize) {
673 KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
674 "loopva=%#"PRIxVADDR, loopva);
675
676 pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
677 #ifdef UVM_KM_VMFREELIST
678 UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
679 #else
680 UVM_PGA_STRAT_NORMAL, 0
681 #endif
682 );
683
684 /*
685 * out of memory?
686 */
687
688 if (__predict_false(pg == NULL)) {
689 if ((flags & UVM_KMF_NOWAIT) ||
690 ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
691 /* free everything! */
692 uvm_km_free(map, kva, size,
693 flags & UVM_KMF_TYPEMASK);
694 return (0);
695 } else {
696 uvm_wait("km_getwait2"); /* sleep here */
697 continue;
698 }
699 }
700
701 pg->flags &= ~PG_BUSY; /* new page */
702 UVM_PAGE_OWN(pg, NULL);
703
704 /*
705 * map it in
706 */
707
708 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
709 prot, PMAP_KMPAGE);
710 loopva += PAGE_SIZE;
711 offset += PAGE_SIZE;
712 loopsize -= PAGE_SIZE;
713 }
714
715 pmap_update(pmap_kernel());
716
717 if ((flags & UVM_KMF_ZERO) == 0) {
718 kmsan_orig((void *)kva, size, KMSAN_TYPE_UVM, __RET_ADDR);
719 kmsan_mark((void *)kva, size, KMSAN_STATE_UNINIT);
720 }
721
722 UVMHIST_LOG(maphist,"<- done (kva=0x%jx)", kva,0,0,0);
723 return(kva);
724 }
725
726 /*
727 * uvm_km_protect: change the protection of an allocated area
728 */
729
730 int
731 uvm_km_protect(struct vm_map *map, vaddr_t addr, vsize_t size, vm_prot_t prot)
732 {
733 return uvm_map_protect(map, addr, addr + round_page(size), prot, false);
734 }
735
736 /*
737 * uvm_km_free: free an area of kernel memory
738 */
739
740 void
741 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
742 {
743 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
744
745 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
746 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
747 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
748 KASSERT((addr & PAGE_MASK) == 0);
749 KASSERT(vm_map_pmap(map) == pmap_kernel());
750
751 size = round_page(size);
752
753 if (flags & UVM_KMF_PAGEABLE) {
754 uvm_km_pgremove(addr, addr + size);
755 } else if (flags & UVM_KMF_WIRED) {
756 /*
757 * Note: uvm_km_pgremove_intrsafe() extracts mapping, thus
758 * remove it after. See comment below about KVA visibility.
759 */
760 uvm_km_pgremove_intrsafe(map, addr, addr + size);
761 }
762
763 /*
764 * Note: uvm_unmap_remove() calls pmap_update() for us, before
765 * KVA becomes globally available.
766 */
767
768 uvm_unmap1(map, addr, addr + size, UVM_FLAG_VAONLY);
769 }
770
771 /* Sanity; must specify both or none. */
772 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
773 (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
774 #error Must specify MAP and UNMAP together.
775 #endif
776
777 #if defined(PMAP_ALLOC_POOLPAGE) && \
778 !defined(PMAP_MAP_POOLPAGE) && !defined(PMAP_UNMAP_POOLPAGE)
779 #error Must specify ALLOC with MAP and UNMAP
780 #endif
781
782 int
783 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
784 vmem_addr_t *addr)
785 {
786 struct vm_page *pg;
787 vmem_addr_t va;
788 int rc;
789 vaddr_t loopva;
790 vsize_t loopsize;
791
792 size = round_page(size);
793
794 #if defined(PMAP_MAP_POOLPAGE)
795 if (size == PAGE_SIZE) {
796 again:
797 #ifdef PMAP_ALLOC_POOLPAGE
798 pg = PMAP_ALLOC_POOLPAGE((flags & VM_SLEEP) ?
799 0 : UVM_PGA_USERESERVE);
800 #else
801 pg = uvm_pagealloc(NULL, 0, NULL,
802 (flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE);
803 #endif /* PMAP_ALLOC_POOLPAGE */
804 if (__predict_false(pg == NULL)) {
805 if (flags & VM_SLEEP) {
806 uvm_wait("plpg");
807 goto again;
808 }
809 return ENOMEM;
810 }
811 va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
812 KASSERT(va != 0);
813 *addr = va;
814 return 0;
815 }
816 #endif /* PMAP_MAP_POOLPAGE */
817
818 rc = vmem_alloc(vm, size, flags, &va);
819 if (rc != 0)
820 return rc;
821
822 #ifdef PMAP_GROWKERNEL
823 /*
824 * These VA allocations happen independently of uvm_map
825 * so this allocation must not extend beyond the current limit.
826 */
827 KASSERTMSG(uvm_maxkaddr >= va + size,
828 "%#"PRIxVADDR" %#"PRIxPTR" %#zx",
829 uvm_maxkaddr, va, size);
830 #endif
831
832 loopva = va;
833 loopsize = size;
834
835 while (loopsize) {
836 paddr_t pa __diagused;
837 KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, &pa),
838 "loopva=%#"PRIxVADDR" loopsize=%#"PRIxVSIZE
839 " pa=%#"PRIxPADDR" vmem=%p",
840 loopva, loopsize, pa, vm);
841
842 pg = uvm_pagealloc(NULL, loopva, NULL,
843 UVM_FLAG_COLORMATCH
844 | ((flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE));
845 if (__predict_false(pg == NULL)) {
846 if (flags & VM_SLEEP) {
847 uvm_wait("plpg");
848 continue;
849 } else {
850 uvm_km_pgremove_intrsafe(kernel_map, va,
851 va + size);
852 vmem_free(vm, va, size);
853 return ENOMEM;
854 }
855 }
856
857 pg->flags &= ~PG_BUSY; /* new page */
858 UVM_PAGE_OWN(pg, NULL);
859 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
860 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
861
862 loopva += PAGE_SIZE;
863 loopsize -= PAGE_SIZE;
864 }
865 pmap_update(pmap_kernel());
866
867 *addr = va;
868
869 return 0;
870 }
871
872 void
873 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, size_t size)
874 {
875
876 size = round_page(size);
877 #if defined(PMAP_UNMAP_POOLPAGE)
878 if (size == PAGE_SIZE) {
879 paddr_t pa;
880
881 pa = PMAP_UNMAP_POOLPAGE(addr);
882 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
883 return;
884 }
885 #endif /* PMAP_UNMAP_POOLPAGE */
886 uvm_km_pgremove_intrsafe(kernel_map, addr, addr + size);
887 pmap_update(pmap_kernel());
888
889 vmem_free(vm, addr, size);
890 }
891
892 bool
893 uvm_km_va_starved_p(void)
894 {
895 vmem_size_t total;
896 vmem_size_t free;
897
898 if (kmem_arena == NULL)
899 return false;
900
901 total = vmem_size(kmem_arena, VMEM_ALLOC|VMEM_FREE);
902 free = vmem_size(kmem_arena, VMEM_FREE);
903
904 return (free < (total / 10));
905 }
906