Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.161
      1 /*	$NetBSD: uvm_km.c,v 1.161 2022/08/03 01:52:11 chs Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     37  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     38  *
     39  *
     40  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     41  * All rights reserved.
     42  *
     43  * Permission to use, copy, modify and distribute this software and
     44  * its documentation is hereby granted, provided that both the copyright
     45  * notice and this permission notice appear in all copies of the
     46  * software, derivative works or modified versions, and any portions
     47  * thereof, and that both notices appear in supporting documentation.
     48  *
     49  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     50  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     51  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     52  *
     53  * Carnegie Mellon requests users of this software to return to
     54  *
     55  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     56  *  School of Computer Science
     57  *  Carnegie Mellon University
     58  *  Pittsburgh PA 15213-3890
     59  *
     60  * any improvements or extensions that they make and grant Carnegie the
     61  * rights to redistribute these changes.
     62  */
     63 
     64 /*
     65  * uvm_km.c: handle kernel memory allocation and management
     66  */
     67 
     68 /*
     69  * overview of kernel memory management:
     70  *
     71  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     72  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     73  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     74  *
     75  * the kernel_map has several "submaps."   submaps can only appear in
     76  * the kernel_map (user processes can't use them).   submaps "take over"
     77  * the management of a sub-range of the kernel's address space.  submaps
     78  * are typically allocated at boot time and are never released.   kernel
     79  * virtual address space that is mapped by a submap is locked by the
     80  * submap's lock -- not the kernel_map's lock.
     81  *
     82  * thus, the useful feature of submaps is that they allow us to break
     83  * up the locking and protection of the kernel address space into smaller
     84  * chunks.
     85  *
     86  * the vm system has several standard kernel submaps/arenas, including:
     87  *   kmem_arena => used for kmem/pool (memoryallocators(9))
     88  *   pager_map => used to map "buf" structures into kernel space
     89  *   exec_map => used during exec to handle exec args
     90  *   etc...
     91  *
     92  * The kmem_arena is a "special submap", as it lives in a fixed map entry
     93  * within the kernel_map and is controlled by vmem(9).
     94  *
     95  * the kernel allocates its private memory out of special uvm_objects whose
     96  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
     97  * are "special" and never die).   all kernel objects should be thought of
     98  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
     99  * object is equal to the size of kernel virtual address space (i.e. the
    100  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    101  *
    102  * note that just because a kernel object spans the entire kernel virtual
    103  * address space doesn't mean that it has to be mapped into the entire space.
    104  * large chunks of a kernel object's space go unused either because
    105  * that area of kernel VM is unmapped, or there is some other type of
    106  * object mapped into that range (e.g. a vnode).    for submap's kernel
    107  * objects, the only part of the object that can ever be populated is the
    108  * offsets that are managed by the submap.
    109  *
    110  * note that the "offset" in a kernel object is always the kernel virtual
    111  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    112  * example:
    113  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    114  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    115  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    116  *   then that means that the page at offset 0x235000 in kernel_object is
    117  *   mapped at 0xf8235000.
    118  *
    119  * kernel object have one other special property: when the kernel virtual
    120  * memory mapping them is unmapped, the backing memory in the object is
    121  * freed right away.   this is done with the uvm_km_pgremove() function.
    122  * this has to be done because there is no backing store for kernel pages
    123  * and no need to save them after they are no longer referenced.
    124  *
    125  * Generic arenas:
    126  *
    127  * kmem_arena:
    128  *	Main arena controlling the kernel KVA used by other arenas.
    129  *
    130  * kmem_va_arena:
    131  *	Implements quantum caching in order to speedup allocations and
    132  *	reduce fragmentation.  The pool(9), unless created with a custom
    133  *	meta-data allocator, and kmem(9) subsystems use this arena.
    134  *
    135  * Arenas for meta-data allocations are used by vmem(9) and pool(9).
    136  * These arenas cannot use quantum cache.  However, kmem_va_meta_arena
    137  * compensates this by importing larger chunks from kmem_arena.
    138  *
    139  * kmem_va_meta_arena:
    140  *	Space for meta-data.
    141  *
    142  * kmem_meta_arena:
    143  *	Imports from kmem_va_meta_arena.  Allocations from this arena are
    144  *	backed with the pages.
    145  *
    146  * Arena stacking:
    147  *
    148  *	kmem_arena
    149  *		kmem_va_arena
    150  *		kmem_va_meta_arena
    151  *			kmem_meta_arena
    152  */
    153 
    154 #include <sys/cdefs.h>
    155 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.161 2022/08/03 01:52:11 chs Exp $");
    156 
    157 #include "opt_uvmhist.h"
    158 
    159 #include "opt_kmempages.h"
    160 
    161 #ifndef NKMEMPAGES
    162 #define NKMEMPAGES 0
    163 #endif
    164 
    165 /*
    166  * Defaults for lower and upper-bounds for the kmem_arena page count.
    167  * Can be overridden by kernel config options.
    168  */
    169 #ifndef NKMEMPAGES_MIN
    170 #define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
    171 #endif
    172 
    173 #ifndef NKMEMPAGES_MAX
    174 #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
    175 #endif
    176 
    177 
    178 #include <sys/param.h>
    179 #include <sys/systm.h>
    180 #include <sys/atomic.h>
    181 #include <sys/proc.h>
    182 #include <sys/pool.h>
    183 #include <sys/vmem.h>
    184 #include <sys/vmem_impl.h>
    185 #include <sys/kmem.h>
    186 #include <sys/msan.h>
    187 
    188 #include <uvm/uvm.h>
    189 
    190 /*
    191  * global data structures
    192  */
    193 
    194 struct vm_map *kernel_map = NULL;
    195 
    196 /*
    197  * local data structues
    198  */
    199 
    200 static struct vm_map		kernel_map_store;
    201 static struct vm_map_entry	kernel_image_mapent_store;
    202 static struct vm_map_entry	kernel_kmem_mapent_store;
    203 
    204 int nkmempages = 0;
    205 vaddr_t kmembase;
    206 vsize_t kmemsize;
    207 
    208 static struct vmem kmem_arena_store;
    209 vmem_t *kmem_arena = NULL;
    210 static struct vmem kmem_va_arena_store;
    211 vmem_t *kmem_va_arena;
    212 
    213 /*
    214  * kmeminit_nkmempages: calculate the size of kmem_arena.
    215  */
    216 void
    217 kmeminit_nkmempages(void)
    218 {
    219 	int npages;
    220 
    221 	if (nkmempages != 0) {
    222 		/*
    223 		 * It's already been set (by us being here before)
    224 		 * bail out now;
    225 		 */
    226 		return;
    227 	}
    228 
    229 #ifdef NKMEMPAGES_MAX_UNLIMITED
    230 	npages = physmem;
    231 #else
    232 
    233 #if defined(KMSAN)
    234 	npages = (physmem / 8);
    235 #elif defined(PMAP_MAP_POOLPAGE)
    236 	npages = (physmem / 4);
    237 #else
    238 	npages = (physmem / 3) * 2;
    239 #endif /* defined(PMAP_MAP_POOLPAGE) */
    240 
    241 	if (npages > NKMEMPAGES_MAX)
    242 		npages = NKMEMPAGES_MAX;
    243 #endif
    244 
    245 	if (npages < NKMEMPAGES_MIN)
    246 		npages = NKMEMPAGES_MIN;
    247 
    248 	nkmempages = npages;
    249 }
    250 
    251 /*
    252  * uvm_km_bootstrap: init kernel maps and objects to reflect reality (i.e.
    253  * KVM already allocated for text, data, bss, and static data structures).
    254  *
    255  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    256  *    we assume that [vmin -> start] has already been allocated and that
    257  *    "end" is the end.
    258  */
    259 
    260 void
    261 uvm_km_bootstrap(vaddr_t start, vaddr_t end)
    262 {
    263 	bool kmem_arena_small;
    264 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    265 	struct uvm_map_args args;
    266 	int error;
    267 
    268 	UVMHIST_FUNC(__func__);
    269 	UVMHIST_CALLARGS(maphist, "start=%#jx end=%#jx", start, end, 0,0);
    270 
    271 	kmeminit_nkmempages();
    272 	kmemsize = (vsize_t)nkmempages * PAGE_SIZE;
    273 	kmem_arena_small = kmemsize < 64 * 1024 * 1024;
    274 
    275 	UVMHIST_LOG(maphist, "kmemsize=%#jx", kmemsize, 0,0,0);
    276 
    277 	/*
    278 	 * next, init kernel memory objects.
    279 	 */
    280 
    281 	/* kernel_object: for pageable anonymous kernel memory */
    282 	uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    283 				VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    284 
    285 	/*
    286 	 * init the map and reserve any space that might already
    287 	 * have been allocated kernel space before installing.
    288 	 */
    289 
    290 	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
    291 	kernel_map_store.pmap = pmap_kernel();
    292 	if (start != base) {
    293 		error = uvm_map_prepare(&kernel_map_store,
    294 		    base, start - base,
    295 		    NULL, UVM_UNKNOWN_OFFSET, 0,
    296 		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    297 		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
    298 		if (!error) {
    299 			kernel_image_mapent_store.flags =
    300 			    UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
    301 			error = uvm_map_enter(&kernel_map_store, &args,
    302 			    &kernel_image_mapent_store);
    303 		}
    304 
    305 		if (error)
    306 			panic(
    307 			    "uvm_km_bootstrap: could not reserve space for kernel");
    308 
    309 		kmembase = args.uma_start + args.uma_size;
    310 	} else {
    311 		kmembase = base;
    312 	}
    313 
    314 	error = uvm_map_prepare(&kernel_map_store,
    315 	    kmembase, kmemsize,
    316 	    NULL, UVM_UNKNOWN_OFFSET, 0,
    317 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    318 	    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
    319 	if (!error) {
    320 		kernel_kmem_mapent_store.flags =
    321 		    UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
    322 		error = uvm_map_enter(&kernel_map_store, &args,
    323 		    &kernel_kmem_mapent_store);
    324 	}
    325 
    326 	if (error)
    327 		panic("uvm_km_bootstrap: could not reserve kernel kmem");
    328 
    329 	/*
    330 	 * install!
    331 	 */
    332 
    333 	kernel_map = &kernel_map_store;
    334 
    335 	pool_subsystem_init();
    336 
    337 	kmem_arena = vmem_init(&kmem_arena_store, "kmem",
    338 	    kmembase, kmemsize, PAGE_SIZE, NULL, NULL, NULL,
    339 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    340 #ifdef PMAP_GROWKERNEL
    341 	/*
    342 	 * kmem_arena VA allocations happen independently of uvm_map.
    343 	 * grow kernel to accommodate the kmem_arena.
    344 	 */
    345 	if (uvm_maxkaddr < kmembase + kmemsize) {
    346 		uvm_maxkaddr = pmap_growkernel(kmembase + kmemsize);
    347 		KASSERTMSG(uvm_maxkaddr >= kmembase + kmemsize,
    348 		    "%#"PRIxVADDR" %#"PRIxVADDR" %#"PRIxVSIZE,
    349 		    uvm_maxkaddr, kmembase, kmemsize);
    350 	}
    351 #endif
    352 
    353 	vmem_subsystem_init(kmem_arena);
    354 
    355 	UVMHIST_LOG(maphist, "kmem vmem created (base=%#jx, size=%#jx",
    356 	    kmembase, kmemsize, 0,0);
    357 
    358 	kmem_va_arena = vmem_init(&kmem_va_arena_store, "kva",
    359 	    0, 0, PAGE_SIZE, vmem_alloc, vmem_free, kmem_arena,
    360 	    (kmem_arena_small ? 4 : VMEM_QCACHE_IDX_MAX) * PAGE_SIZE,
    361 	    VM_NOSLEEP, IPL_VM);
    362 
    363 	UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
    364 }
    365 
    366 /*
    367  * uvm_km_init: init the kernel maps virtual memory caches
    368  * and start the pool/kmem allocator.
    369  */
    370 void
    371 uvm_km_init(void)
    372 {
    373 	kmem_init();
    374 }
    375 
    376 /*
    377  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    378  * is allocated all references to that area of VM must go through it.  this
    379  * allows the locking of VAs in kernel_map to be broken up into regions.
    380  *
    381  * => if `fixed' is true, *vmin specifies where the region described
    382  *   pager_map => used to map "buf" structures into kernel space
    383  *      by the submap must start
    384  * => if submap is non NULL we use that as the submap, otherwise we
    385  *	alloc a new map
    386  */
    387 
    388 struct vm_map *
    389 uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
    390     vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
    391     struct vm_map *submap)
    392 {
    393 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    394 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    395 
    396 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    397 
    398 	size = round_page(size);	/* round up to pagesize */
    399 
    400 	/*
    401 	 * first allocate a blank spot in the parent map
    402 	 */
    403 
    404 	if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
    405 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    406 	    UVM_ADV_RANDOM, mapflags)) != 0) {
    407 		panic("%s: unable to allocate space in parent map", __func__);
    408 	}
    409 
    410 	/*
    411 	 * set VM bounds (vmin is filled in by uvm_map)
    412 	 */
    413 
    414 	*vmax = *vmin + size;
    415 
    416 	/*
    417 	 * add references to pmap and create or init the submap
    418 	 */
    419 
    420 	pmap_reference(vm_map_pmap(map));
    421 	if (submap == NULL) {
    422 		submap = kmem_alloc(sizeof(*submap), KM_SLEEP);
    423 	}
    424 	uvm_map_setup(submap, *vmin, *vmax, flags);
    425 	submap->pmap = vm_map_pmap(map);
    426 
    427 	/*
    428 	 * now let uvm_map_submap plug in it...
    429 	 */
    430 
    431 	if (uvm_map_submap(map, *vmin, *vmax, submap) != 0)
    432 		panic("uvm_km_suballoc: submap allocation failed");
    433 
    434 	return(submap);
    435 }
    436 
    437 /*
    438  * uvm_km_pgremove: remove pages from a kernel uvm_object and KVA.
    439  */
    440 
    441 void
    442 uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
    443 {
    444 	struct uvm_object * const uobj = uvm_kernel_object;
    445 	const voff_t start = startva - vm_map_min(kernel_map);
    446 	const voff_t end = endva - vm_map_min(kernel_map);
    447 	struct vm_page *pg;
    448 	voff_t curoff, nextoff;
    449 	int swpgonlydelta = 0;
    450 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    451 
    452 	KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
    453 	KASSERT(startva < endva);
    454 	KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
    455 
    456 	rw_enter(uobj->vmobjlock, RW_WRITER);
    457 	pmap_remove(pmap_kernel(), startva, endva);
    458 	for (curoff = start; curoff < end; curoff = nextoff) {
    459 		nextoff = curoff + PAGE_SIZE;
    460 		pg = uvm_pagelookup(uobj, curoff);
    461 		if (pg != NULL && pg->flags & PG_BUSY) {
    462 			uvm_pagewait(pg, uobj->vmobjlock, "km_pgrm");
    463 			rw_enter(uobj->vmobjlock, RW_WRITER);
    464 			nextoff = curoff;
    465 			continue;
    466 		}
    467 
    468 		/*
    469 		 * free the swap slot, then the page.
    470 		 */
    471 
    472 		if (pg == NULL &&
    473 		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
    474 			swpgonlydelta++;
    475 		}
    476 		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
    477 		if (pg != NULL) {
    478 			uvm_pagefree(pg);
    479 		}
    480 	}
    481 	rw_exit(uobj->vmobjlock);
    482 
    483 	if (swpgonlydelta > 0) {
    484 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
    485 		atomic_add_int(&uvmexp.swpgonly, -swpgonlydelta);
    486 	}
    487 }
    488 
    489 
    490 /*
    491  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
    492  *    regions.
    493  *
    494  * => when you unmap a part of anonymous kernel memory you want to toss
    495  *    the pages right away.    (this is called from uvm_unmap_...).
    496  * => none of the pages will ever be busy, and none of them will ever
    497  *    be on the active or inactive queues (because they have no object).
    498  */
    499 
    500 void
    501 uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
    502 {
    503 #define __PGRM_BATCH 16
    504 	struct vm_page *pg;
    505 	paddr_t pa[__PGRM_BATCH];
    506 	int npgrm, i;
    507 	vaddr_t va, batch_vastart;
    508 
    509 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    510 
    511 	KASSERT(VM_MAP_IS_KERNEL(map));
    512 	KASSERTMSG(vm_map_min(map) <= start,
    513 	    "vm_map_min(map) [%#"PRIxVADDR"] <= start [%#"PRIxVADDR"]"
    514 	    " (size=%#"PRIxVSIZE")",
    515 	    vm_map_min(map), start, end - start);
    516 	KASSERT(start < end);
    517 	KASSERT(end <= vm_map_max(map));
    518 
    519 	for (va = start; va < end;) {
    520 		batch_vastart = va;
    521 		/* create a batch of at most __PGRM_BATCH pages to free */
    522 		for (i = 0;
    523 		     i < __PGRM_BATCH && va < end;
    524 		     va += PAGE_SIZE) {
    525 			if (!pmap_extract(pmap_kernel(), va, &pa[i])) {
    526 				continue;
    527 			}
    528 			i++;
    529 		}
    530 		npgrm = i;
    531 		/* now remove the mappings */
    532 		pmap_kremove(batch_vastart, va - batch_vastart);
    533 		/* and free the pages */
    534 		for (i = 0; i < npgrm; i++) {
    535 			pg = PHYS_TO_VM_PAGE(pa[i]);
    536 			KASSERT(pg);
    537 			KASSERT(pg->uobject == NULL && pg->uanon == NULL);
    538 			KASSERT((pg->flags & PG_BUSY) == 0);
    539 			uvm_pagefree(pg);
    540 		}
    541 	}
    542 #undef __PGRM_BATCH
    543 }
    544 
    545 #if defined(DEBUG)
    546 void
    547 uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
    548 {
    549 	vaddr_t va;
    550 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    551 
    552 	KDASSERT(VM_MAP_IS_KERNEL(map));
    553 	KDASSERT(vm_map_min(map) <= start);
    554 	KDASSERT(start < end);
    555 	KDASSERT(end <= vm_map_max(map));
    556 
    557 	for (va = start; va < end; va += PAGE_SIZE) {
    558 		paddr_t pa;
    559 
    560 		if (pmap_extract(pmap_kernel(), va, &pa)) {
    561 			panic("uvm_km_check_empty: va %p has pa %#llx",
    562 			    (void *)va, (long long)pa);
    563 		}
    564 		/*
    565 		 * kernel_object should not have pages for the corresponding
    566 		 * region.  check it.
    567 		 *
    568 		 * why trylock?  because:
    569 		 * - caller might not want to block.
    570 		 * - we can recurse when allocating radix_node for
    571 		 *   kernel_object.
    572 		 */
    573 		if (rw_tryenter(uvm_kernel_object->vmobjlock, RW_READER)) {
    574 			struct vm_page *pg;
    575 
    576 			pg = uvm_pagelookup(uvm_kernel_object,
    577 			    va - vm_map_min(kernel_map));
    578 			rw_exit(uvm_kernel_object->vmobjlock);
    579 			if (pg) {
    580 				panic("uvm_km_check_empty: "
    581 				    "has page hashed at %p",
    582 				    (const void *)va);
    583 			}
    584 		}
    585 	}
    586 }
    587 #endif /* defined(DEBUG) */
    588 
    589 /*
    590  * uvm_km_alloc: allocate an area of kernel memory.
    591  *
    592  * => NOTE: we can return 0 even if we can wait if there is not enough
    593  *	free VM space in the map... caller should be prepared to handle
    594  *	this case.
    595  * => we return KVA of memory allocated
    596  */
    597 
    598 vaddr_t
    599 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    600 {
    601 	vaddr_t kva, loopva;
    602 	vaddr_t offset;
    603 	vsize_t loopsize;
    604 	struct vm_page *pg;
    605 	struct uvm_object *obj;
    606 	int pgaflags;
    607 	vm_prot_t prot, vaprot;
    608 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    609 
    610 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    611 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
    612 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
    613 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
    614 	KASSERT((flags & UVM_KMF_VAONLY) != 0 || (flags & UVM_KMF_COLORMATCH) == 0);
    615 	KASSERT((flags & UVM_KMF_COLORMATCH) == 0 || (flags & UVM_KMF_VAONLY) != 0);
    616 
    617 	/*
    618 	 * setup for call
    619 	 */
    620 
    621 	kva = vm_map_min(map);	/* hint */
    622 	size = round_page(size);
    623 	obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
    624 	UVMHIST_LOG(maphist,"  (map=%#jx, obj=%#jx, size=%#jx, flags=%#jx)",
    625 	    (uintptr_t)map, (uintptr_t)obj, size, flags);
    626 
    627 	/*
    628 	 * allocate some virtual space
    629 	 */
    630 
    631 	vaprot = (flags & UVM_KMF_EXEC) ? UVM_PROT_ALL : UVM_PROT_RW;
    632 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    633 	    align, UVM_MAPFLAG(vaprot, UVM_PROT_ALL, UVM_INH_NONE,
    634 	    UVM_ADV_RANDOM,
    635 	    (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA
    636 	     | UVM_KMF_COLORMATCH)))) != 0)) {
    637 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    638 		return(0);
    639 	}
    640 
    641 	/*
    642 	 * if all we wanted was VA, return now
    643 	 */
    644 
    645 	if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
    646 		UVMHIST_LOG(maphist,"<- done valloc (kva=%#jx)", kva,0,0,0);
    647 		return(kva);
    648 	}
    649 
    650 	/*
    651 	 * recover object offset from virtual address
    652 	 */
    653 
    654 	offset = kva - vm_map_min(kernel_map);
    655 	UVMHIST_LOG(maphist, "  kva=%#jx, offset=%#jx", kva, offset,0,0);
    656 
    657 	/*
    658 	 * now allocate and map in the memory... note that we are the only ones
    659 	 * whom should ever get a handle on this area of VM.
    660 	 */
    661 
    662 	loopva = kva;
    663 	loopsize = size;
    664 
    665 	pgaflags = UVM_FLAG_COLORMATCH;
    666 	if (flags & UVM_KMF_NOWAIT)
    667 		pgaflags |= UVM_PGA_USERESERVE;
    668 	if (flags & UVM_KMF_ZERO)
    669 		pgaflags |= UVM_PGA_ZERO;
    670 	prot = VM_PROT_READ | VM_PROT_WRITE;
    671 	if (flags & UVM_KMF_EXEC)
    672 		prot |= VM_PROT_EXECUTE;
    673 	while (loopsize) {
    674 		KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
    675 		    "loopva=%#"PRIxVADDR, loopva);
    676 
    677 		pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
    678 #ifdef UVM_KM_VMFREELIST
    679 		   UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
    680 #else
    681 		   UVM_PGA_STRAT_NORMAL, 0
    682 #endif
    683 		   );
    684 
    685 		/*
    686 		 * out of memory?
    687 		 */
    688 
    689 		if (__predict_false(pg == NULL)) {
    690 			if ((flags & UVM_KMF_NOWAIT) ||
    691 			    ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
    692 				/* free everything! */
    693 				uvm_km_free(map, kva, size,
    694 				    flags & UVM_KMF_TYPEMASK);
    695 				return (0);
    696 			} else {
    697 				uvm_wait("km_getwait2");	/* sleep here */
    698 				continue;
    699 			}
    700 		}
    701 
    702 		pg->flags &= ~PG_BUSY;	/* new page */
    703 		UVM_PAGE_OWN(pg, NULL);
    704 
    705 		/*
    706 		 * map it in
    707 		 */
    708 
    709 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    710 		    prot, PMAP_KMPAGE);
    711 		loopva += PAGE_SIZE;
    712 		offset += PAGE_SIZE;
    713 		loopsize -= PAGE_SIZE;
    714 	}
    715 
    716 	pmap_update(pmap_kernel());
    717 
    718 	if ((flags & UVM_KMF_ZERO) == 0) {
    719 		kmsan_orig((void *)kva, size, KMSAN_TYPE_UVM, __RET_ADDR);
    720 		kmsan_mark((void *)kva, size, KMSAN_STATE_UNINIT);
    721 	}
    722 
    723 	UVMHIST_LOG(maphist,"<- done (kva=%#jx)", kva,0,0,0);
    724 	return(kva);
    725 }
    726 
    727 /*
    728  * uvm_km_protect: change the protection of an allocated area
    729  */
    730 
    731 int
    732 uvm_km_protect(struct vm_map *map, vaddr_t addr, vsize_t size, vm_prot_t prot)
    733 {
    734 	return uvm_map_protect(map, addr, addr + round_page(size), prot, false);
    735 }
    736 
    737 /*
    738  * uvm_km_free: free an area of kernel memory
    739  */
    740 
    741 void
    742 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
    743 {
    744 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    745 
    746 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
    747 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
    748 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
    749 	KASSERT((addr & PAGE_MASK) == 0);
    750 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    751 
    752 	size = round_page(size);
    753 
    754 	if (flags & UVM_KMF_PAGEABLE) {
    755 		uvm_km_pgremove(addr, addr + size);
    756 	} else if (flags & UVM_KMF_WIRED) {
    757 		/*
    758 		 * Note: uvm_km_pgremove_intrsafe() extracts mapping, thus
    759 		 * remove it after.  See comment below about KVA visibility.
    760 		 */
    761 		uvm_km_pgremove_intrsafe(map, addr, addr + size);
    762 	}
    763 
    764 	/*
    765 	 * Note: uvm_unmap_remove() calls pmap_update() for us, before
    766 	 * KVA becomes globally available.
    767 	 */
    768 
    769 	uvm_unmap1(map, addr, addr + size, UVM_FLAG_VAONLY);
    770 }
    771 
    772 /* Sanity; must specify both or none. */
    773 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    774     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    775 #error Must specify MAP and UNMAP together.
    776 #endif
    777 
    778 #if defined(PMAP_ALLOC_POOLPAGE) && \
    779     !defined(PMAP_MAP_POOLPAGE) && !defined(PMAP_UNMAP_POOLPAGE)
    780 #error Must specify ALLOC with MAP and UNMAP
    781 #endif
    782 
    783 int
    784 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
    785     vmem_addr_t *addr)
    786 {
    787 	struct vm_page *pg;
    788 	vmem_addr_t va;
    789 	int rc;
    790 	vaddr_t loopva;
    791 	vsize_t loopsize;
    792 
    793 	size = round_page(size);
    794 
    795 #if defined(PMAP_MAP_POOLPAGE)
    796 	if (size == PAGE_SIZE) {
    797 again:
    798 #ifdef PMAP_ALLOC_POOLPAGE
    799 		pg = PMAP_ALLOC_POOLPAGE((flags & VM_SLEEP) ?
    800 		   0 : UVM_PGA_USERESERVE);
    801 #else
    802 		pg = uvm_pagealloc(NULL, 0, NULL,
    803 		   (flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE);
    804 #endif /* PMAP_ALLOC_POOLPAGE */
    805 		if (__predict_false(pg == NULL)) {
    806 			if (flags & VM_SLEEP) {
    807 				uvm_wait("plpg");
    808 				goto again;
    809 			}
    810 			return ENOMEM;
    811 		}
    812 		va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    813 		KASSERT(va != 0);
    814 		*addr = va;
    815 		return 0;
    816 	}
    817 #endif /* PMAP_MAP_POOLPAGE */
    818 
    819 	rc = vmem_alloc(vm, size, flags, &va);
    820 	if (rc != 0)
    821 		return rc;
    822 
    823 #ifdef PMAP_GROWKERNEL
    824 	/*
    825 	 * These VA allocations happen independently of uvm_map
    826 	 * so this allocation must not extend beyond the current limit.
    827 	 */
    828 	KASSERTMSG(uvm_maxkaddr >= va + size,
    829 	    "%#"PRIxVADDR" %#"PRIxPTR" %#zx",
    830 	    uvm_maxkaddr, va, size);
    831 #endif
    832 
    833 	loopva = va;
    834 	loopsize = size;
    835 
    836 	while (loopsize) {
    837 		paddr_t pa __diagused;
    838 		KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, &pa),
    839 		    "loopva=%#"PRIxVADDR" loopsize=%#"PRIxVSIZE
    840 		    " pa=%#"PRIxPADDR" vmem=%p",
    841 		    loopva, loopsize, pa, vm);
    842 
    843 		pg = uvm_pagealloc(NULL, loopva, NULL,
    844 		    UVM_FLAG_COLORMATCH
    845 		    | ((flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE));
    846 		if (__predict_false(pg == NULL)) {
    847 			if (flags & VM_SLEEP) {
    848 				uvm_wait("plpg");
    849 				continue;
    850 			} else {
    851 				uvm_km_pgremove_intrsafe(kernel_map, va,
    852 				    va + size);
    853 				vmem_free(vm, va, size);
    854 				return ENOMEM;
    855 			}
    856 		}
    857 
    858 		pg->flags &= ~PG_BUSY;	/* new page */
    859 		UVM_PAGE_OWN(pg, NULL);
    860 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    861 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
    862 
    863 		loopva += PAGE_SIZE;
    864 		loopsize -= PAGE_SIZE;
    865 	}
    866 	pmap_update(pmap_kernel());
    867 
    868 	*addr = va;
    869 
    870 	return 0;
    871 }
    872 
    873 void
    874 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, size_t size)
    875 {
    876 
    877 	size = round_page(size);
    878 #if defined(PMAP_UNMAP_POOLPAGE)
    879 	if (size == PAGE_SIZE) {
    880 		paddr_t pa;
    881 
    882 		pa = PMAP_UNMAP_POOLPAGE(addr);
    883 		uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    884 		return;
    885 	}
    886 #endif /* PMAP_UNMAP_POOLPAGE */
    887 	uvm_km_pgremove_intrsafe(kernel_map, addr, addr + size);
    888 	pmap_update(pmap_kernel());
    889 
    890 	vmem_free(vm, addr, size);
    891 }
    892 
    893 bool
    894 uvm_km_va_starved_p(void)
    895 {
    896 	vmem_size_t total;
    897 	vmem_size_t free;
    898 
    899 	if (kmem_arena == NULL)
    900 		return false;
    901 
    902 	total = vmem_size(kmem_arena, VMEM_ALLOC|VMEM_FREE);
    903 	free = vmem_size(kmem_arena, VMEM_FREE);
    904 
    905 	return (free < (total / 10));
    906 }
    907