uvm_km.c revision 1.161 1 /* $NetBSD: uvm_km.c,v 1.161 2022/08/03 01:52:11 chs Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
37 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
38 *
39 *
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
48 *
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 *
53 * Carnegie Mellon requests users of this software to return to
54 *
55 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 * School of Computer Science
57 * Carnegie Mellon University
58 * Pittsburgh PA 15213-3890
59 *
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
62 */
63
64 /*
65 * uvm_km.c: handle kernel memory allocation and management
66 */
67
68 /*
69 * overview of kernel memory management:
70 *
71 * the kernel virtual address space is mapped by "kernel_map." kernel_map
72 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
73 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
74 *
75 * the kernel_map has several "submaps." submaps can only appear in
76 * the kernel_map (user processes can't use them). submaps "take over"
77 * the management of a sub-range of the kernel's address space. submaps
78 * are typically allocated at boot time and are never released. kernel
79 * virtual address space that is mapped by a submap is locked by the
80 * submap's lock -- not the kernel_map's lock.
81 *
82 * thus, the useful feature of submaps is that they allow us to break
83 * up the locking and protection of the kernel address space into smaller
84 * chunks.
85 *
86 * the vm system has several standard kernel submaps/arenas, including:
87 * kmem_arena => used for kmem/pool (memoryallocators(9))
88 * pager_map => used to map "buf" structures into kernel space
89 * exec_map => used during exec to handle exec args
90 * etc...
91 *
92 * The kmem_arena is a "special submap", as it lives in a fixed map entry
93 * within the kernel_map and is controlled by vmem(9).
94 *
95 * the kernel allocates its private memory out of special uvm_objects whose
96 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
97 * are "special" and never die). all kernel objects should be thought of
98 * as large, fixed-sized, sparsely populated uvm_objects. each kernel
99 * object is equal to the size of kernel virtual address space (i.e. the
100 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
101 *
102 * note that just because a kernel object spans the entire kernel virtual
103 * address space doesn't mean that it has to be mapped into the entire space.
104 * large chunks of a kernel object's space go unused either because
105 * that area of kernel VM is unmapped, or there is some other type of
106 * object mapped into that range (e.g. a vnode). for submap's kernel
107 * objects, the only part of the object that can ever be populated is the
108 * offsets that are managed by the submap.
109 *
110 * note that the "offset" in a kernel object is always the kernel virtual
111 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
112 * example:
113 * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
114 * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
115 * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
116 * then that means that the page at offset 0x235000 in kernel_object is
117 * mapped at 0xf8235000.
118 *
119 * kernel object have one other special property: when the kernel virtual
120 * memory mapping them is unmapped, the backing memory in the object is
121 * freed right away. this is done with the uvm_km_pgremove() function.
122 * this has to be done because there is no backing store for kernel pages
123 * and no need to save them after they are no longer referenced.
124 *
125 * Generic arenas:
126 *
127 * kmem_arena:
128 * Main arena controlling the kernel KVA used by other arenas.
129 *
130 * kmem_va_arena:
131 * Implements quantum caching in order to speedup allocations and
132 * reduce fragmentation. The pool(9), unless created with a custom
133 * meta-data allocator, and kmem(9) subsystems use this arena.
134 *
135 * Arenas for meta-data allocations are used by vmem(9) and pool(9).
136 * These arenas cannot use quantum cache. However, kmem_va_meta_arena
137 * compensates this by importing larger chunks from kmem_arena.
138 *
139 * kmem_va_meta_arena:
140 * Space for meta-data.
141 *
142 * kmem_meta_arena:
143 * Imports from kmem_va_meta_arena. Allocations from this arena are
144 * backed with the pages.
145 *
146 * Arena stacking:
147 *
148 * kmem_arena
149 * kmem_va_arena
150 * kmem_va_meta_arena
151 * kmem_meta_arena
152 */
153
154 #include <sys/cdefs.h>
155 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.161 2022/08/03 01:52:11 chs Exp $");
156
157 #include "opt_uvmhist.h"
158
159 #include "opt_kmempages.h"
160
161 #ifndef NKMEMPAGES
162 #define NKMEMPAGES 0
163 #endif
164
165 /*
166 * Defaults for lower and upper-bounds for the kmem_arena page count.
167 * Can be overridden by kernel config options.
168 */
169 #ifndef NKMEMPAGES_MIN
170 #define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
171 #endif
172
173 #ifndef NKMEMPAGES_MAX
174 #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
175 #endif
176
177
178 #include <sys/param.h>
179 #include <sys/systm.h>
180 #include <sys/atomic.h>
181 #include <sys/proc.h>
182 #include <sys/pool.h>
183 #include <sys/vmem.h>
184 #include <sys/vmem_impl.h>
185 #include <sys/kmem.h>
186 #include <sys/msan.h>
187
188 #include <uvm/uvm.h>
189
190 /*
191 * global data structures
192 */
193
194 struct vm_map *kernel_map = NULL;
195
196 /*
197 * local data structues
198 */
199
200 static struct vm_map kernel_map_store;
201 static struct vm_map_entry kernel_image_mapent_store;
202 static struct vm_map_entry kernel_kmem_mapent_store;
203
204 int nkmempages = 0;
205 vaddr_t kmembase;
206 vsize_t kmemsize;
207
208 static struct vmem kmem_arena_store;
209 vmem_t *kmem_arena = NULL;
210 static struct vmem kmem_va_arena_store;
211 vmem_t *kmem_va_arena;
212
213 /*
214 * kmeminit_nkmempages: calculate the size of kmem_arena.
215 */
216 void
217 kmeminit_nkmempages(void)
218 {
219 int npages;
220
221 if (nkmempages != 0) {
222 /*
223 * It's already been set (by us being here before)
224 * bail out now;
225 */
226 return;
227 }
228
229 #ifdef NKMEMPAGES_MAX_UNLIMITED
230 npages = physmem;
231 #else
232
233 #if defined(KMSAN)
234 npages = (physmem / 8);
235 #elif defined(PMAP_MAP_POOLPAGE)
236 npages = (physmem / 4);
237 #else
238 npages = (physmem / 3) * 2;
239 #endif /* defined(PMAP_MAP_POOLPAGE) */
240
241 if (npages > NKMEMPAGES_MAX)
242 npages = NKMEMPAGES_MAX;
243 #endif
244
245 if (npages < NKMEMPAGES_MIN)
246 npages = NKMEMPAGES_MIN;
247
248 nkmempages = npages;
249 }
250
251 /*
252 * uvm_km_bootstrap: init kernel maps and objects to reflect reality (i.e.
253 * KVM already allocated for text, data, bss, and static data structures).
254 *
255 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
256 * we assume that [vmin -> start] has already been allocated and that
257 * "end" is the end.
258 */
259
260 void
261 uvm_km_bootstrap(vaddr_t start, vaddr_t end)
262 {
263 bool kmem_arena_small;
264 vaddr_t base = VM_MIN_KERNEL_ADDRESS;
265 struct uvm_map_args args;
266 int error;
267
268 UVMHIST_FUNC(__func__);
269 UVMHIST_CALLARGS(maphist, "start=%#jx end=%#jx", start, end, 0,0);
270
271 kmeminit_nkmempages();
272 kmemsize = (vsize_t)nkmempages * PAGE_SIZE;
273 kmem_arena_small = kmemsize < 64 * 1024 * 1024;
274
275 UVMHIST_LOG(maphist, "kmemsize=%#jx", kmemsize, 0,0,0);
276
277 /*
278 * next, init kernel memory objects.
279 */
280
281 /* kernel_object: for pageable anonymous kernel memory */
282 uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
283 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
284
285 /*
286 * init the map and reserve any space that might already
287 * have been allocated kernel space before installing.
288 */
289
290 uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
291 kernel_map_store.pmap = pmap_kernel();
292 if (start != base) {
293 error = uvm_map_prepare(&kernel_map_store,
294 base, start - base,
295 NULL, UVM_UNKNOWN_OFFSET, 0,
296 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
297 UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
298 if (!error) {
299 kernel_image_mapent_store.flags =
300 UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
301 error = uvm_map_enter(&kernel_map_store, &args,
302 &kernel_image_mapent_store);
303 }
304
305 if (error)
306 panic(
307 "uvm_km_bootstrap: could not reserve space for kernel");
308
309 kmembase = args.uma_start + args.uma_size;
310 } else {
311 kmembase = base;
312 }
313
314 error = uvm_map_prepare(&kernel_map_store,
315 kmembase, kmemsize,
316 NULL, UVM_UNKNOWN_OFFSET, 0,
317 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
318 UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
319 if (!error) {
320 kernel_kmem_mapent_store.flags =
321 UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
322 error = uvm_map_enter(&kernel_map_store, &args,
323 &kernel_kmem_mapent_store);
324 }
325
326 if (error)
327 panic("uvm_km_bootstrap: could not reserve kernel kmem");
328
329 /*
330 * install!
331 */
332
333 kernel_map = &kernel_map_store;
334
335 pool_subsystem_init();
336
337 kmem_arena = vmem_init(&kmem_arena_store, "kmem",
338 kmembase, kmemsize, PAGE_SIZE, NULL, NULL, NULL,
339 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
340 #ifdef PMAP_GROWKERNEL
341 /*
342 * kmem_arena VA allocations happen independently of uvm_map.
343 * grow kernel to accommodate the kmem_arena.
344 */
345 if (uvm_maxkaddr < kmembase + kmemsize) {
346 uvm_maxkaddr = pmap_growkernel(kmembase + kmemsize);
347 KASSERTMSG(uvm_maxkaddr >= kmembase + kmemsize,
348 "%#"PRIxVADDR" %#"PRIxVADDR" %#"PRIxVSIZE,
349 uvm_maxkaddr, kmembase, kmemsize);
350 }
351 #endif
352
353 vmem_subsystem_init(kmem_arena);
354
355 UVMHIST_LOG(maphist, "kmem vmem created (base=%#jx, size=%#jx",
356 kmembase, kmemsize, 0,0);
357
358 kmem_va_arena = vmem_init(&kmem_va_arena_store, "kva",
359 0, 0, PAGE_SIZE, vmem_alloc, vmem_free, kmem_arena,
360 (kmem_arena_small ? 4 : VMEM_QCACHE_IDX_MAX) * PAGE_SIZE,
361 VM_NOSLEEP, IPL_VM);
362
363 UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
364 }
365
366 /*
367 * uvm_km_init: init the kernel maps virtual memory caches
368 * and start the pool/kmem allocator.
369 */
370 void
371 uvm_km_init(void)
372 {
373 kmem_init();
374 }
375
376 /*
377 * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
378 * is allocated all references to that area of VM must go through it. this
379 * allows the locking of VAs in kernel_map to be broken up into regions.
380 *
381 * => if `fixed' is true, *vmin specifies where the region described
382 * pager_map => used to map "buf" structures into kernel space
383 * by the submap must start
384 * => if submap is non NULL we use that as the submap, otherwise we
385 * alloc a new map
386 */
387
388 struct vm_map *
389 uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
390 vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
391 struct vm_map *submap)
392 {
393 int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
394 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
395
396 KASSERT(vm_map_pmap(map) == pmap_kernel());
397
398 size = round_page(size); /* round up to pagesize */
399
400 /*
401 * first allocate a blank spot in the parent map
402 */
403
404 if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
405 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
406 UVM_ADV_RANDOM, mapflags)) != 0) {
407 panic("%s: unable to allocate space in parent map", __func__);
408 }
409
410 /*
411 * set VM bounds (vmin is filled in by uvm_map)
412 */
413
414 *vmax = *vmin + size;
415
416 /*
417 * add references to pmap and create or init the submap
418 */
419
420 pmap_reference(vm_map_pmap(map));
421 if (submap == NULL) {
422 submap = kmem_alloc(sizeof(*submap), KM_SLEEP);
423 }
424 uvm_map_setup(submap, *vmin, *vmax, flags);
425 submap->pmap = vm_map_pmap(map);
426
427 /*
428 * now let uvm_map_submap plug in it...
429 */
430
431 if (uvm_map_submap(map, *vmin, *vmax, submap) != 0)
432 panic("uvm_km_suballoc: submap allocation failed");
433
434 return(submap);
435 }
436
437 /*
438 * uvm_km_pgremove: remove pages from a kernel uvm_object and KVA.
439 */
440
441 void
442 uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
443 {
444 struct uvm_object * const uobj = uvm_kernel_object;
445 const voff_t start = startva - vm_map_min(kernel_map);
446 const voff_t end = endva - vm_map_min(kernel_map);
447 struct vm_page *pg;
448 voff_t curoff, nextoff;
449 int swpgonlydelta = 0;
450 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
451
452 KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
453 KASSERT(startva < endva);
454 KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
455
456 rw_enter(uobj->vmobjlock, RW_WRITER);
457 pmap_remove(pmap_kernel(), startva, endva);
458 for (curoff = start; curoff < end; curoff = nextoff) {
459 nextoff = curoff + PAGE_SIZE;
460 pg = uvm_pagelookup(uobj, curoff);
461 if (pg != NULL && pg->flags & PG_BUSY) {
462 uvm_pagewait(pg, uobj->vmobjlock, "km_pgrm");
463 rw_enter(uobj->vmobjlock, RW_WRITER);
464 nextoff = curoff;
465 continue;
466 }
467
468 /*
469 * free the swap slot, then the page.
470 */
471
472 if (pg == NULL &&
473 uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
474 swpgonlydelta++;
475 }
476 uao_dropswap(uobj, curoff >> PAGE_SHIFT);
477 if (pg != NULL) {
478 uvm_pagefree(pg);
479 }
480 }
481 rw_exit(uobj->vmobjlock);
482
483 if (swpgonlydelta > 0) {
484 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
485 atomic_add_int(&uvmexp.swpgonly, -swpgonlydelta);
486 }
487 }
488
489
490 /*
491 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
492 * regions.
493 *
494 * => when you unmap a part of anonymous kernel memory you want to toss
495 * the pages right away. (this is called from uvm_unmap_...).
496 * => none of the pages will ever be busy, and none of them will ever
497 * be on the active or inactive queues (because they have no object).
498 */
499
500 void
501 uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
502 {
503 #define __PGRM_BATCH 16
504 struct vm_page *pg;
505 paddr_t pa[__PGRM_BATCH];
506 int npgrm, i;
507 vaddr_t va, batch_vastart;
508
509 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
510
511 KASSERT(VM_MAP_IS_KERNEL(map));
512 KASSERTMSG(vm_map_min(map) <= start,
513 "vm_map_min(map) [%#"PRIxVADDR"] <= start [%#"PRIxVADDR"]"
514 " (size=%#"PRIxVSIZE")",
515 vm_map_min(map), start, end - start);
516 KASSERT(start < end);
517 KASSERT(end <= vm_map_max(map));
518
519 for (va = start; va < end;) {
520 batch_vastart = va;
521 /* create a batch of at most __PGRM_BATCH pages to free */
522 for (i = 0;
523 i < __PGRM_BATCH && va < end;
524 va += PAGE_SIZE) {
525 if (!pmap_extract(pmap_kernel(), va, &pa[i])) {
526 continue;
527 }
528 i++;
529 }
530 npgrm = i;
531 /* now remove the mappings */
532 pmap_kremove(batch_vastart, va - batch_vastart);
533 /* and free the pages */
534 for (i = 0; i < npgrm; i++) {
535 pg = PHYS_TO_VM_PAGE(pa[i]);
536 KASSERT(pg);
537 KASSERT(pg->uobject == NULL && pg->uanon == NULL);
538 KASSERT((pg->flags & PG_BUSY) == 0);
539 uvm_pagefree(pg);
540 }
541 }
542 #undef __PGRM_BATCH
543 }
544
545 #if defined(DEBUG)
546 void
547 uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
548 {
549 vaddr_t va;
550 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
551
552 KDASSERT(VM_MAP_IS_KERNEL(map));
553 KDASSERT(vm_map_min(map) <= start);
554 KDASSERT(start < end);
555 KDASSERT(end <= vm_map_max(map));
556
557 for (va = start; va < end; va += PAGE_SIZE) {
558 paddr_t pa;
559
560 if (pmap_extract(pmap_kernel(), va, &pa)) {
561 panic("uvm_km_check_empty: va %p has pa %#llx",
562 (void *)va, (long long)pa);
563 }
564 /*
565 * kernel_object should not have pages for the corresponding
566 * region. check it.
567 *
568 * why trylock? because:
569 * - caller might not want to block.
570 * - we can recurse when allocating radix_node for
571 * kernel_object.
572 */
573 if (rw_tryenter(uvm_kernel_object->vmobjlock, RW_READER)) {
574 struct vm_page *pg;
575
576 pg = uvm_pagelookup(uvm_kernel_object,
577 va - vm_map_min(kernel_map));
578 rw_exit(uvm_kernel_object->vmobjlock);
579 if (pg) {
580 panic("uvm_km_check_empty: "
581 "has page hashed at %p",
582 (const void *)va);
583 }
584 }
585 }
586 }
587 #endif /* defined(DEBUG) */
588
589 /*
590 * uvm_km_alloc: allocate an area of kernel memory.
591 *
592 * => NOTE: we can return 0 even if we can wait if there is not enough
593 * free VM space in the map... caller should be prepared to handle
594 * this case.
595 * => we return KVA of memory allocated
596 */
597
598 vaddr_t
599 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
600 {
601 vaddr_t kva, loopva;
602 vaddr_t offset;
603 vsize_t loopsize;
604 struct vm_page *pg;
605 struct uvm_object *obj;
606 int pgaflags;
607 vm_prot_t prot, vaprot;
608 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
609
610 KASSERT(vm_map_pmap(map) == pmap_kernel());
611 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
612 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
613 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
614 KASSERT((flags & UVM_KMF_VAONLY) != 0 || (flags & UVM_KMF_COLORMATCH) == 0);
615 KASSERT((flags & UVM_KMF_COLORMATCH) == 0 || (flags & UVM_KMF_VAONLY) != 0);
616
617 /*
618 * setup for call
619 */
620
621 kva = vm_map_min(map); /* hint */
622 size = round_page(size);
623 obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
624 UVMHIST_LOG(maphist," (map=%#jx, obj=%#jx, size=%#jx, flags=%#jx)",
625 (uintptr_t)map, (uintptr_t)obj, size, flags);
626
627 /*
628 * allocate some virtual space
629 */
630
631 vaprot = (flags & UVM_KMF_EXEC) ? UVM_PROT_ALL : UVM_PROT_RW;
632 if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
633 align, UVM_MAPFLAG(vaprot, UVM_PROT_ALL, UVM_INH_NONE,
634 UVM_ADV_RANDOM,
635 (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA
636 | UVM_KMF_COLORMATCH)))) != 0)) {
637 UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
638 return(0);
639 }
640
641 /*
642 * if all we wanted was VA, return now
643 */
644
645 if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
646 UVMHIST_LOG(maphist,"<- done valloc (kva=%#jx)", kva,0,0,0);
647 return(kva);
648 }
649
650 /*
651 * recover object offset from virtual address
652 */
653
654 offset = kva - vm_map_min(kernel_map);
655 UVMHIST_LOG(maphist, " kva=%#jx, offset=%#jx", kva, offset,0,0);
656
657 /*
658 * now allocate and map in the memory... note that we are the only ones
659 * whom should ever get a handle on this area of VM.
660 */
661
662 loopva = kva;
663 loopsize = size;
664
665 pgaflags = UVM_FLAG_COLORMATCH;
666 if (flags & UVM_KMF_NOWAIT)
667 pgaflags |= UVM_PGA_USERESERVE;
668 if (flags & UVM_KMF_ZERO)
669 pgaflags |= UVM_PGA_ZERO;
670 prot = VM_PROT_READ | VM_PROT_WRITE;
671 if (flags & UVM_KMF_EXEC)
672 prot |= VM_PROT_EXECUTE;
673 while (loopsize) {
674 KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
675 "loopva=%#"PRIxVADDR, loopva);
676
677 pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
678 #ifdef UVM_KM_VMFREELIST
679 UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
680 #else
681 UVM_PGA_STRAT_NORMAL, 0
682 #endif
683 );
684
685 /*
686 * out of memory?
687 */
688
689 if (__predict_false(pg == NULL)) {
690 if ((flags & UVM_KMF_NOWAIT) ||
691 ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
692 /* free everything! */
693 uvm_km_free(map, kva, size,
694 flags & UVM_KMF_TYPEMASK);
695 return (0);
696 } else {
697 uvm_wait("km_getwait2"); /* sleep here */
698 continue;
699 }
700 }
701
702 pg->flags &= ~PG_BUSY; /* new page */
703 UVM_PAGE_OWN(pg, NULL);
704
705 /*
706 * map it in
707 */
708
709 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
710 prot, PMAP_KMPAGE);
711 loopva += PAGE_SIZE;
712 offset += PAGE_SIZE;
713 loopsize -= PAGE_SIZE;
714 }
715
716 pmap_update(pmap_kernel());
717
718 if ((flags & UVM_KMF_ZERO) == 0) {
719 kmsan_orig((void *)kva, size, KMSAN_TYPE_UVM, __RET_ADDR);
720 kmsan_mark((void *)kva, size, KMSAN_STATE_UNINIT);
721 }
722
723 UVMHIST_LOG(maphist,"<- done (kva=%#jx)", kva,0,0,0);
724 return(kva);
725 }
726
727 /*
728 * uvm_km_protect: change the protection of an allocated area
729 */
730
731 int
732 uvm_km_protect(struct vm_map *map, vaddr_t addr, vsize_t size, vm_prot_t prot)
733 {
734 return uvm_map_protect(map, addr, addr + round_page(size), prot, false);
735 }
736
737 /*
738 * uvm_km_free: free an area of kernel memory
739 */
740
741 void
742 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
743 {
744 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
745
746 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
747 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
748 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
749 KASSERT((addr & PAGE_MASK) == 0);
750 KASSERT(vm_map_pmap(map) == pmap_kernel());
751
752 size = round_page(size);
753
754 if (flags & UVM_KMF_PAGEABLE) {
755 uvm_km_pgremove(addr, addr + size);
756 } else if (flags & UVM_KMF_WIRED) {
757 /*
758 * Note: uvm_km_pgremove_intrsafe() extracts mapping, thus
759 * remove it after. See comment below about KVA visibility.
760 */
761 uvm_km_pgremove_intrsafe(map, addr, addr + size);
762 }
763
764 /*
765 * Note: uvm_unmap_remove() calls pmap_update() for us, before
766 * KVA becomes globally available.
767 */
768
769 uvm_unmap1(map, addr, addr + size, UVM_FLAG_VAONLY);
770 }
771
772 /* Sanity; must specify both or none. */
773 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
774 (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
775 #error Must specify MAP and UNMAP together.
776 #endif
777
778 #if defined(PMAP_ALLOC_POOLPAGE) && \
779 !defined(PMAP_MAP_POOLPAGE) && !defined(PMAP_UNMAP_POOLPAGE)
780 #error Must specify ALLOC with MAP and UNMAP
781 #endif
782
783 int
784 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
785 vmem_addr_t *addr)
786 {
787 struct vm_page *pg;
788 vmem_addr_t va;
789 int rc;
790 vaddr_t loopva;
791 vsize_t loopsize;
792
793 size = round_page(size);
794
795 #if defined(PMAP_MAP_POOLPAGE)
796 if (size == PAGE_SIZE) {
797 again:
798 #ifdef PMAP_ALLOC_POOLPAGE
799 pg = PMAP_ALLOC_POOLPAGE((flags & VM_SLEEP) ?
800 0 : UVM_PGA_USERESERVE);
801 #else
802 pg = uvm_pagealloc(NULL, 0, NULL,
803 (flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE);
804 #endif /* PMAP_ALLOC_POOLPAGE */
805 if (__predict_false(pg == NULL)) {
806 if (flags & VM_SLEEP) {
807 uvm_wait("plpg");
808 goto again;
809 }
810 return ENOMEM;
811 }
812 va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
813 KASSERT(va != 0);
814 *addr = va;
815 return 0;
816 }
817 #endif /* PMAP_MAP_POOLPAGE */
818
819 rc = vmem_alloc(vm, size, flags, &va);
820 if (rc != 0)
821 return rc;
822
823 #ifdef PMAP_GROWKERNEL
824 /*
825 * These VA allocations happen independently of uvm_map
826 * so this allocation must not extend beyond the current limit.
827 */
828 KASSERTMSG(uvm_maxkaddr >= va + size,
829 "%#"PRIxVADDR" %#"PRIxPTR" %#zx",
830 uvm_maxkaddr, va, size);
831 #endif
832
833 loopva = va;
834 loopsize = size;
835
836 while (loopsize) {
837 paddr_t pa __diagused;
838 KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, &pa),
839 "loopva=%#"PRIxVADDR" loopsize=%#"PRIxVSIZE
840 " pa=%#"PRIxPADDR" vmem=%p",
841 loopva, loopsize, pa, vm);
842
843 pg = uvm_pagealloc(NULL, loopva, NULL,
844 UVM_FLAG_COLORMATCH
845 | ((flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE));
846 if (__predict_false(pg == NULL)) {
847 if (flags & VM_SLEEP) {
848 uvm_wait("plpg");
849 continue;
850 } else {
851 uvm_km_pgremove_intrsafe(kernel_map, va,
852 va + size);
853 vmem_free(vm, va, size);
854 return ENOMEM;
855 }
856 }
857
858 pg->flags &= ~PG_BUSY; /* new page */
859 UVM_PAGE_OWN(pg, NULL);
860 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
861 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
862
863 loopva += PAGE_SIZE;
864 loopsize -= PAGE_SIZE;
865 }
866 pmap_update(pmap_kernel());
867
868 *addr = va;
869
870 return 0;
871 }
872
873 void
874 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, size_t size)
875 {
876
877 size = round_page(size);
878 #if defined(PMAP_UNMAP_POOLPAGE)
879 if (size == PAGE_SIZE) {
880 paddr_t pa;
881
882 pa = PMAP_UNMAP_POOLPAGE(addr);
883 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
884 return;
885 }
886 #endif /* PMAP_UNMAP_POOLPAGE */
887 uvm_km_pgremove_intrsafe(kernel_map, addr, addr + size);
888 pmap_update(pmap_kernel());
889
890 vmem_free(vm, addr, size);
891 }
892
893 bool
894 uvm_km_va_starved_p(void)
895 {
896 vmem_size_t total;
897 vmem_size_t free;
898
899 if (kmem_arena == NULL)
900 return false;
901
902 total = vmem_size(kmem_arena, VMEM_ALLOC|VMEM_FREE);
903 free = vmem_size(kmem_arena, VMEM_FREE);
904
905 return (free < (total / 10));
906 }
907