Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.162
      1 /*	$NetBSD: uvm_km.c,v 1.162 2022/08/06 05:55:37 chs Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     37  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     38  *
     39  *
     40  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     41  * All rights reserved.
     42  *
     43  * Permission to use, copy, modify and distribute this software and
     44  * its documentation is hereby granted, provided that both the copyright
     45  * notice and this permission notice appear in all copies of the
     46  * software, derivative works or modified versions, and any portions
     47  * thereof, and that both notices appear in supporting documentation.
     48  *
     49  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     50  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     51  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     52  *
     53  * Carnegie Mellon requests users of this software to return to
     54  *
     55  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     56  *  School of Computer Science
     57  *  Carnegie Mellon University
     58  *  Pittsburgh PA 15213-3890
     59  *
     60  * any improvements or extensions that they make and grant Carnegie the
     61  * rights to redistribute these changes.
     62  */
     63 
     64 /*
     65  * uvm_km.c: handle kernel memory allocation and management
     66  */
     67 
     68 /*
     69  * overview of kernel memory management:
     70  *
     71  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     72  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     73  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     74  *
     75  * the kernel_map has several "submaps."   submaps can only appear in
     76  * the kernel_map (user processes can't use them).   submaps "take over"
     77  * the management of a sub-range of the kernel's address space.  submaps
     78  * are typically allocated at boot time and are never released.   kernel
     79  * virtual address space that is mapped by a submap is locked by the
     80  * submap's lock -- not the kernel_map's lock.
     81  *
     82  * thus, the useful feature of submaps is that they allow us to break
     83  * up the locking and protection of the kernel address space into smaller
     84  * chunks.
     85  *
     86  * the vm system has several standard kernel submaps/arenas, including:
     87  *   kmem_arena => used for kmem/pool (memoryallocators(9))
     88  *   pager_map => used to map "buf" structures into kernel space
     89  *   exec_map => used during exec to handle exec args
     90  *   etc...
     91  *
     92  * The kmem_arena is a "special submap", as it lives in a fixed map entry
     93  * within the kernel_map and is controlled by vmem(9).
     94  *
     95  * the kernel allocates its private memory out of special uvm_objects whose
     96  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
     97  * are "special" and never die).   all kernel objects should be thought of
     98  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
     99  * object is equal to the size of kernel virtual address space (i.e. the
    100  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    101  *
    102  * note that just because a kernel object spans the entire kernel virtual
    103  * address space doesn't mean that it has to be mapped into the entire space.
    104  * large chunks of a kernel object's space go unused either because
    105  * that area of kernel VM is unmapped, or there is some other type of
    106  * object mapped into that range (e.g. a vnode).    for submap's kernel
    107  * objects, the only part of the object that can ever be populated is the
    108  * offsets that are managed by the submap.
    109  *
    110  * note that the "offset" in a kernel object is always the kernel virtual
    111  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    112  * example:
    113  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    114  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    115  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    116  *   then that means that the page at offset 0x235000 in kernel_object is
    117  *   mapped at 0xf8235000.
    118  *
    119  * kernel object have one other special property: when the kernel virtual
    120  * memory mapping them is unmapped, the backing memory in the object is
    121  * freed right away.   this is done with the uvm_km_pgremove() function.
    122  * this has to be done because there is no backing store for kernel pages
    123  * and no need to save them after they are no longer referenced.
    124  *
    125  * Generic arenas:
    126  *
    127  * kmem_arena:
    128  *	Main arena controlling the kernel KVA used by other arenas.
    129  *
    130  * kmem_va_arena:
    131  *	Implements quantum caching in order to speedup allocations and
    132  *	reduce fragmentation.  The pool(9), unless created with a custom
    133  *	meta-data allocator, and kmem(9) subsystems use this arena.
    134  *
    135  * Arenas for meta-data allocations are used by vmem(9) and pool(9).
    136  * These arenas cannot use quantum cache.  However, kmem_va_meta_arena
    137  * compensates this by importing larger chunks from kmem_arena.
    138  *
    139  * kmem_va_meta_arena:
    140  *	Space for meta-data.
    141  *
    142  * kmem_meta_arena:
    143  *	Imports from kmem_va_meta_arena.  Allocations from this arena are
    144  *	backed with the pages.
    145  *
    146  * Arena stacking:
    147  *
    148  *	kmem_arena
    149  *		kmem_va_arena
    150  *		kmem_va_meta_arena
    151  *			kmem_meta_arena
    152  */
    153 
    154 #include <sys/cdefs.h>
    155 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.162 2022/08/06 05:55:37 chs Exp $");
    156 
    157 #include "opt_uvmhist.h"
    158 
    159 #include "opt_kmempages.h"
    160 
    161 #ifndef NKMEMPAGES
    162 #define NKMEMPAGES 0
    163 #endif
    164 
    165 /*
    166  * Defaults for lower and upper-bounds for the kmem_arena page count.
    167  * Can be overridden by kernel config options.
    168  */
    169 #ifndef NKMEMPAGES_MIN
    170 #define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
    171 #endif
    172 
    173 #ifndef NKMEMPAGES_MAX
    174 #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
    175 #endif
    176 
    177 
    178 #include <sys/param.h>
    179 #include <sys/systm.h>
    180 #include <sys/atomic.h>
    181 #include <sys/proc.h>
    182 #include <sys/pool.h>
    183 #include <sys/vmem.h>
    184 #include <sys/vmem_impl.h>
    185 #include <sys/kmem.h>
    186 #include <sys/msan.h>
    187 
    188 #include <uvm/uvm.h>
    189 
    190 /*
    191  * global data structures
    192  */
    193 
    194 struct vm_map *kernel_map = NULL;
    195 
    196 /*
    197  * local data structues
    198  */
    199 
    200 static struct vm_map		kernel_map_store;
    201 static struct vm_map_entry	kernel_image_mapent_store;
    202 static struct vm_map_entry	kernel_kmem_mapent_store;
    203 
    204 int nkmempages = 0;
    205 vaddr_t kmembase;
    206 vsize_t kmemsize;
    207 
    208 static struct vmem kmem_arena_store;
    209 vmem_t *kmem_arena = NULL;
    210 static struct vmem kmem_va_arena_store;
    211 vmem_t *kmem_va_arena;
    212 
    213 /*
    214  * kmeminit_nkmempages: calculate the size of kmem_arena.
    215  */
    216 void
    217 kmeminit_nkmempages(void)
    218 {
    219 	int npages;
    220 
    221 	if (nkmempages != 0) {
    222 		/*
    223 		 * It's already been set (by us being here before)
    224 		 * bail out now;
    225 		 */
    226 		return;
    227 	}
    228 
    229 #if defined(NKMEMPAGES_MAX_UNLIMITED) && !defined(KMSAN)
    230 	npages = physmem;
    231 #else
    232 
    233 #if defined(KMSAN)
    234 	npages = (physmem / 4);
    235 #elif defined(PMAP_MAP_POOLPAGE)
    236 	npages = (physmem / 4);
    237 #else
    238 	npages = (physmem / 3) * 2;
    239 #endif /* defined(PMAP_MAP_POOLPAGE) */
    240 
    241 #if !defined(NKMEMPAGES_MAX_UNLIMITED)
    242 	if (npages > NKMEMPAGES_MAX)
    243 		npages = NKMEMPAGES_MAX;
    244 #endif
    245 
    246 #endif
    247 
    248 	if (npages < NKMEMPAGES_MIN)
    249 		npages = NKMEMPAGES_MIN;
    250 
    251 	nkmempages = npages;
    252 }
    253 
    254 /*
    255  * uvm_km_bootstrap: init kernel maps and objects to reflect reality (i.e.
    256  * KVM already allocated for text, data, bss, and static data structures).
    257  *
    258  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    259  *    we assume that [vmin -> start] has already been allocated and that
    260  *    "end" is the end.
    261  */
    262 
    263 void
    264 uvm_km_bootstrap(vaddr_t start, vaddr_t end)
    265 {
    266 	bool kmem_arena_small;
    267 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    268 	struct uvm_map_args args;
    269 	int error;
    270 
    271 	UVMHIST_FUNC(__func__);
    272 	UVMHIST_CALLARGS(maphist, "start=%#jx end=%#jx", start, end, 0,0);
    273 
    274 	kmeminit_nkmempages();
    275 	kmemsize = (vsize_t)nkmempages * PAGE_SIZE;
    276 	kmem_arena_small = kmemsize < 64 * 1024 * 1024;
    277 
    278 	UVMHIST_LOG(maphist, "kmemsize=%#jx", kmemsize, 0,0,0);
    279 
    280 	/*
    281 	 * next, init kernel memory objects.
    282 	 */
    283 
    284 	/* kernel_object: for pageable anonymous kernel memory */
    285 	uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    286 				VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    287 
    288 	/*
    289 	 * init the map and reserve any space that might already
    290 	 * have been allocated kernel space before installing.
    291 	 */
    292 
    293 	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
    294 	kernel_map_store.pmap = pmap_kernel();
    295 	if (start != base) {
    296 		error = uvm_map_prepare(&kernel_map_store,
    297 		    base, start - base,
    298 		    NULL, UVM_UNKNOWN_OFFSET, 0,
    299 		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    300 		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
    301 		if (!error) {
    302 			kernel_image_mapent_store.flags =
    303 			    UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
    304 			error = uvm_map_enter(&kernel_map_store, &args,
    305 			    &kernel_image_mapent_store);
    306 		}
    307 
    308 		if (error)
    309 			panic(
    310 			    "uvm_km_bootstrap: could not reserve space for kernel");
    311 
    312 		kmembase = args.uma_start + args.uma_size;
    313 	} else {
    314 		kmembase = base;
    315 	}
    316 
    317 	error = uvm_map_prepare(&kernel_map_store,
    318 	    kmembase, kmemsize,
    319 	    NULL, UVM_UNKNOWN_OFFSET, 0,
    320 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    321 	    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
    322 	if (!error) {
    323 		kernel_kmem_mapent_store.flags =
    324 		    UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
    325 		error = uvm_map_enter(&kernel_map_store, &args,
    326 		    &kernel_kmem_mapent_store);
    327 	}
    328 
    329 	if (error)
    330 		panic("uvm_km_bootstrap: could not reserve kernel kmem");
    331 
    332 	/*
    333 	 * install!
    334 	 */
    335 
    336 	kernel_map = &kernel_map_store;
    337 
    338 	pool_subsystem_init();
    339 
    340 	kmem_arena = vmem_init(&kmem_arena_store, "kmem",
    341 	    kmembase, kmemsize, PAGE_SIZE, NULL, NULL, NULL,
    342 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    343 #ifdef PMAP_GROWKERNEL
    344 	/*
    345 	 * kmem_arena VA allocations happen independently of uvm_map.
    346 	 * grow kernel to accommodate the kmem_arena.
    347 	 */
    348 	if (uvm_maxkaddr < kmembase + kmemsize) {
    349 		uvm_maxkaddr = pmap_growkernel(kmembase + kmemsize);
    350 		KASSERTMSG(uvm_maxkaddr >= kmembase + kmemsize,
    351 		    "%#"PRIxVADDR" %#"PRIxVADDR" %#"PRIxVSIZE,
    352 		    uvm_maxkaddr, kmembase, kmemsize);
    353 	}
    354 #endif
    355 
    356 	vmem_subsystem_init(kmem_arena);
    357 
    358 	UVMHIST_LOG(maphist, "kmem vmem created (base=%#jx, size=%#jx",
    359 	    kmembase, kmemsize, 0,0);
    360 
    361 	kmem_va_arena = vmem_init(&kmem_va_arena_store, "kva",
    362 	    0, 0, PAGE_SIZE, vmem_alloc, vmem_free, kmem_arena,
    363 	    (kmem_arena_small ? 4 : VMEM_QCACHE_IDX_MAX) * PAGE_SIZE,
    364 	    VM_NOSLEEP, IPL_VM);
    365 
    366 	UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
    367 }
    368 
    369 /*
    370  * uvm_km_init: init the kernel maps virtual memory caches
    371  * and start the pool/kmem allocator.
    372  */
    373 void
    374 uvm_km_init(void)
    375 {
    376 	kmem_init();
    377 }
    378 
    379 /*
    380  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    381  * is allocated all references to that area of VM must go through it.  this
    382  * allows the locking of VAs in kernel_map to be broken up into regions.
    383  *
    384  * => if `fixed' is true, *vmin specifies where the region described
    385  *   pager_map => used to map "buf" structures into kernel space
    386  *      by the submap must start
    387  * => if submap is non NULL we use that as the submap, otherwise we
    388  *	alloc a new map
    389  */
    390 
    391 struct vm_map *
    392 uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
    393     vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
    394     struct vm_map *submap)
    395 {
    396 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    397 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    398 
    399 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    400 
    401 	size = round_page(size);	/* round up to pagesize */
    402 
    403 	/*
    404 	 * first allocate a blank spot in the parent map
    405 	 */
    406 
    407 	if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
    408 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    409 	    UVM_ADV_RANDOM, mapflags)) != 0) {
    410 		panic("%s: unable to allocate space in parent map", __func__);
    411 	}
    412 
    413 	/*
    414 	 * set VM bounds (vmin is filled in by uvm_map)
    415 	 */
    416 
    417 	*vmax = *vmin + size;
    418 
    419 	/*
    420 	 * add references to pmap and create or init the submap
    421 	 */
    422 
    423 	pmap_reference(vm_map_pmap(map));
    424 	if (submap == NULL) {
    425 		submap = kmem_alloc(sizeof(*submap), KM_SLEEP);
    426 	}
    427 	uvm_map_setup(submap, *vmin, *vmax, flags);
    428 	submap->pmap = vm_map_pmap(map);
    429 
    430 	/*
    431 	 * now let uvm_map_submap plug in it...
    432 	 */
    433 
    434 	if (uvm_map_submap(map, *vmin, *vmax, submap) != 0)
    435 		panic("uvm_km_suballoc: submap allocation failed");
    436 
    437 	return(submap);
    438 }
    439 
    440 /*
    441  * uvm_km_pgremove: remove pages from a kernel uvm_object and KVA.
    442  */
    443 
    444 void
    445 uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
    446 {
    447 	struct uvm_object * const uobj = uvm_kernel_object;
    448 	const voff_t start = startva - vm_map_min(kernel_map);
    449 	const voff_t end = endva - vm_map_min(kernel_map);
    450 	struct vm_page *pg;
    451 	voff_t curoff, nextoff;
    452 	int swpgonlydelta = 0;
    453 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    454 
    455 	KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
    456 	KASSERT(startva < endva);
    457 	KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
    458 
    459 	rw_enter(uobj->vmobjlock, RW_WRITER);
    460 	pmap_remove(pmap_kernel(), startva, endva);
    461 	for (curoff = start; curoff < end; curoff = nextoff) {
    462 		nextoff = curoff + PAGE_SIZE;
    463 		pg = uvm_pagelookup(uobj, curoff);
    464 		if (pg != NULL && pg->flags & PG_BUSY) {
    465 			uvm_pagewait(pg, uobj->vmobjlock, "km_pgrm");
    466 			rw_enter(uobj->vmobjlock, RW_WRITER);
    467 			nextoff = curoff;
    468 			continue;
    469 		}
    470 
    471 		/*
    472 		 * free the swap slot, then the page.
    473 		 */
    474 
    475 		if (pg == NULL &&
    476 		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
    477 			swpgonlydelta++;
    478 		}
    479 		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
    480 		if (pg != NULL) {
    481 			uvm_pagefree(pg);
    482 		}
    483 	}
    484 	rw_exit(uobj->vmobjlock);
    485 
    486 	if (swpgonlydelta > 0) {
    487 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
    488 		atomic_add_int(&uvmexp.swpgonly, -swpgonlydelta);
    489 	}
    490 }
    491 
    492 
    493 /*
    494  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
    495  *    regions.
    496  *
    497  * => when you unmap a part of anonymous kernel memory you want to toss
    498  *    the pages right away.    (this is called from uvm_unmap_...).
    499  * => none of the pages will ever be busy, and none of them will ever
    500  *    be on the active or inactive queues (because they have no object).
    501  */
    502 
    503 void
    504 uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
    505 {
    506 #define __PGRM_BATCH 16
    507 	struct vm_page *pg;
    508 	paddr_t pa[__PGRM_BATCH];
    509 	int npgrm, i;
    510 	vaddr_t va, batch_vastart;
    511 
    512 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    513 
    514 	KASSERT(VM_MAP_IS_KERNEL(map));
    515 	KASSERTMSG(vm_map_min(map) <= start,
    516 	    "vm_map_min(map) [%#"PRIxVADDR"] <= start [%#"PRIxVADDR"]"
    517 	    " (size=%#"PRIxVSIZE")",
    518 	    vm_map_min(map), start, end - start);
    519 	KASSERT(start < end);
    520 	KASSERT(end <= vm_map_max(map));
    521 
    522 	for (va = start; va < end;) {
    523 		batch_vastart = va;
    524 		/* create a batch of at most __PGRM_BATCH pages to free */
    525 		for (i = 0;
    526 		     i < __PGRM_BATCH && va < end;
    527 		     va += PAGE_SIZE) {
    528 			if (!pmap_extract(pmap_kernel(), va, &pa[i])) {
    529 				continue;
    530 			}
    531 			i++;
    532 		}
    533 		npgrm = i;
    534 		/* now remove the mappings */
    535 		pmap_kremove(batch_vastart, va - batch_vastart);
    536 		/* and free the pages */
    537 		for (i = 0; i < npgrm; i++) {
    538 			pg = PHYS_TO_VM_PAGE(pa[i]);
    539 			KASSERT(pg);
    540 			KASSERT(pg->uobject == NULL && pg->uanon == NULL);
    541 			KASSERT((pg->flags & PG_BUSY) == 0);
    542 			uvm_pagefree(pg);
    543 		}
    544 	}
    545 #undef __PGRM_BATCH
    546 }
    547 
    548 #if defined(DEBUG)
    549 void
    550 uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
    551 {
    552 	vaddr_t va;
    553 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    554 
    555 	KDASSERT(VM_MAP_IS_KERNEL(map));
    556 	KDASSERT(vm_map_min(map) <= start);
    557 	KDASSERT(start < end);
    558 	KDASSERT(end <= vm_map_max(map));
    559 
    560 	for (va = start; va < end; va += PAGE_SIZE) {
    561 		paddr_t pa;
    562 
    563 		if (pmap_extract(pmap_kernel(), va, &pa)) {
    564 			panic("uvm_km_check_empty: va %p has pa %#llx",
    565 			    (void *)va, (long long)pa);
    566 		}
    567 		/*
    568 		 * kernel_object should not have pages for the corresponding
    569 		 * region.  check it.
    570 		 *
    571 		 * why trylock?  because:
    572 		 * - caller might not want to block.
    573 		 * - we can recurse when allocating radix_node for
    574 		 *   kernel_object.
    575 		 */
    576 		if (rw_tryenter(uvm_kernel_object->vmobjlock, RW_READER)) {
    577 			struct vm_page *pg;
    578 
    579 			pg = uvm_pagelookup(uvm_kernel_object,
    580 			    va - vm_map_min(kernel_map));
    581 			rw_exit(uvm_kernel_object->vmobjlock);
    582 			if (pg) {
    583 				panic("uvm_km_check_empty: "
    584 				    "has page hashed at %p",
    585 				    (const void *)va);
    586 			}
    587 		}
    588 	}
    589 }
    590 #endif /* defined(DEBUG) */
    591 
    592 /*
    593  * uvm_km_alloc: allocate an area of kernel memory.
    594  *
    595  * => NOTE: we can return 0 even if we can wait if there is not enough
    596  *	free VM space in the map... caller should be prepared to handle
    597  *	this case.
    598  * => we return KVA of memory allocated
    599  */
    600 
    601 vaddr_t
    602 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    603 {
    604 	vaddr_t kva, loopva;
    605 	vaddr_t offset;
    606 	vsize_t loopsize;
    607 	struct vm_page *pg;
    608 	struct uvm_object *obj;
    609 	int pgaflags;
    610 	vm_prot_t prot, vaprot;
    611 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    612 
    613 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    614 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
    615 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
    616 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
    617 	KASSERT((flags & UVM_KMF_VAONLY) != 0 || (flags & UVM_KMF_COLORMATCH) == 0);
    618 	KASSERT((flags & UVM_KMF_COLORMATCH) == 0 || (flags & UVM_KMF_VAONLY) != 0);
    619 
    620 	/*
    621 	 * setup for call
    622 	 */
    623 
    624 	kva = vm_map_min(map);	/* hint */
    625 	size = round_page(size);
    626 	obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
    627 	UVMHIST_LOG(maphist,"  (map=%#jx, obj=%#jx, size=%#jx, flags=%#jx)",
    628 	    (uintptr_t)map, (uintptr_t)obj, size, flags);
    629 
    630 	/*
    631 	 * allocate some virtual space
    632 	 */
    633 
    634 	vaprot = (flags & UVM_KMF_EXEC) ? UVM_PROT_ALL : UVM_PROT_RW;
    635 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    636 	    align, UVM_MAPFLAG(vaprot, UVM_PROT_ALL, UVM_INH_NONE,
    637 	    UVM_ADV_RANDOM,
    638 	    (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA
    639 	     | UVM_KMF_COLORMATCH)))) != 0)) {
    640 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    641 		return(0);
    642 	}
    643 
    644 	/*
    645 	 * if all we wanted was VA, return now
    646 	 */
    647 
    648 	if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
    649 		UVMHIST_LOG(maphist,"<- done valloc (kva=%#jx)", kva,0,0,0);
    650 		return(kva);
    651 	}
    652 
    653 	/*
    654 	 * recover object offset from virtual address
    655 	 */
    656 
    657 	offset = kva - vm_map_min(kernel_map);
    658 	UVMHIST_LOG(maphist, "  kva=%#jx, offset=%#jx", kva, offset,0,0);
    659 
    660 	/*
    661 	 * now allocate and map in the memory... note that we are the only ones
    662 	 * whom should ever get a handle on this area of VM.
    663 	 */
    664 
    665 	loopva = kva;
    666 	loopsize = size;
    667 
    668 	pgaflags = UVM_FLAG_COLORMATCH;
    669 	if (flags & UVM_KMF_NOWAIT)
    670 		pgaflags |= UVM_PGA_USERESERVE;
    671 	if (flags & UVM_KMF_ZERO)
    672 		pgaflags |= UVM_PGA_ZERO;
    673 	prot = VM_PROT_READ | VM_PROT_WRITE;
    674 	if (flags & UVM_KMF_EXEC)
    675 		prot |= VM_PROT_EXECUTE;
    676 	while (loopsize) {
    677 		KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
    678 		    "loopva=%#"PRIxVADDR, loopva);
    679 
    680 		pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
    681 #ifdef UVM_KM_VMFREELIST
    682 		   UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
    683 #else
    684 		   UVM_PGA_STRAT_NORMAL, 0
    685 #endif
    686 		   );
    687 
    688 		/*
    689 		 * out of memory?
    690 		 */
    691 
    692 		if (__predict_false(pg == NULL)) {
    693 			if ((flags & UVM_KMF_NOWAIT) ||
    694 			    ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
    695 				/* free everything! */
    696 				uvm_km_free(map, kva, size,
    697 				    flags & UVM_KMF_TYPEMASK);
    698 				return (0);
    699 			} else {
    700 				uvm_wait("km_getwait2");	/* sleep here */
    701 				continue;
    702 			}
    703 		}
    704 
    705 		pg->flags &= ~PG_BUSY;	/* new page */
    706 		UVM_PAGE_OWN(pg, NULL);
    707 
    708 		/*
    709 		 * map it in
    710 		 */
    711 
    712 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    713 		    prot, PMAP_KMPAGE);
    714 		loopva += PAGE_SIZE;
    715 		offset += PAGE_SIZE;
    716 		loopsize -= PAGE_SIZE;
    717 	}
    718 
    719 	pmap_update(pmap_kernel());
    720 
    721 	if ((flags & UVM_KMF_ZERO) == 0) {
    722 		kmsan_orig((void *)kva, size, KMSAN_TYPE_UVM, __RET_ADDR);
    723 		kmsan_mark((void *)kva, size, KMSAN_STATE_UNINIT);
    724 	}
    725 
    726 	UVMHIST_LOG(maphist,"<- done (kva=%#jx)", kva,0,0,0);
    727 	return(kva);
    728 }
    729 
    730 /*
    731  * uvm_km_protect: change the protection of an allocated area
    732  */
    733 
    734 int
    735 uvm_km_protect(struct vm_map *map, vaddr_t addr, vsize_t size, vm_prot_t prot)
    736 {
    737 	return uvm_map_protect(map, addr, addr + round_page(size), prot, false);
    738 }
    739 
    740 /*
    741  * uvm_km_free: free an area of kernel memory
    742  */
    743 
    744 void
    745 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
    746 {
    747 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    748 
    749 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
    750 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
    751 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
    752 	KASSERT((addr & PAGE_MASK) == 0);
    753 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    754 
    755 	size = round_page(size);
    756 
    757 	if (flags & UVM_KMF_PAGEABLE) {
    758 		uvm_km_pgremove(addr, addr + size);
    759 	} else if (flags & UVM_KMF_WIRED) {
    760 		/*
    761 		 * Note: uvm_km_pgremove_intrsafe() extracts mapping, thus
    762 		 * remove it after.  See comment below about KVA visibility.
    763 		 */
    764 		uvm_km_pgremove_intrsafe(map, addr, addr + size);
    765 	}
    766 
    767 	/*
    768 	 * Note: uvm_unmap_remove() calls pmap_update() for us, before
    769 	 * KVA becomes globally available.
    770 	 */
    771 
    772 	uvm_unmap1(map, addr, addr + size, UVM_FLAG_VAONLY);
    773 }
    774 
    775 /* Sanity; must specify both or none. */
    776 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    777     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    778 #error Must specify MAP and UNMAP together.
    779 #endif
    780 
    781 #if defined(PMAP_ALLOC_POOLPAGE) && \
    782     !defined(PMAP_MAP_POOLPAGE) && !defined(PMAP_UNMAP_POOLPAGE)
    783 #error Must specify ALLOC with MAP and UNMAP
    784 #endif
    785 
    786 int
    787 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
    788     vmem_addr_t *addr)
    789 {
    790 	struct vm_page *pg;
    791 	vmem_addr_t va;
    792 	int rc;
    793 	vaddr_t loopva;
    794 	vsize_t loopsize;
    795 
    796 	size = round_page(size);
    797 
    798 #if defined(PMAP_MAP_POOLPAGE)
    799 	if (size == PAGE_SIZE) {
    800 again:
    801 #ifdef PMAP_ALLOC_POOLPAGE
    802 		pg = PMAP_ALLOC_POOLPAGE((flags & VM_SLEEP) ?
    803 		   0 : UVM_PGA_USERESERVE);
    804 #else
    805 		pg = uvm_pagealloc(NULL, 0, NULL,
    806 		   (flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE);
    807 #endif /* PMAP_ALLOC_POOLPAGE */
    808 		if (__predict_false(pg == NULL)) {
    809 			if (flags & VM_SLEEP) {
    810 				uvm_wait("plpg");
    811 				goto again;
    812 			}
    813 			return ENOMEM;
    814 		}
    815 		va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    816 		KASSERT(va != 0);
    817 		*addr = va;
    818 		return 0;
    819 	}
    820 #endif /* PMAP_MAP_POOLPAGE */
    821 
    822 	rc = vmem_alloc(vm, size, flags, &va);
    823 	if (rc != 0)
    824 		return rc;
    825 
    826 #ifdef PMAP_GROWKERNEL
    827 	/*
    828 	 * These VA allocations happen independently of uvm_map
    829 	 * so this allocation must not extend beyond the current limit.
    830 	 */
    831 	KASSERTMSG(uvm_maxkaddr >= va + size,
    832 	    "%#"PRIxVADDR" %#"PRIxPTR" %#zx",
    833 	    uvm_maxkaddr, va, size);
    834 #endif
    835 
    836 	loopva = va;
    837 	loopsize = size;
    838 
    839 	while (loopsize) {
    840 		paddr_t pa __diagused;
    841 		KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, &pa),
    842 		    "loopva=%#"PRIxVADDR" loopsize=%#"PRIxVSIZE
    843 		    " pa=%#"PRIxPADDR" vmem=%p",
    844 		    loopva, loopsize, pa, vm);
    845 
    846 		pg = uvm_pagealloc(NULL, loopva, NULL,
    847 		    UVM_FLAG_COLORMATCH
    848 		    | ((flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE));
    849 		if (__predict_false(pg == NULL)) {
    850 			if (flags & VM_SLEEP) {
    851 				uvm_wait("plpg");
    852 				continue;
    853 			} else {
    854 				uvm_km_pgremove_intrsafe(kernel_map, va,
    855 				    va + size);
    856 				vmem_free(vm, va, size);
    857 				return ENOMEM;
    858 			}
    859 		}
    860 
    861 		pg->flags &= ~PG_BUSY;	/* new page */
    862 		UVM_PAGE_OWN(pg, NULL);
    863 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    864 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
    865 
    866 		loopva += PAGE_SIZE;
    867 		loopsize -= PAGE_SIZE;
    868 	}
    869 	pmap_update(pmap_kernel());
    870 
    871 	*addr = va;
    872 
    873 	return 0;
    874 }
    875 
    876 void
    877 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, size_t size)
    878 {
    879 
    880 	size = round_page(size);
    881 #if defined(PMAP_UNMAP_POOLPAGE)
    882 	if (size == PAGE_SIZE) {
    883 		paddr_t pa;
    884 
    885 		pa = PMAP_UNMAP_POOLPAGE(addr);
    886 		uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    887 		return;
    888 	}
    889 #endif /* PMAP_UNMAP_POOLPAGE */
    890 	uvm_km_pgremove_intrsafe(kernel_map, addr, addr + size);
    891 	pmap_update(pmap_kernel());
    892 
    893 	vmem_free(vm, addr, size);
    894 }
    895 
    896 bool
    897 uvm_km_va_starved_p(void)
    898 {
    899 	vmem_size_t total;
    900 	vmem_size_t free;
    901 
    902 	if (kmem_arena == NULL)
    903 		return false;
    904 
    905 	total = vmem_size(kmem_arena, VMEM_ALLOC|VMEM_FREE);
    906 	free = vmem_size(kmem_arena, VMEM_FREE);
    907 
    908 	return (free < (total / 10));
    909 }
    910