Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.18.2.1
      1 /*	$NetBSD: uvm_km.c,v 1.18.2.1 1998/11/09 06:06:38 chs Exp $	*/
      2 
      3 /*
      4  * XXXCDC: "ROUGH DRAFT" QUALITY UVM PRE-RELEASE FILE!
      5  *         >>>USE AT YOUR OWN RISK, WORK IS NOT FINISHED<<<
      6  */
      7 /*
      8  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      9  * Copyright (c) 1991, 1993, The Regents of the University of California.
     10  *
     11  * All rights reserved.
     12  *
     13  * This code is derived from software contributed to Berkeley by
     14  * The Mach Operating System project at Carnegie-Mellon University.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  * 1. Redistributions of source code must retain the above copyright
     20  *    notice, this list of conditions and the following disclaimer.
     21  * 2. Redistributions in binary form must reproduce the above copyright
     22  *    notice, this list of conditions and the following disclaimer in the
     23  *    documentation and/or other materials provided with the distribution.
     24  * 3. All advertising materials mentioning features or use of this software
     25  *    must display the following acknowledgement:
     26  *	This product includes software developed by Charles D. Cranor,
     27  *      Washington University, the University of California, Berkeley and
     28  *      its contributors.
     29  * 4. Neither the name of the University nor the names of its contributors
     30  *    may be used to endorse or promote products derived from this software
     31  *    without specific prior written permission.
     32  *
     33  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     34  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     35  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     36  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     37  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     38  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     39  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     40  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     41  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     42  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     43  * SUCH DAMAGE.
     44  *
     45  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     46  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     47  *
     48  *
     49  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     50  * All rights reserved.
     51  *
     52  * Permission to use, copy, modify and distribute this software and
     53  * its documentation is hereby granted, provided that both the copyright
     54  * notice and this permission notice appear in all copies of the
     55  * software, derivative works or modified versions, and any portions
     56  * thereof, and that both notices appear in supporting documentation.
     57  *
     58  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     59  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     60  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     61  *
     62  * Carnegie Mellon requests users of this software to return to
     63  *
     64  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     65  *  School of Computer Science
     66  *  Carnegie Mellon University
     67  *  Pittsburgh PA 15213-3890
     68  *
     69  * any improvements or extensions that they make and grant Carnegie the
     70  * rights to redistribute these changes.
     71  */
     72 
     73 #include "opt_uvmhist.h"
     74 #include "opt_pmap_new.h"
     75 
     76 /*
     77  * uvm_km.c: handle kernel memory allocation and management
     78  */
     79 
     80 /*
     81  * overview of kernel memory management:
     82  *
     83  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     84  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     85  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     86  *
     87  * the kernel_map has several "submaps."   submaps can only appear in
     88  * the kernel_map (user processes can't use them).   submaps "take over"
     89  * the management of a sub-range of the kernel's address space.  submaps
     90  * are typically allocated at boot time and are never released.   kernel
     91  * virtual address space that is mapped by a submap is locked by the
     92  * submap's lock -- not the kernel_map's lock.
     93  *
     94  * thus, the useful feature of submaps is that they allow us to break
     95  * up the locking and protection of the kernel address space into smaller
     96  * chunks.
     97  *
     98  * the vm system has several standard kernel submaps, including:
     99  *   kmem_map => contains only wired kernel memory for the kernel
    100  *		malloc.   *** access to kmem_map must be protected
    101  *		by splimp() because we are allowed to call malloc()
    102  *		at interrupt time ***
    103  *   mb_map => memory for large mbufs,  *** protected by splimp ***
    104  *   pager_map => used to map "buf" structures into kernel space
    105  *   exec_map => used during exec to handle exec args
    106  *   etc...
    107  *
    108  * the kernel allocates its private memory out of special uvm_objects whose
    109  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
    110  * are "special" and never die).   all kernel objects should be thought of
    111  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
    112  * object is equal to the size of kernel virtual address space (i.e. the
    113  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    114  *
    115  * most kernel private memory lives in kernel_object.   the only exception
    116  * to this is for memory that belongs to submaps that must be protected
    117  * by splimp().    each of these submaps has their own private kernel
    118  * object (e.g. kmem_object, mb_object).
    119  *
    120  * note that just because a kernel object spans the entire kernel virutal
    121  * address space doesn't mean that it has to be mapped into the entire space.
    122  * large chunks of a kernel object's space go unused either because
    123  * that area of kernel VM is unmapped, or there is some other type of
    124  * object mapped into that range (e.g. a vnode).    for submap's kernel
    125  * objects, the only part of the object that can ever be populated is the
    126  * offsets that are managed by the submap.
    127  *
    128  * note that the "offset" in a kernel object is always the kernel virtual
    129  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    130  * example:
    131  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    132  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    133  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    134  *   then that means that the page at offset 0x235000 in kernel_object is
    135  *   mapped at 0xf8235000.
    136  *
    137  * note that the offsets in kmem_object and mb_object also follow this
    138  * rule.   this means that the offsets for kmem_object must fall in the
    139  * range of [vm_map_min(kmem_object) - vm_map_min(kernel_map)] to
    140  * [vm_map_max(kmem_object) - vm_map_min(kernel_map)], so the offsets
    141  * in those objects will typically not start at zero.
    142  *
    143  * kernel object have one other special property: when the kernel virtual
    144  * memory mapping them is unmapped, the backing memory in the object is
    145  * freed right away.   this is done with the uvm_km_pgremove() function.
    146  * this has to be done because there is no backing store for kernel pages
    147  * and no need to save them after they are no longer referenced.
    148  */
    149 
    150 #include <sys/param.h>
    151 #include <sys/systm.h>
    152 #include <sys/proc.h>
    153 
    154 #include <vm/vm.h>
    155 #include <vm/vm_page.h>
    156 #include <vm/vm_kern.h>
    157 
    158 #include <uvm/uvm.h>
    159 
    160 /*
    161  * global data structures
    162  */
    163 
    164 vm_map_t kernel_map = NULL;
    165 
    166 /*
    167  * local functions
    168  */
    169 
    170 static int uvm_km_get __P((struct uvm_object *, vaddr_t,
    171 													 vm_page_t *, int *, int, vm_prot_t, int, int));
    172 /*
    173  * local data structues
    174  */
    175 
    176 static struct vm_map		kernel_map_store;
    177 static struct uvm_object	kmem_object_store;
    178 static struct uvm_object	mb_object_store;
    179 
    180 static struct uvm_pagerops km_pager = {
    181 	NULL,	/* init */
    182 	NULL, /* attach */
    183 	NULL, /* reference */
    184 	NULL, /* detach */
    185 	NULL, /* fault */
    186 	NULL, /* flush */
    187 	uvm_km_get, /* get */
    188 	/* ... rest are NULL */
    189 };
    190 
    191 /*
    192  * uvm_km_get: pager get function for kernel objects
    193  *
    194  * => currently we do not support pageout to the swap area, so this
    195  *    pager is very simple.    eventually we may want an anonymous
    196  *    object pager which will do paging.
    197  * => XXXCDC: this pager should be phased out in favor of the aobj pager
    198  */
    199 
    200 
    201 static int
    202 uvm_km_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
    203 	struct uvm_object *uobj;
    204 	vaddr_t offset;
    205 	struct vm_page **pps;
    206 	int *npagesp;
    207 	int centeridx, advice, flags;
    208 	vm_prot_t access_type;
    209 {
    210 	vaddr_t current_offset;
    211 	vm_page_t ptmp;
    212 	int lcv, gotpages, maxpages;
    213 	boolean_t done;
    214 	UVMHIST_FUNC("uvm_km_get"); UVMHIST_CALLED(maphist);
    215 
    216 	UVMHIST_LOG(maphist, "flags=%d", flags,0,0,0);
    217 
    218 	/*
    219 	 * get number of pages
    220 	 */
    221 
    222 	maxpages = *npagesp;
    223 
    224 	/*
    225 	 * step 1: handled the case where fault data structures are locked.
    226 	 */
    227 
    228 	if (flags & PGO_LOCKED) {
    229 
    230 		/*
    231 		 * step 1a: get pages that are already resident.   only do
    232 		 * this if the data structures are locked (i.e. the first time
    233 		 * through).
    234 		 */
    235 
    236 		done = TRUE;	/* be optimistic */
    237 		gotpages = 0;	/* # of pages we got so far */
    238 
    239 		for (lcv = 0, current_offset = offset ;
    240 		    lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
    241 
    242 			/* do we care about this page?  if not, skip it */
    243 			if (pps[lcv] == PGO_DONTCARE)
    244 				continue;
    245 
    246 			/* lookup page */
    247 			ptmp = uvm_pagelookup(uobj, current_offset);
    248 
    249 			/* null?  attempt to allocate the page */
    250 			if (ptmp == NULL) {
    251 				ptmp = uvm_pagealloc(uobj, current_offset,
    252 				    NULL);
    253 				if (ptmp) {
    254 					/* new page */
    255 					ptmp->flags &= ~(PG_BUSY|PG_FAKE);
    256 					UVM_PAGE_OWN(ptmp, NULL);
    257 					uvm_pagezero(ptmp);
    258 				}
    259 			}
    260 
    261 			/*
    262 			 * to be useful must get a non-busy, non-released page
    263 			 */
    264 			if (ptmp == NULL ||
    265 			    (ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
    266 				if (lcv == centeridx ||
    267 				    (flags & PGO_ALLPAGES) != 0)
    268 					/* need to do a wait or I/O! */
    269 					done = FALSE;
    270 				continue;
    271 			}
    272 
    273 			/*
    274 			 * useful page: busy/lock it and plug it in our
    275 			 * result array
    276 			 */
    277 
    278 			/* caller must un-busy this page */
    279 			ptmp->flags |= PG_BUSY;
    280 			UVM_PAGE_OWN(ptmp, "uvm_km_get1");
    281 			pps[lcv] = ptmp;
    282 			gotpages++;
    283 
    284 		}	/* "for" lcv loop */
    285 
    286 		/*
    287 		 * step 1b: now we've either done everything needed or we
    288 		 * to unlock and do some waiting or I/O.
    289 		 */
    290 
    291 		UVMHIST_LOG(maphist, "<- done (done=%d)", done, 0,0,0);
    292 
    293 		*npagesp = gotpages;
    294 		if (done)
    295 			return(VM_PAGER_OK);		/* bingo! */
    296 		else
    297 			return(VM_PAGER_UNLOCK);	/* EEK!   Need to
    298 							 * unlock and I/O */
    299 	}
    300 
    301 	/*
    302 	 * step 2: get non-resident or busy pages.
    303 	 * object is locked.   data structures are unlocked.
    304 	 */
    305 
    306 	for (lcv = 0, current_offset = offset ;
    307 	    lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
    308 
    309 		/* skip over pages we've already gotten or don't want */
    310 		/* skip over pages we don't _have_ to get */
    311 		if (pps[lcv] != NULL ||
    312 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
    313 			continue;
    314 
    315 		/*
    316 		 * we have yet to locate the current page (pps[lcv]).   we
    317 		 * first look for a page that is already at the current offset.
    318 		 * if we find a page, we check to see if it is busy or
    319 		 * released.  if that is the case, then we sleep on the page
    320 		 * until it is no longer busy or released and repeat the
    321 		 * lookup.    if the page we found is neither busy nor
    322 		 * released, then we busy it (so we own it) and plug it into
    323 		 * pps[lcv].   this 'break's the following while loop and
    324 		 * indicates we are ready to move on to the next page in the
    325 		 * "lcv" loop above.
    326 		 *
    327 		 * if we exit the while loop with pps[lcv] still set to NULL,
    328 		 * then it means that we allocated a new busy/fake/clean page
    329 		 * ptmp in the object and we need to do I/O to fill in the
    330 		 * data.
    331 		 */
    332 
    333 		while (pps[lcv] == NULL) {	/* top of "pps" while loop */
    334 
    335 			/* look for a current page */
    336 			ptmp = uvm_pagelookup(uobj, current_offset);
    337 
    338 			/* nope?   allocate one now (if we can) */
    339 			if (ptmp == NULL) {
    340 
    341 				ptmp = uvm_pagealloc(uobj, current_offset,
    342 				    NULL);	/* alloc */
    343 
    344 				/* out of RAM? */
    345 				if (ptmp == NULL) {
    346 					simple_unlock(&uobj->vmobjlock);
    347 					uvm_wait("kmgetwait1");
    348 					simple_lock(&uobj->vmobjlock);
    349 					/* goto top of pps while loop */
    350 					continue;
    351 				}
    352 
    353 				/*
    354 				 * got new page ready for I/O.  break pps
    355 				 * while loop.  pps[lcv] is still NULL.
    356 				 */
    357 				break;
    358 			}
    359 
    360 			/* page is there, see if we need to wait on it */
    361 			if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
    362 				ptmp->flags |= PG_WANTED;
    363 				UVM_UNLOCK_AND_WAIT(ptmp,&uobj->vmobjlock, 0,
    364 				    "uvn_get",0);
    365 				simple_lock(&uobj->vmobjlock);
    366 				continue;	/* goto top of pps while loop */
    367 			}
    368 
    369 			/*
    370 			 * if we get here then the page has become resident
    371 			 * and unbusy between steps 1 and 2.  we busy it now
    372 			 * (so we own it) and set pps[lcv] (so that we exit
    373 			 * the while loop).  caller must un-busy.
    374 			 */
    375 			ptmp->flags |= PG_BUSY;
    376 			UVM_PAGE_OWN(ptmp, "uvm_km_get2");
    377 			pps[lcv] = ptmp;
    378 		}
    379 
    380 		/*
    381 		 * if we own the a valid page at the correct offset, pps[lcv]
    382 		 * will point to it.   nothing more to do except go to the
    383 		 * next page.
    384 		 */
    385 
    386 		if (pps[lcv])
    387 			continue;			/* next lcv */
    388 
    389 		/*
    390 		 * we have a "fake/busy/clean" page that we just allocated.
    391 		 * do the needed "i/o" (in this case that means zero it).
    392 		 */
    393 
    394 		uvm_pagezero(ptmp);
    395 		ptmp->flags &= ~(PG_FAKE);
    396 		pps[lcv] = ptmp;
    397 
    398 	}	/* lcv loop */
    399 
    400 	/*
    401 	 * finally, unlock object and return.
    402 	 */
    403 
    404 	simple_unlock(&uobj->vmobjlock);
    405 	UVMHIST_LOG(maphist, "<- done (OK)",0,0,0,0);
    406 	return(VM_PAGER_OK);
    407 }
    408 
    409 /*
    410  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
    411  * KVM already allocated for text, data, bss, and static data structures).
    412  *
    413  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    414  *    we assume that [min -> start] has already been allocated and that
    415  *    "end" is the end.
    416  */
    417 
    418 void
    419 uvm_km_init(start, end)
    420 	vaddr_t start, end;
    421 {
    422 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    423 
    424 	/*
    425 	 * first, init kernel memory objects.
    426 	 */
    427 
    428 	/* kernel_object: for pageable anonymous kernel memory */
    429 	uao_init();
    430 	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    431 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    432 
    433 	/* kmem_object: for malloc'd memory (wired, protected by splimp) */
    434 	simple_lock_init(&kmem_object_store.vmobjlock);
    435 	kmem_object_store.pgops = &km_pager;
    436 	TAILQ_INIT(&kmem_object_store.memq);
    437 	kmem_object_store.uo_npages = 0;
    438 	/* we are special.  we never die */
    439 	kmem_object_store.uo_refs = UVM_OBJ_KERN;
    440 	uvmexp.kmem_object = &kmem_object_store;
    441 
    442 	/* mb_object: for mbuf memory (always wired, protected by splimp) */
    443 	simple_lock_init(&mb_object_store.vmobjlock);
    444 	mb_object_store.pgops = &km_pager;
    445 	TAILQ_INIT(&mb_object_store.memq);
    446 	mb_object_store.uo_npages = 0;
    447 	/* we are special.  we never die */
    448 	mb_object_store.uo_refs = UVM_OBJ_KERN;
    449 	uvmexp.mb_object = &mb_object_store;
    450 
    451 	/*
    452 	 * init the map and reserve allready allocated kernel space
    453 	 * before installing.
    454 	 */
    455 
    456 	uvm_map_setup(&kernel_map_store, base, end, FALSE);
    457 	kernel_map_store.pmap = pmap_kernel();
    458 	if (uvm_map(&kernel_map_store, &base, start - base, NULL,
    459 	    UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    460 	    UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != KERN_SUCCESS)
    461 		panic("uvm_km_init: could not reserve space for kernel");
    462 
    463 	/*
    464 	 * install!
    465 	 */
    466 
    467 	kernel_map = &kernel_map_store;
    468 }
    469 
    470 /*
    471  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    472  * is allocated all references to that area of VM must go through it.  this
    473  * allows the locking of VAs in kernel_map to be broken up into regions.
    474  *
    475  * => if `fixed' is true, *min specifies where the region described
    476  *      by the submap must start
    477  * => if submap is non NULL we use that as the submap, otherwise we
    478  *	alloc a new map
    479  */
    480 struct vm_map *
    481 uvm_km_suballoc(map, min, max, size, pageable, fixed, submap)
    482 	struct vm_map *map;
    483 	vaddr_t *min, *max;		/* OUT, OUT */
    484 	vsize_t size;
    485 	boolean_t pageable;
    486 	boolean_t fixed;
    487 	struct vm_map *submap;
    488 {
    489 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    490 
    491 	size = round_page(size);	/* round up to pagesize */
    492 
    493 	/*
    494 	 * first allocate a blank spot in the parent map
    495 	 */
    496 
    497 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET,
    498 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    499 	    UVM_ADV_RANDOM, mapflags)) != KERN_SUCCESS) {
    500 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
    501 	}
    502 
    503 	/*
    504 	 * set VM bounds (min is filled in by uvm_map)
    505 	 */
    506 
    507 	*max = *min + size;
    508 
    509 	/*
    510 	 * add references to pmap and create or init the submap
    511 	 */
    512 
    513 	pmap_reference(vm_map_pmap(map));
    514 	if (submap == NULL) {
    515 		submap = uvm_map_create(vm_map_pmap(map), *min, *max, pageable);
    516 		if (submap == NULL)
    517 			panic("uvm_km_suballoc: unable to create submap");
    518 	} else {
    519 		uvm_map_setup(submap, *min, *max, pageable);
    520 		submap->pmap = vm_map_pmap(map);
    521 	}
    522 
    523 	/*
    524 	 * now let uvm_map_submap plug in it...
    525 	 */
    526 
    527 	if (uvm_map_submap(map, *min, *max, submap) != KERN_SUCCESS)
    528 		panic("uvm_km_suballoc: submap allocation failed");
    529 
    530 	return(submap);
    531 }
    532 
    533 /*
    534  * uvm_km_pgremove: remove pages from a kernel uvm_object.
    535  *
    536  * => when you unmap a part of anonymous kernel memory you want to toss
    537  *    the pages right away.    (this gets called from uvm_unmap_...).
    538  */
    539 
    540 #define UKM_HASH_PENALTY 4      /* a guess */
    541 
    542 void
    543 uvm_km_pgremove(uobj, start, end)
    544 	struct uvm_object *uobj;
    545 	vaddr_t start, end;
    546 {
    547 	boolean_t by_list, is_aobj;
    548 	struct vm_page *pp, *ppnext;
    549 	vaddr_t curoff;
    550 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
    551 
    552 	simple_lock(&uobj->vmobjlock);		/* lock object */
    553 
    554 	/* is uobj an aobj? */
    555 	is_aobj = uobj->pgops == &aobj_pager;
    556 
    557 	/* choose cheapest traversal */
    558 	by_list = (uobj->uo_npages <=
    559 	     ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
    560 
    561 	if (by_list)
    562 		goto loop_by_list;
    563 
    564 	/* by hash */
    565 
    566 	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
    567 		pp = uvm_pagelookup(uobj, curoff);
    568 		if (pp == NULL)
    569 			continue;
    570 
    571 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    572 		    pp->flags & PG_BUSY, 0, 0);
    573 		/* now do the actual work */
    574 		if (pp->flags & PG_BUSY)
    575 			/* owner must check for this when done */
    576 			pp->flags |= PG_RELEASED;
    577 		else {
    578 			pmap_page_protect(PMAP_PGARG(pp), VM_PROT_NONE);
    579 
    580 			/*
    581 			 * if this kernel object is an aobj, free the swap slot.
    582 			 */
    583 			if (is_aobj) {
    584 				int slot = uao_set_swslot(uobj,
    585 							  curoff >> PAGE_SHIFT,
    586 							  0);
    587 
    588 				if (slot)
    589 					uvm_swap_free(slot, 1);
    590 			}
    591 
    592 			uvm_lock_pageq();
    593 			uvm_pagefree(pp);
    594 			uvm_unlock_pageq();
    595 		}
    596 		/* done */
    597 
    598 	}
    599 	simple_unlock(&uobj->vmobjlock);
    600 	return;
    601 
    602 loop_by_list:
    603 
    604 	for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
    605 
    606 		ppnext = pp->listq.tqe_next;
    607 		if (pp->offset < start || pp->offset >= end) {
    608 			continue;
    609 		}
    610 
    611 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    612 		    pp->flags & PG_BUSY, 0, 0);
    613 		/* now do the actual work */
    614 		if (pp->flags & PG_BUSY)
    615 			/* owner must check for this when done */
    616 			pp->flags |= PG_RELEASED;
    617 		else {
    618 			pmap_page_protect(PMAP_PGARG(pp), VM_PROT_NONE);
    619 
    620 			/*
    621 			 * if this kernel object is an aobj, free the swap slot.
    622 			 */
    623 			if (is_aobj) {
    624 				int slot = uao_set_swslot(uobj,
    625 						pp->offset >> PAGE_SHIFT, 0);
    626 
    627 				if (slot)
    628 					uvm_swap_free(slot, 1);
    629 			}
    630 
    631 			uvm_lock_pageq();
    632 			uvm_pagefree(pp);
    633 			uvm_unlock_pageq();
    634 		}
    635 		/* done */
    636 
    637 	}
    638 	simple_unlock(&uobj->vmobjlock);
    639 	return;
    640 }
    641 
    642 
    643 /*
    644  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
    645  *
    646  * => we map wired memory into the specified map using the obj passed in
    647  * => NOTE: we can return NULL even if we can wait if there is not enough
    648  *	free VM space in the map... caller should be prepared to handle
    649  *	this case.
    650  * => we return KVA of memory allocated
    651  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
    652  *	lock the map
    653  */
    654 
    655 vaddr_t
    656 uvm_km_kmemalloc(map, obj, size, flags)
    657 	vm_map_t map;
    658 	struct uvm_object *obj;
    659 	vsize_t size;
    660 	int flags;
    661 {
    662 	vaddr_t kva, loopva;
    663 	vaddr_t offset;
    664 	struct vm_page *pg;
    665 	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
    666 
    667 
    668 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
    669 	map, obj, size, flags);
    670 #ifdef DIAGNOSTIC
    671 	/* sanity check */
    672 	if (vm_map_pmap(map) != pmap_kernel())
    673 		panic("uvm_km_kmemalloc: invalid map");
    674 #endif
    675 
    676 	/*
    677 	 * setup for call
    678 	 */
    679 
    680 	size = round_page(size);
    681 	kva = vm_map_min(map);	/* hint */
    682 
    683 	/*
    684 	 * allocate some virtual space
    685 	 */
    686 
    687 	if (uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    688 	      UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    689 			  UVM_ADV_RANDOM,
    690 			  (flags & UVM_KMF_TRYLOCK)))
    691 			!= KERN_SUCCESS) {
    692 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    693 		return(0);
    694 	}
    695 
    696 	/*
    697 	 * if all we wanted was VA, return now
    698 	 */
    699 
    700 	if (flags & UVM_KMF_VALLOC) {
    701 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
    702 		return(kva);
    703 	}
    704 	/*
    705 	 * recover object offset from virtual address
    706 	 */
    707 
    708 	offset = kva - vm_map_min(kernel_map);
    709 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
    710 
    711 	/*
    712 	 * now allocate and map in the memory... note that we are the only ones
    713 	 * whom should ever get a handle on this area of VM.
    714 	 */
    715 
    716 	loopva = kva;
    717 	while (size) {
    718 		simple_lock(&obj->vmobjlock);
    719 		pg = uvm_pagealloc(obj, offset, NULL);
    720 		if (pg) {
    721 			pg->flags &= ~PG_BUSY;	/* new page */
    722 			UVM_PAGE_OWN(pg, NULL);
    723 		}
    724 		simple_unlock(&obj->vmobjlock);
    725 
    726 		/*
    727 		 * out of memory?
    728 		 */
    729 
    730 		if (pg == NULL) {
    731 			if (flags & UVM_KMF_NOWAIT) {
    732 				/* free everything! */
    733 				uvm_unmap(map, kva, kva + size);
    734 				return(0);
    735 			} else {
    736 				uvm_wait("km_getwait2");	/* sleep here */
    737 				continue;
    738 			}
    739 		}
    740 
    741 		/*
    742 		 * map it in: note that we call pmap_enter with the map and
    743 		 * object unlocked in case we are kmem_map/kmem_object
    744 		 * (because if pmap_enter wants to allocate out of kmem_object
    745 		 * it will need to lock it itself!)
    746 		 */
    747 #if defined(PMAP_NEW)
    748 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), VM_PROT_ALL);
    749 #else
    750 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    751 		    UVM_PROT_ALL, TRUE);
    752 #endif
    753 		loopva += PAGE_SIZE;
    754 		offset += PAGE_SIZE;
    755 		size -= PAGE_SIZE;
    756 	}
    757 
    758 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    759 	return(kva);
    760 }
    761 
    762 /*
    763  * uvm_km_free: free an area of kernel memory
    764  */
    765 
    766 void
    767 uvm_km_free(map, addr, size)
    768 	vm_map_t map;
    769 	vaddr_t addr;
    770 	vsize_t size;
    771 {
    772 
    773 	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
    774 }
    775 
    776 /*
    777  * uvm_km_free_wakeup: free an area of kernel memory and wake up
    778  * anyone waiting for vm space.
    779  *
    780  * => XXX: "wanted" bit + unlock&wait on other end?
    781  */
    782 
    783 void
    784 uvm_km_free_wakeup(map, addr, size)
    785 	vm_map_t map;
    786 	vaddr_t addr;
    787 	vsize_t size;
    788 {
    789 	vm_map_entry_t dead_entries;
    790 
    791 	vm_map_lock(map);
    792 	(void)uvm_unmap_remove(map, trunc_page(addr), round_page(addr+size),
    793 			 &dead_entries);
    794 	thread_wakeup(map);
    795 	vm_map_unlock(map);
    796 
    797 	if (dead_entries != NULL)
    798 		uvm_unmap_detach(dead_entries, 0);
    799 }
    800 
    801 /*
    802  * uvm_km_alloc1: allocate wired down memory in the kernel map.
    803  *
    804  * => we can sleep if needed
    805  */
    806 
    807 vaddr_t
    808 uvm_km_alloc1(map, size, zeroit)
    809 	vm_map_t map;
    810 	vsize_t size;
    811 	boolean_t zeroit;
    812 {
    813 	vaddr_t kva, loopva, offset;
    814 	struct vm_page *pg;
    815 	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
    816 
    817 	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
    818 
    819 #ifdef DIAGNOSTIC
    820 	if (vm_map_pmap(map) != pmap_kernel())
    821 		panic("uvm_km_alloc1");
    822 #endif
    823 
    824 	size = round_page(size);
    825 	kva = vm_map_min(map);		/* hint */
    826 
    827 	/*
    828 	 * allocate some virtual space
    829 	 */
    830 
    831 	if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
    832 	      UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    833 			  UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
    834 		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
    835 		return(0);
    836 	}
    837 
    838 	/*
    839 	 * recover object offset from virtual address
    840 	 */
    841 
    842 	offset = kva - vm_map_min(kernel_map);
    843 	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
    844 
    845 	/*
    846 	 * now allocate the memory.  we must be careful about released pages.
    847 	 */
    848 
    849 	loopva = kva;
    850 	while (size) {
    851 		simple_lock(&uvm.kernel_object->vmobjlock);
    852 		pg = uvm_pagelookup(uvm.kernel_object, offset);
    853 
    854 		/*
    855 		 * if we found a page in an unallocated region, it must be
    856 		 * released
    857 		 */
    858 		if (pg) {
    859 			if ((pg->flags & PG_RELEASED) == 0)
    860 				panic("uvm_km_alloc1: non-released page");
    861 			pg->flags |= PG_WANTED;
    862 			UVM_UNLOCK_AND_WAIT(pg, &uvm.kernel_object->vmobjlock,
    863 			    0, "km_alloc", 0);
    864 			continue;   /* retry */
    865 		}
    866 
    867 		/* allocate ram */
    868 		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL);
    869 		if (pg) {
    870 			pg->flags &= ~PG_BUSY;	/* new page */
    871 			UVM_PAGE_OWN(pg, NULL);
    872 		}
    873 		simple_unlock(&uvm.kernel_object->vmobjlock);
    874 		if (pg == NULL) {
    875 			uvm_wait("km_alloc1w");	/* wait for memory */
    876 			continue;
    877 		}
    878 
    879 		/* map it in */
    880 #if defined(PMAP_NEW)
    881 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), UVM_PROT_ALL);
    882 #else
    883 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    884 		    UVM_PROT_ALL, TRUE);
    885 #endif
    886 		loopva += PAGE_SIZE;
    887 		offset += PAGE_SIZE;
    888 		size -= PAGE_SIZE;
    889 	}
    890 
    891 	/*
    892 	 * zero on request (note that "size" is now zero due to the above loop
    893 	 * so we need to subtract kva from loopva to reconstruct the size).
    894 	 */
    895 
    896 	if (zeroit)
    897 		memset((caddr_t)kva, 0, loopva - kva);
    898 
    899 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    900 	return(kva);
    901 }
    902 
    903 /*
    904  * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
    905  *
    906  * => memory is not allocated until fault time
    907  */
    908 
    909 vaddr_t
    910 uvm_km_valloc(map, size)
    911 	vm_map_t map;
    912 	vsize_t size;
    913 {
    914 	vaddr_t kva;
    915 	UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
    916 
    917 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    918 
    919 #ifdef DIAGNOSTIC
    920 	if (vm_map_pmap(map) != pmap_kernel())
    921 		panic("uvm_km_valloc");
    922 #endif
    923 
    924 	size = round_page(size);
    925 	kva = vm_map_min(map);		/* hint */
    926 
    927 	/*
    928 	 * allocate some virtual space.  will be demand filled by kernel_object.
    929 	 */
    930 
    931 	if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
    932 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    933 	    UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
    934 		UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
    935 		return(0);
    936 	}
    937 
    938 	UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
    939 	return(kva);
    940 }
    941 
    942 /*
    943  * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
    944  *
    945  * => memory is not allocated until fault time
    946  * => if no room in map, wait for space to free, unless requested size
    947  *    is larger than map (in which case we return 0)
    948  */
    949 
    950 vaddr_t
    951 uvm_km_valloc_wait(map, size)
    952 	vm_map_t map;
    953 	vsize_t size;
    954 {
    955 	vaddr_t kva;
    956 	UVMHIST_FUNC("uvm_km_valloc_wait"); UVMHIST_CALLED(maphist);
    957 
    958 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    959 
    960 #ifdef DIAGNOSTIC
    961 	if (vm_map_pmap(map) != pmap_kernel())
    962 		panic("uvm_km_valloc_wait");
    963 #endif
    964 
    965 	size = round_page(size);
    966 	if (size > vm_map_max(map) - vm_map_min(map))
    967 		return(0);
    968 
    969 	while (1) {
    970 		kva = vm_map_min(map);		/* hint */
    971 
    972 		/*
    973 		 * allocate some virtual space.   will be demand filled
    974 		 * by kernel_object.
    975 		 */
    976 
    977 		if (uvm_map(map, &kva, size, uvm.kernel_object,
    978 		    UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL,
    979 		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
    980 		    == KERN_SUCCESS) {
    981 			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    982 			return(kva);
    983 		}
    984 
    985 		/*
    986 		 * failed.  sleep for a while (on map)
    987 		 */
    988 
    989 		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
    990 		tsleep((caddr_t)map, PVM, "vallocwait", 0);
    991 	}
    992 	/*NOTREACHED*/
    993 }
    994 
    995 /* Sanity; must specify both or none. */
    996 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    997     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    998 #error Must specify MAP and UNMAP together.
    999 #endif
   1000 
   1001 /*
   1002  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
   1003  *
   1004  * => if the pmap specifies an alternate mapping method, we use it.
   1005  */
   1006 
   1007 /* ARGSUSED */
   1008 vaddr_t
   1009 uvm_km_alloc_poolpage1(map, obj, waitok)
   1010 	vm_map_t map;
   1011 	struct uvm_object *obj;
   1012 	boolean_t waitok;
   1013 {
   1014 #if defined(PMAP_MAP_POOLPAGE)
   1015 	struct vm_page *pg;
   1016 	vaddr_t va;
   1017 
   1018  again:
   1019 	pg = uvm_pagealloc(NULL, 0, NULL);
   1020 	if (pg == NULL) {
   1021 		if (waitok) {
   1022 			uvm_wait("plpg");
   1023 			goto again;
   1024 		} else
   1025 			return (0);
   1026 	}
   1027 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
   1028 	if (va == 0)
   1029 		uvm_pagefree(pg);
   1030 	return (va);
   1031 #else
   1032 	vaddr_t va;
   1033 	int s;
   1034 
   1035 	/*
   1036 	 * NOTE: We may be called with a map that doens't require splimp
   1037 	 * protection (e.g. kernel_map).  However, it does not hurt to
   1038 	 * go to splimp in this case (since unprocted maps will never be
   1039 	 * accessed in interrupt context).
   1040 	 *
   1041 	 * XXX We may want to consider changing the interface to this
   1042 	 * XXX function.
   1043 	 */
   1044 
   1045 	s = splimp();
   1046 	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
   1047 	splx(s);
   1048 	return (va);
   1049 #endif /* PMAP_MAP_POOLPAGE */
   1050 }
   1051 
   1052 /*
   1053  * uvm_km_free_poolpage: free a previously allocated pool page
   1054  *
   1055  * => if the pmap specifies an alternate unmapping method, we use it.
   1056  */
   1057 
   1058 /* ARGSUSED */
   1059 void
   1060 uvm_km_free_poolpage1(map, addr)
   1061 	vm_map_t map;
   1062 	vaddr_t addr;
   1063 {
   1064 #if defined(PMAP_UNMAP_POOLPAGE)
   1065 	paddr_t pa;
   1066 
   1067 	pa = PMAP_UNMAP_POOLPAGE(addr);
   1068 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
   1069 #else
   1070 	int s;
   1071 
   1072 	/*
   1073 	 * NOTE: We may be called with a map that doens't require splimp
   1074 	 * protection (e.g. kernel_map).  However, it does not hurt to
   1075 	 * go to splimp in this case (since unprocted maps will never be
   1076 	 * accessed in interrupt context).
   1077 	 *
   1078 	 * XXX We may want to consider changing the interface to this
   1079 	 * XXX function.
   1080 	 */
   1081 
   1082 	s = splimp();
   1083 	uvm_km_free(map, addr, PAGE_SIZE);
   1084 	splx(s);
   1085 #endif /* PMAP_UNMAP_POOLPAGE */
   1086 }
   1087