uvm_km.c revision 1.18.2.1 1 /* $NetBSD: uvm_km.c,v 1.18.2.1 1998/11/09 06:06:38 chs Exp $ */
2
3 /*
4 * XXXCDC: "ROUGH DRAFT" QUALITY UVM PRE-RELEASE FILE!
5 * >>>USE AT YOUR OWN RISK, WORK IS NOT FINISHED<<<
6 */
7 /*
8 * Copyright (c) 1997 Charles D. Cranor and Washington University.
9 * Copyright (c) 1991, 1993, The Regents of the University of California.
10 *
11 * All rights reserved.
12 *
13 * This code is derived from software contributed to Berkeley by
14 * The Mach Operating System project at Carnegie-Mellon University.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by Charles D. Cranor,
27 * Washington University, the University of California, Berkeley and
28 * its contributors.
29 * 4. Neither the name of the University nor the names of its contributors
30 * may be used to endorse or promote products derived from this software
31 * without specific prior written permission.
32 *
33 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43 * SUCH DAMAGE.
44 *
45 * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
46 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
47 *
48 *
49 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
50 * All rights reserved.
51 *
52 * Permission to use, copy, modify and distribute this software and
53 * its documentation is hereby granted, provided that both the copyright
54 * notice and this permission notice appear in all copies of the
55 * software, derivative works or modified versions, and any portions
56 * thereof, and that both notices appear in supporting documentation.
57 *
58 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
59 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
60 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
61 *
62 * Carnegie Mellon requests users of this software to return to
63 *
64 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
65 * School of Computer Science
66 * Carnegie Mellon University
67 * Pittsburgh PA 15213-3890
68 *
69 * any improvements or extensions that they make and grant Carnegie the
70 * rights to redistribute these changes.
71 */
72
73 #include "opt_uvmhist.h"
74 #include "opt_pmap_new.h"
75
76 /*
77 * uvm_km.c: handle kernel memory allocation and management
78 */
79
80 /*
81 * overview of kernel memory management:
82 *
83 * the kernel virtual address space is mapped by "kernel_map." kernel_map
84 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
85 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
86 *
87 * the kernel_map has several "submaps." submaps can only appear in
88 * the kernel_map (user processes can't use them). submaps "take over"
89 * the management of a sub-range of the kernel's address space. submaps
90 * are typically allocated at boot time and are never released. kernel
91 * virtual address space that is mapped by a submap is locked by the
92 * submap's lock -- not the kernel_map's lock.
93 *
94 * thus, the useful feature of submaps is that they allow us to break
95 * up the locking and protection of the kernel address space into smaller
96 * chunks.
97 *
98 * the vm system has several standard kernel submaps, including:
99 * kmem_map => contains only wired kernel memory for the kernel
100 * malloc. *** access to kmem_map must be protected
101 * by splimp() because we are allowed to call malloc()
102 * at interrupt time ***
103 * mb_map => memory for large mbufs, *** protected by splimp ***
104 * pager_map => used to map "buf" structures into kernel space
105 * exec_map => used during exec to handle exec args
106 * etc...
107 *
108 * the kernel allocates its private memory out of special uvm_objects whose
109 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
110 * are "special" and never die). all kernel objects should be thought of
111 * as large, fixed-sized, sparsely populated uvm_objects. each kernel
112 * object is equal to the size of kernel virtual address space (i.e. the
113 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
114 *
115 * most kernel private memory lives in kernel_object. the only exception
116 * to this is for memory that belongs to submaps that must be protected
117 * by splimp(). each of these submaps has their own private kernel
118 * object (e.g. kmem_object, mb_object).
119 *
120 * note that just because a kernel object spans the entire kernel virutal
121 * address space doesn't mean that it has to be mapped into the entire space.
122 * large chunks of a kernel object's space go unused either because
123 * that area of kernel VM is unmapped, or there is some other type of
124 * object mapped into that range (e.g. a vnode). for submap's kernel
125 * objects, the only part of the object that can ever be populated is the
126 * offsets that are managed by the submap.
127 *
128 * note that the "offset" in a kernel object is always the kernel virtual
129 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
130 * example:
131 * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
132 * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
133 * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
134 * then that means that the page at offset 0x235000 in kernel_object is
135 * mapped at 0xf8235000.
136 *
137 * note that the offsets in kmem_object and mb_object also follow this
138 * rule. this means that the offsets for kmem_object must fall in the
139 * range of [vm_map_min(kmem_object) - vm_map_min(kernel_map)] to
140 * [vm_map_max(kmem_object) - vm_map_min(kernel_map)], so the offsets
141 * in those objects will typically not start at zero.
142 *
143 * kernel object have one other special property: when the kernel virtual
144 * memory mapping them is unmapped, the backing memory in the object is
145 * freed right away. this is done with the uvm_km_pgremove() function.
146 * this has to be done because there is no backing store for kernel pages
147 * and no need to save them after they are no longer referenced.
148 */
149
150 #include <sys/param.h>
151 #include <sys/systm.h>
152 #include <sys/proc.h>
153
154 #include <vm/vm.h>
155 #include <vm/vm_page.h>
156 #include <vm/vm_kern.h>
157
158 #include <uvm/uvm.h>
159
160 /*
161 * global data structures
162 */
163
164 vm_map_t kernel_map = NULL;
165
166 /*
167 * local functions
168 */
169
170 static int uvm_km_get __P((struct uvm_object *, vaddr_t,
171 vm_page_t *, int *, int, vm_prot_t, int, int));
172 /*
173 * local data structues
174 */
175
176 static struct vm_map kernel_map_store;
177 static struct uvm_object kmem_object_store;
178 static struct uvm_object mb_object_store;
179
180 static struct uvm_pagerops km_pager = {
181 NULL, /* init */
182 NULL, /* attach */
183 NULL, /* reference */
184 NULL, /* detach */
185 NULL, /* fault */
186 NULL, /* flush */
187 uvm_km_get, /* get */
188 /* ... rest are NULL */
189 };
190
191 /*
192 * uvm_km_get: pager get function for kernel objects
193 *
194 * => currently we do not support pageout to the swap area, so this
195 * pager is very simple. eventually we may want an anonymous
196 * object pager which will do paging.
197 * => XXXCDC: this pager should be phased out in favor of the aobj pager
198 */
199
200
201 static int
202 uvm_km_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
203 struct uvm_object *uobj;
204 vaddr_t offset;
205 struct vm_page **pps;
206 int *npagesp;
207 int centeridx, advice, flags;
208 vm_prot_t access_type;
209 {
210 vaddr_t current_offset;
211 vm_page_t ptmp;
212 int lcv, gotpages, maxpages;
213 boolean_t done;
214 UVMHIST_FUNC("uvm_km_get"); UVMHIST_CALLED(maphist);
215
216 UVMHIST_LOG(maphist, "flags=%d", flags,0,0,0);
217
218 /*
219 * get number of pages
220 */
221
222 maxpages = *npagesp;
223
224 /*
225 * step 1: handled the case where fault data structures are locked.
226 */
227
228 if (flags & PGO_LOCKED) {
229
230 /*
231 * step 1a: get pages that are already resident. only do
232 * this if the data structures are locked (i.e. the first time
233 * through).
234 */
235
236 done = TRUE; /* be optimistic */
237 gotpages = 0; /* # of pages we got so far */
238
239 for (lcv = 0, current_offset = offset ;
240 lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
241
242 /* do we care about this page? if not, skip it */
243 if (pps[lcv] == PGO_DONTCARE)
244 continue;
245
246 /* lookup page */
247 ptmp = uvm_pagelookup(uobj, current_offset);
248
249 /* null? attempt to allocate the page */
250 if (ptmp == NULL) {
251 ptmp = uvm_pagealloc(uobj, current_offset,
252 NULL);
253 if (ptmp) {
254 /* new page */
255 ptmp->flags &= ~(PG_BUSY|PG_FAKE);
256 UVM_PAGE_OWN(ptmp, NULL);
257 uvm_pagezero(ptmp);
258 }
259 }
260
261 /*
262 * to be useful must get a non-busy, non-released page
263 */
264 if (ptmp == NULL ||
265 (ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
266 if (lcv == centeridx ||
267 (flags & PGO_ALLPAGES) != 0)
268 /* need to do a wait or I/O! */
269 done = FALSE;
270 continue;
271 }
272
273 /*
274 * useful page: busy/lock it and plug it in our
275 * result array
276 */
277
278 /* caller must un-busy this page */
279 ptmp->flags |= PG_BUSY;
280 UVM_PAGE_OWN(ptmp, "uvm_km_get1");
281 pps[lcv] = ptmp;
282 gotpages++;
283
284 } /* "for" lcv loop */
285
286 /*
287 * step 1b: now we've either done everything needed or we
288 * to unlock and do some waiting or I/O.
289 */
290
291 UVMHIST_LOG(maphist, "<- done (done=%d)", done, 0,0,0);
292
293 *npagesp = gotpages;
294 if (done)
295 return(VM_PAGER_OK); /* bingo! */
296 else
297 return(VM_PAGER_UNLOCK); /* EEK! Need to
298 * unlock and I/O */
299 }
300
301 /*
302 * step 2: get non-resident or busy pages.
303 * object is locked. data structures are unlocked.
304 */
305
306 for (lcv = 0, current_offset = offset ;
307 lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
308
309 /* skip over pages we've already gotten or don't want */
310 /* skip over pages we don't _have_ to get */
311 if (pps[lcv] != NULL ||
312 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
313 continue;
314
315 /*
316 * we have yet to locate the current page (pps[lcv]). we
317 * first look for a page that is already at the current offset.
318 * if we find a page, we check to see if it is busy or
319 * released. if that is the case, then we sleep on the page
320 * until it is no longer busy or released and repeat the
321 * lookup. if the page we found is neither busy nor
322 * released, then we busy it (so we own it) and plug it into
323 * pps[lcv]. this 'break's the following while loop and
324 * indicates we are ready to move on to the next page in the
325 * "lcv" loop above.
326 *
327 * if we exit the while loop with pps[lcv] still set to NULL,
328 * then it means that we allocated a new busy/fake/clean page
329 * ptmp in the object and we need to do I/O to fill in the
330 * data.
331 */
332
333 while (pps[lcv] == NULL) { /* top of "pps" while loop */
334
335 /* look for a current page */
336 ptmp = uvm_pagelookup(uobj, current_offset);
337
338 /* nope? allocate one now (if we can) */
339 if (ptmp == NULL) {
340
341 ptmp = uvm_pagealloc(uobj, current_offset,
342 NULL); /* alloc */
343
344 /* out of RAM? */
345 if (ptmp == NULL) {
346 simple_unlock(&uobj->vmobjlock);
347 uvm_wait("kmgetwait1");
348 simple_lock(&uobj->vmobjlock);
349 /* goto top of pps while loop */
350 continue;
351 }
352
353 /*
354 * got new page ready for I/O. break pps
355 * while loop. pps[lcv] is still NULL.
356 */
357 break;
358 }
359
360 /* page is there, see if we need to wait on it */
361 if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
362 ptmp->flags |= PG_WANTED;
363 UVM_UNLOCK_AND_WAIT(ptmp,&uobj->vmobjlock, 0,
364 "uvn_get",0);
365 simple_lock(&uobj->vmobjlock);
366 continue; /* goto top of pps while loop */
367 }
368
369 /*
370 * if we get here then the page has become resident
371 * and unbusy between steps 1 and 2. we busy it now
372 * (so we own it) and set pps[lcv] (so that we exit
373 * the while loop). caller must un-busy.
374 */
375 ptmp->flags |= PG_BUSY;
376 UVM_PAGE_OWN(ptmp, "uvm_km_get2");
377 pps[lcv] = ptmp;
378 }
379
380 /*
381 * if we own the a valid page at the correct offset, pps[lcv]
382 * will point to it. nothing more to do except go to the
383 * next page.
384 */
385
386 if (pps[lcv])
387 continue; /* next lcv */
388
389 /*
390 * we have a "fake/busy/clean" page that we just allocated.
391 * do the needed "i/o" (in this case that means zero it).
392 */
393
394 uvm_pagezero(ptmp);
395 ptmp->flags &= ~(PG_FAKE);
396 pps[lcv] = ptmp;
397
398 } /* lcv loop */
399
400 /*
401 * finally, unlock object and return.
402 */
403
404 simple_unlock(&uobj->vmobjlock);
405 UVMHIST_LOG(maphist, "<- done (OK)",0,0,0,0);
406 return(VM_PAGER_OK);
407 }
408
409 /*
410 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
411 * KVM already allocated for text, data, bss, and static data structures).
412 *
413 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
414 * we assume that [min -> start] has already been allocated and that
415 * "end" is the end.
416 */
417
418 void
419 uvm_km_init(start, end)
420 vaddr_t start, end;
421 {
422 vaddr_t base = VM_MIN_KERNEL_ADDRESS;
423
424 /*
425 * first, init kernel memory objects.
426 */
427
428 /* kernel_object: for pageable anonymous kernel memory */
429 uao_init();
430 uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
431 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
432
433 /* kmem_object: for malloc'd memory (wired, protected by splimp) */
434 simple_lock_init(&kmem_object_store.vmobjlock);
435 kmem_object_store.pgops = &km_pager;
436 TAILQ_INIT(&kmem_object_store.memq);
437 kmem_object_store.uo_npages = 0;
438 /* we are special. we never die */
439 kmem_object_store.uo_refs = UVM_OBJ_KERN;
440 uvmexp.kmem_object = &kmem_object_store;
441
442 /* mb_object: for mbuf memory (always wired, protected by splimp) */
443 simple_lock_init(&mb_object_store.vmobjlock);
444 mb_object_store.pgops = &km_pager;
445 TAILQ_INIT(&mb_object_store.memq);
446 mb_object_store.uo_npages = 0;
447 /* we are special. we never die */
448 mb_object_store.uo_refs = UVM_OBJ_KERN;
449 uvmexp.mb_object = &mb_object_store;
450
451 /*
452 * init the map and reserve allready allocated kernel space
453 * before installing.
454 */
455
456 uvm_map_setup(&kernel_map_store, base, end, FALSE);
457 kernel_map_store.pmap = pmap_kernel();
458 if (uvm_map(&kernel_map_store, &base, start - base, NULL,
459 UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
460 UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != KERN_SUCCESS)
461 panic("uvm_km_init: could not reserve space for kernel");
462
463 /*
464 * install!
465 */
466
467 kernel_map = &kernel_map_store;
468 }
469
470 /*
471 * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
472 * is allocated all references to that area of VM must go through it. this
473 * allows the locking of VAs in kernel_map to be broken up into regions.
474 *
475 * => if `fixed' is true, *min specifies where the region described
476 * by the submap must start
477 * => if submap is non NULL we use that as the submap, otherwise we
478 * alloc a new map
479 */
480 struct vm_map *
481 uvm_km_suballoc(map, min, max, size, pageable, fixed, submap)
482 struct vm_map *map;
483 vaddr_t *min, *max; /* OUT, OUT */
484 vsize_t size;
485 boolean_t pageable;
486 boolean_t fixed;
487 struct vm_map *submap;
488 {
489 int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
490
491 size = round_page(size); /* round up to pagesize */
492
493 /*
494 * first allocate a blank spot in the parent map
495 */
496
497 if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET,
498 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
499 UVM_ADV_RANDOM, mapflags)) != KERN_SUCCESS) {
500 panic("uvm_km_suballoc: unable to allocate space in parent map");
501 }
502
503 /*
504 * set VM bounds (min is filled in by uvm_map)
505 */
506
507 *max = *min + size;
508
509 /*
510 * add references to pmap and create or init the submap
511 */
512
513 pmap_reference(vm_map_pmap(map));
514 if (submap == NULL) {
515 submap = uvm_map_create(vm_map_pmap(map), *min, *max, pageable);
516 if (submap == NULL)
517 panic("uvm_km_suballoc: unable to create submap");
518 } else {
519 uvm_map_setup(submap, *min, *max, pageable);
520 submap->pmap = vm_map_pmap(map);
521 }
522
523 /*
524 * now let uvm_map_submap plug in it...
525 */
526
527 if (uvm_map_submap(map, *min, *max, submap) != KERN_SUCCESS)
528 panic("uvm_km_suballoc: submap allocation failed");
529
530 return(submap);
531 }
532
533 /*
534 * uvm_km_pgremove: remove pages from a kernel uvm_object.
535 *
536 * => when you unmap a part of anonymous kernel memory you want to toss
537 * the pages right away. (this gets called from uvm_unmap_...).
538 */
539
540 #define UKM_HASH_PENALTY 4 /* a guess */
541
542 void
543 uvm_km_pgremove(uobj, start, end)
544 struct uvm_object *uobj;
545 vaddr_t start, end;
546 {
547 boolean_t by_list, is_aobj;
548 struct vm_page *pp, *ppnext;
549 vaddr_t curoff;
550 UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
551
552 simple_lock(&uobj->vmobjlock); /* lock object */
553
554 /* is uobj an aobj? */
555 is_aobj = uobj->pgops == &aobj_pager;
556
557 /* choose cheapest traversal */
558 by_list = (uobj->uo_npages <=
559 ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
560
561 if (by_list)
562 goto loop_by_list;
563
564 /* by hash */
565
566 for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
567 pp = uvm_pagelookup(uobj, curoff);
568 if (pp == NULL)
569 continue;
570
571 UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,
572 pp->flags & PG_BUSY, 0, 0);
573 /* now do the actual work */
574 if (pp->flags & PG_BUSY)
575 /* owner must check for this when done */
576 pp->flags |= PG_RELEASED;
577 else {
578 pmap_page_protect(PMAP_PGARG(pp), VM_PROT_NONE);
579
580 /*
581 * if this kernel object is an aobj, free the swap slot.
582 */
583 if (is_aobj) {
584 int slot = uao_set_swslot(uobj,
585 curoff >> PAGE_SHIFT,
586 0);
587
588 if (slot)
589 uvm_swap_free(slot, 1);
590 }
591
592 uvm_lock_pageq();
593 uvm_pagefree(pp);
594 uvm_unlock_pageq();
595 }
596 /* done */
597
598 }
599 simple_unlock(&uobj->vmobjlock);
600 return;
601
602 loop_by_list:
603
604 for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
605
606 ppnext = pp->listq.tqe_next;
607 if (pp->offset < start || pp->offset >= end) {
608 continue;
609 }
610
611 UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,
612 pp->flags & PG_BUSY, 0, 0);
613 /* now do the actual work */
614 if (pp->flags & PG_BUSY)
615 /* owner must check for this when done */
616 pp->flags |= PG_RELEASED;
617 else {
618 pmap_page_protect(PMAP_PGARG(pp), VM_PROT_NONE);
619
620 /*
621 * if this kernel object is an aobj, free the swap slot.
622 */
623 if (is_aobj) {
624 int slot = uao_set_swslot(uobj,
625 pp->offset >> PAGE_SHIFT, 0);
626
627 if (slot)
628 uvm_swap_free(slot, 1);
629 }
630
631 uvm_lock_pageq();
632 uvm_pagefree(pp);
633 uvm_unlock_pageq();
634 }
635 /* done */
636
637 }
638 simple_unlock(&uobj->vmobjlock);
639 return;
640 }
641
642
643 /*
644 * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
645 *
646 * => we map wired memory into the specified map using the obj passed in
647 * => NOTE: we can return NULL even if we can wait if there is not enough
648 * free VM space in the map... caller should be prepared to handle
649 * this case.
650 * => we return KVA of memory allocated
651 * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
652 * lock the map
653 */
654
655 vaddr_t
656 uvm_km_kmemalloc(map, obj, size, flags)
657 vm_map_t map;
658 struct uvm_object *obj;
659 vsize_t size;
660 int flags;
661 {
662 vaddr_t kva, loopva;
663 vaddr_t offset;
664 struct vm_page *pg;
665 UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
666
667
668 UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
669 map, obj, size, flags);
670 #ifdef DIAGNOSTIC
671 /* sanity check */
672 if (vm_map_pmap(map) != pmap_kernel())
673 panic("uvm_km_kmemalloc: invalid map");
674 #endif
675
676 /*
677 * setup for call
678 */
679
680 size = round_page(size);
681 kva = vm_map_min(map); /* hint */
682
683 /*
684 * allocate some virtual space
685 */
686
687 if (uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
688 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
689 UVM_ADV_RANDOM,
690 (flags & UVM_KMF_TRYLOCK)))
691 != KERN_SUCCESS) {
692 UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
693 return(0);
694 }
695
696 /*
697 * if all we wanted was VA, return now
698 */
699
700 if (flags & UVM_KMF_VALLOC) {
701 UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
702 return(kva);
703 }
704 /*
705 * recover object offset from virtual address
706 */
707
708 offset = kva - vm_map_min(kernel_map);
709 UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
710
711 /*
712 * now allocate and map in the memory... note that we are the only ones
713 * whom should ever get a handle on this area of VM.
714 */
715
716 loopva = kva;
717 while (size) {
718 simple_lock(&obj->vmobjlock);
719 pg = uvm_pagealloc(obj, offset, NULL);
720 if (pg) {
721 pg->flags &= ~PG_BUSY; /* new page */
722 UVM_PAGE_OWN(pg, NULL);
723 }
724 simple_unlock(&obj->vmobjlock);
725
726 /*
727 * out of memory?
728 */
729
730 if (pg == NULL) {
731 if (flags & UVM_KMF_NOWAIT) {
732 /* free everything! */
733 uvm_unmap(map, kva, kva + size);
734 return(0);
735 } else {
736 uvm_wait("km_getwait2"); /* sleep here */
737 continue;
738 }
739 }
740
741 /*
742 * map it in: note that we call pmap_enter with the map and
743 * object unlocked in case we are kmem_map/kmem_object
744 * (because if pmap_enter wants to allocate out of kmem_object
745 * it will need to lock it itself!)
746 */
747 #if defined(PMAP_NEW)
748 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), VM_PROT_ALL);
749 #else
750 pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
751 UVM_PROT_ALL, TRUE);
752 #endif
753 loopva += PAGE_SIZE;
754 offset += PAGE_SIZE;
755 size -= PAGE_SIZE;
756 }
757
758 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
759 return(kva);
760 }
761
762 /*
763 * uvm_km_free: free an area of kernel memory
764 */
765
766 void
767 uvm_km_free(map, addr, size)
768 vm_map_t map;
769 vaddr_t addr;
770 vsize_t size;
771 {
772
773 uvm_unmap(map, trunc_page(addr), round_page(addr+size));
774 }
775
776 /*
777 * uvm_km_free_wakeup: free an area of kernel memory and wake up
778 * anyone waiting for vm space.
779 *
780 * => XXX: "wanted" bit + unlock&wait on other end?
781 */
782
783 void
784 uvm_km_free_wakeup(map, addr, size)
785 vm_map_t map;
786 vaddr_t addr;
787 vsize_t size;
788 {
789 vm_map_entry_t dead_entries;
790
791 vm_map_lock(map);
792 (void)uvm_unmap_remove(map, trunc_page(addr), round_page(addr+size),
793 &dead_entries);
794 thread_wakeup(map);
795 vm_map_unlock(map);
796
797 if (dead_entries != NULL)
798 uvm_unmap_detach(dead_entries, 0);
799 }
800
801 /*
802 * uvm_km_alloc1: allocate wired down memory in the kernel map.
803 *
804 * => we can sleep if needed
805 */
806
807 vaddr_t
808 uvm_km_alloc1(map, size, zeroit)
809 vm_map_t map;
810 vsize_t size;
811 boolean_t zeroit;
812 {
813 vaddr_t kva, loopva, offset;
814 struct vm_page *pg;
815 UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
816
817 UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
818
819 #ifdef DIAGNOSTIC
820 if (vm_map_pmap(map) != pmap_kernel())
821 panic("uvm_km_alloc1");
822 #endif
823
824 size = round_page(size);
825 kva = vm_map_min(map); /* hint */
826
827 /*
828 * allocate some virtual space
829 */
830
831 if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
832 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
833 UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
834 UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
835 return(0);
836 }
837
838 /*
839 * recover object offset from virtual address
840 */
841
842 offset = kva - vm_map_min(kernel_map);
843 UVMHIST_LOG(maphist," kva=0x%x, offset=0x%x", kva, offset,0,0);
844
845 /*
846 * now allocate the memory. we must be careful about released pages.
847 */
848
849 loopva = kva;
850 while (size) {
851 simple_lock(&uvm.kernel_object->vmobjlock);
852 pg = uvm_pagelookup(uvm.kernel_object, offset);
853
854 /*
855 * if we found a page in an unallocated region, it must be
856 * released
857 */
858 if (pg) {
859 if ((pg->flags & PG_RELEASED) == 0)
860 panic("uvm_km_alloc1: non-released page");
861 pg->flags |= PG_WANTED;
862 UVM_UNLOCK_AND_WAIT(pg, &uvm.kernel_object->vmobjlock,
863 0, "km_alloc", 0);
864 continue; /* retry */
865 }
866
867 /* allocate ram */
868 pg = uvm_pagealloc(uvm.kernel_object, offset, NULL);
869 if (pg) {
870 pg->flags &= ~PG_BUSY; /* new page */
871 UVM_PAGE_OWN(pg, NULL);
872 }
873 simple_unlock(&uvm.kernel_object->vmobjlock);
874 if (pg == NULL) {
875 uvm_wait("km_alloc1w"); /* wait for memory */
876 continue;
877 }
878
879 /* map it in */
880 #if defined(PMAP_NEW)
881 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), UVM_PROT_ALL);
882 #else
883 pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
884 UVM_PROT_ALL, TRUE);
885 #endif
886 loopva += PAGE_SIZE;
887 offset += PAGE_SIZE;
888 size -= PAGE_SIZE;
889 }
890
891 /*
892 * zero on request (note that "size" is now zero due to the above loop
893 * so we need to subtract kva from loopva to reconstruct the size).
894 */
895
896 if (zeroit)
897 memset((caddr_t)kva, 0, loopva - kva);
898
899 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
900 return(kva);
901 }
902
903 /*
904 * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
905 *
906 * => memory is not allocated until fault time
907 */
908
909 vaddr_t
910 uvm_km_valloc(map, size)
911 vm_map_t map;
912 vsize_t size;
913 {
914 vaddr_t kva;
915 UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
916
917 UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
918
919 #ifdef DIAGNOSTIC
920 if (vm_map_pmap(map) != pmap_kernel())
921 panic("uvm_km_valloc");
922 #endif
923
924 size = round_page(size);
925 kva = vm_map_min(map); /* hint */
926
927 /*
928 * allocate some virtual space. will be demand filled by kernel_object.
929 */
930
931 if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
932 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
933 UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
934 UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
935 return(0);
936 }
937
938 UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
939 return(kva);
940 }
941
942 /*
943 * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
944 *
945 * => memory is not allocated until fault time
946 * => if no room in map, wait for space to free, unless requested size
947 * is larger than map (in which case we return 0)
948 */
949
950 vaddr_t
951 uvm_km_valloc_wait(map, size)
952 vm_map_t map;
953 vsize_t size;
954 {
955 vaddr_t kva;
956 UVMHIST_FUNC("uvm_km_valloc_wait"); UVMHIST_CALLED(maphist);
957
958 UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
959
960 #ifdef DIAGNOSTIC
961 if (vm_map_pmap(map) != pmap_kernel())
962 panic("uvm_km_valloc_wait");
963 #endif
964
965 size = round_page(size);
966 if (size > vm_map_max(map) - vm_map_min(map))
967 return(0);
968
969 while (1) {
970 kva = vm_map_min(map); /* hint */
971
972 /*
973 * allocate some virtual space. will be demand filled
974 * by kernel_object.
975 */
976
977 if (uvm_map(map, &kva, size, uvm.kernel_object,
978 UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL,
979 UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
980 == KERN_SUCCESS) {
981 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
982 return(kva);
983 }
984
985 /*
986 * failed. sleep for a while (on map)
987 */
988
989 UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
990 tsleep((caddr_t)map, PVM, "vallocwait", 0);
991 }
992 /*NOTREACHED*/
993 }
994
995 /* Sanity; must specify both or none. */
996 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
997 (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
998 #error Must specify MAP and UNMAP together.
999 #endif
1000
1001 /*
1002 * uvm_km_alloc_poolpage: allocate a page for the pool allocator
1003 *
1004 * => if the pmap specifies an alternate mapping method, we use it.
1005 */
1006
1007 /* ARGSUSED */
1008 vaddr_t
1009 uvm_km_alloc_poolpage1(map, obj, waitok)
1010 vm_map_t map;
1011 struct uvm_object *obj;
1012 boolean_t waitok;
1013 {
1014 #if defined(PMAP_MAP_POOLPAGE)
1015 struct vm_page *pg;
1016 vaddr_t va;
1017
1018 again:
1019 pg = uvm_pagealloc(NULL, 0, NULL);
1020 if (pg == NULL) {
1021 if (waitok) {
1022 uvm_wait("plpg");
1023 goto again;
1024 } else
1025 return (0);
1026 }
1027 va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
1028 if (va == 0)
1029 uvm_pagefree(pg);
1030 return (va);
1031 #else
1032 vaddr_t va;
1033 int s;
1034
1035 /*
1036 * NOTE: We may be called with a map that doens't require splimp
1037 * protection (e.g. kernel_map). However, it does not hurt to
1038 * go to splimp in this case (since unprocted maps will never be
1039 * accessed in interrupt context).
1040 *
1041 * XXX We may want to consider changing the interface to this
1042 * XXX function.
1043 */
1044
1045 s = splimp();
1046 va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
1047 splx(s);
1048 return (va);
1049 #endif /* PMAP_MAP_POOLPAGE */
1050 }
1051
1052 /*
1053 * uvm_km_free_poolpage: free a previously allocated pool page
1054 *
1055 * => if the pmap specifies an alternate unmapping method, we use it.
1056 */
1057
1058 /* ARGSUSED */
1059 void
1060 uvm_km_free_poolpage1(map, addr)
1061 vm_map_t map;
1062 vaddr_t addr;
1063 {
1064 #if defined(PMAP_UNMAP_POOLPAGE)
1065 paddr_t pa;
1066
1067 pa = PMAP_UNMAP_POOLPAGE(addr);
1068 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
1069 #else
1070 int s;
1071
1072 /*
1073 * NOTE: We may be called with a map that doens't require splimp
1074 * protection (e.g. kernel_map). However, it does not hurt to
1075 * go to splimp in this case (since unprocted maps will never be
1076 * accessed in interrupt context).
1077 *
1078 * XXX We may want to consider changing the interface to this
1079 * XXX function.
1080 */
1081
1082 s = splimp();
1083 uvm_km_free(map, addr, PAGE_SIZE);
1084 splx(s);
1085 #endif /* PMAP_UNMAP_POOLPAGE */
1086 }
1087