uvm_km.c revision 1.19 1 /* $NetBSD: uvm_km.c,v 1.19 1999/03/24 03:45:27 cgd Exp $ */
2
3 /*
4 * XXXCDC: "ROUGH DRAFT" QUALITY UVM PRE-RELEASE FILE!
5 * >>>USE AT YOUR OWN RISK, WORK IS NOT FINISHED<<<
6 */
7 /*
8 * Copyright (c) 1997 Charles D. Cranor and Washington University.
9 * Copyright (c) 1991, 1993, The Regents of the University of California.
10 *
11 * All rights reserved.
12 *
13 * This code is derived from software contributed to Berkeley by
14 * The Mach Operating System project at Carnegie-Mellon University.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by Charles D. Cranor,
27 * Washington University, the University of California, Berkeley and
28 * its contributors.
29 * 4. Neither the name of the University nor the names of its contributors
30 * may be used to endorse or promote products derived from this software
31 * without specific prior written permission.
32 *
33 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43 * SUCH DAMAGE.
44 *
45 * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
46 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
47 *
48 *
49 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
50 * All rights reserved.
51 *
52 * Permission to use, copy, modify and distribute this software and
53 * its documentation is hereby granted, provided that both the copyright
54 * notice and this permission notice appear in all copies of the
55 * software, derivative works or modified versions, and any portions
56 * thereof, and that both notices appear in supporting documentation.
57 *
58 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
59 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
60 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
61 *
62 * Carnegie Mellon requests users of this software to return to
63 *
64 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
65 * School of Computer Science
66 * Carnegie Mellon University
67 * Pittsburgh PA 15213-3890
68 *
69 * any improvements or extensions that they make and grant Carnegie the
70 * rights to redistribute these changes.
71 */
72
73 #include "opt_uvmhist.h"
74 #include "opt_pmap_new.h"
75
76 /*
77 * uvm_km.c: handle kernel memory allocation and management
78 */
79
80 /*
81 * overview of kernel memory management:
82 *
83 * the kernel virtual address space is mapped by "kernel_map." kernel_map
84 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
85 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
86 *
87 * the kernel_map has several "submaps." submaps can only appear in
88 * the kernel_map (user processes can't use them). submaps "take over"
89 * the management of a sub-range of the kernel's address space. submaps
90 * are typically allocated at boot time and are never released. kernel
91 * virtual address space that is mapped by a submap is locked by the
92 * submap's lock -- not the kernel_map's lock.
93 *
94 * thus, the useful feature of submaps is that they allow us to break
95 * up the locking and protection of the kernel address space into smaller
96 * chunks.
97 *
98 * the vm system has several standard kernel submaps, including:
99 * kmem_map => contains only wired kernel memory for the kernel
100 * malloc. *** access to kmem_map must be protected
101 * by splimp() because we are allowed to call malloc()
102 * at interrupt time ***
103 * mb_map => memory for large mbufs, *** protected by splimp ***
104 * pager_map => used to map "buf" structures into kernel space
105 * exec_map => used during exec to handle exec args
106 * etc...
107 *
108 * the kernel allocates its private memory out of special uvm_objects whose
109 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
110 * are "special" and never die). all kernel objects should be thought of
111 * as large, fixed-sized, sparsely populated uvm_objects. each kernel
112 * object is equal to the size of kernel virtual address space (i.e. the
113 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
114 *
115 * most kernel private memory lives in kernel_object. the only exception
116 * to this is for memory that belongs to submaps that must be protected
117 * by splimp(). each of these submaps has their own private kernel
118 * object (e.g. kmem_object, mb_object).
119 *
120 * note that just because a kernel object spans the entire kernel virutal
121 * address space doesn't mean that it has to be mapped into the entire space.
122 * large chunks of a kernel object's space go unused either because
123 * that area of kernel VM is unmapped, or there is some other type of
124 * object mapped into that range (e.g. a vnode). for submap's kernel
125 * objects, the only part of the object that can ever be populated is the
126 * offsets that are managed by the submap.
127 *
128 * note that the "offset" in a kernel object is always the kernel virtual
129 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
130 * example:
131 * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
132 * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
133 * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
134 * then that means that the page at offset 0x235000 in kernel_object is
135 * mapped at 0xf8235000.
136 *
137 * note that the offsets in kmem_object and mb_object also follow this
138 * rule. this means that the offsets for kmem_object must fall in the
139 * range of [vm_map_min(kmem_object) - vm_map_min(kernel_map)] to
140 * [vm_map_max(kmem_object) - vm_map_min(kernel_map)], so the offsets
141 * in those objects will typically not start at zero.
142 *
143 * kernel object have one other special property: when the kernel virtual
144 * memory mapping them is unmapped, the backing memory in the object is
145 * freed right away. this is done with the uvm_km_pgremove() function.
146 * this has to be done because there is no backing store for kernel pages
147 * and no need to save them after they are no longer referenced.
148 */
149
150 #include <sys/param.h>
151 #include <sys/systm.h>
152 #include <sys/proc.h>
153
154 #include <vm/vm.h>
155 #include <vm/vm_page.h>
156 #include <vm/vm_kern.h>
157
158 #include <uvm/uvm.h>
159
160 /*
161 * global data structures
162 */
163
164 vm_map_t kernel_map = NULL;
165
166 /*
167 * local functions
168 */
169
170 static int uvm_km_get __P((struct uvm_object *, vaddr_t,
171 vm_page_t *, int *, int, vm_prot_t, int, int));
172 /*
173 * local data structues
174 */
175
176 static struct vm_map kernel_map_store;
177 static struct uvm_object kmem_object_store;
178 static struct uvm_object mb_object_store;
179
180 static struct uvm_pagerops km_pager = {
181 NULL, /* init */
182 NULL, /* reference */
183 NULL, /* detach */
184 NULL, /* fault */
185 NULL, /* flush */
186 uvm_km_get, /* get */
187 /* ... rest are NULL */
188 };
189
190 /*
191 * uvm_km_get: pager get function for kernel objects
192 *
193 * => currently we do not support pageout to the swap area, so this
194 * pager is very simple. eventually we may want an anonymous
195 * object pager which will do paging.
196 * => XXXCDC: this pager should be phased out in favor of the aobj pager
197 */
198
199
200 static int
201 uvm_km_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
202 struct uvm_object *uobj;
203 vaddr_t offset;
204 struct vm_page **pps;
205 int *npagesp;
206 int centeridx, advice, flags;
207 vm_prot_t access_type;
208 {
209 vaddr_t current_offset;
210 vm_page_t ptmp;
211 int lcv, gotpages, maxpages;
212 boolean_t done;
213 UVMHIST_FUNC("uvm_km_get"); UVMHIST_CALLED(maphist);
214
215 UVMHIST_LOG(maphist, "flags=%d", flags,0,0,0);
216
217 /*
218 * get number of pages
219 */
220
221 maxpages = *npagesp;
222
223 /*
224 * step 1: handled the case where fault data structures are locked.
225 */
226
227 if (flags & PGO_LOCKED) {
228
229 /*
230 * step 1a: get pages that are already resident. only do
231 * this if the data structures are locked (i.e. the first time
232 * through).
233 */
234
235 done = TRUE; /* be optimistic */
236 gotpages = 0; /* # of pages we got so far */
237
238 for (lcv = 0, current_offset = offset ;
239 lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
240
241 /* do we care about this page? if not, skip it */
242 if (pps[lcv] == PGO_DONTCARE)
243 continue;
244
245 /* lookup page */
246 ptmp = uvm_pagelookup(uobj, current_offset);
247
248 /* null? attempt to allocate the page */
249 if (ptmp == NULL) {
250 ptmp = uvm_pagealloc(uobj, current_offset,
251 NULL);
252 if (ptmp) {
253 /* new page */
254 ptmp->flags &= ~(PG_BUSY|PG_FAKE);
255 UVM_PAGE_OWN(ptmp, NULL);
256 uvm_pagezero(ptmp);
257 }
258 }
259
260 /*
261 * to be useful must get a non-busy, non-released page
262 */
263 if (ptmp == NULL ||
264 (ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
265 if (lcv == centeridx ||
266 (flags & PGO_ALLPAGES) != 0)
267 /* need to do a wait or I/O! */
268 done = FALSE;
269 continue;
270 }
271
272 /*
273 * useful page: busy/lock it and plug it in our
274 * result array
275 */
276
277 /* caller must un-busy this page */
278 ptmp->flags |= PG_BUSY;
279 UVM_PAGE_OWN(ptmp, "uvm_km_get1");
280 pps[lcv] = ptmp;
281 gotpages++;
282
283 } /* "for" lcv loop */
284
285 /*
286 * step 1b: now we've either done everything needed or we
287 * to unlock and do some waiting or I/O.
288 */
289
290 UVMHIST_LOG(maphist, "<- done (done=%d)", done, 0,0,0);
291
292 *npagesp = gotpages;
293 if (done)
294 return(VM_PAGER_OK); /* bingo! */
295 else
296 return(VM_PAGER_UNLOCK); /* EEK! Need to
297 * unlock and I/O */
298 }
299
300 /*
301 * step 2: get non-resident or busy pages.
302 * object is locked. data structures are unlocked.
303 */
304
305 for (lcv = 0, current_offset = offset ;
306 lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
307
308 /* skip over pages we've already gotten or don't want */
309 /* skip over pages we don't _have_ to get */
310 if (pps[lcv] != NULL ||
311 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
312 continue;
313
314 /*
315 * we have yet to locate the current page (pps[lcv]). we
316 * first look for a page that is already at the current offset.
317 * if we find a page, we check to see if it is busy or
318 * released. if that is the case, then we sleep on the page
319 * until it is no longer busy or released and repeat the
320 * lookup. if the page we found is neither busy nor
321 * released, then we busy it (so we own it) and plug it into
322 * pps[lcv]. this 'break's the following while loop and
323 * indicates we are ready to move on to the next page in the
324 * "lcv" loop above.
325 *
326 * if we exit the while loop with pps[lcv] still set to NULL,
327 * then it means that we allocated a new busy/fake/clean page
328 * ptmp in the object and we need to do I/O to fill in the
329 * data.
330 */
331
332 while (pps[lcv] == NULL) { /* top of "pps" while loop */
333
334 /* look for a current page */
335 ptmp = uvm_pagelookup(uobj, current_offset);
336
337 /* nope? allocate one now (if we can) */
338 if (ptmp == NULL) {
339
340 ptmp = uvm_pagealloc(uobj, current_offset,
341 NULL); /* alloc */
342
343 /* out of RAM? */
344 if (ptmp == NULL) {
345 simple_unlock(&uobj->vmobjlock);
346 uvm_wait("kmgetwait1");
347 simple_lock(&uobj->vmobjlock);
348 /* goto top of pps while loop */
349 continue;
350 }
351
352 /*
353 * got new page ready for I/O. break pps
354 * while loop. pps[lcv] is still NULL.
355 */
356 break;
357 }
358
359 /* page is there, see if we need to wait on it */
360 if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
361 ptmp->flags |= PG_WANTED;
362 UVM_UNLOCK_AND_WAIT(ptmp,&uobj->vmobjlock, 0,
363 "uvn_get",0);
364 simple_lock(&uobj->vmobjlock);
365 continue; /* goto top of pps while loop */
366 }
367
368 /*
369 * if we get here then the page has become resident
370 * and unbusy between steps 1 and 2. we busy it now
371 * (so we own it) and set pps[lcv] (so that we exit
372 * the while loop). caller must un-busy.
373 */
374 ptmp->flags |= PG_BUSY;
375 UVM_PAGE_OWN(ptmp, "uvm_km_get2");
376 pps[lcv] = ptmp;
377 }
378
379 /*
380 * if we own the a valid page at the correct offset, pps[lcv]
381 * will point to it. nothing more to do except go to the
382 * next page.
383 */
384
385 if (pps[lcv])
386 continue; /* next lcv */
387
388 /*
389 * we have a "fake/busy/clean" page that we just allocated.
390 * do the needed "i/o" (in this case that means zero it).
391 */
392
393 uvm_pagezero(ptmp);
394 ptmp->flags &= ~(PG_FAKE);
395 pps[lcv] = ptmp;
396
397 } /* lcv loop */
398
399 /*
400 * finally, unlock object and return.
401 */
402
403 simple_unlock(&uobj->vmobjlock);
404 UVMHIST_LOG(maphist, "<- done (OK)",0,0,0,0);
405 return(VM_PAGER_OK);
406 }
407
408 /*
409 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
410 * KVM already allocated for text, data, bss, and static data structures).
411 *
412 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
413 * we assume that [min -> start] has already been allocated and that
414 * "end" is the end.
415 */
416
417 void
418 uvm_km_init(start, end)
419 vaddr_t start, end;
420 {
421 vaddr_t base = VM_MIN_KERNEL_ADDRESS;
422
423 /*
424 * first, init kernel memory objects.
425 */
426
427 /* kernel_object: for pageable anonymous kernel memory */
428 uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
429 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
430
431 /* kmem_object: for malloc'd memory (wired, protected by splimp) */
432 simple_lock_init(&kmem_object_store.vmobjlock);
433 kmem_object_store.pgops = &km_pager;
434 TAILQ_INIT(&kmem_object_store.memq);
435 kmem_object_store.uo_npages = 0;
436 /* we are special. we never die */
437 kmem_object_store.uo_refs = UVM_OBJ_KERN;
438 uvmexp.kmem_object = &kmem_object_store;
439
440 /* mb_object: for mbuf memory (always wired, protected by splimp) */
441 simple_lock_init(&mb_object_store.vmobjlock);
442 mb_object_store.pgops = &km_pager;
443 TAILQ_INIT(&mb_object_store.memq);
444 mb_object_store.uo_npages = 0;
445 /* we are special. we never die */
446 mb_object_store.uo_refs = UVM_OBJ_KERN;
447 uvmexp.mb_object = &mb_object_store;
448
449 /*
450 * init the map and reserve allready allocated kernel space
451 * before installing.
452 */
453
454 uvm_map_setup(&kernel_map_store, base, end, FALSE);
455 kernel_map_store.pmap = pmap_kernel();
456 if (uvm_map(&kernel_map_store, &base, start - base, NULL,
457 UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
458 UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != KERN_SUCCESS)
459 panic("uvm_km_init: could not reserve space for kernel");
460
461 /*
462 * install!
463 */
464
465 kernel_map = &kernel_map_store;
466 }
467
468 /*
469 * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
470 * is allocated all references to that area of VM must go through it. this
471 * allows the locking of VAs in kernel_map to be broken up into regions.
472 *
473 * => if `fixed' is true, *min specifies where the region described
474 * by the submap must start
475 * => if submap is non NULL we use that as the submap, otherwise we
476 * alloc a new map
477 */
478 struct vm_map *
479 uvm_km_suballoc(map, min, max, size, pageable, fixed, submap)
480 struct vm_map *map;
481 vaddr_t *min, *max; /* OUT, OUT */
482 vsize_t size;
483 boolean_t pageable;
484 boolean_t fixed;
485 struct vm_map *submap;
486 {
487 int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
488
489 size = round_page(size); /* round up to pagesize */
490
491 /*
492 * first allocate a blank spot in the parent map
493 */
494
495 if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET,
496 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
497 UVM_ADV_RANDOM, mapflags)) != KERN_SUCCESS) {
498 panic("uvm_km_suballoc: unable to allocate space in parent map");
499 }
500
501 /*
502 * set VM bounds (min is filled in by uvm_map)
503 */
504
505 *max = *min + size;
506
507 /*
508 * add references to pmap and create or init the submap
509 */
510
511 pmap_reference(vm_map_pmap(map));
512 if (submap == NULL) {
513 submap = uvm_map_create(vm_map_pmap(map), *min, *max, pageable);
514 if (submap == NULL)
515 panic("uvm_km_suballoc: unable to create submap");
516 } else {
517 uvm_map_setup(submap, *min, *max, pageable);
518 submap->pmap = vm_map_pmap(map);
519 }
520
521 /*
522 * now let uvm_map_submap plug in it...
523 */
524
525 if (uvm_map_submap(map, *min, *max, submap) != KERN_SUCCESS)
526 panic("uvm_km_suballoc: submap allocation failed");
527
528 return(submap);
529 }
530
531 /*
532 * uvm_km_pgremove: remove pages from a kernel uvm_object.
533 *
534 * => when you unmap a part of anonymous kernel memory you want to toss
535 * the pages right away. (this gets called from uvm_unmap_...).
536 */
537
538 #define UKM_HASH_PENALTY 4 /* a guess */
539
540 void
541 uvm_km_pgremove(uobj, start, end)
542 struct uvm_object *uobj;
543 vaddr_t start, end;
544 {
545 boolean_t by_list, is_aobj;
546 struct vm_page *pp, *ppnext;
547 vaddr_t curoff;
548 UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
549
550 simple_lock(&uobj->vmobjlock); /* lock object */
551
552 /* is uobj an aobj? */
553 is_aobj = uobj->pgops == &aobj_pager;
554
555 /* choose cheapest traversal */
556 by_list = (uobj->uo_npages <=
557 ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
558
559 if (by_list)
560 goto loop_by_list;
561
562 /* by hash */
563
564 for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
565 pp = uvm_pagelookup(uobj, curoff);
566 if (pp == NULL)
567 continue;
568
569 UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,
570 pp->flags & PG_BUSY, 0, 0);
571 /* now do the actual work */
572 if (pp->flags & PG_BUSY)
573 /* owner must check for this when done */
574 pp->flags |= PG_RELEASED;
575 else {
576 pmap_page_protect(PMAP_PGARG(pp), VM_PROT_NONE);
577
578 /*
579 * if this kernel object is an aobj, free the swap slot.
580 */
581 if (is_aobj) {
582 int slot = uao_set_swslot(uobj,
583 curoff >> PAGE_SHIFT,
584 0);
585
586 if (slot)
587 uvm_swap_free(slot, 1);
588 }
589
590 uvm_lock_pageq();
591 uvm_pagefree(pp);
592 uvm_unlock_pageq();
593 }
594 /* done */
595
596 }
597 simple_unlock(&uobj->vmobjlock);
598 return;
599
600 loop_by_list:
601
602 for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
603
604 ppnext = pp->listq.tqe_next;
605 if (pp->offset < start || pp->offset >= end) {
606 continue;
607 }
608
609 UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,
610 pp->flags & PG_BUSY, 0, 0);
611 /* now do the actual work */
612 if (pp->flags & PG_BUSY)
613 /* owner must check for this when done */
614 pp->flags |= PG_RELEASED;
615 else {
616 pmap_page_protect(PMAP_PGARG(pp), VM_PROT_NONE);
617
618 /*
619 * if this kernel object is an aobj, free the swap slot.
620 */
621 if (is_aobj) {
622 int slot = uao_set_swslot(uobj,
623 pp->offset >> PAGE_SHIFT, 0);
624
625 if (slot)
626 uvm_swap_free(slot, 1);
627 }
628
629 uvm_lock_pageq();
630 uvm_pagefree(pp);
631 uvm_unlock_pageq();
632 }
633 /* done */
634
635 }
636 simple_unlock(&uobj->vmobjlock);
637 return;
638 }
639
640
641 /*
642 * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
643 *
644 * => we map wired memory into the specified map using the obj passed in
645 * => NOTE: we can return NULL even if we can wait if there is not enough
646 * free VM space in the map... caller should be prepared to handle
647 * this case.
648 * => we return KVA of memory allocated
649 * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
650 * lock the map
651 */
652
653 vaddr_t
654 uvm_km_kmemalloc(map, obj, size, flags)
655 vm_map_t map;
656 struct uvm_object *obj;
657 vsize_t size;
658 int flags;
659 {
660 vaddr_t kva, loopva;
661 vaddr_t offset;
662 struct vm_page *pg;
663 UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
664
665
666 UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
667 map, obj, size, flags);
668 #ifdef DIAGNOSTIC
669 /* sanity check */
670 if (vm_map_pmap(map) != pmap_kernel())
671 panic("uvm_km_kmemalloc: invalid map");
672 #endif
673
674 /*
675 * setup for call
676 */
677
678 size = round_page(size);
679 kva = vm_map_min(map); /* hint */
680
681 /*
682 * allocate some virtual space
683 */
684
685 if (uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
686 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
687 UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
688 != KERN_SUCCESS) {
689 UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
690 return(0);
691 }
692
693 /*
694 * if all we wanted was VA, return now
695 */
696
697 if (flags & UVM_KMF_VALLOC) {
698 UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
699 return(kva);
700 }
701 /*
702 * recover object offset from virtual address
703 */
704
705 offset = kva - vm_map_min(kernel_map);
706 UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
707
708 /*
709 * now allocate and map in the memory... note that we are the only ones
710 * whom should ever get a handle on this area of VM.
711 */
712
713 loopva = kva;
714 while (size) {
715 simple_lock(&obj->vmobjlock);
716 pg = uvm_pagealloc(obj, offset, NULL);
717 if (pg) {
718 pg->flags &= ~PG_BUSY; /* new page */
719 UVM_PAGE_OWN(pg, NULL);
720 }
721 simple_unlock(&obj->vmobjlock);
722
723 /*
724 * out of memory?
725 */
726
727 if (pg == NULL) {
728 if (flags & UVM_KMF_NOWAIT) {
729 /* free everything! */
730 uvm_unmap(map, kva, kva + size);
731 return(0);
732 } else {
733 uvm_wait("km_getwait2"); /* sleep here */
734 continue;
735 }
736 }
737
738 /*
739 * map it in: note that we call pmap_enter with the map and
740 * object unlocked in case we are kmem_map/kmem_object
741 * (because if pmap_enter wants to allocate out of kmem_object
742 * it will need to lock it itself!)
743 */
744 #if defined(PMAP_NEW)
745 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), VM_PROT_ALL);
746 #else
747 pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
748 UVM_PROT_ALL, TRUE);
749 #endif
750 loopva += PAGE_SIZE;
751 offset += PAGE_SIZE;
752 size -= PAGE_SIZE;
753 }
754
755 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
756 return(kva);
757 }
758
759 /*
760 * uvm_km_free: free an area of kernel memory
761 */
762
763 void
764 uvm_km_free(map, addr, size)
765 vm_map_t map;
766 vaddr_t addr;
767 vsize_t size;
768 {
769
770 uvm_unmap(map, trunc_page(addr), round_page(addr+size));
771 }
772
773 /*
774 * uvm_km_free_wakeup: free an area of kernel memory and wake up
775 * anyone waiting for vm space.
776 *
777 * => XXX: "wanted" bit + unlock&wait on other end?
778 */
779
780 void
781 uvm_km_free_wakeup(map, addr, size)
782 vm_map_t map;
783 vaddr_t addr;
784 vsize_t size;
785 {
786 vm_map_entry_t dead_entries;
787
788 vm_map_lock(map);
789 (void)uvm_unmap_remove(map, trunc_page(addr), round_page(addr+size),
790 &dead_entries);
791 thread_wakeup(map);
792 vm_map_unlock(map);
793
794 if (dead_entries != NULL)
795 uvm_unmap_detach(dead_entries, 0);
796 }
797
798 /*
799 * uvm_km_alloc1: allocate wired down memory in the kernel map.
800 *
801 * => we can sleep if needed
802 */
803
804 vaddr_t
805 uvm_km_alloc1(map, size, zeroit)
806 vm_map_t map;
807 vsize_t size;
808 boolean_t zeroit;
809 {
810 vaddr_t kva, loopva, offset;
811 struct vm_page *pg;
812 UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
813
814 UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
815
816 #ifdef DIAGNOSTIC
817 if (vm_map_pmap(map) != pmap_kernel())
818 panic("uvm_km_alloc1");
819 #endif
820
821 size = round_page(size);
822 kva = vm_map_min(map); /* hint */
823
824 /*
825 * allocate some virtual space
826 */
827
828 if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
829 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
830 UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
831 UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
832 return(0);
833 }
834
835 /*
836 * recover object offset from virtual address
837 */
838
839 offset = kva - vm_map_min(kernel_map);
840 UVMHIST_LOG(maphist," kva=0x%x, offset=0x%x", kva, offset,0,0);
841
842 /*
843 * now allocate the memory. we must be careful about released pages.
844 */
845
846 loopva = kva;
847 while (size) {
848 simple_lock(&uvm.kernel_object->vmobjlock);
849 pg = uvm_pagelookup(uvm.kernel_object, offset);
850
851 /*
852 * if we found a page in an unallocated region, it must be
853 * released
854 */
855 if (pg) {
856 if ((pg->flags & PG_RELEASED) == 0)
857 panic("uvm_km_alloc1: non-released page");
858 pg->flags |= PG_WANTED;
859 UVM_UNLOCK_AND_WAIT(pg, &uvm.kernel_object->vmobjlock,
860 0, "km_alloc", 0);
861 continue; /* retry */
862 }
863
864 /* allocate ram */
865 pg = uvm_pagealloc(uvm.kernel_object, offset, NULL);
866 if (pg) {
867 pg->flags &= ~PG_BUSY; /* new page */
868 UVM_PAGE_OWN(pg, NULL);
869 }
870 simple_unlock(&uvm.kernel_object->vmobjlock);
871 if (pg == NULL) {
872 uvm_wait("km_alloc1w"); /* wait for memory */
873 continue;
874 }
875
876 /* map it in */
877 #if defined(PMAP_NEW)
878 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), UVM_PROT_ALL);
879 #else
880 pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
881 UVM_PROT_ALL, TRUE);
882 #endif
883 loopva += PAGE_SIZE;
884 offset += PAGE_SIZE;
885 size -= PAGE_SIZE;
886 }
887
888 /*
889 * zero on request (note that "size" is now zero due to the above loop
890 * so we need to subtract kva from loopva to reconstruct the size).
891 */
892
893 if (zeroit)
894 memset((caddr_t)kva, 0, loopva - kva);
895
896 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
897 return(kva);
898 }
899
900 /*
901 * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
902 *
903 * => memory is not allocated until fault time
904 */
905
906 vaddr_t
907 uvm_km_valloc(map, size)
908 vm_map_t map;
909 vsize_t size;
910 {
911 vaddr_t kva;
912 UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
913
914 UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
915
916 #ifdef DIAGNOSTIC
917 if (vm_map_pmap(map) != pmap_kernel())
918 panic("uvm_km_valloc");
919 #endif
920
921 size = round_page(size);
922 kva = vm_map_min(map); /* hint */
923
924 /*
925 * allocate some virtual space. will be demand filled by kernel_object.
926 */
927
928 if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
929 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
930 UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
931 UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
932 return(0);
933 }
934
935 UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
936 return(kva);
937 }
938
939 /*
940 * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
941 *
942 * => memory is not allocated until fault time
943 * => if no room in map, wait for space to free, unless requested size
944 * is larger than map (in which case we return 0)
945 */
946
947 vaddr_t
948 uvm_km_valloc_wait(map, size)
949 vm_map_t map;
950 vsize_t size;
951 {
952 vaddr_t kva;
953 UVMHIST_FUNC("uvm_km_valloc_wait"); UVMHIST_CALLED(maphist);
954
955 UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
956
957 #ifdef DIAGNOSTIC
958 if (vm_map_pmap(map) != pmap_kernel())
959 panic("uvm_km_valloc_wait");
960 #endif
961
962 size = round_page(size);
963 if (size > vm_map_max(map) - vm_map_min(map))
964 return(0);
965
966 while (1) {
967 kva = vm_map_min(map); /* hint */
968
969 /*
970 * allocate some virtual space. will be demand filled
971 * by kernel_object.
972 */
973
974 if (uvm_map(map, &kva, size, uvm.kernel_object,
975 UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL,
976 UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
977 == KERN_SUCCESS) {
978 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
979 return(kva);
980 }
981
982 /*
983 * failed. sleep for a while (on map)
984 */
985
986 UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
987 tsleep((caddr_t)map, PVM, "vallocwait", 0);
988 }
989 /*NOTREACHED*/
990 }
991
992 /* Sanity; must specify both or none. */
993 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
994 (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
995 #error Must specify MAP and UNMAP together.
996 #endif
997
998 /*
999 * uvm_km_alloc_poolpage: allocate a page for the pool allocator
1000 *
1001 * => if the pmap specifies an alternate mapping method, we use it.
1002 */
1003
1004 /* ARGSUSED */
1005 vaddr_t
1006 uvm_km_alloc_poolpage1(map, obj, waitok)
1007 vm_map_t map;
1008 struct uvm_object *obj;
1009 boolean_t waitok;
1010 {
1011 #if defined(PMAP_MAP_POOLPAGE)
1012 struct vm_page *pg;
1013 vaddr_t va;
1014
1015 again:
1016 pg = uvm_pagealloc(NULL, 0, NULL);
1017 if (pg == NULL) {
1018 if (waitok) {
1019 uvm_wait("plpg");
1020 goto again;
1021 } else
1022 return (0);
1023 }
1024 va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
1025 if (va == 0)
1026 uvm_pagefree(pg);
1027 return (va);
1028 #else
1029 vaddr_t va;
1030 int s;
1031
1032 /*
1033 * NOTE: We may be called with a map that doens't require splimp
1034 * protection (e.g. kernel_map). However, it does not hurt to
1035 * go to splimp in this case (since unprocted maps will never be
1036 * accessed in interrupt context).
1037 *
1038 * XXX We may want to consider changing the interface to this
1039 * XXX function.
1040 */
1041
1042 s = splimp();
1043 va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
1044 splx(s);
1045 return (va);
1046 #endif /* PMAP_MAP_POOLPAGE */
1047 }
1048
1049 /*
1050 * uvm_km_free_poolpage: free a previously allocated pool page
1051 *
1052 * => if the pmap specifies an alternate unmapping method, we use it.
1053 */
1054
1055 /* ARGSUSED */
1056 void
1057 uvm_km_free_poolpage1(map, addr)
1058 vm_map_t map;
1059 vaddr_t addr;
1060 {
1061 #if defined(PMAP_UNMAP_POOLPAGE)
1062 paddr_t pa;
1063
1064 pa = PMAP_UNMAP_POOLPAGE(addr);
1065 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
1066 #else
1067 int s;
1068
1069 /*
1070 * NOTE: We may be called with a map that doens't require splimp
1071 * protection (e.g. kernel_map). However, it does not hurt to
1072 * go to splimp in this case (since unprocted maps will never be
1073 * accessed in interrupt context).
1074 *
1075 * XXX We may want to consider changing the interface to this
1076 * XXX function.
1077 */
1078
1079 s = splimp();
1080 uvm_km_free(map, addr, PAGE_SIZE);
1081 splx(s);
1082 #endif /* PMAP_UNMAP_POOLPAGE */
1083 }
1084