Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.21
      1 /*	$NetBSD: uvm_km.c,v 1.21 1999/03/26 17:34:16 chs Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     42  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 #include "opt_uvmhist.h"
     70 #include "opt_pmap_new.h"
     71 
     72 /*
     73  * uvm_km.c: handle kernel memory allocation and management
     74  */
     75 
     76 /*
     77  * overview of kernel memory management:
     78  *
     79  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     80  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     81  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     82  *
     83  * the kernel_map has several "submaps."   submaps can only appear in
     84  * the kernel_map (user processes can't use them).   submaps "take over"
     85  * the management of a sub-range of the kernel's address space.  submaps
     86  * are typically allocated at boot time and are never released.   kernel
     87  * virtual address space that is mapped by a submap is locked by the
     88  * submap's lock -- not the kernel_map's lock.
     89  *
     90  * thus, the useful feature of submaps is that they allow us to break
     91  * up the locking and protection of the kernel address space into smaller
     92  * chunks.
     93  *
     94  * the vm system has several standard kernel submaps, including:
     95  *   kmem_map => contains only wired kernel memory for the kernel
     96  *		malloc.   *** access to kmem_map must be protected
     97  *		by splimp() because we are allowed to call malloc()
     98  *		at interrupt time ***
     99  *   mb_map => memory for large mbufs,  *** protected by splimp ***
    100  *   pager_map => used to map "buf" structures into kernel space
    101  *   exec_map => used during exec to handle exec args
    102  *   etc...
    103  *
    104  * the kernel allocates its private memory out of special uvm_objects whose
    105  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
    106  * are "special" and never die).   all kernel objects should be thought of
    107  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
    108  * object is equal to the size of kernel virtual address space (i.e. the
    109  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    110  *
    111  * most kernel private memory lives in kernel_object.   the only exception
    112  * to this is for memory that belongs to submaps that must be protected
    113  * by splimp().    each of these submaps has their own private kernel
    114  * object (e.g. kmem_object, mb_object).
    115  *
    116  * note that just because a kernel object spans the entire kernel virutal
    117  * address space doesn't mean that it has to be mapped into the entire space.
    118  * large chunks of a kernel object's space go unused either because
    119  * that area of kernel VM is unmapped, or there is some other type of
    120  * object mapped into that range (e.g. a vnode).    for submap's kernel
    121  * objects, the only part of the object that can ever be populated is the
    122  * offsets that are managed by the submap.
    123  *
    124  * note that the "offset" in a kernel object is always the kernel virtual
    125  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    126  * example:
    127  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    128  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    129  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    130  *   then that means that the page at offset 0x235000 in kernel_object is
    131  *   mapped at 0xf8235000.
    132  *
    133  * note that the offsets in kmem_object and mb_object also follow this
    134  * rule.   this means that the offsets for kmem_object must fall in the
    135  * range of [vm_map_min(kmem_object) - vm_map_min(kernel_map)] to
    136  * [vm_map_max(kmem_object) - vm_map_min(kernel_map)], so the offsets
    137  * in those objects will typically not start at zero.
    138  *
    139  * kernel object have one other special property: when the kernel virtual
    140  * memory mapping them is unmapped, the backing memory in the object is
    141  * freed right away.   this is done with the uvm_km_pgremove() function.
    142  * this has to be done because there is no backing store for kernel pages
    143  * and no need to save them after they are no longer referenced.
    144  */
    145 
    146 #include <sys/param.h>
    147 #include <sys/systm.h>
    148 #include <sys/proc.h>
    149 
    150 #include <vm/vm.h>
    151 #include <vm/vm_page.h>
    152 #include <vm/vm_kern.h>
    153 
    154 #include <uvm/uvm.h>
    155 
    156 /*
    157  * global data structures
    158  */
    159 
    160 vm_map_t kernel_map = NULL;
    161 
    162 /*
    163  * local functions
    164  */
    165 
    166 static int uvm_km_get __P((struct uvm_object *, vaddr_t,
    167 													 vm_page_t *, int *, int, vm_prot_t, int, int));
    168 /*
    169  * local data structues
    170  */
    171 
    172 static struct vm_map		kernel_map_store;
    173 static struct uvm_object	kmem_object_store;
    174 static struct uvm_object	mb_object_store;
    175 
    176 static struct uvm_pagerops km_pager = {
    177 	NULL,	/* init */
    178 	NULL, /* reference */
    179 	NULL, /* detach */
    180 	NULL, /* fault */
    181 	NULL, /* flush */
    182 	uvm_km_get, /* get */
    183 	/* ... rest are NULL */
    184 };
    185 
    186 /*
    187  * uvm_km_get: pager get function for kernel objects
    188  *
    189  * => currently we do not support pageout to the swap area, so this
    190  *    pager is very simple.    eventually we may want an anonymous
    191  *    object pager which will do paging.
    192  * => XXXCDC: this pager should be phased out in favor of the aobj pager
    193  */
    194 
    195 
    196 static int
    197 uvm_km_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
    198 	struct uvm_object *uobj;
    199 	vaddr_t offset;
    200 	struct vm_page **pps;
    201 	int *npagesp;
    202 	int centeridx, advice, flags;
    203 	vm_prot_t access_type;
    204 {
    205 	vaddr_t current_offset;
    206 	vm_page_t ptmp;
    207 	int lcv, gotpages, maxpages;
    208 	boolean_t done;
    209 	UVMHIST_FUNC("uvm_km_get"); UVMHIST_CALLED(maphist);
    210 
    211 	UVMHIST_LOG(maphist, "flags=%d", flags,0,0,0);
    212 
    213 	/*
    214 	 * get number of pages
    215 	 */
    216 
    217 	maxpages = *npagesp;
    218 
    219 	/*
    220 	 * step 1: handled the case where fault data structures are locked.
    221 	 */
    222 
    223 	if (flags & PGO_LOCKED) {
    224 
    225 		/*
    226 		 * step 1a: get pages that are already resident.   only do
    227 		 * this if the data structures are locked (i.e. the first time
    228 		 * through).
    229 		 */
    230 
    231 		done = TRUE;	/* be optimistic */
    232 		gotpages = 0;	/* # of pages we got so far */
    233 
    234 		for (lcv = 0, current_offset = offset ;
    235 		    lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
    236 
    237 			/* do we care about this page?  if not, skip it */
    238 			if (pps[lcv] == PGO_DONTCARE)
    239 				continue;
    240 
    241 			/* lookup page */
    242 			ptmp = uvm_pagelookup(uobj, current_offset);
    243 
    244 			/* null?  attempt to allocate the page */
    245 			if (ptmp == NULL) {
    246 				ptmp = uvm_pagealloc(uobj, current_offset,
    247 				    NULL);
    248 				if (ptmp) {
    249 					/* new page */
    250 					ptmp->flags &= ~(PG_BUSY|PG_FAKE);
    251 					UVM_PAGE_OWN(ptmp, NULL);
    252 					uvm_pagezero(ptmp);
    253 				}
    254 			}
    255 
    256 			/*
    257 			 * to be useful must get a non-busy, non-released page
    258 			 */
    259 			if (ptmp == NULL ||
    260 			    (ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
    261 				if (lcv == centeridx ||
    262 				    (flags & PGO_ALLPAGES) != 0)
    263 					/* need to do a wait or I/O! */
    264 					done = FALSE;
    265 				continue;
    266 			}
    267 
    268 			/*
    269 			 * useful page: busy/lock it and plug it in our
    270 			 * result array
    271 			 */
    272 
    273 			/* caller must un-busy this page */
    274 			ptmp->flags |= PG_BUSY;
    275 			UVM_PAGE_OWN(ptmp, "uvm_km_get1");
    276 			pps[lcv] = ptmp;
    277 			gotpages++;
    278 
    279 		}	/* "for" lcv loop */
    280 
    281 		/*
    282 		 * step 1b: now we've either done everything needed or we
    283 		 * to unlock and do some waiting or I/O.
    284 		 */
    285 
    286 		UVMHIST_LOG(maphist, "<- done (done=%d)", done, 0,0,0);
    287 
    288 		*npagesp = gotpages;
    289 		if (done)
    290 			return(VM_PAGER_OK);		/* bingo! */
    291 		else
    292 			return(VM_PAGER_UNLOCK);	/* EEK!   Need to
    293 							 * unlock and I/O */
    294 	}
    295 
    296 	/*
    297 	 * step 2: get non-resident or busy pages.
    298 	 * object is locked.   data structures are unlocked.
    299 	 */
    300 
    301 	for (lcv = 0, current_offset = offset ;
    302 	    lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
    303 
    304 		/* skip over pages we've already gotten or don't want */
    305 		/* skip over pages we don't _have_ to get */
    306 		if (pps[lcv] != NULL ||
    307 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
    308 			continue;
    309 
    310 		/*
    311 		 * we have yet to locate the current page (pps[lcv]).   we
    312 		 * first look for a page that is already at the current offset.
    313 		 * if we find a page, we check to see if it is busy or
    314 		 * released.  if that is the case, then we sleep on the page
    315 		 * until it is no longer busy or released and repeat the
    316 		 * lookup.    if the page we found is neither busy nor
    317 		 * released, then we busy it (so we own it) and plug it into
    318 		 * pps[lcv].   this 'break's the following while loop and
    319 		 * indicates we are ready to move on to the next page in the
    320 		 * "lcv" loop above.
    321 		 *
    322 		 * if we exit the while loop with pps[lcv] still set to NULL,
    323 		 * then it means that we allocated a new busy/fake/clean page
    324 		 * ptmp in the object and we need to do I/O to fill in the
    325 		 * data.
    326 		 */
    327 
    328 		while (pps[lcv] == NULL) {	/* top of "pps" while loop */
    329 
    330 			/* look for a current page */
    331 			ptmp = uvm_pagelookup(uobj, current_offset);
    332 
    333 			/* nope?   allocate one now (if we can) */
    334 			if (ptmp == NULL) {
    335 
    336 				ptmp = uvm_pagealloc(uobj, current_offset,
    337 				    NULL);	/* alloc */
    338 
    339 				/* out of RAM? */
    340 				if (ptmp == NULL) {
    341 					simple_unlock(&uobj->vmobjlock);
    342 					uvm_wait("kmgetwait1");
    343 					simple_lock(&uobj->vmobjlock);
    344 					/* goto top of pps while loop */
    345 					continue;
    346 				}
    347 
    348 				/*
    349 				 * got new page ready for I/O.  break pps
    350 				 * while loop.  pps[lcv] is still NULL.
    351 				 */
    352 				break;
    353 			}
    354 
    355 			/* page is there, see if we need to wait on it */
    356 			if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
    357 				ptmp->flags |= PG_WANTED;
    358 				UVM_UNLOCK_AND_WAIT(ptmp,&uobj->vmobjlock, 0,
    359 				    "uvn_get",0);
    360 				simple_lock(&uobj->vmobjlock);
    361 				continue;	/* goto top of pps while loop */
    362 			}
    363 
    364 			/*
    365 			 * if we get here then the page has become resident
    366 			 * and unbusy between steps 1 and 2.  we busy it now
    367 			 * (so we own it) and set pps[lcv] (so that we exit
    368 			 * the while loop).  caller must un-busy.
    369 			 */
    370 			ptmp->flags |= PG_BUSY;
    371 			UVM_PAGE_OWN(ptmp, "uvm_km_get2");
    372 			pps[lcv] = ptmp;
    373 		}
    374 
    375 		/*
    376 		 * if we own the a valid page at the correct offset, pps[lcv]
    377 		 * will point to it.   nothing more to do except go to the
    378 		 * next page.
    379 		 */
    380 
    381 		if (pps[lcv])
    382 			continue;			/* next lcv */
    383 
    384 		/*
    385 		 * we have a "fake/busy/clean" page that we just allocated.
    386 		 * do the needed "i/o" (in this case that means zero it).
    387 		 */
    388 
    389 		uvm_pagezero(ptmp);
    390 		ptmp->flags &= ~(PG_FAKE);
    391 		pps[lcv] = ptmp;
    392 
    393 	}	/* lcv loop */
    394 
    395 	/*
    396 	 * finally, unlock object and return.
    397 	 */
    398 
    399 	simple_unlock(&uobj->vmobjlock);
    400 	UVMHIST_LOG(maphist, "<- done (OK)",0,0,0,0);
    401 	return(VM_PAGER_OK);
    402 }
    403 
    404 /*
    405  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
    406  * KVM already allocated for text, data, bss, and static data structures).
    407  *
    408  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    409  *    we assume that [min -> start] has already been allocated and that
    410  *    "end" is the end.
    411  */
    412 
    413 void
    414 uvm_km_init(start, end)
    415 	vaddr_t start, end;
    416 {
    417 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    418 
    419 	/*
    420 	 * first, init kernel memory objects.
    421 	 */
    422 
    423 	/* kernel_object: for pageable anonymous kernel memory */
    424 	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    425 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    426 
    427 	/* kmem_object: for malloc'd memory (wired, protected by splimp) */
    428 	simple_lock_init(&kmem_object_store.vmobjlock);
    429 	kmem_object_store.pgops = &km_pager;
    430 	TAILQ_INIT(&kmem_object_store.memq);
    431 	kmem_object_store.uo_npages = 0;
    432 	/* we are special.  we never die */
    433 	kmem_object_store.uo_refs = UVM_OBJ_KERN;
    434 	uvmexp.kmem_object = &kmem_object_store;
    435 
    436 	/* mb_object: for mbuf memory (always wired, protected by splimp) */
    437 	simple_lock_init(&mb_object_store.vmobjlock);
    438 	mb_object_store.pgops = &km_pager;
    439 	TAILQ_INIT(&mb_object_store.memq);
    440 	mb_object_store.uo_npages = 0;
    441 	/* we are special.  we never die */
    442 	mb_object_store.uo_refs = UVM_OBJ_KERN;
    443 	uvmexp.mb_object = &mb_object_store;
    444 
    445 	/*
    446 	 * init the map and reserve allready allocated kernel space
    447 	 * before installing.
    448 	 */
    449 
    450 	uvm_map_setup(&kernel_map_store, base, end, FALSE);
    451 	kernel_map_store.pmap = pmap_kernel();
    452 	if (uvm_map(&kernel_map_store, &base, start - base, NULL,
    453 	    UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    454 	    UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != KERN_SUCCESS)
    455 		panic("uvm_km_init: could not reserve space for kernel");
    456 
    457 	/*
    458 	 * install!
    459 	 */
    460 
    461 	kernel_map = &kernel_map_store;
    462 }
    463 
    464 /*
    465  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    466  * is allocated all references to that area of VM must go through it.  this
    467  * allows the locking of VAs in kernel_map to be broken up into regions.
    468  *
    469  * => if `fixed' is true, *min specifies where the region described
    470  *      by the submap must start
    471  * => if submap is non NULL we use that as the submap, otherwise we
    472  *	alloc a new map
    473  */
    474 struct vm_map *
    475 uvm_km_suballoc(map, min, max, size, pageable, fixed, submap)
    476 	struct vm_map *map;
    477 	vaddr_t *min, *max;		/* OUT, OUT */
    478 	vsize_t size;
    479 	boolean_t pageable;
    480 	boolean_t fixed;
    481 	struct vm_map *submap;
    482 {
    483 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    484 
    485 	size = round_page(size);	/* round up to pagesize */
    486 
    487 	/*
    488 	 * first allocate a blank spot in the parent map
    489 	 */
    490 
    491 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET,
    492 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    493 	    UVM_ADV_RANDOM, mapflags)) != KERN_SUCCESS) {
    494 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
    495 	}
    496 
    497 	/*
    498 	 * set VM bounds (min is filled in by uvm_map)
    499 	 */
    500 
    501 	*max = *min + size;
    502 
    503 	/*
    504 	 * add references to pmap and create or init the submap
    505 	 */
    506 
    507 	pmap_reference(vm_map_pmap(map));
    508 	if (submap == NULL) {
    509 		submap = uvm_map_create(vm_map_pmap(map), *min, *max, pageable);
    510 		if (submap == NULL)
    511 			panic("uvm_km_suballoc: unable to create submap");
    512 	} else {
    513 		uvm_map_setup(submap, *min, *max, pageable);
    514 		submap->pmap = vm_map_pmap(map);
    515 	}
    516 
    517 	/*
    518 	 * now let uvm_map_submap plug in it...
    519 	 */
    520 
    521 	if (uvm_map_submap(map, *min, *max, submap) != KERN_SUCCESS)
    522 		panic("uvm_km_suballoc: submap allocation failed");
    523 
    524 	return(submap);
    525 }
    526 
    527 /*
    528  * uvm_km_pgremove: remove pages from a kernel uvm_object.
    529  *
    530  * => when you unmap a part of anonymous kernel memory you want to toss
    531  *    the pages right away.    (this gets called from uvm_unmap_...).
    532  */
    533 
    534 #define UKM_HASH_PENALTY 4      /* a guess */
    535 
    536 void
    537 uvm_km_pgremove(uobj, start, end)
    538 	struct uvm_object *uobj;
    539 	vaddr_t start, end;
    540 {
    541 	boolean_t by_list, is_aobj;
    542 	struct vm_page *pp, *ppnext;
    543 	vaddr_t curoff;
    544 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
    545 
    546 	simple_lock(&uobj->vmobjlock);		/* lock object */
    547 
    548 	/* is uobj an aobj? */
    549 	is_aobj = uobj->pgops == &aobj_pager;
    550 
    551 	/* choose cheapest traversal */
    552 	by_list = (uobj->uo_npages <=
    553 	     ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
    554 
    555 	if (by_list)
    556 		goto loop_by_list;
    557 
    558 	/* by hash */
    559 
    560 	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
    561 		pp = uvm_pagelookup(uobj, curoff);
    562 		if (pp == NULL)
    563 			continue;
    564 
    565 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    566 		    pp->flags & PG_BUSY, 0, 0);
    567 		/* now do the actual work */
    568 		if (pp->flags & PG_BUSY)
    569 			/* owner must check for this when done */
    570 			pp->flags |= PG_RELEASED;
    571 		else {
    572 			pmap_page_protect(PMAP_PGARG(pp), VM_PROT_NONE);
    573 
    574 			/*
    575 			 * if this kernel object is an aobj, free the swap slot.
    576 			 */
    577 			if (is_aobj) {
    578 				uao_dropswap(uobj, curoff >> PAGE_SHIFT);
    579 			}
    580 
    581 			uvm_lock_pageq();
    582 			uvm_pagefree(pp);
    583 			uvm_unlock_pageq();
    584 		}
    585 		/* done */
    586 
    587 	}
    588 	simple_unlock(&uobj->vmobjlock);
    589 	return;
    590 
    591 loop_by_list:
    592 
    593 	for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
    594 
    595 		ppnext = pp->listq.tqe_next;
    596 		if (pp->offset < start || pp->offset >= end) {
    597 			continue;
    598 		}
    599 
    600 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    601 		    pp->flags & PG_BUSY, 0, 0);
    602 		/* now do the actual work */
    603 		if (pp->flags & PG_BUSY)
    604 			/* owner must check for this when done */
    605 			pp->flags |= PG_RELEASED;
    606 		else {
    607 			pmap_page_protect(PMAP_PGARG(pp), VM_PROT_NONE);
    608 
    609 			/*
    610 			 * if this kernel object is an aobj, free the swap slot.
    611 			 */
    612 			if (is_aobj) {
    613 				uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
    614 			}
    615 
    616 			uvm_lock_pageq();
    617 			uvm_pagefree(pp);
    618 			uvm_unlock_pageq();
    619 		}
    620 		/* done */
    621 
    622 	}
    623 	simple_unlock(&uobj->vmobjlock);
    624 	return;
    625 }
    626 
    627 
    628 /*
    629  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
    630  *
    631  * => we map wired memory into the specified map using the obj passed in
    632  * => NOTE: we can return NULL even if we can wait if there is not enough
    633  *	free VM space in the map... caller should be prepared to handle
    634  *	this case.
    635  * => we return KVA of memory allocated
    636  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
    637  *	lock the map
    638  */
    639 
    640 vaddr_t
    641 uvm_km_kmemalloc(map, obj, size, flags)
    642 	vm_map_t map;
    643 	struct uvm_object *obj;
    644 	vsize_t size;
    645 	int flags;
    646 {
    647 	vaddr_t kva, loopva;
    648 	vaddr_t offset;
    649 	struct vm_page *pg;
    650 	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
    651 
    652 
    653 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
    654 	map, obj, size, flags);
    655 #ifdef DIAGNOSTIC
    656 	/* sanity check */
    657 	if (vm_map_pmap(map) != pmap_kernel())
    658 		panic("uvm_km_kmemalloc: invalid map");
    659 #endif
    660 
    661 	/*
    662 	 * setup for call
    663 	 */
    664 
    665 	size = round_page(size);
    666 	kva = vm_map_min(map);	/* hint */
    667 
    668 	/*
    669 	 * allocate some virtual space
    670 	 */
    671 
    672 	if (uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    673 	      UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    674 			  UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
    675 			!= KERN_SUCCESS) {
    676 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    677 		return(0);
    678 	}
    679 
    680 	/*
    681 	 * if all we wanted was VA, return now
    682 	 */
    683 
    684 	if (flags & UVM_KMF_VALLOC) {
    685 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
    686 		return(kva);
    687 	}
    688 	/*
    689 	 * recover object offset from virtual address
    690 	 */
    691 
    692 	offset = kva - vm_map_min(kernel_map);
    693 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
    694 
    695 	/*
    696 	 * now allocate and map in the memory... note that we are the only ones
    697 	 * whom should ever get a handle on this area of VM.
    698 	 */
    699 
    700 	loopva = kva;
    701 	while (size) {
    702 		simple_lock(&obj->vmobjlock);
    703 		pg = uvm_pagealloc(obj, offset, NULL);
    704 		if (pg) {
    705 			pg->flags &= ~PG_BUSY;	/* new page */
    706 			UVM_PAGE_OWN(pg, NULL);
    707 		}
    708 		simple_unlock(&obj->vmobjlock);
    709 
    710 		/*
    711 		 * out of memory?
    712 		 */
    713 
    714 		if (pg == NULL) {
    715 			if (flags & UVM_KMF_NOWAIT) {
    716 				/* free everything! */
    717 				uvm_unmap(map, kva, kva + size);
    718 				return(0);
    719 			} else {
    720 				uvm_wait("km_getwait2");	/* sleep here */
    721 				continue;
    722 			}
    723 		}
    724 
    725 		/*
    726 		 * map it in: note that we call pmap_enter with the map and
    727 		 * object unlocked in case we are kmem_map/kmem_object
    728 		 * (because if pmap_enter wants to allocate out of kmem_object
    729 		 * it will need to lock it itself!)
    730 		 */
    731 #if defined(PMAP_NEW)
    732 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), VM_PROT_ALL);
    733 #else
    734 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    735 		    UVM_PROT_ALL, TRUE);
    736 #endif
    737 		loopva += PAGE_SIZE;
    738 		offset += PAGE_SIZE;
    739 		size -= PAGE_SIZE;
    740 	}
    741 
    742 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    743 	return(kva);
    744 }
    745 
    746 /*
    747  * uvm_km_free: free an area of kernel memory
    748  */
    749 
    750 void
    751 uvm_km_free(map, addr, size)
    752 	vm_map_t map;
    753 	vaddr_t addr;
    754 	vsize_t size;
    755 {
    756 
    757 	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
    758 }
    759 
    760 /*
    761  * uvm_km_free_wakeup: free an area of kernel memory and wake up
    762  * anyone waiting for vm space.
    763  *
    764  * => XXX: "wanted" bit + unlock&wait on other end?
    765  */
    766 
    767 void
    768 uvm_km_free_wakeup(map, addr, size)
    769 	vm_map_t map;
    770 	vaddr_t addr;
    771 	vsize_t size;
    772 {
    773 	vm_map_entry_t dead_entries;
    774 
    775 	vm_map_lock(map);
    776 	(void)uvm_unmap_remove(map, trunc_page(addr), round_page(addr+size),
    777 			 &dead_entries);
    778 	thread_wakeup(map);
    779 	vm_map_unlock(map);
    780 
    781 	if (dead_entries != NULL)
    782 		uvm_unmap_detach(dead_entries, 0);
    783 }
    784 
    785 /*
    786  * uvm_km_alloc1: allocate wired down memory in the kernel map.
    787  *
    788  * => we can sleep if needed
    789  */
    790 
    791 vaddr_t
    792 uvm_km_alloc1(map, size, zeroit)
    793 	vm_map_t map;
    794 	vsize_t size;
    795 	boolean_t zeroit;
    796 {
    797 	vaddr_t kva, loopva, offset;
    798 	struct vm_page *pg;
    799 	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
    800 
    801 	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
    802 
    803 #ifdef DIAGNOSTIC
    804 	if (vm_map_pmap(map) != pmap_kernel())
    805 		panic("uvm_km_alloc1");
    806 #endif
    807 
    808 	size = round_page(size);
    809 	kva = vm_map_min(map);		/* hint */
    810 
    811 	/*
    812 	 * allocate some virtual space
    813 	 */
    814 
    815 	if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
    816 	      UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    817 			  UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
    818 		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
    819 		return(0);
    820 	}
    821 
    822 	/*
    823 	 * recover object offset from virtual address
    824 	 */
    825 
    826 	offset = kva - vm_map_min(kernel_map);
    827 	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
    828 
    829 	/*
    830 	 * now allocate the memory.  we must be careful about released pages.
    831 	 */
    832 
    833 	loopva = kva;
    834 	while (size) {
    835 		simple_lock(&uvm.kernel_object->vmobjlock);
    836 		pg = uvm_pagelookup(uvm.kernel_object, offset);
    837 
    838 		/*
    839 		 * if we found a page in an unallocated region, it must be
    840 		 * released
    841 		 */
    842 		if (pg) {
    843 			if ((pg->flags & PG_RELEASED) == 0)
    844 				panic("uvm_km_alloc1: non-released page");
    845 			pg->flags |= PG_WANTED;
    846 			UVM_UNLOCK_AND_WAIT(pg, &uvm.kernel_object->vmobjlock,
    847 			    0, "km_alloc", 0);
    848 			continue;   /* retry */
    849 		}
    850 
    851 		/* allocate ram */
    852 		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL);
    853 		if (pg) {
    854 			pg->flags &= ~PG_BUSY;	/* new page */
    855 			UVM_PAGE_OWN(pg, NULL);
    856 		}
    857 		simple_unlock(&uvm.kernel_object->vmobjlock);
    858 		if (pg == NULL) {
    859 			uvm_wait("km_alloc1w");	/* wait for memory */
    860 			continue;
    861 		}
    862 
    863 		/* map it in */
    864 #if defined(PMAP_NEW)
    865 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), UVM_PROT_ALL);
    866 #else
    867 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    868 		    UVM_PROT_ALL, TRUE);
    869 #endif
    870 		loopva += PAGE_SIZE;
    871 		offset += PAGE_SIZE;
    872 		size -= PAGE_SIZE;
    873 	}
    874 
    875 	/*
    876 	 * zero on request (note that "size" is now zero due to the above loop
    877 	 * so we need to subtract kva from loopva to reconstruct the size).
    878 	 */
    879 
    880 	if (zeroit)
    881 		memset((caddr_t)kva, 0, loopva - kva);
    882 
    883 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    884 	return(kva);
    885 }
    886 
    887 /*
    888  * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
    889  *
    890  * => memory is not allocated until fault time
    891  */
    892 
    893 vaddr_t
    894 uvm_km_valloc(map, size)
    895 	vm_map_t map;
    896 	vsize_t size;
    897 {
    898 	vaddr_t kva;
    899 	UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
    900 
    901 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    902 
    903 #ifdef DIAGNOSTIC
    904 	if (vm_map_pmap(map) != pmap_kernel())
    905 		panic("uvm_km_valloc");
    906 #endif
    907 
    908 	size = round_page(size);
    909 	kva = vm_map_min(map);		/* hint */
    910 
    911 	/*
    912 	 * allocate some virtual space.  will be demand filled by kernel_object.
    913 	 */
    914 
    915 	if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
    916 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    917 	    UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
    918 		UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
    919 		return(0);
    920 	}
    921 
    922 	UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
    923 	return(kva);
    924 }
    925 
    926 /*
    927  * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
    928  *
    929  * => memory is not allocated until fault time
    930  * => if no room in map, wait for space to free, unless requested size
    931  *    is larger than map (in which case we return 0)
    932  */
    933 
    934 vaddr_t
    935 uvm_km_valloc_wait(map, size)
    936 	vm_map_t map;
    937 	vsize_t size;
    938 {
    939 	vaddr_t kva;
    940 	UVMHIST_FUNC("uvm_km_valloc_wait"); UVMHIST_CALLED(maphist);
    941 
    942 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    943 
    944 #ifdef DIAGNOSTIC
    945 	if (vm_map_pmap(map) != pmap_kernel())
    946 		panic("uvm_km_valloc_wait");
    947 #endif
    948 
    949 	size = round_page(size);
    950 	if (size > vm_map_max(map) - vm_map_min(map))
    951 		return(0);
    952 
    953 	while (1) {
    954 		kva = vm_map_min(map);		/* hint */
    955 
    956 		/*
    957 		 * allocate some virtual space.   will be demand filled
    958 		 * by kernel_object.
    959 		 */
    960 
    961 		if (uvm_map(map, &kva, size, uvm.kernel_object,
    962 		    UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL,
    963 		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
    964 		    == KERN_SUCCESS) {
    965 			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    966 			return(kva);
    967 		}
    968 
    969 		/*
    970 		 * failed.  sleep for a while (on map)
    971 		 */
    972 
    973 		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
    974 		tsleep((caddr_t)map, PVM, "vallocwait", 0);
    975 	}
    976 	/*NOTREACHED*/
    977 }
    978 
    979 /* Sanity; must specify both or none. */
    980 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    981     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    982 #error Must specify MAP and UNMAP together.
    983 #endif
    984 
    985 /*
    986  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
    987  *
    988  * => if the pmap specifies an alternate mapping method, we use it.
    989  */
    990 
    991 /* ARGSUSED */
    992 vaddr_t
    993 uvm_km_alloc_poolpage1(map, obj, waitok)
    994 	vm_map_t map;
    995 	struct uvm_object *obj;
    996 	boolean_t waitok;
    997 {
    998 #if defined(PMAP_MAP_POOLPAGE)
    999 	struct vm_page *pg;
   1000 	vaddr_t va;
   1001 
   1002  again:
   1003 	pg = uvm_pagealloc(NULL, 0, NULL);
   1004 	if (pg == NULL) {
   1005 		if (waitok) {
   1006 			uvm_wait("plpg");
   1007 			goto again;
   1008 		} else
   1009 			return (0);
   1010 	}
   1011 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
   1012 	if (va == 0)
   1013 		uvm_pagefree(pg);
   1014 	return (va);
   1015 #else
   1016 	vaddr_t va;
   1017 	int s;
   1018 
   1019 	/*
   1020 	 * NOTE: We may be called with a map that doens't require splimp
   1021 	 * protection (e.g. kernel_map).  However, it does not hurt to
   1022 	 * go to splimp in this case (since unprocted maps will never be
   1023 	 * accessed in interrupt context).
   1024 	 *
   1025 	 * XXX We may want to consider changing the interface to this
   1026 	 * XXX function.
   1027 	 */
   1028 
   1029 	s = splimp();
   1030 	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
   1031 	splx(s);
   1032 	return (va);
   1033 #endif /* PMAP_MAP_POOLPAGE */
   1034 }
   1035 
   1036 /*
   1037  * uvm_km_free_poolpage: free a previously allocated pool page
   1038  *
   1039  * => if the pmap specifies an alternate unmapping method, we use it.
   1040  */
   1041 
   1042 /* ARGSUSED */
   1043 void
   1044 uvm_km_free_poolpage1(map, addr)
   1045 	vm_map_t map;
   1046 	vaddr_t addr;
   1047 {
   1048 #if defined(PMAP_UNMAP_POOLPAGE)
   1049 	paddr_t pa;
   1050 
   1051 	pa = PMAP_UNMAP_POOLPAGE(addr);
   1052 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
   1053 #else
   1054 	int s;
   1055 
   1056 	/*
   1057 	 * NOTE: We may be called with a map that doens't require splimp
   1058 	 * protection (e.g. kernel_map).  However, it does not hurt to
   1059 	 * go to splimp in this case (since unprocted maps will never be
   1060 	 * accessed in interrupt context).
   1061 	 *
   1062 	 * XXX We may want to consider changing the interface to this
   1063 	 * XXX function.
   1064 	 */
   1065 
   1066 	s = splimp();
   1067 	uvm_km_free(map, addr, PAGE_SIZE);
   1068 	splx(s);
   1069 #endif /* PMAP_UNMAP_POOLPAGE */
   1070 }
   1071