uvm_km.c revision 1.22 1 /* $NetBSD: uvm_km.c,v 1.22 1999/03/26 21:58:39 mycroft Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
42 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 #include "opt_uvmhist.h"
70 #include "opt_pmap_new.h"
71
72 /*
73 * uvm_km.c: handle kernel memory allocation and management
74 */
75
76 /*
77 * overview of kernel memory management:
78 *
79 * the kernel virtual address space is mapped by "kernel_map." kernel_map
80 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
81 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
82 *
83 * the kernel_map has several "submaps." submaps can only appear in
84 * the kernel_map (user processes can't use them). submaps "take over"
85 * the management of a sub-range of the kernel's address space. submaps
86 * are typically allocated at boot time and are never released. kernel
87 * virtual address space that is mapped by a submap is locked by the
88 * submap's lock -- not the kernel_map's lock.
89 *
90 * thus, the useful feature of submaps is that they allow us to break
91 * up the locking and protection of the kernel address space into smaller
92 * chunks.
93 *
94 * the vm system has several standard kernel submaps, including:
95 * kmem_map => contains only wired kernel memory for the kernel
96 * malloc. *** access to kmem_map must be protected
97 * by splimp() because we are allowed to call malloc()
98 * at interrupt time ***
99 * mb_map => memory for large mbufs, *** protected by splimp ***
100 * pager_map => used to map "buf" structures into kernel space
101 * exec_map => used during exec to handle exec args
102 * etc...
103 *
104 * the kernel allocates its private memory out of special uvm_objects whose
105 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
106 * are "special" and never die). all kernel objects should be thought of
107 * as large, fixed-sized, sparsely populated uvm_objects. each kernel
108 * object is equal to the size of kernel virtual address space (i.e. the
109 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
110 *
111 * most kernel private memory lives in kernel_object. the only exception
112 * to this is for memory that belongs to submaps that must be protected
113 * by splimp(). each of these submaps has their own private kernel
114 * object (e.g. kmem_object, mb_object).
115 *
116 * note that just because a kernel object spans the entire kernel virutal
117 * address space doesn't mean that it has to be mapped into the entire space.
118 * large chunks of a kernel object's space go unused either because
119 * that area of kernel VM is unmapped, or there is some other type of
120 * object mapped into that range (e.g. a vnode). for submap's kernel
121 * objects, the only part of the object that can ever be populated is the
122 * offsets that are managed by the submap.
123 *
124 * note that the "offset" in a kernel object is always the kernel virtual
125 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
126 * example:
127 * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
128 * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
129 * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
130 * then that means that the page at offset 0x235000 in kernel_object is
131 * mapped at 0xf8235000.
132 *
133 * note that the offsets in kmem_object and mb_object also follow this
134 * rule. this means that the offsets for kmem_object must fall in the
135 * range of [vm_map_min(kmem_object) - vm_map_min(kernel_map)] to
136 * [vm_map_max(kmem_object) - vm_map_min(kernel_map)], so the offsets
137 * in those objects will typically not start at zero.
138 *
139 * kernel object have one other special property: when the kernel virtual
140 * memory mapping them is unmapped, the backing memory in the object is
141 * freed right away. this is done with the uvm_km_pgremove() function.
142 * this has to be done because there is no backing store for kernel pages
143 * and no need to save them after they are no longer referenced.
144 */
145
146 #include <sys/param.h>
147 #include <sys/systm.h>
148 #include <sys/proc.h>
149
150 #include <vm/vm.h>
151 #include <vm/vm_page.h>
152 #include <vm/vm_kern.h>
153
154 #include <uvm/uvm.h>
155
156 /*
157 * global data structures
158 */
159
160 vm_map_t kernel_map = NULL;
161
162 /*
163 * local functions
164 */
165
166 static int uvm_km_get __P((struct uvm_object *, vaddr_t,
167 vm_page_t *, int *, int, vm_prot_t, int, int));
168 /*
169 * local data structues
170 */
171
172 static struct vm_map kernel_map_store;
173 static struct uvm_object kmem_object_store;
174 static struct uvm_object mb_object_store;
175
176 static struct uvm_pagerops km_pager = {
177 NULL, /* init */
178 NULL, /* reference */
179 NULL, /* detach */
180 NULL, /* fault */
181 NULL, /* flush */
182 uvm_km_get, /* get */
183 /* ... rest are NULL */
184 };
185
186 /*
187 * uvm_km_get: pager get function for kernel objects
188 *
189 * => currently we do not support pageout to the swap area, so this
190 * pager is very simple. eventually we may want an anonymous
191 * object pager which will do paging.
192 * => XXXCDC: this pager should be phased out in favor of the aobj pager
193 */
194
195
196 static int
197 uvm_km_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
198 struct uvm_object *uobj;
199 vaddr_t offset;
200 struct vm_page **pps;
201 int *npagesp;
202 int centeridx, advice, flags;
203 vm_prot_t access_type;
204 {
205 vaddr_t current_offset;
206 vm_page_t ptmp;
207 int lcv, gotpages, maxpages;
208 boolean_t done;
209 UVMHIST_FUNC("uvm_km_get"); UVMHIST_CALLED(maphist);
210
211 UVMHIST_LOG(maphist, "flags=%d", flags,0,0,0);
212
213 /*
214 * get number of pages
215 */
216
217 maxpages = *npagesp;
218
219 /*
220 * step 1: handled the case where fault data structures are locked.
221 */
222
223 if (flags & PGO_LOCKED) {
224
225 /*
226 * step 1a: get pages that are already resident. only do
227 * this if the data structures are locked (i.e. the first time
228 * through).
229 */
230
231 done = TRUE; /* be optimistic */
232 gotpages = 0; /* # of pages we got so far */
233
234 for (lcv = 0, current_offset = offset ;
235 lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
236
237 /* do we care about this page? if not, skip it */
238 if (pps[lcv] == PGO_DONTCARE)
239 continue;
240
241 /* lookup page */
242 ptmp = uvm_pagelookup(uobj, current_offset);
243
244 /* null? attempt to allocate the page */
245 if (ptmp == NULL) {
246 ptmp = uvm_pagealloc(uobj, current_offset,
247 NULL);
248 if (ptmp) {
249 /* new page */
250 ptmp->flags &= ~(PG_BUSY|PG_FAKE);
251 UVM_PAGE_OWN(ptmp, NULL);
252 uvm_pagezero(ptmp);
253 }
254 }
255
256 /*
257 * to be useful must get a non-busy, non-released page
258 */
259 if (ptmp == NULL ||
260 (ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
261 if (lcv == centeridx ||
262 (flags & PGO_ALLPAGES) != 0)
263 /* need to do a wait or I/O! */
264 done = FALSE;
265 continue;
266 }
267
268 /*
269 * useful page: busy/lock it and plug it in our
270 * result array
271 */
272
273 /* caller must un-busy this page */
274 ptmp->flags |= PG_BUSY;
275 UVM_PAGE_OWN(ptmp, "uvm_km_get1");
276 pps[lcv] = ptmp;
277 gotpages++;
278
279 } /* "for" lcv loop */
280
281 /*
282 * step 1b: now we've either done everything needed or we
283 * to unlock and do some waiting or I/O.
284 */
285
286 UVMHIST_LOG(maphist, "<- done (done=%d)", done, 0,0,0);
287
288 *npagesp = gotpages;
289 if (done)
290 return(VM_PAGER_OK); /* bingo! */
291 else
292 return(VM_PAGER_UNLOCK); /* EEK! Need to
293 * unlock and I/O */
294 }
295
296 /*
297 * step 2: get non-resident or busy pages.
298 * object is locked. data structures are unlocked.
299 */
300
301 for (lcv = 0, current_offset = offset ;
302 lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
303
304 /* skip over pages we've already gotten or don't want */
305 /* skip over pages we don't _have_ to get */
306 if (pps[lcv] != NULL ||
307 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
308 continue;
309
310 /*
311 * we have yet to locate the current page (pps[lcv]). we
312 * first look for a page that is already at the current offset.
313 * if we find a page, we check to see if it is busy or
314 * released. if that is the case, then we sleep on the page
315 * until it is no longer busy or released and repeat the
316 * lookup. if the page we found is neither busy nor
317 * released, then we busy it (so we own it) and plug it into
318 * pps[lcv]. this 'break's the following while loop and
319 * indicates we are ready to move on to the next page in the
320 * "lcv" loop above.
321 *
322 * if we exit the while loop with pps[lcv] still set to NULL,
323 * then it means that we allocated a new busy/fake/clean page
324 * ptmp in the object and we need to do I/O to fill in the
325 * data.
326 */
327
328 while (pps[lcv] == NULL) { /* top of "pps" while loop */
329
330 /* look for a current page */
331 ptmp = uvm_pagelookup(uobj, current_offset);
332
333 /* nope? allocate one now (if we can) */
334 if (ptmp == NULL) {
335
336 ptmp = uvm_pagealloc(uobj, current_offset,
337 NULL); /* alloc */
338
339 /* out of RAM? */
340 if (ptmp == NULL) {
341 simple_unlock(&uobj->vmobjlock);
342 uvm_wait("kmgetwait1");
343 simple_lock(&uobj->vmobjlock);
344 /* goto top of pps while loop */
345 continue;
346 }
347
348 /*
349 * got new page ready for I/O. break pps
350 * while loop. pps[lcv] is still NULL.
351 */
352 break;
353 }
354
355 /* page is there, see if we need to wait on it */
356 if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
357 ptmp->flags |= PG_WANTED;
358 UVM_UNLOCK_AND_WAIT(ptmp,&uobj->vmobjlock, 0,
359 "uvn_get",0);
360 simple_lock(&uobj->vmobjlock);
361 continue; /* goto top of pps while loop */
362 }
363
364 /*
365 * if we get here then the page has become resident
366 * and unbusy between steps 1 and 2. we busy it now
367 * (so we own it) and set pps[lcv] (so that we exit
368 * the while loop). caller must un-busy.
369 */
370 ptmp->flags |= PG_BUSY;
371 UVM_PAGE_OWN(ptmp, "uvm_km_get2");
372 pps[lcv] = ptmp;
373 }
374
375 /*
376 * if we own the a valid page at the correct offset, pps[lcv]
377 * will point to it. nothing more to do except go to the
378 * next page.
379 */
380
381 if (pps[lcv])
382 continue; /* next lcv */
383
384 /*
385 * we have a "fake/busy/clean" page that we just allocated.
386 * do the needed "i/o" (in this case that means zero it).
387 */
388
389 uvm_pagezero(ptmp);
390 ptmp->flags &= ~(PG_FAKE);
391 pps[lcv] = ptmp;
392
393 } /* lcv loop */
394
395 /*
396 * finally, unlock object and return.
397 */
398
399 simple_unlock(&uobj->vmobjlock);
400 UVMHIST_LOG(maphist, "<- done (OK)",0,0,0,0);
401 return(VM_PAGER_OK);
402 }
403
404 /*
405 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
406 * KVM already allocated for text, data, bss, and static data structures).
407 *
408 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
409 * we assume that [min -> start] has already been allocated and that
410 * "end" is the end.
411 */
412
413 void
414 uvm_km_init(start, end)
415 vaddr_t start, end;
416 {
417 vaddr_t base = VM_MIN_KERNEL_ADDRESS;
418
419 /*
420 * first, init kernel memory objects.
421 */
422
423 /* kernel_object: for pageable anonymous kernel memory */
424 uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
425 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
426
427 /* kmem_object: for malloc'd memory (wired, protected by splimp) */
428 simple_lock_init(&kmem_object_store.vmobjlock);
429 kmem_object_store.pgops = &km_pager;
430 TAILQ_INIT(&kmem_object_store.memq);
431 kmem_object_store.uo_npages = 0;
432 /* we are special. we never die */
433 kmem_object_store.uo_refs = UVM_OBJ_KERN;
434 uvmexp.kmem_object = &kmem_object_store;
435
436 /* mb_object: for mbuf memory (always wired, protected by splimp) */
437 simple_lock_init(&mb_object_store.vmobjlock);
438 mb_object_store.pgops = &km_pager;
439 TAILQ_INIT(&mb_object_store.memq);
440 mb_object_store.uo_npages = 0;
441 /* we are special. we never die */
442 mb_object_store.uo_refs = UVM_OBJ_KERN;
443 uvmexp.mb_object = &mb_object_store;
444
445 /*
446 * init the map and reserve allready allocated kernel space
447 * before installing.
448 */
449
450 uvm_map_setup(&kernel_map_store, base, end, FALSE);
451 kernel_map_store.pmap = pmap_kernel();
452 if (uvm_map(&kernel_map_store, &base, start - base, NULL,
453 UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
454 UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != KERN_SUCCESS)
455 panic("uvm_km_init: could not reserve space for kernel");
456
457 /*
458 * install!
459 */
460
461 kernel_map = &kernel_map_store;
462 }
463
464 /*
465 * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
466 * is allocated all references to that area of VM must go through it. this
467 * allows the locking of VAs in kernel_map to be broken up into regions.
468 *
469 * => if `fixed' is true, *min specifies where the region described
470 * by the submap must start
471 * => if submap is non NULL we use that as the submap, otherwise we
472 * alloc a new map
473 */
474 struct vm_map *
475 uvm_km_suballoc(map, min, max, size, pageable, fixed, submap)
476 struct vm_map *map;
477 vaddr_t *min, *max; /* OUT, OUT */
478 vsize_t size;
479 boolean_t pageable;
480 boolean_t fixed;
481 struct vm_map *submap;
482 {
483 int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
484
485 size = round_page(size); /* round up to pagesize */
486
487 /*
488 * first allocate a blank spot in the parent map
489 */
490
491 if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET,
492 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
493 UVM_ADV_RANDOM, mapflags)) != KERN_SUCCESS) {
494 panic("uvm_km_suballoc: unable to allocate space in parent map");
495 }
496
497 /*
498 * set VM bounds (min is filled in by uvm_map)
499 */
500
501 *max = *min + size;
502
503 /*
504 * add references to pmap and create or init the submap
505 */
506
507 pmap_reference(vm_map_pmap(map));
508 if (submap == NULL) {
509 submap = uvm_map_create(vm_map_pmap(map), *min, *max, pageable);
510 if (submap == NULL)
511 panic("uvm_km_suballoc: unable to create submap");
512 } else {
513 uvm_map_setup(submap, *min, *max, pageable);
514 submap->pmap = vm_map_pmap(map);
515 }
516
517 /*
518 * now let uvm_map_submap plug in it...
519 */
520
521 if (uvm_map_submap(map, *min, *max, submap) != KERN_SUCCESS)
522 panic("uvm_km_suballoc: submap allocation failed");
523
524 return(submap);
525 }
526
527 /*
528 * uvm_km_pgremove: remove pages from a kernel uvm_object.
529 *
530 * => when you unmap a part of anonymous kernel memory you want to toss
531 * the pages right away. (this gets called from uvm_unmap_...).
532 */
533
534 #define UKM_HASH_PENALTY 4 /* a guess */
535
536 void
537 uvm_km_pgremove(uobj, start, end)
538 struct uvm_object *uobj;
539 vaddr_t start, end;
540 {
541 boolean_t by_list, is_aobj;
542 struct vm_page *pp, *ppnext;
543 vaddr_t curoff;
544 UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
545
546 simple_lock(&uobj->vmobjlock); /* lock object */
547
548 /* is uobj an aobj? */
549 is_aobj = uobj->pgops == &aobj_pager;
550
551 /* choose cheapest traversal */
552 by_list = (uobj->uo_npages <=
553 ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
554
555 if (by_list)
556 goto loop_by_list;
557
558 /* by hash */
559
560 for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
561 pp = uvm_pagelookup(uobj, curoff);
562 if (pp == NULL)
563 continue;
564
565 UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,
566 pp->flags & PG_BUSY, 0, 0);
567 /* now do the actual work */
568 if (pp->flags & PG_BUSY)
569 /* owner must check for this when done */
570 pp->flags |= PG_RELEASED;
571 else {
572 pmap_page_protect(PMAP_PGARG(pp), VM_PROT_NONE);
573
574 /*
575 * if this kernel object is an aobj, free the swap slot.
576 */
577 if (is_aobj) {
578 uao_dropswap(uobj, curoff >> PAGE_SHIFT);
579 }
580
581 uvm_lock_pageq();
582 uvm_pagefree(pp);
583 uvm_unlock_pageq();
584 }
585 /* done */
586
587 }
588 simple_unlock(&uobj->vmobjlock);
589 return;
590
591 loop_by_list:
592
593 for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
594
595 ppnext = pp->listq.tqe_next;
596 if (pp->offset < start || pp->offset >= end) {
597 continue;
598 }
599
600 UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,
601 pp->flags & PG_BUSY, 0, 0);
602 /* now do the actual work */
603 if (pp->flags & PG_BUSY)
604 /* owner must check for this when done */
605 pp->flags |= PG_RELEASED;
606 else {
607 pmap_page_protect(PMAP_PGARG(pp), VM_PROT_NONE);
608
609 /*
610 * if this kernel object is an aobj, free the swap slot.
611 */
612 if (is_aobj) {
613 uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
614 }
615
616 uvm_lock_pageq();
617 uvm_pagefree(pp);
618 uvm_unlock_pageq();
619 }
620 /* done */
621
622 }
623 simple_unlock(&uobj->vmobjlock);
624 return;
625 }
626
627
628 /*
629 * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
630 *
631 * => we map wired memory into the specified map using the obj passed in
632 * => NOTE: we can return NULL even if we can wait if there is not enough
633 * free VM space in the map... caller should be prepared to handle
634 * this case.
635 * => we return KVA of memory allocated
636 * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
637 * lock the map
638 */
639
640 vaddr_t
641 uvm_km_kmemalloc(map, obj, size, flags)
642 vm_map_t map;
643 struct uvm_object *obj;
644 vsize_t size;
645 int flags;
646 {
647 vaddr_t kva, loopva;
648 vaddr_t offset;
649 struct vm_page *pg;
650 UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
651
652
653 UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
654 map, obj, size, flags);
655 #ifdef DIAGNOSTIC
656 /* sanity check */
657 if (vm_map_pmap(map) != pmap_kernel())
658 panic("uvm_km_kmemalloc: invalid map");
659 #endif
660
661 /*
662 * setup for call
663 */
664
665 size = round_page(size);
666 kva = vm_map_min(map); /* hint */
667
668 /*
669 * allocate some virtual space
670 */
671
672 if (uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
673 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
674 UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
675 != KERN_SUCCESS) {
676 UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
677 return(0);
678 }
679
680 /*
681 * if all we wanted was VA, return now
682 */
683
684 if (flags & UVM_KMF_VALLOC) {
685 UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
686 return(kva);
687 }
688 /*
689 * recover object offset from virtual address
690 */
691
692 offset = kva - vm_map_min(kernel_map);
693 UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
694
695 /*
696 * now allocate and map in the memory... note that we are the only ones
697 * whom should ever get a handle on this area of VM.
698 */
699
700 loopva = kva;
701 while (size) {
702 simple_lock(&obj->vmobjlock);
703 pg = uvm_pagealloc(obj, offset, NULL);
704 if (pg) {
705 pg->flags &= ~PG_BUSY; /* new page */
706 UVM_PAGE_OWN(pg, NULL);
707 }
708 simple_unlock(&obj->vmobjlock);
709
710 /*
711 * out of memory?
712 */
713
714 if (pg == NULL) {
715 if (flags & UVM_KMF_NOWAIT) {
716 /* free everything! */
717 uvm_unmap(map, kva, kva + size);
718 return(0);
719 } else {
720 uvm_wait("km_getwait2"); /* sleep here */
721 continue;
722 }
723 }
724
725 /*
726 * map it in: note that we call pmap_enter with the map and
727 * object unlocked in case we are kmem_map/kmem_object
728 * (because if pmap_enter wants to allocate out of kmem_object
729 * it will need to lock it itself!)
730 */
731 #if defined(PMAP_NEW)
732 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), VM_PROT_ALL);
733 #else
734 pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
735 UVM_PROT_ALL, TRUE, 0);
736 #endif
737 loopva += PAGE_SIZE;
738 offset += PAGE_SIZE;
739 size -= PAGE_SIZE;
740 }
741
742 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
743 return(kva);
744 }
745
746 /*
747 * uvm_km_free: free an area of kernel memory
748 */
749
750 void
751 uvm_km_free(map, addr, size)
752 vm_map_t map;
753 vaddr_t addr;
754 vsize_t size;
755 {
756
757 uvm_unmap(map, trunc_page(addr), round_page(addr+size));
758 }
759
760 /*
761 * uvm_km_free_wakeup: free an area of kernel memory and wake up
762 * anyone waiting for vm space.
763 *
764 * => XXX: "wanted" bit + unlock&wait on other end?
765 */
766
767 void
768 uvm_km_free_wakeup(map, addr, size)
769 vm_map_t map;
770 vaddr_t addr;
771 vsize_t size;
772 {
773 vm_map_entry_t dead_entries;
774
775 vm_map_lock(map);
776 (void)uvm_unmap_remove(map, trunc_page(addr), round_page(addr+size),
777 &dead_entries);
778 thread_wakeup(map);
779 vm_map_unlock(map);
780
781 if (dead_entries != NULL)
782 uvm_unmap_detach(dead_entries, 0);
783 }
784
785 /*
786 * uvm_km_alloc1: allocate wired down memory in the kernel map.
787 *
788 * => we can sleep if needed
789 */
790
791 vaddr_t
792 uvm_km_alloc1(map, size, zeroit)
793 vm_map_t map;
794 vsize_t size;
795 boolean_t zeroit;
796 {
797 vaddr_t kva, loopva, offset;
798 struct vm_page *pg;
799 UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
800
801 UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
802
803 #ifdef DIAGNOSTIC
804 if (vm_map_pmap(map) != pmap_kernel())
805 panic("uvm_km_alloc1");
806 #endif
807
808 size = round_page(size);
809 kva = vm_map_min(map); /* hint */
810
811 /*
812 * allocate some virtual space
813 */
814
815 if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
816 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
817 UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
818 UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
819 return(0);
820 }
821
822 /*
823 * recover object offset from virtual address
824 */
825
826 offset = kva - vm_map_min(kernel_map);
827 UVMHIST_LOG(maphist," kva=0x%x, offset=0x%x", kva, offset,0,0);
828
829 /*
830 * now allocate the memory. we must be careful about released pages.
831 */
832
833 loopva = kva;
834 while (size) {
835 simple_lock(&uvm.kernel_object->vmobjlock);
836 pg = uvm_pagelookup(uvm.kernel_object, offset);
837
838 /*
839 * if we found a page in an unallocated region, it must be
840 * released
841 */
842 if (pg) {
843 if ((pg->flags & PG_RELEASED) == 0)
844 panic("uvm_km_alloc1: non-released page");
845 pg->flags |= PG_WANTED;
846 UVM_UNLOCK_AND_WAIT(pg, &uvm.kernel_object->vmobjlock,
847 0, "km_alloc", 0);
848 continue; /* retry */
849 }
850
851 /* allocate ram */
852 pg = uvm_pagealloc(uvm.kernel_object, offset, NULL);
853 if (pg) {
854 pg->flags &= ~PG_BUSY; /* new page */
855 UVM_PAGE_OWN(pg, NULL);
856 }
857 simple_unlock(&uvm.kernel_object->vmobjlock);
858 if (pg == NULL) {
859 uvm_wait("km_alloc1w"); /* wait for memory */
860 continue;
861 }
862
863 /* map it in */
864 #if defined(PMAP_NEW)
865 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), UVM_PROT_ALL);
866 #else
867 pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
868 UVM_PROT_ALL, TRUE, 0);
869 #endif
870 loopva += PAGE_SIZE;
871 offset += PAGE_SIZE;
872 size -= PAGE_SIZE;
873 }
874
875 /*
876 * zero on request (note that "size" is now zero due to the above loop
877 * so we need to subtract kva from loopva to reconstruct the size).
878 */
879
880 if (zeroit)
881 memset((caddr_t)kva, 0, loopva - kva);
882
883 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
884 return(kva);
885 }
886
887 /*
888 * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
889 *
890 * => memory is not allocated until fault time
891 */
892
893 vaddr_t
894 uvm_km_valloc(map, size)
895 vm_map_t map;
896 vsize_t size;
897 {
898 vaddr_t kva;
899 UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
900
901 UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
902
903 #ifdef DIAGNOSTIC
904 if (vm_map_pmap(map) != pmap_kernel())
905 panic("uvm_km_valloc");
906 #endif
907
908 size = round_page(size);
909 kva = vm_map_min(map); /* hint */
910
911 /*
912 * allocate some virtual space. will be demand filled by kernel_object.
913 */
914
915 if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
916 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
917 UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
918 UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
919 return(0);
920 }
921
922 UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
923 return(kva);
924 }
925
926 /*
927 * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
928 *
929 * => memory is not allocated until fault time
930 * => if no room in map, wait for space to free, unless requested size
931 * is larger than map (in which case we return 0)
932 */
933
934 vaddr_t
935 uvm_km_valloc_wait(map, size)
936 vm_map_t map;
937 vsize_t size;
938 {
939 vaddr_t kva;
940 UVMHIST_FUNC("uvm_km_valloc_wait"); UVMHIST_CALLED(maphist);
941
942 UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
943
944 #ifdef DIAGNOSTIC
945 if (vm_map_pmap(map) != pmap_kernel())
946 panic("uvm_km_valloc_wait");
947 #endif
948
949 size = round_page(size);
950 if (size > vm_map_max(map) - vm_map_min(map))
951 return(0);
952
953 while (1) {
954 kva = vm_map_min(map); /* hint */
955
956 /*
957 * allocate some virtual space. will be demand filled
958 * by kernel_object.
959 */
960
961 if (uvm_map(map, &kva, size, uvm.kernel_object,
962 UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL,
963 UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
964 == KERN_SUCCESS) {
965 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
966 return(kva);
967 }
968
969 /*
970 * failed. sleep for a while (on map)
971 */
972
973 UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
974 tsleep((caddr_t)map, PVM, "vallocwait", 0);
975 }
976 /*NOTREACHED*/
977 }
978
979 /* Sanity; must specify both or none. */
980 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
981 (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
982 #error Must specify MAP and UNMAP together.
983 #endif
984
985 /*
986 * uvm_km_alloc_poolpage: allocate a page for the pool allocator
987 *
988 * => if the pmap specifies an alternate mapping method, we use it.
989 */
990
991 /* ARGSUSED */
992 vaddr_t
993 uvm_km_alloc_poolpage1(map, obj, waitok)
994 vm_map_t map;
995 struct uvm_object *obj;
996 boolean_t waitok;
997 {
998 #if defined(PMAP_MAP_POOLPAGE)
999 struct vm_page *pg;
1000 vaddr_t va;
1001
1002 again:
1003 pg = uvm_pagealloc(NULL, 0, NULL);
1004 if (pg == NULL) {
1005 if (waitok) {
1006 uvm_wait("plpg");
1007 goto again;
1008 } else
1009 return (0);
1010 }
1011 va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
1012 if (va == 0)
1013 uvm_pagefree(pg);
1014 return (va);
1015 #else
1016 vaddr_t va;
1017 int s;
1018
1019 /*
1020 * NOTE: We may be called with a map that doens't require splimp
1021 * protection (e.g. kernel_map). However, it does not hurt to
1022 * go to splimp in this case (since unprocted maps will never be
1023 * accessed in interrupt context).
1024 *
1025 * XXX We may want to consider changing the interface to this
1026 * XXX function.
1027 */
1028
1029 s = splimp();
1030 va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
1031 splx(s);
1032 return (va);
1033 #endif /* PMAP_MAP_POOLPAGE */
1034 }
1035
1036 /*
1037 * uvm_km_free_poolpage: free a previously allocated pool page
1038 *
1039 * => if the pmap specifies an alternate unmapping method, we use it.
1040 */
1041
1042 /* ARGSUSED */
1043 void
1044 uvm_km_free_poolpage1(map, addr)
1045 vm_map_t map;
1046 vaddr_t addr;
1047 {
1048 #if defined(PMAP_UNMAP_POOLPAGE)
1049 paddr_t pa;
1050
1051 pa = PMAP_UNMAP_POOLPAGE(addr);
1052 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
1053 #else
1054 int s;
1055
1056 /*
1057 * NOTE: We may be called with a map that doens't require splimp
1058 * protection (e.g. kernel_map). However, it does not hurt to
1059 * go to splimp in this case (since unprocted maps will never be
1060 * accessed in interrupt context).
1061 *
1062 * XXX We may want to consider changing the interface to this
1063 * XXX function.
1064 */
1065
1066 s = splimp();
1067 uvm_km_free(map, addr, PAGE_SIZE);
1068 splx(s);
1069 #endif /* PMAP_UNMAP_POOLPAGE */
1070 }
1071