Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.26
      1 /*	$NetBSD: uvm_km.c,v 1.26 1999/05/26 19:27:49 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     42  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 #include "opt_uvmhist.h"
     70 #include "opt_pmap_new.h"
     71 
     72 /*
     73  * uvm_km.c: handle kernel memory allocation and management
     74  */
     75 
     76 /*
     77  * overview of kernel memory management:
     78  *
     79  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     80  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     81  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     82  *
     83  * the kernel_map has several "submaps."   submaps can only appear in
     84  * the kernel_map (user processes can't use them).   submaps "take over"
     85  * the management of a sub-range of the kernel's address space.  submaps
     86  * are typically allocated at boot time and are never released.   kernel
     87  * virtual address space that is mapped by a submap is locked by the
     88  * submap's lock -- not the kernel_map's lock.
     89  *
     90  * thus, the useful feature of submaps is that they allow us to break
     91  * up the locking and protection of the kernel address space into smaller
     92  * chunks.
     93  *
     94  * the vm system has several standard kernel submaps, including:
     95  *   kmem_map => contains only wired kernel memory for the kernel
     96  *		malloc.   *** access to kmem_map must be protected
     97  *		by splimp() because we are allowed to call malloc()
     98  *		at interrupt time ***
     99  *   mb_map => memory for large mbufs,  *** protected by splimp ***
    100  *   pager_map => used to map "buf" structures into kernel space
    101  *   exec_map => used during exec to handle exec args
    102  *   etc...
    103  *
    104  * the kernel allocates its private memory out of special uvm_objects whose
    105  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
    106  * are "special" and never die).   all kernel objects should be thought of
    107  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
    108  * object is equal to the size of kernel virtual address space (i.e. the
    109  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    110  *
    111  * most kernel private memory lives in kernel_object.   the only exception
    112  * to this is for memory that belongs to submaps that must be protected
    113  * by splimp().    each of these submaps has their own private kernel
    114  * object (e.g. kmem_object, mb_object).
    115  *
    116  * note that just because a kernel object spans the entire kernel virutal
    117  * address space doesn't mean that it has to be mapped into the entire space.
    118  * large chunks of a kernel object's space go unused either because
    119  * that area of kernel VM is unmapped, or there is some other type of
    120  * object mapped into that range (e.g. a vnode).    for submap's kernel
    121  * objects, the only part of the object that can ever be populated is the
    122  * offsets that are managed by the submap.
    123  *
    124  * note that the "offset" in a kernel object is always the kernel virtual
    125  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    126  * example:
    127  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    128  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    129  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    130  *   then that means that the page at offset 0x235000 in kernel_object is
    131  *   mapped at 0xf8235000.
    132  *
    133  * note that the offsets in kmem_object and mb_object also follow this
    134  * rule.   this means that the offsets for kmem_object must fall in the
    135  * range of [vm_map_min(kmem_object) - vm_map_min(kernel_map)] to
    136  * [vm_map_max(kmem_object) - vm_map_min(kernel_map)], so the offsets
    137  * in those objects will typically not start at zero.
    138  *
    139  * kernel object have one other special property: when the kernel virtual
    140  * memory mapping them is unmapped, the backing memory in the object is
    141  * freed right away.   this is done with the uvm_km_pgremove() function.
    142  * this has to be done because there is no backing store for kernel pages
    143  * and no need to save them after they are no longer referenced.
    144  */
    145 
    146 #include <sys/param.h>
    147 #include <sys/systm.h>
    148 #include <sys/proc.h>
    149 
    150 #include <vm/vm.h>
    151 #include <vm/vm_page.h>
    152 #include <vm/vm_kern.h>
    153 
    154 #include <uvm/uvm.h>
    155 
    156 /*
    157  * global data structures
    158  */
    159 
    160 vm_map_t kernel_map = NULL;
    161 
    162 /*
    163  * local functions
    164  */
    165 
    166 static int uvm_km_get __P((struct uvm_object *, vaddr_t,
    167 	vm_page_t *, int *, int, vm_prot_t, int, int));
    168 
    169 /*
    170  * local data structues
    171  */
    172 
    173 static struct vm_map		kernel_map_store;
    174 static struct uvm_object	kmem_object_store;
    175 static struct uvm_object	mb_object_store;
    176 
    177 static struct uvm_pagerops km_pager = {
    178 	NULL,	/* init */
    179 	NULL, /* reference */
    180 	NULL, /* detach */
    181 	NULL, /* fault */
    182 	NULL, /* flush */
    183 	uvm_km_get, /* get */
    184 	/* ... rest are NULL */
    185 };
    186 
    187 /*
    188  * uvm_km_get: pager get function for kernel objects
    189  *
    190  * => currently we do not support pageout to the swap area, so this
    191  *    pager is very simple.    eventually we may want an anonymous
    192  *    object pager which will do paging.
    193  * => XXXCDC: this pager should be phased out in favor of the aobj pager
    194  */
    195 
    196 
    197 static int
    198 uvm_km_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
    199 	struct uvm_object *uobj;
    200 	vaddr_t offset;
    201 	struct vm_page **pps;
    202 	int *npagesp;
    203 	int centeridx, advice, flags;
    204 	vm_prot_t access_type;
    205 {
    206 	vaddr_t current_offset;
    207 	vm_page_t ptmp;
    208 	int lcv, gotpages, maxpages;
    209 	boolean_t done;
    210 	UVMHIST_FUNC("uvm_km_get"); UVMHIST_CALLED(maphist);
    211 
    212 	UVMHIST_LOG(maphist, "flags=%d", flags,0,0,0);
    213 
    214 	/*
    215 	 * get number of pages
    216 	 */
    217 
    218 	maxpages = *npagesp;
    219 
    220 	/*
    221 	 * step 1: handled the case where fault data structures are locked.
    222 	 */
    223 
    224 	if (flags & PGO_LOCKED) {
    225 
    226 		/*
    227 		 * step 1a: get pages that are already resident.   only do
    228 		 * this if the data structures are locked (i.e. the first time
    229 		 * through).
    230 		 */
    231 
    232 		done = TRUE;	/* be optimistic */
    233 		gotpages = 0;	/* # of pages we got so far */
    234 
    235 		for (lcv = 0, current_offset = offset ;
    236 		    lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
    237 
    238 			/* do we care about this page?  if not, skip it */
    239 			if (pps[lcv] == PGO_DONTCARE)
    240 				continue;
    241 
    242 			/* lookup page */
    243 			ptmp = uvm_pagelookup(uobj, current_offset);
    244 
    245 			/* null?  attempt to allocate the page */
    246 			if (ptmp == NULL) {
    247 				ptmp = uvm_pagealloc(uobj, current_offset,
    248 				    NULL, 0);
    249 				if (ptmp) {
    250 					/* new page */
    251 					ptmp->flags &= ~(PG_BUSY|PG_FAKE);
    252 					UVM_PAGE_OWN(ptmp, NULL);
    253 					uvm_pagezero(ptmp);
    254 				}
    255 			}
    256 
    257 			/*
    258 			 * to be useful must get a non-busy, non-released page
    259 			 */
    260 			if (ptmp == NULL ||
    261 			    (ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
    262 				if (lcv == centeridx ||
    263 				    (flags & PGO_ALLPAGES) != 0)
    264 					/* need to do a wait or I/O! */
    265 					done = FALSE;
    266 				continue;
    267 			}
    268 
    269 			/*
    270 			 * useful page: busy/lock it and plug it in our
    271 			 * result array
    272 			 */
    273 
    274 			/* caller must un-busy this page */
    275 			ptmp->flags |= PG_BUSY;
    276 			UVM_PAGE_OWN(ptmp, "uvm_km_get1");
    277 			pps[lcv] = ptmp;
    278 			gotpages++;
    279 
    280 		}	/* "for" lcv loop */
    281 
    282 		/*
    283 		 * step 1b: now we've either done everything needed or we
    284 		 * to unlock and do some waiting or I/O.
    285 		 */
    286 
    287 		UVMHIST_LOG(maphist, "<- done (done=%d)", done, 0,0,0);
    288 
    289 		*npagesp = gotpages;
    290 		if (done)
    291 			return(VM_PAGER_OK);		/* bingo! */
    292 		else
    293 			return(VM_PAGER_UNLOCK);	/* EEK!   Need to
    294 							 * unlock and I/O */
    295 	}
    296 
    297 	/*
    298 	 * step 2: get non-resident or busy pages.
    299 	 * object is locked.   data structures are unlocked.
    300 	 */
    301 
    302 	for (lcv = 0, current_offset = offset ;
    303 	    lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
    304 
    305 		/* skip over pages we've already gotten or don't want */
    306 		/* skip over pages we don't _have_ to get */
    307 		if (pps[lcv] != NULL ||
    308 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
    309 			continue;
    310 
    311 		/*
    312 		 * we have yet to locate the current page (pps[lcv]).   we
    313 		 * first look for a page that is already at the current offset.
    314 		 * if we find a page, we check to see if it is busy or
    315 		 * released.  if that is the case, then we sleep on the page
    316 		 * until it is no longer busy or released and repeat the
    317 		 * lookup.    if the page we found is neither busy nor
    318 		 * released, then we busy it (so we own it) and plug it into
    319 		 * pps[lcv].   this 'break's the following while loop and
    320 		 * indicates we are ready to move on to the next page in the
    321 		 * "lcv" loop above.
    322 		 *
    323 		 * if we exit the while loop with pps[lcv] still set to NULL,
    324 		 * then it means that we allocated a new busy/fake/clean page
    325 		 * ptmp in the object and we need to do I/O to fill in the
    326 		 * data.
    327 		 */
    328 
    329 		while (pps[lcv] == NULL) {	/* top of "pps" while loop */
    330 
    331 			/* look for a current page */
    332 			ptmp = uvm_pagelookup(uobj, current_offset);
    333 
    334 			/* nope?   allocate one now (if we can) */
    335 			if (ptmp == NULL) {
    336 
    337 				ptmp = uvm_pagealloc(uobj, current_offset,
    338 				    NULL, 0);
    339 
    340 				/* out of RAM? */
    341 				if (ptmp == NULL) {
    342 					simple_unlock(&uobj->vmobjlock);
    343 					uvm_wait("kmgetwait1");
    344 					simple_lock(&uobj->vmobjlock);
    345 					/* goto top of pps while loop */
    346 					continue;
    347 				}
    348 
    349 				/*
    350 				 * got new page ready for I/O.  break pps
    351 				 * while loop.  pps[lcv] is still NULL.
    352 				 */
    353 				break;
    354 			}
    355 
    356 			/* page is there, see if we need to wait on it */
    357 			if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
    358 				ptmp->flags |= PG_WANTED;
    359 				UVM_UNLOCK_AND_WAIT(ptmp,&uobj->vmobjlock, 0,
    360 				    "uvn_get",0);
    361 				simple_lock(&uobj->vmobjlock);
    362 				continue;	/* goto top of pps while loop */
    363 			}
    364 
    365 			/*
    366 			 * if we get here then the page has become resident
    367 			 * and unbusy between steps 1 and 2.  we busy it now
    368 			 * (so we own it) and set pps[lcv] (so that we exit
    369 			 * the while loop).  caller must un-busy.
    370 			 */
    371 			ptmp->flags |= PG_BUSY;
    372 			UVM_PAGE_OWN(ptmp, "uvm_km_get2");
    373 			pps[lcv] = ptmp;
    374 		}
    375 
    376 		/*
    377 		 * if we own the a valid page at the correct offset, pps[lcv]
    378 		 * will point to it.   nothing more to do except go to the
    379 		 * next page.
    380 		 */
    381 
    382 		if (pps[lcv])
    383 			continue;			/* next lcv */
    384 
    385 		/*
    386 		 * we have a "fake/busy/clean" page that we just allocated.
    387 		 * do the needed "i/o" (in this case that means zero it).
    388 		 */
    389 
    390 		uvm_pagezero(ptmp);
    391 		ptmp->flags &= ~(PG_FAKE);
    392 		pps[lcv] = ptmp;
    393 
    394 	}	/* lcv loop */
    395 
    396 	/*
    397 	 * finally, unlock object and return.
    398 	 */
    399 
    400 	simple_unlock(&uobj->vmobjlock);
    401 	UVMHIST_LOG(maphist, "<- done (OK)",0,0,0,0);
    402 	return(VM_PAGER_OK);
    403 }
    404 
    405 /*
    406  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
    407  * KVM already allocated for text, data, bss, and static data structures).
    408  *
    409  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    410  *    we assume that [min -> start] has already been allocated and that
    411  *    "end" is the end.
    412  */
    413 
    414 void
    415 uvm_km_init(start, end)
    416 	vaddr_t start, end;
    417 {
    418 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    419 
    420 	/*
    421 	 * first, init kernel memory objects.
    422 	 */
    423 
    424 	/* kernel_object: for pageable anonymous kernel memory */
    425 	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    426 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    427 
    428 	/*
    429 	 * kmem_object: for use by the kernel malloc().  Memory is always
    430 	 * wired, and this object (and the kmem_map) can be accessed at
    431 	 * interrupt time.
    432 	 */
    433 	simple_lock_init(&kmem_object_store.vmobjlock);
    434 	kmem_object_store.pgops = &km_pager;
    435 	TAILQ_INIT(&kmem_object_store.memq);
    436 	kmem_object_store.uo_npages = 0;
    437 	/* we are special.  we never die */
    438 	kmem_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
    439 	uvmexp.kmem_object = &kmem_object_store;
    440 
    441 	/*
    442 	 * mb_object: for mbuf cluster pages on platforms which use the
    443 	 * mb_map.  Memory is always wired, and this object (and the mb_map)
    444 	 * can be accessed at interrupt time.
    445 	 */
    446 	simple_lock_init(&mb_object_store.vmobjlock);
    447 	mb_object_store.pgops = &km_pager;
    448 	TAILQ_INIT(&mb_object_store.memq);
    449 	mb_object_store.uo_npages = 0;
    450 	/* we are special.  we never die */
    451 	mb_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
    452 	uvmexp.mb_object = &mb_object_store;
    453 
    454 	/*
    455 	 * init the map and reserve allready allocated kernel space
    456 	 * before installing.
    457 	 */
    458 
    459 	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
    460 	kernel_map_store.pmap = pmap_kernel();
    461 	if (uvm_map(&kernel_map_store, &base, start - base, NULL,
    462 	    UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    463 	    UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != KERN_SUCCESS)
    464 		panic("uvm_km_init: could not reserve space for kernel");
    465 
    466 	/*
    467 	 * install!
    468 	 */
    469 
    470 	kernel_map = &kernel_map_store;
    471 }
    472 
    473 /*
    474  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    475  * is allocated all references to that area of VM must go through it.  this
    476  * allows the locking of VAs in kernel_map to be broken up into regions.
    477  *
    478  * => if `fixed' is true, *min specifies where the region described
    479  *      by the submap must start
    480  * => if submap is non NULL we use that as the submap, otherwise we
    481  *	alloc a new map
    482  */
    483 struct vm_map *
    484 uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
    485 	struct vm_map *map;
    486 	vaddr_t *min, *max;		/* OUT, OUT */
    487 	vsize_t size;
    488 	int flags;
    489 	boolean_t fixed;
    490 	struct vm_map *submap;
    491 {
    492 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    493 
    494 	size = round_page(size);	/* round up to pagesize */
    495 
    496 	/*
    497 	 * first allocate a blank spot in the parent map
    498 	 */
    499 
    500 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET,
    501 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    502 	    UVM_ADV_RANDOM, mapflags)) != KERN_SUCCESS) {
    503 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
    504 	}
    505 
    506 	/*
    507 	 * set VM bounds (min is filled in by uvm_map)
    508 	 */
    509 
    510 	*max = *min + size;
    511 
    512 	/*
    513 	 * add references to pmap and create or init the submap
    514 	 */
    515 
    516 	pmap_reference(vm_map_pmap(map));
    517 	if (submap == NULL) {
    518 		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
    519 		if (submap == NULL)
    520 			panic("uvm_km_suballoc: unable to create submap");
    521 	} else {
    522 		uvm_map_setup(submap, *min, *max, flags);
    523 		submap->pmap = vm_map_pmap(map);
    524 	}
    525 
    526 	/*
    527 	 * now let uvm_map_submap plug in it...
    528 	 */
    529 
    530 	if (uvm_map_submap(map, *min, *max, submap) != KERN_SUCCESS)
    531 		panic("uvm_km_suballoc: submap allocation failed");
    532 
    533 	return(submap);
    534 }
    535 
    536 /*
    537  * uvm_km_pgremove: remove pages from a kernel uvm_object.
    538  *
    539  * => when you unmap a part of anonymous kernel memory you want to toss
    540  *    the pages right away.    (this gets called from uvm_unmap_...).
    541  */
    542 
    543 #define UKM_HASH_PENALTY 4      /* a guess */
    544 
    545 void
    546 uvm_km_pgremove(uobj, start, end)
    547 	struct uvm_object *uobj;
    548 	vaddr_t start, end;
    549 {
    550 	boolean_t by_list;
    551 	struct vm_page *pp, *ppnext;
    552 	vaddr_t curoff;
    553 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
    554 
    555 	simple_lock(&uobj->vmobjlock);		/* lock object */
    556 
    557 #ifdef DIAGNOSTIC
    558 	if (uobj->pgops != &aobj_pager)
    559 		panic("uvm_km_pgremove: object %p not an aobj", uobj);
    560 #endif
    561 
    562 	/* choose cheapest traversal */
    563 	by_list = (uobj->uo_npages <=
    564 	     ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
    565 
    566 	if (by_list)
    567 		goto loop_by_list;
    568 
    569 	/* by hash */
    570 
    571 	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
    572 		pp = uvm_pagelookup(uobj, curoff);
    573 		if (pp == NULL)
    574 			continue;
    575 
    576 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    577 		    pp->flags & PG_BUSY, 0, 0);
    578 
    579 		/* now do the actual work */
    580 		if (pp->flags & PG_BUSY) {
    581 			/* owner must check for this when done */
    582 			pp->flags |= PG_RELEASED;
    583 		} else {
    584 			/* free the swap slot... */
    585 			uao_dropswap(uobj, curoff >> PAGE_SHIFT);
    586 
    587 			/*
    588 			 * ...and free the page; note it may be on the
    589 			 * active or inactive queues.
    590 			 */
    591 			uvm_lock_pageq();
    592 			uvm_pagefree(pp);
    593 			uvm_unlock_pageq();
    594 		}
    595 		/* done */
    596 	}
    597 	simple_unlock(&uobj->vmobjlock);
    598 	return;
    599 
    600 loop_by_list:
    601 
    602 	for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
    603 		ppnext = pp->listq.tqe_next;
    604 		if (pp->offset < start || pp->offset >= end) {
    605 			continue;
    606 		}
    607 
    608 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    609 		    pp->flags & PG_BUSY, 0, 0);
    610 
    611 		/* now do the actual work */
    612 		if (pp->flags & PG_BUSY) {
    613 			/* owner must check for this when done */
    614 			pp->flags |= PG_RELEASED;
    615 		} else {
    616 			/* free the swap slot... */
    617 			uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
    618 
    619 			/*
    620 			 * ...and free the page; note it may be on the
    621 			 * active or inactive queues.
    622 			 */
    623 			uvm_lock_pageq();
    624 			uvm_pagefree(pp);
    625 			uvm_unlock_pageq();
    626 		}
    627 		/* done */
    628 	}
    629 	simple_unlock(&uobj->vmobjlock);
    630 	return;
    631 }
    632 
    633 
    634 /*
    635  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
    636  *    objects
    637  *
    638  * => when you unmap a part of anonymous kernel memory you want to toss
    639  *    the pages right away.    (this gets called from uvm_unmap_...).
    640  * => none of the pages will ever be busy, and none of them will ever
    641  *    be on the active or inactive queues (because these objects are
    642  *    never allowed to "page").
    643  */
    644 
    645 void
    646 uvm_km_pgremove_intrsafe(uobj, start, end)
    647 	struct uvm_object *uobj;
    648 	vaddr_t start, end;
    649 {
    650 	boolean_t by_list;
    651 	struct vm_page *pp, *ppnext;
    652 	vaddr_t curoff;
    653 	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
    654 
    655 	simple_lock(&uobj->vmobjlock);		/* lock object */
    656 
    657 #ifdef DIAGNOSTIC
    658 	if (UVM_OBJ_IS_INTRSAFE_OBJECT(uobj) == 0)
    659 		panic("uvm_km_pgremove_intrsafe: object %p not intrsafe", uobj);
    660 #endif
    661 
    662 	/* choose cheapest traversal */
    663 	by_list = (uobj->uo_npages <=
    664 	     ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
    665 
    666 	if (by_list)
    667 		goto loop_by_list;
    668 
    669 	/* by hash */
    670 
    671 	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
    672 		pp = uvm_pagelookup(uobj, curoff);
    673 		if (pp == NULL)
    674 			continue;
    675 
    676 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    677 		    pp->flags & PG_BUSY, 0, 0);
    678 #ifdef DIAGNOSTIC
    679 		if (pp->flags & PG_BUSY)
    680 			panic("uvm_km_pgremove_intrsafe: busy page");
    681 		if (pp->pqflags & PQ_ACTIVE)
    682 			panic("uvm_km_pgremove_intrsafe: active page");
    683 		if (pp->pqflags & PQ_INACTIVE)
    684 			panic("uvm_km_pgremove_intrsafe: inactive page");
    685 #endif
    686 
    687 		/* free the page */
    688 		uvm_pagefree(pp);
    689 	}
    690 	simple_unlock(&uobj->vmobjlock);
    691 	return;
    692 
    693 loop_by_list:
    694 
    695 	for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
    696 		ppnext = pp->listq.tqe_next;
    697 		if (pp->offset < start || pp->offset >= end) {
    698 			continue;
    699 		}
    700 
    701 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    702 		    pp->flags & PG_BUSY, 0, 0);
    703 
    704 #ifdef DIAGNOSTIC
    705 		if (pp->flags & PG_BUSY)
    706 			panic("uvm_km_pgremove_intrsafe: busy page");
    707 		if (pp->pqflags & PQ_ACTIVE)
    708 			panic("uvm_km_pgremove_intrsafe: active page");
    709 		if (pp->pqflags & PQ_INACTIVE)
    710 			panic("uvm_km_pgremove_intrsafe: inactive page");
    711 #endif
    712 
    713 		/* free the page */
    714 		uvm_pagefree(pp);
    715 	}
    716 	simple_unlock(&uobj->vmobjlock);
    717 	return;
    718 }
    719 
    720 
    721 /*
    722  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
    723  *
    724  * => we map wired memory into the specified map using the obj passed in
    725  * => NOTE: we can return NULL even if we can wait if there is not enough
    726  *	free VM space in the map... caller should be prepared to handle
    727  *	this case.
    728  * => we return KVA of memory allocated
    729  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
    730  *	lock the map
    731  */
    732 
    733 vaddr_t
    734 uvm_km_kmemalloc(map, obj, size, flags)
    735 	vm_map_t map;
    736 	struct uvm_object *obj;
    737 	vsize_t size;
    738 	int flags;
    739 {
    740 	vaddr_t kva, loopva;
    741 	vaddr_t offset;
    742 	struct vm_page *pg;
    743 	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
    744 
    745 
    746 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
    747 	map, obj, size, flags);
    748 #ifdef DIAGNOSTIC
    749 	/* sanity check */
    750 	if (vm_map_pmap(map) != pmap_kernel())
    751 		panic("uvm_km_kmemalloc: invalid map");
    752 #endif
    753 
    754 	/*
    755 	 * setup for call
    756 	 */
    757 
    758 	size = round_page(size);
    759 	kva = vm_map_min(map);	/* hint */
    760 
    761 	/*
    762 	 * allocate some virtual space
    763 	 */
    764 
    765 	if (uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    766 	      UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    767 			  UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
    768 			!= KERN_SUCCESS) {
    769 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    770 		return(0);
    771 	}
    772 
    773 	/*
    774 	 * if all we wanted was VA, return now
    775 	 */
    776 
    777 	if (flags & UVM_KMF_VALLOC) {
    778 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
    779 		return(kva);
    780 	}
    781 	/*
    782 	 * recover object offset from virtual address
    783 	 */
    784 
    785 	offset = kva - vm_map_min(kernel_map);
    786 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
    787 
    788 	/*
    789 	 * now allocate and map in the memory... note that we are the only ones
    790 	 * whom should ever get a handle on this area of VM.
    791 	 */
    792 
    793 	loopva = kva;
    794 	while (size) {
    795 		simple_lock(&obj->vmobjlock);
    796 		pg = uvm_pagealloc(obj, offset, NULL, 0);
    797 		if (pg) {
    798 			pg->flags &= ~PG_BUSY;	/* new page */
    799 			UVM_PAGE_OWN(pg, NULL);
    800 		}
    801 		simple_unlock(&obj->vmobjlock);
    802 
    803 		/*
    804 		 * out of memory?
    805 		 */
    806 
    807 		if (pg == NULL) {
    808 			if (flags & UVM_KMF_NOWAIT) {
    809 				/* free everything! */
    810 				uvm_unmap(map, kva, kva + size);
    811 				return(0);
    812 			} else {
    813 				uvm_wait("km_getwait2");	/* sleep here */
    814 				continue;
    815 			}
    816 		}
    817 
    818 		/*
    819 		 * map it in: note that we call pmap_enter with the map and
    820 		 * object unlocked in case we are kmem_map/kmem_object
    821 		 * (because if pmap_enter wants to allocate out of kmem_object
    822 		 * it will need to lock it itself!)
    823 		 */
    824 		if (UVM_OBJ_IS_INTRSAFE_OBJECT(obj)) {
    825 #if defined(PMAP_NEW)
    826 			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    827 			    VM_PROT_ALL);
    828 #else
    829 			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    830 			    UVM_PROT_ALL, TRUE, VM_PROT_READ|VM_PROT_WRITE);
    831 #endif
    832 		} else {
    833 			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    834 			    UVM_PROT_ALL, TRUE, VM_PROT_READ|VM_PROT_WRITE);
    835 		}
    836 		loopva += PAGE_SIZE;
    837 		offset += PAGE_SIZE;
    838 		size -= PAGE_SIZE;
    839 	}
    840 
    841 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    842 	return(kva);
    843 }
    844 
    845 /*
    846  * uvm_km_free: free an area of kernel memory
    847  */
    848 
    849 void
    850 uvm_km_free(map, addr, size)
    851 	vm_map_t map;
    852 	vaddr_t addr;
    853 	vsize_t size;
    854 {
    855 
    856 	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
    857 }
    858 
    859 /*
    860  * uvm_km_free_wakeup: free an area of kernel memory and wake up
    861  * anyone waiting for vm space.
    862  *
    863  * => XXX: "wanted" bit + unlock&wait on other end?
    864  */
    865 
    866 void
    867 uvm_km_free_wakeup(map, addr, size)
    868 	vm_map_t map;
    869 	vaddr_t addr;
    870 	vsize_t size;
    871 {
    872 	vm_map_entry_t dead_entries;
    873 
    874 	vm_map_lock(map);
    875 	(void)uvm_unmap_remove(map, trunc_page(addr), round_page(addr+size),
    876 			 &dead_entries);
    877 	thread_wakeup(map);
    878 	vm_map_unlock(map);
    879 
    880 	if (dead_entries != NULL)
    881 		uvm_unmap_detach(dead_entries, 0);
    882 }
    883 
    884 /*
    885  * uvm_km_alloc1: allocate wired down memory in the kernel map.
    886  *
    887  * => we can sleep if needed
    888  */
    889 
    890 vaddr_t
    891 uvm_km_alloc1(map, size, zeroit)
    892 	vm_map_t map;
    893 	vsize_t size;
    894 	boolean_t zeroit;
    895 {
    896 	vaddr_t kva, loopva, offset;
    897 	struct vm_page *pg;
    898 	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
    899 
    900 	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
    901 
    902 #ifdef DIAGNOSTIC
    903 	if (vm_map_pmap(map) != pmap_kernel())
    904 		panic("uvm_km_alloc1");
    905 #endif
    906 
    907 	size = round_page(size);
    908 	kva = vm_map_min(map);		/* hint */
    909 
    910 	/*
    911 	 * allocate some virtual space
    912 	 */
    913 
    914 	if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
    915 	      UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    916 			  UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
    917 		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
    918 		return(0);
    919 	}
    920 
    921 	/*
    922 	 * recover object offset from virtual address
    923 	 */
    924 
    925 	offset = kva - vm_map_min(kernel_map);
    926 	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
    927 
    928 	/*
    929 	 * now allocate the memory.  we must be careful about released pages.
    930 	 */
    931 
    932 	loopva = kva;
    933 	while (size) {
    934 		simple_lock(&uvm.kernel_object->vmobjlock);
    935 		pg = uvm_pagelookup(uvm.kernel_object, offset);
    936 
    937 		/*
    938 		 * if we found a page in an unallocated region, it must be
    939 		 * released
    940 		 */
    941 		if (pg) {
    942 			if ((pg->flags & PG_RELEASED) == 0)
    943 				panic("uvm_km_alloc1: non-released page");
    944 			pg->flags |= PG_WANTED;
    945 			UVM_UNLOCK_AND_WAIT(pg, &uvm.kernel_object->vmobjlock,
    946 			    0, "km_alloc", 0);
    947 			continue;   /* retry */
    948 		}
    949 
    950 		/* allocate ram */
    951 		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
    952 		if (pg) {
    953 			pg->flags &= ~PG_BUSY;	/* new page */
    954 			UVM_PAGE_OWN(pg, NULL);
    955 		}
    956 		simple_unlock(&uvm.kernel_object->vmobjlock);
    957 		if (pg == NULL) {
    958 			uvm_wait("km_alloc1w");	/* wait for memory */
    959 			continue;
    960 		}
    961 
    962 		/*
    963 		 * map it in; note we're never called with an intrsafe
    964 		 * object, so we always use regular old pmap_enter().
    965 		 */
    966 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    967 		    UVM_PROT_ALL, TRUE, VM_PROT_READ|VM_PROT_WRITE);
    968 
    969 		loopva += PAGE_SIZE;
    970 		offset += PAGE_SIZE;
    971 		size -= PAGE_SIZE;
    972 	}
    973 
    974 	/*
    975 	 * zero on request (note that "size" is now zero due to the above loop
    976 	 * so we need to subtract kva from loopva to reconstruct the size).
    977 	 */
    978 
    979 	if (zeroit)
    980 		memset((caddr_t)kva, 0, loopva - kva);
    981 
    982 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    983 	return(kva);
    984 }
    985 
    986 /*
    987  * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
    988  *
    989  * => memory is not allocated until fault time
    990  */
    991 
    992 vaddr_t
    993 uvm_km_valloc(map, size)
    994 	vm_map_t map;
    995 	vsize_t size;
    996 {
    997 	vaddr_t kva;
    998 	UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
    999 
   1000 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
   1001 
   1002 #ifdef DIAGNOSTIC
   1003 	if (vm_map_pmap(map) != pmap_kernel())
   1004 		panic("uvm_km_valloc");
   1005 #endif
   1006 
   1007 	size = round_page(size);
   1008 	kva = vm_map_min(map);		/* hint */
   1009 
   1010 	/*
   1011 	 * allocate some virtual space.  will be demand filled by kernel_object.
   1012 	 */
   1013 
   1014 	if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
   1015 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
   1016 	    UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
   1017 		UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
   1018 		return(0);
   1019 	}
   1020 
   1021 	UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
   1022 	return(kva);
   1023 }
   1024 
   1025 /*
   1026  * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
   1027  *
   1028  * => memory is not allocated until fault time
   1029  * => if no room in map, wait for space to free, unless requested size
   1030  *    is larger than map (in which case we return 0)
   1031  */
   1032 
   1033 vaddr_t
   1034 uvm_km_valloc_wait(map, size)
   1035 	vm_map_t map;
   1036 	vsize_t size;
   1037 {
   1038 	vaddr_t kva;
   1039 	UVMHIST_FUNC("uvm_km_valloc_wait"); UVMHIST_CALLED(maphist);
   1040 
   1041 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
   1042 
   1043 #ifdef DIAGNOSTIC
   1044 	if (vm_map_pmap(map) != pmap_kernel())
   1045 		panic("uvm_km_valloc_wait");
   1046 #endif
   1047 
   1048 	size = round_page(size);
   1049 	if (size > vm_map_max(map) - vm_map_min(map))
   1050 		return(0);
   1051 
   1052 	while (1) {
   1053 		kva = vm_map_min(map);		/* hint */
   1054 
   1055 		/*
   1056 		 * allocate some virtual space.   will be demand filled
   1057 		 * by kernel_object.
   1058 		 */
   1059 
   1060 		if (uvm_map(map, &kva, size, uvm.kernel_object,
   1061 		    UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL,
   1062 		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
   1063 		    == KERN_SUCCESS) {
   1064 			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
   1065 			return(kva);
   1066 		}
   1067 
   1068 		/*
   1069 		 * failed.  sleep for a while (on map)
   1070 		 */
   1071 
   1072 		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
   1073 		tsleep((caddr_t)map, PVM, "vallocwait", 0);
   1074 	}
   1075 	/*NOTREACHED*/
   1076 }
   1077 
   1078 /* Sanity; must specify both or none. */
   1079 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
   1080     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
   1081 #error Must specify MAP and UNMAP together.
   1082 #endif
   1083 
   1084 /*
   1085  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
   1086  *
   1087  * => if the pmap specifies an alternate mapping method, we use it.
   1088  */
   1089 
   1090 /* ARGSUSED */
   1091 vaddr_t
   1092 uvm_km_alloc_poolpage1(map, obj, waitok)
   1093 	vm_map_t map;
   1094 	struct uvm_object *obj;
   1095 	boolean_t waitok;
   1096 {
   1097 #if defined(PMAP_MAP_POOLPAGE)
   1098 	struct vm_page *pg;
   1099 	vaddr_t va;
   1100 
   1101  again:
   1102 	pg = uvm_pagealloc(NULL, 0, NULL, 0);
   1103 	if (pg == NULL) {
   1104 		if (waitok) {
   1105 			uvm_wait("plpg");
   1106 			goto again;
   1107 		} else
   1108 			return (0);
   1109 	}
   1110 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
   1111 	if (va == 0)
   1112 		uvm_pagefree(pg);
   1113 	return (va);
   1114 #else
   1115 	vaddr_t va;
   1116 	int s;
   1117 
   1118 	/*
   1119 	 * NOTE: We may be called with a map that doens't require splimp
   1120 	 * protection (e.g. kernel_map).  However, it does not hurt to
   1121 	 * go to splimp in this case (since unprocted maps will never be
   1122 	 * accessed in interrupt context).
   1123 	 *
   1124 	 * XXX We may want to consider changing the interface to this
   1125 	 * XXX function.
   1126 	 */
   1127 
   1128 	s = splimp();
   1129 	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
   1130 	splx(s);
   1131 	return (va);
   1132 #endif /* PMAP_MAP_POOLPAGE */
   1133 }
   1134 
   1135 /*
   1136  * uvm_km_free_poolpage: free a previously allocated pool page
   1137  *
   1138  * => if the pmap specifies an alternate unmapping method, we use it.
   1139  */
   1140 
   1141 /* ARGSUSED */
   1142 void
   1143 uvm_km_free_poolpage1(map, addr)
   1144 	vm_map_t map;
   1145 	vaddr_t addr;
   1146 {
   1147 #if defined(PMAP_UNMAP_POOLPAGE)
   1148 	paddr_t pa;
   1149 
   1150 	pa = PMAP_UNMAP_POOLPAGE(addr);
   1151 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
   1152 #else
   1153 	int s;
   1154 
   1155 	/*
   1156 	 * NOTE: We may be called with a map that doens't require splimp
   1157 	 * protection (e.g. kernel_map).  However, it does not hurt to
   1158 	 * go to splimp in this case (since unprocted maps will never be
   1159 	 * accessed in interrupt context).
   1160 	 *
   1161 	 * XXX We may want to consider changing the interface to this
   1162 	 * XXX function.
   1163 	 */
   1164 
   1165 	s = splimp();
   1166 	uvm_km_free(map, addr, PAGE_SIZE);
   1167 	splx(s);
   1168 #endif /* PMAP_UNMAP_POOLPAGE */
   1169 }
   1170