uvm_km.c revision 1.27 1 /* $NetBSD: uvm_km.c,v 1.27 1999/06/04 23:38:41 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
42 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 #include "opt_uvmhist.h"
70 #include "opt_pmap_new.h"
71
72 /*
73 * uvm_km.c: handle kernel memory allocation and management
74 */
75
76 /*
77 * overview of kernel memory management:
78 *
79 * the kernel virtual address space is mapped by "kernel_map." kernel_map
80 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
81 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
82 *
83 * the kernel_map has several "submaps." submaps can only appear in
84 * the kernel_map (user processes can't use them). submaps "take over"
85 * the management of a sub-range of the kernel's address space. submaps
86 * are typically allocated at boot time and are never released. kernel
87 * virtual address space that is mapped by a submap is locked by the
88 * submap's lock -- not the kernel_map's lock.
89 *
90 * thus, the useful feature of submaps is that they allow us to break
91 * up the locking and protection of the kernel address space into smaller
92 * chunks.
93 *
94 * the vm system has several standard kernel submaps, including:
95 * kmem_map => contains only wired kernel memory for the kernel
96 * malloc. *** access to kmem_map must be protected
97 * by splimp() because we are allowed to call malloc()
98 * at interrupt time ***
99 * mb_map => memory for large mbufs, *** protected by splimp ***
100 * pager_map => used to map "buf" structures into kernel space
101 * exec_map => used during exec to handle exec args
102 * etc...
103 *
104 * the kernel allocates its private memory out of special uvm_objects whose
105 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
106 * are "special" and never die). all kernel objects should be thought of
107 * as large, fixed-sized, sparsely populated uvm_objects. each kernel
108 * object is equal to the size of kernel virtual address space (i.e. the
109 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
110 *
111 * most kernel private memory lives in kernel_object. the only exception
112 * to this is for memory that belongs to submaps that must be protected
113 * by splimp(). each of these submaps has their own private kernel
114 * object (e.g. kmem_object, mb_object).
115 *
116 * note that just because a kernel object spans the entire kernel virutal
117 * address space doesn't mean that it has to be mapped into the entire space.
118 * large chunks of a kernel object's space go unused either because
119 * that area of kernel VM is unmapped, or there is some other type of
120 * object mapped into that range (e.g. a vnode). for submap's kernel
121 * objects, the only part of the object that can ever be populated is the
122 * offsets that are managed by the submap.
123 *
124 * note that the "offset" in a kernel object is always the kernel virtual
125 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
126 * example:
127 * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
128 * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
129 * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
130 * then that means that the page at offset 0x235000 in kernel_object is
131 * mapped at 0xf8235000.
132 *
133 * note that the offsets in kmem_object and mb_object also follow this
134 * rule. this means that the offsets for kmem_object must fall in the
135 * range of [vm_map_min(kmem_object) - vm_map_min(kernel_map)] to
136 * [vm_map_max(kmem_object) - vm_map_min(kernel_map)], so the offsets
137 * in those objects will typically not start at zero.
138 *
139 * kernel object have one other special property: when the kernel virtual
140 * memory mapping them is unmapped, the backing memory in the object is
141 * freed right away. this is done with the uvm_km_pgremove() function.
142 * this has to be done because there is no backing store for kernel pages
143 * and no need to save them after they are no longer referenced.
144 */
145
146 #include <sys/param.h>
147 #include <sys/systm.h>
148 #include <sys/proc.h>
149
150 #include <vm/vm.h>
151 #include <vm/vm_page.h>
152 #include <vm/vm_kern.h>
153
154 #include <uvm/uvm.h>
155
156 /*
157 * global data structures
158 */
159
160 vm_map_t kernel_map = NULL;
161
162 struct vmi_list vmi_list;
163 simple_lock_data_t vmi_list_slock;
164
165 /*
166 * local functions
167 */
168
169 static int uvm_km_get __P((struct uvm_object *, vaddr_t,
170 vm_page_t *, int *, int, vm_prot_t, int, int));
171
172 /*
173 * local data structues
174 */
175
176 static struct vm_map kernel_map_store;
177 static struct uvm_object kmem_object_store;
178 static struct uvm_object mb_object_store;
179
180 static struct uvm_pagerops km_pager = {
181 NULL, /* init */
182 NULL, /* reference */
183 NULL, /* detach */
184 NULL, /* fault */
185 NULL, /* flush */
186 uvm_km_get, /* get */
187 /* ... rest are NULL */
188 };
189
190 /*
191 * uvm_km_get: pager get function for kernel objects
192 *
193 * => currently we do not support pageout to the swap area, so this
194 * pager is very simple. eventually we may want an anonymous
195 * object pager which will do paging.
196 * => XXXCDC: this pager should be phased out in favor of the aobj pager
197 */
198
199
200 static int
201 uvm_km_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
202 struct uvm_object *uobj;
203 vaddr_t offset;
204 struct vm_page **pps;
205 int *npagesp;
206 int centeridx, advice, flags;
207 vm_prot_t access_type;
208 {
209 vaddr_t current_offset;
210 vm_page_t ptmp;
211 int lcv, gotpages, maxpages;
212 boolean_t done;
213 UVMHIST_FUNC("uvm_km_get"); UVMHIST_CALLED(maphist);
214
215 UVMHIST_LOG(maphist, "flags=%d", flags,0,0,0);
216
217 /*
218 * get number of pages
219 */
220
221 maxpages = *npagesp;
222
223 /*
224 * step 1: handled the case where fault data structures are locked.
225 */
226
227 if (flags & PGO_LOCKED) {
228
229 /*
230 * step 1a: get pages that are already resident. only do
231 * this if the data structures are locked (i.e. the first time
232 * through).
233 */
234
235 done = TRUE; /* be optimistic */
236 gotpages = 0; /* # of pages we got so far */
237
238 for (lcv = 0, current_offset = offset ;
239 lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
240
241 /* do we care about this page? if not, skip it */
242 if (pps[lcv] == PGO_DONTCARE)
243 continue;
244
245 /* lookup page */
246 ptmp = uvm_pagelookup(uobj, current_offset);
247
248 /* null? attempt to allocate the page */
249 if (ptmp == NULL) {
250 ptmp = uvm_pagealloc(uobj, current_offset,
251 NULL, 0);
252 if (ptmp) {
253 /* new page */
254 ptmp->flags &= ~(PG_BUSY|PG_FAKE);
255 UVM_PAGE_OWN(ptmp, NULL);
256 uvm_pagezero(ptmp);
257 }
258 }
259
260 /*
261 * to be useful must get a non-busy, non-released page
262 */
263 if (ptmp == NULL ||
264 (ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
265 if (lcv == centeridx ||
266 (flags & PGO_ALLPAGES) != 0)
267 /* need to do a wait or I/O! */
268 done = FALSE;
269 continue;
270 }
271
272 /*
273 * useful page: busy/lock it and plug it in our
274 * result array
275 */
276
277 /* caller must un-busy this page */
278 ptmp->flags |= PG_BUSY;
279 UVM_PAGE_OWN(ptmp, "uvm_km_get1");
280 pps[lcv] = ptmp;
281 gotpages++;
282
283 } /* "for" lcv loop */
284
285 /*
286 * step 1b: now we've either done everything needed or we
287 * to unlock and do some waiting or I/O.
288 */
289
290 UVMHIST_LOG(maphist, "<- done (done=%d)", done, 0,0,0);
291
292 *npagesp = gotpages;
293 if (done)
294 return(VM_PAGER_OK); /* bingo! */
295 else
296 return(VM_PAGER_UNLOCK); /* EEK! Need to
297 * unlock and I/O */
298 }
299
300 /*
301 * step 2: get non-resident or busy pages.
302 * object is locked. data structures are unlocked.
303 */
304
305 for (lcv = 0, current_offset = offset ;
306 lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
307
308 /* skip over pages we've already gotten or don't want */
309 /* skip over pages we don't _have_ to get */
310 if (pps[lcv] != NULL ||
311 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
312 continue;
313
314 /*
315 * we have yet to locate the current page (pps[lcv]). we
316 * first look for a page that is already at the current offset.
317 * if we find a page, we check to see if it is busy or
318 * released. if that is the case, then we sleep on the page
319 * until it is no longer busy or released and repeat the
320 * lookup. if the page we found is neither busy nor
321 * released, then we busy it (so we own it) and plug it into
322 * pps[lcv]. this 'break's the following while loop and
323 * indicates we are ready to move on to the next page in the
324 * "lcv" loop above.
325 *
326 * if we exit the while loop with pps[lcv] still set to NULL,
327 * then it means that we allocated a new busy/fake/clean page
328 * ptmp in the object and we need to do I/O to fill in the
329 * data.
330 */
331
332 while (pps[lcv] == NULL) { /* top of "pps" while loop */
333
334 /* look for a current page */
335 ptmp = uvm_pagelookup(uobj, current_offset);
336
337 /* nope? allocate one now (if we can) */
338 if (ptmp == NULL) {
339
340 ptmp = uvm_pagealloc(uobj, current_offset,
341 NULL, 0);
342
343 /* out of RAM? */
344 if (ptmp == NULL) {
345 simple_unlock(&uobj->vmobjlock);
346 uvm_wait("kmgetwait1");
347 simple_lock(&uobj->vmobjlock);
348 /* goto top of pps while loop */
349 continue;
350 }
351
352 /*
353 * got new page ready for I/O. break pps
354 * while loop. pps[lcv] is still NULL.
355 */
356 break;
357 }
358
359 /* page is there, see if we need to wait on it */
360 if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
361 ptmp->flags |= PG_WANTED;
362 UVM_UNLOCK_AND_WAIT(ptmp,&uobj->vmobjlock, 0,
363 "uvn_get",0);
364 simple_lock(&uobj->vmobjlock);
365 continue; /* goto top of pps while loop */
366 }
367
368 /*
369 * if we get here then the page has become resident
370 * and unbusy between steps 1 and 2. we busy it now
371 * (so we own it) and set pps[lcv] (so that we exit
372 * the while loop). caller must un-busy.
373 */
374 ptmp->flags |= PG_BUSY;
375 UVM_PAGE_OWN(ptmp, "uvm_km_get2");
376 pps[lcv] = ptmp;
377 }
378
379 /*
380 * if we own the a valid page at the correct offset, pps[lcv]
381 * will point to it. nothing more to do except go to the
382 * next page.
383 */
384
385 if (pps[lcv])
386 continue; /* next lcv */
387
388 /*
389 * we have a "fake/busy/clean" page that we just allocated.
390 * do the needed "i/o" (in this case that means zero it).
391 */
392
393 uvm_pagezero(ptmp);
394 ptmp->flags &= ~(PG_FAKE);
395 pps[lcv] = ptmp;
396
397 } /* lcv loop */
398
399 /*
400 * finally, unlock object and return.
401 */
402
403 simple_unlock(&uobj->vmobjlock);
404 UVMHIST_LOG(maphist, "<- done (OK)",0,0,0,0);
405 return(VM_PAGER_OK);
406 }
407
408 /*
409 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
410 * KVM already allocated for text, data, bss, and static data structures).
411 *
412 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
413 * we assume that [min -> start] has already been allocated and that
414 * "end" is the end.
415 */
416
417 void
418 uvm_km_init(start, end)
419 vaddr_t start, end;
420 {
421 vaddr_t base = VM_MIN_KERNEL_ADDRESS;
422
423 /*
424 * first, initialize the interrupt-safe map list.
425 */
426 LIST_INIT(&vmi_list);
427 simple_lock_init(&vmi_list_slock);
428
429 /*
430 * next, init kernel memory objects.
431 */
432
433 /* kernel_object: for pageable anonymous kernel memory */
434 uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
435 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
436
437 /*
438 * kmem_object: for use by the kernel malloc(). Memory is always
439 * wired, and this object (and the kmem_map) can be accessed at
440 * interrupt time.
441 */
442 simple_lock_init(&kmem_object_store.vmobjlock);
443 kmem_object_store.pgops = &km_pager;
444 TAILQ_INIT(&kmem_object_store.memq);
445 kmem_object_store.uo_npages = 0;
446 /* we are special. we never die */
447 kmem_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
448 uvmexp.kmem_object = &kmem_object_store;
449
450 /*
451 * mb_object: for mbuf cluster pages on platforms which use the
452 * mb_map. Memory is always wired, and this object (and the mb_map)
453 * can be accessed at interrupt time.
454 */
455 simple_lock_init(&mb_object_store.vmobjlock);
456 mb_object_store.pgops = &km_pager;
457 TAILQ_INIT(&mb_object_store.memq);
458 mb_object_store.uo_npages = 0;
459 /* we are special. we never die */
460 mb_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
461 uvmexp.mb_object = &mb_object_store;
462
463 /*
464 * init the map and reserve allready allocated kernel space
465 * before installing.
466 */
467
468 uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
469 kernel_map_store.pmap = pmap_kernel();
470 if (uvm_map(&kernel_map_store, &base, start - base, NULL,
471 UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
472 UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != KERN_SUCCESS)
473 panic("uvm_km_init: could not reserve space for kernel");
474
475 /*
476 * install!
477 */
478
479 kernel_map = &kernel_map_store;
480 }
481
482 /*
483 * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
484 * is allocated all references to that area of VM must go through it. this
485 * allows the locking of VAs in kernel_map to be broken up into regions.
486 *
487 * => if `fixed' is true, *min specifies where the region described
488 * by the submap must start
489 * => if submap is non NULL we use that as the submap, otherwise we
490 * alloc a new map
491 */
492 struct vm_map *
493 uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
494 struct vm_map *map;
495 vaddr_t *min, *max; /* OUT, OUT */
496 vsize_t size;
497 int flags;
498 boolean_t fixed;
499 struct vm_map *submap;
500 {
501 int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
502
503 size = round_page(size); /* round up to pagesize */
504
505 /*
506 * first allocate a blank spot in the parent map
507 */
508
509 if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET,
510 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
511 UVM_ADV_RANDOM, mapflags)) != KERN_SUCCESS) {
512 panic("uvm_km_suballoc: unable to allocate space in parent map");
513 }
514
515 /*
516 * set VM bounds (min is filled in by uvm_map)
517 */
518
519 *max = *min + size;
520
521 /*
522 * add references to pmap and create or init the submap
523 */
524
525 pmap_reference(vm_map_pmap(map));
526 if (submap == NULL) {
527 submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
528 if (submap == NULL)
529 panic("uvm_km_suballoc: unable to create submap");
530 } else {
531 uvm_map_setup(submap, *min, *max, flags);
532 submap->pmap = vm_map_pmap(map);
533 }
534
535 /*
536 * now let uvm_map_submap plug in it...
537 */
538
539 if (uvm_map_submap(map, *min, *max, submap) != KERN_SUCCESS)
540 panic("uvm_km_suballoc: submap allocation failed");
541
542 return(submap);
543 }
544
545 /*
546 * uvm_km_pgremove: remove pages from a kernel uvm_object.
547 *
548 * => when you unmap a part of anonymous kernel memory you want to toss
549 * the pages right away. (this gets called from uvm_unmap_...).
550 */
551
552 #define UKM_HASH_PENALTY 4 /* a guess */
553
554 void
555 uvm_km_pgremove(uobj, start, end)
556 struct uvm_object *uobj;
557 vaddr_t start, end;
558 {
559 boolean_t by_list;
560 struct vm_page *pp, *ppnext;
561 vaddr_t curoff;
562 UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
563
564 simple_lock(&uobj->vmobjlock); /* lock object */
565
566 #ifdef DIAGNOSTIC
567 if (uobj->pgops != &aobj_pager)
568 panic("uvm_km_pgremove: object %p not an aobj", uobj);
569 #endif
570
571 /* choose cheapest traversal */
572 by_list = (uobj->uo_npages <=
573 ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
574
575 if (by_list)
576 goto loop_by_list;
577
578 /* by hash */
579
580 for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
581 pp = uvm_pagelookup(uobj, curoff);
582 if (pp == NULL)
583 continue;
584
585 UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,
586 pp->flags & PG_BUSY, 0, 0);
587
588 /* now do the actual work */
589 if (pp->flags & PG_BUSY) {
590 /* owner must check for this when done */
591 pp->flags |= PG_RELEASED;
592 } else {
593 /* free the swap slot... */
594 uao_dropswap(uobj, curoff >> PAGE_SHIFT);
595
596 /*
597 * ...and free the page; note it may be on the
598 * active or inactive queues.
599 */
600 uvm_lock_pageq();
601 uvm_pagefree(pp);
602 uvm_unlock_pageq();
603 }
604 /* done */
605 }
606 simple_unlock(&uobj->vmobjlock);
607 return;
608
609 loop_by_list:
610
611 for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
612 ppnext = pp->listq.tqe_next;
613 if (pp->offset < start || pp->offset >= end) {
614 continue;
615 }
616
617 UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,
618 pp->flags & PG_BUSY, 0, 0);
619
620 /* now do the actual work */
621 if (pp->flags & PG_BUSY) {
622 /* owner must check for this when done */
623 pp->flags |= PG_RELEASED;
624 } else {
625 /* free the swap slot... */
626 uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
627
628 /*
629 * ...and free the page; note it may be on the
630 * active or inactive queues.
631 */
632 uvm_lock_pageq();
633 uvm_pagefree(pp);
634 uvm_unlock_pageq();
635 }
636 /* done */
637 }
638 simple_unlock(&uobj->vmobjlock);
639 return;
640 }
641
642
643 /*
644 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
645 * objects
646 *
647 * => when you unmap a part of anonymous kernel memory you want to toss
648 * the pages right away. (this gets called from uvm_unmap_...).
649 * => none of the pages will ever be busy, and none of them will ever
650 * be on the active or inactive queues (because these objects are
651 * never allowed to "page").
652 */
653
654 void
655 uvm_km_pgremove_intrsafe(uobj, start, end)
656 struct uvm_object *uobj;
657 vaddr_t start, end;
658 {
659 boolean_t by_list;
660 struct vm_page *pp, *ppnext;
661 vaddr_t curoff;
662 UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
663
664 simple_lock(&uobj->vmobjlock); /* lock object */
665
666 #ifdef DIAGNOSTIC
667 if (UVM_OBJ_IS_INTRSAFE_OBJECT(uobj) == 0)
668 panic("uvm_km_pgremove_intrsafe: object %p not intrsafe", uobj);
669 #endif
670
671 /* choose cheapest traversal */
672 by_list = (uobj->uo_npages <=
673 ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
674
675 if (by_list)
676 goto loop_by_list;
677
678 /* by hash */
679
680 for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
681 pp = uvm_pagelookup(uobj, curoff);
682 if (pp == NULL)
683 continue;
684
685 UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,
686 pp->flags & PG_BUSY, 0, 0);
687 #ifdef DIAGNOSTIC
688 if (pp->flags & PG_BUSY)
689 panic("uvm_km_pgremove_intrsafe: busy page");
690 if (pp->pqflags & PQ_ACTIVE)
691 panic("uvm_km_pgremove_intrsafe: active page");
692 if (pp->pqflags & PQ_INACTIVE)
693 panic("uvm_km_pgremove_intrsafe: inactive page");
694 #endif
695
696 /* free the page */
697 uvm_pagefree(pp);
698 }
699 simple_unlock(&uobj->vmobjlock);
700 return;
701
702 loop_by_list:
703
704 for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
705 ppnext = pp->listq.tqe_next;
706 if (pp->offset < start || pp->offset >= end) {
707 continue;
708 }
709
710 UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,
711 pp->flags & PG_BUSY, 0, 0);
712
713 #ifdef DIAGNOSTIC
714 if (pp->flags & PG_BUSY)
715 panic("uvm_km_pgremove_intrsafe: busy page");
716 if (pp->pqflags & PQ_ACTIVE)
717 panic("uvm_km_pgremove_intrsafe: active page");
718 if (pp->pqflags & PQ_INACTIVE)
719 panic("uvm_km_pgremove_intrsafe: inactive page");
720 #endif
721
722 /* free the page */
723 uvm_pagefree(pp);
724 }
725 simple_unlock(&uobj->vmobjlock);
726 return;
727 }
728
729
730 /*
731 * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
732 *
733 * => we map wired memory into the specified map using the obj passed in
734 * => NOTE: we can return NULL even if we can wait if there is not enough
735 * free VM space in the map... caller should be prepared to handle
736 * this case.
737 * => we return KVA of memory allocated
738 * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
739 * lock the map
740 */
741
742 vaddr_t
743 uvm_km_kmemalloc(map, obj, size, flags)
744 vm_map_t map;
745 struct uvm_object *obj;
746 vsize_t size;
747 int flags;
748 {
749 vaddr_t kva, loopva;
750 vaddr_t offset;
751 struct vm_page *pg;
752 UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
753
754
755 UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
756 map, obj, size, flags);
757 #ifdef DIAGNOSTIC
758 /* sanity check */
759 if (vm_map_pmap(map) != pmap_kernel())
760 panic("uvm_km_kmemalloc: invalid map");
761 #endif
762
763 /*
764 * setup for call
765 */
766
767 size = round_page(size);
768 kva = vm_map_min(map); /* hint */
769
770 /*
771 * allocate some virtual space
772 */
773
774 if (uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
775 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
776 UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
777 != KERN_SUCCESS) {
778 UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
779 return(0);
780 }
781
782 /*
783 * if all we wanted was VA, return now
784 */
785
786 if (flags & UVM_KMF_VALLOC) {
787 UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
788 return(kva);
789 }
790 /*
791 * recover object offset from virtual address
792 */
793
794 offset = kva - vm_map_min(kernel_map);
795 UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
796
797 /*
798 * now allocate and map in the memory... note that we are the only ones
799 * whom should ever get a handle on this area of VM.
800 */
801
802 loopva = kva;
803 while (size) {
804 simple_lock(&obj->vmobjlock);
805 pg = uvm_pagealloc(obj, offset, NULL, 0);
806 if (pg) {
807 pg->flags &= ~PG_BUSY; /* new page */
808 UVM_PAGE_OWN(pg, NULL);
809 }
810 simple_unlock(&obj->vmobjlock);
811
812 /*
813 * out of memory?
814 */
815
816 if (pg == NULL) {
817 if (flags & UVM_KMF_NOWAIT) {
818 /* free everything! */
819 uvm_unmap(map, kva, kva + size);
820 return(0);
821 } else {
822 uvm_wait("km_getwait2"); /* sleep here */
823 continue;
824 }
825 }
826
827 /*
828 * map it in: note that we call pmap_enter with the map and
829 * object unlocked in case we are kmem_map/kmem_object
830 * (because if pmap_enter wants to allocate out of kmem_object
831 * it will need to lock it itself!)
832 */
833 if (UVM_OBJ_IS_INTRSAFE_OBJECT(obj)) {
834 #if defined(PMAP_NEW)
835 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
836 VM_PROT_ALL);
837 #else
838 pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
839 UVM_PROT_ALL, TRUE, VM_PROT_READ|VM_PROT_WRITE);
840 #endif
841 } else {
842 pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
843 UVM_PROT_ALL, TRUE, VM_PROT_READ|VM_PROT_WRITE);
844 }
845 loopva += PAGE_SIZE;
846 offset += PAGE_SIZE;
847 size -= PAGE_SIZE;
848 }
849
850 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
851 return(kva);
852 }
853
854 /*
855 * uvm_km_free: free an area of kernel memory
856 */
857
858 void
859 uvm_km_free(map, addr, size)
860 vm_map_t map;
861 vaddr_t addr;
862 vsize_t size;
863 {
864
865 uvm_unmap(map, trunc_page(addr), round_page(addr+size));
866 }
867
868 /*
869 * uvm_km_free_wakeup: free an area of kernel memory and wake up
870 * anyone waiting for vm space.
871 *
872 * => XXX: "wanted" bit + unlock&wait on other end?
873 */
874
875 void
876 uvm_km_free_wakeup(map, addr, size)
877 vm_map_t map;
878 vaddr_t addr;
879 vsize_t size;
880 {
881 vm_map_entry_t dead_entries;
882
883 vm_map_lock(map);
884 (void)uvm_unmap_remove(map, trunc_page(addr), round_page(addr+size),
885 &dead_entries);
886 thread_wakeup(map);
887 vm_map_unlock(map);
888
889 if (dead_entries != NULL)
890 uvm_unmap_detach(dead_entries, 0);
891 }
892
893 /*
894 * uvm_km_alloc1: allocate wired down memory in the kernel map.
895 *
896 * => we can sleep if needed
897 */
898
899 vaddr_t
900 uvm_km_alloc1(map, size, zeroit)
901 vm_map_t map;
902 vsize_t size;
903 boolean_t zeroit;
904 {
905 vaddr_t kva, loopva, offset;
906 struct vm_page *pg;
907 UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
908
909 UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
910
911 #ifdef DIAGNOSTIC
912 if (vm_map_pmap(map) != pmap_kernel())
913 panic("uvm_km_alloc1");
914 #endif
915
916 size = round_page(size);
917 kva = vm_map_min(map); /* hint */
918
919 /*
920 * allocate some virtual space
921 */
922
923 if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
924 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
925 UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
926 UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
927 return(0);
928 }
929
930 /*
931 * recover object offset from virtual address
932 */
933
934 offset = kva - vm_map_min(kernel_map);
935 UVMHIST_LOG(maphist," kva=0x%x, offset=0x%x", kva, offset,0,0);
936
937 /*
938 * now allocate the memory. we must be careful about released pages.
939 */
940
941 loopva = kva;
942 while (size) {
943 simple_lock(&uvm.kernel_object->vmobjlock);
944 pg = uvm_pagelookup(uvm.kernel_object, offset);
945
946 /*
947 * if we found a page in an unallocated region, it must be
948 * released
949 */
950 if (pg) {
951 if ((pg->flags & PG_RELEASED) == 0)
952 panic("uvm_km_alloc1: non-released page");
953 pg->flags |= PG_WANTED;
954 UVM_UNLOCK_AND_WAIT(pg, &uvm.kernel_object->vmobjlock,
955 0, "km_alloc", 0);
956 continue; /* retry */
957 }
958
959 /* allocate ram */
960 pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
961 if (pg) {
962 pg->flags &= ~PG_BUSY; /* new page */
963 UVM_PAGE_OWN(pg, NULL);
964 }
965 simple_unlock(&uvm.kernel_object->vmobjlock);
966 if (pg == NULL) {
967 uvm_wait("km_alloc1w"); /* wait for memory */
968 continue;
969 }
970
971 /*
972 * map it in; note we're never called with an intrsafe
973 * object, so we always use regular old pmap_enter().
974 */
975 pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
976 UVM_PROT_ALL, TRUE, VM_PROT_READ|VM_PROT_WRITE);
977
978 loopva += PAGE_SIZE;
979 offset += PAGE_SIZE;
980 size -= PAGE_SIZE;
981 }
982
983 /*
984 * zero on request (note that "size" is now zero due to the above loop
985 * so we need to subtract kva from loopva to reconstruct the size).
986 */
987
988 if (zeroit)
989 memset((caddr_t)kva, 0, loopva - kva);
990
991 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
992 return(kva);
993 }
994
995 /*
996 * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
997 *
998 * => memory is not allocated until fault time
999 */
1000
1001 vaddr_t
1002 uvm_km_valloc(map, size)
1003 vm_map_t map;
1004 vsize_t size;
1005 {
1006 vaddr_t kva;
1007 UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
1008
1009 UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
1010
1011 #ifdef DIAGNOSTIC
1012 if (vm_map_pmap(map) != pmap_kernel())
1013 panic("uvm_km_valloc");
1014 #endif
1015
1016 size = round_page(size);
1017 kva = vm_map_min(map); /* hint */
1018
1019 /*
1020 * allocate some virtual space. will be demand filled by kernel_object.
1021 */
1022
1023 if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
1024 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
1025 UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
1026 UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
1027 return(0);
1028 }
1029
1030 UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
1031 return(kva);
1032 }
1033
1034 /*
1035 * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
1036 *
1037 * => memory is not allocated until fault time
1038 * => if no room in map, wait for space to free, unless requested size
1039 * is larger than map (in which case we return 0)
1040 */
1041
1042 vaddr_t
1043 uvm_km_valloc_wait(map, size)
1044 vm_map_t map;
1045 vsize_t size;
1046 {
1047 vaddr_t kva;
1048 UVMHIST_FUNC("uvm_km_valloc_wait"); UVMHIST_CALLED(maphist);
1049
1050 UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
1051
1052 #ifdef DIAGNOSTIC
1053 if (vm_map_pmap(map) != pmap_kernel())
1054 panic("uvm_km_valloc_wait");
1055 #endif
1056
1057 size = round_page(size);
1058 if (size > vm_map_max(map) - vm_map_min(map))
1059 return(0);
1060
1061 while (1) {
1062 kva = vm_map_min(map); /* hint */
1063
1064 /*
1065 * allocate some virtual space. will be demand filled
1066 * by kernel_object.
1067 */
1068
1069 if (uvm_map(map, &kva, size, uvm.kernel_object,
1070 UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL,
1071 UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
1072 == KERN_SUCCESS) {
1073 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
1074 return(kva);
1075 }
1076
1077 /*
1078 * failed. sleep for a while (on map)
1079 */
1080
1081 UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
1082 tsleep((caddr_t)map, PVM, "vallocwait", 0);
1083 }
1084 /*NOTREACHED*/
1085 }
1086
1087 /* Sanity; must specify both or none. */
1088 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
1089 (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
1090 #error Must specify MAP and UNMAP together.
1091 #endif
1092
1093 /*
1094 * uvm_km_alloc_poolpage: allocate a page for the pool allocator
1095 *
1096 * => if the pmap specifies an alternate mapping method, we use it.
1097 */
1098
1099 /* ARGSUSED */
1100 vaddr_t
1101 uvm_km_alloc_poolpage1(map, obj, waitok)
1102 vm_map_t map;
1103 struct uvm_object *obj;
1104 boolean_t waitok;
1105 {
1106 #if defined(PMAP_MAP_POOLPAGE)
1107 struct vm_page *pg;
1108 vaddr_t va;
1109
1110 again:
1111 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1112 if (pg == NULL) {
1113 if (waitok) {
1114 uvm_wait("plpg");
1115 goto again;
1116 } else
1117 return (0);
1118 }
1119 va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
1120 if (va == 0)
1121 uvm_pagefree(pg);
1122 return (va);
1123 #else
1124 vaddr_t va;
1125 int s;
1126
1127 /*
1128 * NOTE: We may be called with a map that doens't require splimp
1129 * protection (e.g. kernel_map). However, it does not hurt to
1130 * go to splimp in this case (since unprocted maps will never be
1131 * accessed in interrupt context).
1132 *
1133 * XXX We may want to consider changing the interface to this
1134 * XXX function.
1135 */
1136
1137 s = splimp();
1138 va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
1139 splx(s);
1140 return (va);
1141 #endif /* PMAP_MAP_POOLPAGE */
1142 }
1143
1144 /*
1145 * uvm_km_free_poolpage: free a previously allocated pool page
1146 *
1147 * => if the pmap specifies an alternate unmapping method, we use it.
1148 */
1149
1150 /* ARGSUSED */
1151 void
1152 uvm_km_free_poolpage1(map, addr)
1153 vm_map_t map;
1154 vaddr_t addr;
1155 {
1156 #if defined(PMAP_UNMAP_POOLPAGE)
1157 paddr_t pa;
1158
1159 pa = PMAP_UNMAP_POOLPAGE(addr);
1160 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
1161 #else
1162 int s;
1163
1164 /*
1165 * NOTE: We may be called with a map that doens't require splimp
1166 * protection (e.g. kernel_map). However, it does not hurt to
1167 * go to splimp in this case (since unprocted maps will never be
1168 * accessed in interrupt context).
1169 *
1170 * XXX We may want to consider changing the interface to this
1171 * XXX function.
1172 */
1173
1174 s = splimp();
1175 uvm_km_free(map, addr, PAGE_SIZE);
1176 splx(s);
1177 #endif /* PMAP_UNMAP_POOLPAGE */
1178 }
1179