Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.27
      1 /*	$NetBSD: uvm_km.c,v 1.27 1999/06/04 23:38:41 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     42  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 #include "opt_uvmhist.h"
     70 #include "opt_pmap_new.h"
     71 
     72 /*
     73  * uvm_km.c: handle kernel memory allocation and management
     74  */
     75 
     76 /*
     77  * overview of kernel memory management:
     78  *
     79  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     80  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     81  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     82  *
     83  * the kernel_map has several "submaps."   submaps can only appear in
     84  * the kernel_map (user processes can't use them).   submaps "take over"
     85  * the management of a sub-range of the kernel's address space.  submaps
     86  * are typically allocated at boot time and are never released.   kernel
     87  * virtual address space that is mapped by a submap is locked by the
     88  * submap's lock -- not the kernel_map's lock.
     89  *
     90  * thus, the useful feature of submaps is that they allow us to break
     91  * up the locking and protection of the kernel address space into smaller
     92  * chunks.
     93  *
     94  * the vm system has several standard kernel submaps, including:
     95  *   kmem_map => contains only wired kernel memory for the kernel
     96  *		malloc.   *** access to kmem_map must be protected
     97  *		by splimp() because we are allowed to call malloc()
     98  *		at interrupt time ***
     99  *   mb_map => memory for large mbufs,  *** protected by splimp ***
    100  *   pager_map => used to map "buf" structures into kernel space
    101  *   exec_map => used during exec to handle exec args
    102  *   etc...
    103  *
    104  * the kernel allocates its private memory out of special uvm_objects whose
    105  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
    106  * are "special" and never die).   all kernel objects should be thought of
    107  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
    108  * object is equal to the size of kernel virtual address space (i.e. the
    109  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    110  *
    111  * most kernel private memory lives in kernel_object.   the only exception
    112  * to this is for memory that belongs to submaps that must be protected
    113  * by splimp().    each of these submaps has their own private kernel
    114  * object (e.g. kmem_object, mb_object).
    115  *
    116  * note that just because a kernel object spans the entire kernel virutal
    117  * address space doesn't mean that it has to be mapped into the entire space.
    118  * large chunks of a kernel object's space go unused either because
    119  * that area of kernel VM is unmapped, or there is some other type of
    120  * object mapped into that range (e.g. a vnode).    for submap's kernel
    121  * objects, the only part of the object that can ever be populated is the
    122  * offsets that are managed by the submap.
    123  *
    124  * note that the "offset" in a kernel object is always the kernel virtual
    125  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    126  * example:
    127  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    128  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    129  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    130  *   then that means that the page at offset 0x235000 in kernel_object is
    131  *   mapped at 0xf8235000.
    132  *
    133  * note that the offsets in kmem_object and mb_object also follow this
    134  * rule.   this means that the offsets for kmem_object must fall in the
    135  * range of [vm_map_min(kmem_object) - vm_map_min(kernel_map)] to
    136  * [vm_map_max(kmem_object) - vm_map_min(kernel_map)], so the offsets
    137  * in those objects will typically not start at zero.
    138  *
    139  * kernel object have one other special property: when the kernel virtual
    140  * memory mapping them is unmapped, the backing memory in the object is
    141  * freed right away.   this is done with the uvm_km_pgremove() function.
    142  * this has to be done because there is no backing store for kernel pages
    143  * and no need to save them after they are no longer referenced.
    144  */
    145 
    146 #include <sys/param.h>
    147 #include <sys/systm.h>
    148 #include <sys/proc.h>
    149 
    150 #include <vm/vm.h>
    151 #include <vm/vm_page.h>
    152 #include <vm/vm_kern.h>
    153 
    154 #include <uvm/uvm.h>
    155 
    156 /*
    157  * global data structures
    158  */
    159 
    160 vm_map_t kernel_map = NULL;
    161 
    162 struct vmi_list vmi_list;
    163 simple_lock_data_t vmi_list_slock;
    164 
    165 /*
    166  * local functions
    167  */
    168 
    169 static int uvm_km_get __P((struct uvm_object *, vaddr_t,
    170 	vm_page_t *, int *, int, vm_prot_t, int, int));
    171 
    172 /*
    173  * local data structues
    174  */
    175 
    176 static struct vm_map		kernel_map_store;
    177 static struct uvm_object	kmem_object_store;
    178 static struct uvm_object	mb_object_store;
    179 
    180 static struct uvm_pagerops km_pager = {
    181 	NULL,	/* init */
    182 	NULL, /* reference */
    183 	NULL, /* detach */
    184 	NULL, /* fault */
    185 	NULL, /* flush */
    186 	uvm_km_get, /* get */
    187 	/* ... rest are NULL */
    188 };
    189 
    190 /*
    191  * uvm_km_get: pager get function for kernel objects
    192  *
    193  * => currently we do not support pageout to the swap area, so this
    194  *    pager is very simple.    eventually we may want an anonymous
    195  *    object pager which will do paging.
    196  * => XXXCDC: this pager should be phased out in favor of the aobj pager
    197  */
    198 
    199 
    200 static int
    201 uvm_km_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
    202 	struct uvm_object *uobj;
    203 	vaddr_t offset;
    204 	struct vm_page **pps;
    205 	int *npagesp;
    206 	int centeridx, advice, flags;
    207 	vm_prot_t access_type;
    208 {
    209 	vaddr_t current_offset;
    210 	vm_page_t ptmp;
    211 	int lcv, gotpages, maxpages;
    212 	boolean_t done;
    213 	UVMHIST_FUNC("uvm_km_get"); UVMHIST_CALLED(maphist);
    214 
    215 	UVMHIST_LOG(maphist, "flags=%d", flags,0,0,0);
    216 
    217 	/*
    218 	 * get number of pages
    219 	 */
    220 
    221 	maxpages = *npagesp;
    222 
    223 	/*
    224 	 * step 1: handled the case where fault data structures are locked.
    225 	 */
    226 
    227 	if (flags & PGO_LOCKED) {
    228 
    229 		/*
    230 		 * step 1a: get pages that are already resident.   only do
    231 		 * this if the data structures are locked (i.e. the first time
    232 		 * through).
    233 		 */
    234 
    235 		done = TRUE;	/* be optimistic */
    236 		gotpages = 0;	/* # of pages we got so far */
    237 
    238 		for (lcv = 0, current_offset = offset ;
    239 		    lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
    240 
    241 			/* do we care about this page?  if not, skip it */
    242 			if (pps[lcv] == PGO_DONTCARE)
    243 				continue;
    244 
    245 			/* lookup page */
    246 			ptmp = uvm_pagelookup(uobj, current_offset);
    247 
    248 			/* null?  attempt to allocate the page */
    249 			if (ptmp == NULL) {
    250 				ptmp = uvm_pagealloc(uobj, current_offset,
    251 				    NULL, 0);
    252 				if (ptmp) {
    253 					/* new page */
    254 					ptmp->flags &= ~(PG_BUSY|PG_FAKE);
    255 					UVM_PAGE_OWN(ptmp, NULL);
    256 					uvm_pagezero(ptmp);
    257 				}
    258 			}
    259 
    260 			/*
    261 			 * to be useful must get a non-busy, non-released page
    262 			 */
    263 			if (ptmp == NULL ||
    264 			    (ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
    265 				if (lcv == centeridx ||
    266 				    (flags & PGO_ALLPAGES) != 0)
    267 					/* need to do a wait or I/O! */
    268 					done = FALSE;
    269 				continue;
    270 			}
    271 
    272 			/*
    273 			 * useful page: busy/lock it and plug it in our
    274 			 * result array
    275 			 */
    276 
    277 			/* caller must un-busy this page */
    278 			ptmp->flags |= PG_BUSY;
    279 			UVM_PAGE_OWN(ptmp, "uvm_km_get1");
    280 			pps[lcv] = ptmp;
    281 			gotpages++;
    282 
    283 		}	/* "for" lcv loop */
    284 
    285 		/*
    286 		 * step 1b: now we've either done everything needed or we
    287 		 * to unlock and do some waiting or I/O.
    288 		 */
    289 
    290 		UVMHIST_LOG(maphist, "<- done (done=%d)", done, 0,0,0);
    291 
    292 		*npagesp = gotpages;
    293 		if (done)
    294 			return(VM_PAGER_OK);		/* bingo! */
    295 		else
    296 			return(VM_PAGER_UNLOCK);	/* EEK!   Need to
    297 							 * unlock and I/O */
    298 	}
    299 
    300 	/*
    301 	 * step 2: get non-resident or busy pages.
    302 	 * object is locked.   data structures are unlocked.
    303 	 */
    304 
    305 	for (lcv = 0, current_offset = offset ;
    306 	    lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
    307 
    308 		/* skip over pages we've already gotten or don't want */
    309 		/* skip over pages we don't _have_ to get */
    310 		if (pps[lcv] != NULL ||
    311 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
    312 			continue;
    313 
    314 		/*
    315 		 * we have yet to locate the current page (pps[lcv]).   we
    316 		 * first look for a page that is already at the current offset.
    317 		 * if we find a page, we check to see if it is busy or
    318 		 * released.  if that is the case, then we sleep on the page
    319 		 * until it is no longer busy or released and repeat the
    320 		 * lookup.    if the page we found is neither busy nor
    321 		 * released, then we busy it (so we own it) and plug it into
    322 		 * pps[lcv].   this 'break's the following while loop and
    323 		 * indicates we are ready to move on to the next page in the
    324 		 * "lcv" loop above.
    325 		 *
    326 		 * if we exit the while loop with pps[lcv] still set to NULL,
    327 		 * then it means that we allocated a new busy/fake/clean page
    328 		 * ptmp in the object and we need to do I/O to fill in the
    329 		 * data.
    330 		 */
    331 
    332 		while (pps[lcv] == NULL) {	/* top of "pps" while loop */
    333 
    334 			/* look for a current page */
    335 			ptmp = uvm_pagelookup(uobj, current_offset);
    336 
    337 			/* nope?   allocate one now (if we can) */
    338 			if (ptmp == NULL) {
    339 
    340 				ptmp = uvm_pagealloc(uobj, current_offset,
    341 				    NULL, 0);
    342 
    343 				/* out of RAM? */
    344 				if (ptmp == NULL) {
    345 					simple_unlock(&uobj->vmobjlock);
    346 					uvm_wait("kmgetwait1");
    347 					simple_lock(&uobj->vmobjlock);
    348 					/* goto top of pps while loop */
    349 					continue;
    350 				}
    351 
    352 				/*
    353 				 * got new page ready for I/O.  break pps
    354 				 * while loop.  pps[lcv] is still NULL.
    355 				 */
    356 				break;
    357 			}
    358 
    359 			/* page is there, see if we need to wait on it */
    360 			if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
    361 				ptmp->flags |= PG_WANTED;
    362 				UVM_UNLOCK_AND_WAIT(ptmp,&uobj->vmobjlock, 0,
    363 				    "uvn_get",0);
    364 				simple_lock(&uobj->vmobjlock);
    365 				continue;	/* goto top of pps while loop */
    366 			}
    367 
    368 			/*
    369 			 * if we get here then the page has become resident
    370 			 * and unbusy between steps 1 and 2.  we busy it now
    371 			 * (so we own it) and set pps[lcv] (so that we exit
    372 			 * the while loop).  caller must un-busy.
    373 			 */
    374 			ptmp->flags |= PG_BUSY;
    375 			UVM_PAGE_OWN(ptmp, "uvm_km_get2");
    376 			pps[lcv] = ptmp;
    377 		}
    378 
    379 		/*
    380 		 * if we own the a valid page at the correct offset, pps[lcv]
    381 		 * will point to it.   nothing more to do except go to the
    382 		 * next page.
    383 		 */
    384 
    385 		if (pps[lcv])
    386 			continue;			/* next lcv */
    387 
    388 		/*
    389 		 * we have a "fake/busy/clean" page that we just allocated.
    390 		 * do the needed "i/o" (in this case that means zero it).
    391 		 */
    392 
    393 		uvm_pagezero(ptmp);
    394 		ptmp->flags &= ~(PG_FAKE);
    395 		pps[lcv] = ptmp;
    396 
    397 	}	/* lcv loop */
    398 
    399 	/*
    400 	 * finally, unlock object and return.
    401 	 */
    402 
    403 	simple_unlock(&uobj->vmobjlock);
    404 	UVMHIST_LOG(maphist, "<- done (OK)",0,0,0,0);
    405 	return(VM_PAGER_OK);
    406 }
    407 
    408 /*
    409  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
    410  * KVM already allocated for text, data, bss, and static data structures).
    411  *
    412  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    413  *    we assume that [min -> start] has already been allocated and that
    414  *    "end" is the end.
    415  */
    416 
    417 void
    418 uvm_km_init(start, end)
    419 	vaddr_t start, end;
    420 {
    421 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    422 
    423 	/*
    424 	 * first, initialize the interrupt-safe map list.
    425 	 */
    426 	LIST_INIT(&vmi_list);
    427 	simple_lock_init(&vmi_list_slock);
    428 
    429 	/*
    430 	 * next, init kernel memory objects.
    431 	 */
    432 
    433 	/* kernel_object: for pageable anonymous kernel memory */
    434 	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    435 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    436 
    437 	/*
    438 	 * kmem_object: for use by the kernel malloc().  Memory is always
    439 	 * wired, and this object (and the kmem_map) can be accessed at
    440 	 * interrupt time.
    441 	 */
    442 	simple_lock_init(&kmem_object_store.vmobjlock);
    443 	kmem_object_store.pgops = &km_pager;
    444 	TAILQ_INIT(&kmem_object_store.memq);
    445 	kmem_object_store.uo_npages = 0;
    446 	/* we are special.  we never die */
    447 	kmem_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
    448 	uvmexp.kmem_object = &kmem_object_store;
    449 
    450 	/*
    451 	 * mb_object: for mbuf cluster pages on platforms which use the
    452 	 * mb_map.  Memory is always wired, and this object (and the mb_map)
    453 	 * can be accessed at interrupt time.
    454 	 */
    455 	simple_lock_init(&mb_object_store.vmobjlock);
    456 	mb_object_store.pgops = &km_pager;
    457 	TAILQ_INIT(&mb_object_store.memq);
    458 	mb_object_store.uo_npages = 0;
    459 	/* we are special.  we never die */
    460 	mb_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
    461 	uvmexp.mb_object = &mb_object_store;
    462 
    463 	/*
    464 	 * init the map and reserve allready allocated kernel space
    465 	 * before installing.
    466 	 */
    467 
    468 	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
    469 	kernel_map_store.pmap = pmap_kernel();
    470 	if (uvm_map(&kernel_map_store, &base, start - base, NULL,
    471 	    UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    472 	    UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != KERN_SUCCESS)
    473 		panic("uvm_km_init: could not reserve space for kernel");
    474 
    475 	/*
    476 	 * install!
    477 	 */
    478 
    479 	kernel_map = &kernel_map_store;
    480 }
    481 
    482 /*
    483  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    484  * is allocated all references to that area of VM must go through it.  this
    485  * allows the locking of VAs in kernel_map to be broken up into regions.
    486  *
    487  * => if `fixed' is true, *min specifies where the region described
    488  *      by the submap must start
    489  * => if submap is non NULL we use that as the submap, otherwise we
    490  *	alloc a new map
    491  */
    492 struct vm_map *
    493 uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
    494 	struct vm_map *map;
    495 	vaddr_t *min, *max;		/* OUT, OUT */
    496 	vsize_t size;
    497 	int flags;
    498 	boolean_t fixed;
    499 	struct vm_map *submap;
    500 {
    501 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    502 
    503 	size = round_page(size);	/* round up to pagesize */
    504 
    505 	/*
    506 	 * first allocate a blank spot in the parent map
    507 	 */
    508 
    509 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET,
    510 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    511 	    UVM_ADV_RANDOM, mapflags)) != KERN_SUCCESS) {
    512 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
    513 	}
    514 
    515 	/*
    516 	 * set VM bounds (min is filled in by uvm_map)
    517 	 */
    518 
    519 	*max = *min + size;
    520 
    521 	/*
    522 	 * add references to pmap and create or init the submap
    523 	 */
    524 
    525 	pmap_reference(vm_map_pmap(map));
    526 	if (submap == NULL) {
    527 		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
    528 		if (submap == NULL)
    529 			panic("uvm_km_suballoc: unable to create submap");
    530 	} else {
    531 		uvm_map_setup(submap, *min, *max, flags);
    532 		submap->pmap = vm_map_pmap(map);
    533 	}
    534 
    535 	/*
    536 	 * now let uvm_map_submap plug in it...
    537 	 */
    538 
    539 	if (uvm_map_submap(map, *min, *max, submap) != KERN_SUCCESS)
    540 		panic("uvm_km_suballoc: submap allocation failed");
    541 
    542 	return(submap);
    543 }
    544 
    545 /*
    546  * uvm_km_pgremove: remove pages from a kernel uvm_object.
    547  *
    548  * => when you unmap a part of anonymous kernel memory you want to toss
    549  *    the pages right away.    (this gets called from uvm_unmap_...).
    550  */
    551 
    552 #define UKM_HASH_PENALTY 4      /* a guess */
    553 
    554 void
    555 uvm_km_pgremove(uobj, start, end)
    556 	struct uvm_object *uobj;
    557 	vaddr_t start, end;
    558 {
    559 	boolean_t by_list;
    560 	struct vm_page *pp, *ppnext;
    561 	vaddr_t curoff;
    562 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
    563 
    564 	simple_lock(&uobj->vmobjlock);		/* lock object */
    565 
    566 #ifdef DIAGNOSTIC
    567 	if (uobj->pgops != &aobj_pager)
    568 		panic("uvm_km_pgremove: object %p not an aobj", uobj);
    569 #endif
    570 
    571 	/* choose cheapest traversal */
    572 	by_list = (uobj->uo_npages <=
    573 	     ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
    574 
    575 	if (by_list)
    576 		goto loop_by_list;
    577 
    578 	/* by hash */
    579 
    580 	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
    581 		pp = uvm_pagelookup(uobj, curoff);
    582 		if (pp == NULL)
    583 			continue;
    584 
    585 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    586 		    pp->flags & PG_BUSY, 0, 0);
    587 
    588 		/* now do the actual work */
    589 		if (pp->flags & PG_BUSY) {
    590 			/* owner must check for this when done */
    591 			pp->flags |= PG_RELEASED;
    592 		} else {
    593 			/* free the swap slot... */
    594 			uao_dropswap(uobj, curoff >> PAGE_SHIFT);
    595 
    596 			/*
    597 			 * ...and free the page; note it may be on the
    598 			 * active or inactive queues.
    599 			 */
    600 			uvm_lock_pageq();
    601 			uvm_pagefree(pp);
    602 			uvm_unlock_pageq();
    603 		}
    604 		/* done */
    605 	}
    606 	simple_unlock(&uobj->vmobjlock);
    607 	return;
    608 
    609 loop_by_list:
    610 
    611 	for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
    612 		ppnext = pp->listq.tqe_next;
    613 		if (pp->offset < start || pp->offset >= end) {
    614 			continue;
    615 		}
    616 
    617 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    618 		    pp->flags & PG_BUSY, 0, 0);
    619 
    620 		/* now do the actual work */
    621 		if (pp->flags & PG_BUSY) {
    622 			/* owner must check for this when done */
    623 			pp->flags |= PG_RELEASED;
    624 		} else {
    625 			/* free the swap slot... */
    626 			uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
    627 
    628 			/*
    629 			 * ...and free the page; note it may be on the
    630 			 * active or inactive queues.
    631 			 */
    632 			uvm_lock_pageq();
    633 			uvm_pagefree(pp);
    634 			uvm_unlock_pageq();
    635 		}
    636 		/* done */
    637 	}
    638 	simple_unlock(&uobj->vmobjlock);
    639 	return;
    640 }
    641 
    642 
    643 /*
    644  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
    645  *    objects
    646  *
    647  * => when you unmap a part of anonymous kernel memory you want to toss
    648  *    the pages right away.    (this gets called from uvm_unmap_...).
    649  * => none of the pages will ever be busy, and none of them will ever
    650  *    be on the active or inactive queues (because these objects are
    651  *    never allowed to "page").
    652  */
    653 
    654 void
    655 uvm_km_pgremove_intrsafe(uobj, start, end)
    656 	struct uvm_object *uobj;
    657 	vaddr_t start, end;
    658 {
    659 	boolean_t by_list;
    660 	struct vm_page *pp, *ppnext;
    661 	vaddr_t curoff;
    662 	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
    663 
    664 	simple_lock(&uobj->vmobjlock);		/* lock object */
    665 
    666 #ifdef DIAGNOSTIC
    667 	if (UVM_OBJ_IS_INTRSAFE_OBJECT(uobj) == 0)
    668 		panic("uvm_km_pgremove_intrsafe: object %p not intrsafe", uobj);
    669 #endif
    670 
    671 	/* choose cheapest traversal */
    672 	by_list = (uobj->uo_npages <=
    673 	     ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
    674 
    675 	if (by_list)
    676 		goto loop_by_list;
    677 
    678 	/* by hash */
    679 
    680 	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
    681 		pp = uvm_pagelookup(uobj, curoff);
    682 		if (pp == NULL)
    683 			continue;
    684 
    685 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    686 		    pp->flags & PG_BUSY, 0, 0);
    687 #ifdef DIAGNOSTIC
    688 		if (pp->flags & PG_BUSY)
    689 			panic("uvm_km_pgremove_intrsafe: busy page");
    690 		if (pp->pqflags & PQ_ACTIVE)
    691 			panic("uvm_km_pgremove_intrsafe: active page");
    692 		if (pp->pqflags & PQ_INACTIVE)
    693 			panic("uvm_km_pgremove_intrsafe: inactive page");
    694 #endif
    695 
    696 		/* free the page */
    697 		uvm_pagefree(pp);
    698 	}
    699 	simple_unlock(&uobj->vmobjlock);
    700 	return;
    701 
    702 loop_by_list:
    703 
    704 	for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
    705 		ppnext = pp->listq.tqe_next;
    706 		if (pp->offset < start || pp->offset >= end) {
    707 			continue;
    708 		}
    709 
    710 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    711 		    pp->flags & PG_BUSY, 0, 0);
    712 
    713 #ifdef DIAGNOSTIC
    714 		if (pp->flags & PG_BUSY)
    715 			panic("uvm_km_pgremove_intrsafe: busy page");
    716 		if (pp->pqflags & PQ_ACTIVE)
    717 			panic("uvm_km_pgremove_intrsafe: active page");
    718 		if (pp->pqflags & PQ_INACTIVE)
    719 			panic("uvm_km_pgremove_intrsafe: inactive page");
    720 #endif
    721 
    722 		/* free the page */
    723 		uvm_pagefree(pp);
    724 	}
    725 	simple_unlock(&uobj->vmobjlock);
    726 	return;
    727 }
    728 
    729 
    730 /*
    731  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
    732  *
    733  * => we map wired memory into the specified map using the obj passed in
    734  * => NOTE: we can return NULL even if we can wait if there is not enough
    735  *	free VM space in the map... caller should be prepared to handle
    736  *	this case.
    737  * => we return KVA of memory allocated
    738  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
    739  *	lock the map
    740  */
    741 
    742 vaddr_t
    743 uvm_km_kmemalloc(map, obj, size, flags)
    744 	vm_map_t map;
    745 	struct uvm_object *obj;
    746 	vsize_t size;
    747 	int flags;
    748 {
    749 	vaddr_t kva, loopva;
    750 	vaddr_t offset;
    751 	struct vm_page *pg;
    752 	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
    753 
    754 
    755 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
    756 	map, obj, size, flags);
    757 #ifdef DIAGNOSTIC
    758 	/* sanity check */
    759 	if (vm_map_pmap(map) != pmap_kernel())
    760 		panic("uvm_km_kmemalloc: invalid map");
    761 #endif
    762 
    763 	/*
    764 	 * setup for call
    765 	 */
    766 
    767 	size = round_page(size);
    768 	kva = vm_map_min(map);	/* hint */
    769 
    770 	/*
    771 	 * allocate some virtual space
    772 	 */
    773 
    774 	if (uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    775 	      UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    776 			  UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
    777 			!= KERN_SUCCESS) {
    778 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    779 		return(0);
    780 	}
    781 
    782 	/*
    783 	 * if all we wanted was VA, return now
    784 	 */
    785 
    786 	if (flags & UVM_KMF_VALLOC) {
    787 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
    788 		return(kva);
    789 	}
    790 	/*
    791 	 * recover object offset from virtual address
    792 	 */
    793 
    794 	offset = kva - vm_map_min(kernel_map);
    795 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
    796 
    797 	/*
    798 	 * now allocate and map in the memory... note that we are the only ones
    799 	 * whom should ever get a handle on this area of VM.
    800 	 */
    801 
    802 	loopva = kva;
    803 	while (size) {
    804 		simple_lock(&obj->vmobjlock);
    805 		pg = uvm_pagealloc(obj, offset, NULL, 0);
    806 		if (pg) {
    807 			pg->flags &= ~PG_BUSY;	/* new page */
    808 			UVM_PAGE_OWN(pg, NULL);
    809 		}
    810 		simple_unlock(&obj->vmobjlock);
    811 
    812 		/*
    813 		 * out of memory?
    814 		 */
    815 
    816 		if (pg == NULL) {
    817 			if (flags & UVM_KMF_NOWAIT) {
    818 				/* free everything! */
    819 				uvm_unmap(map, kva, kva + size);
    820 				return(0);
    821 			} else {
    822 				uvm_wait("km_getwait2");	/* sleep here */
    823 				continue;
    824 			}
    825 		}
    826 
    827 		/*
    828 		 * map it in: note that we call pmap_enter with the map and
    829 		 * object unlocked in case we are kmem_map/kmem_object
    830 		 * (because if pmap_enter wants to allocate out of kmem_object
    831 		 * it will need to lock it itself!)
    832 		 */
    833 		if (UVM_OBJ_IS_INTRSAFE_OBJECT(obj)) {
    834 #if defined(PMAP_NEW)
    835 			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    836 			    VM_PROT_ALL);
    837 #else
    838 			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    839 			    UVM_PROT_ALL, TRUE, VM_PROT_READ|VM_PROT_WRITE);
    840 #endif
    841 		} else {
    842 			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    843 			    UVM_PROT_ALL, TRUE, VM_PROT_READ|VM_PROT_WRITE);
    844 		}
    845 		loopva += PAGE_SIZE;
    846 		offset += PAGE_SIZE;
    847 		size -= PAGE_SIZE;
    848 	}
    849 
    850 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    851 	return(kva);
    852 }
    853 
    854 /*
    855  * uvm_km_free: free an area of kernel memory
    856  */
    857 
    858 void
    859 uvm_km_free(map, addr, size)
    860 	vm_map_t map;
    861 	vaddr_t addr;
    862 	vsize_t size;
    863 {
    864 
    865 	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
    866 }
    867 
    868 /*
    869  * uvm_km_free_wakeup: free an area of kernel memory and wake up
    870  * anyone waiting for vm space.
    871  *
    872  * => XXX: "wanted" bit + unlock&wait on other end?
    873  */
    874 
    875 void
    876 uvm_km_free_wakeup(map, addr, size)
    877 	vm_map_t map;
    878 	vaddr_t addr;
    879 	vsize_t size;
    880 {
    881 	vm_map_entry_t dead_entries;
    882 
    883 	vm_map_lock(map);
    884 	(void)uvm_unmap_remove(map, trunc_page(addr), round_page(addr+size),
    885 			 &dead_entries);
    886 	thread_wakeup(map);
    887 	vm_map_unlock(map);
    888 
    889 	if (dead_entries != NULL)
    890 		uvm_unmap_detach(dead_entries, 0);
    891 }
    892 
    893 /*
    894  * uvm_km_alloc1: allocate wired down memory in the kernel map.
    895  *
    896  * => we can sleep if needed
    897  */
    898 
    899 vaddr_t
    900 uvm_km_alloc1(map, size, zeroit)
    901 	vm_map_t map;
    902 	vsize_t size;
    903 	boolean_t zeroit;
    904 {
    905 	vaddr_t kva, loopva, offset;
    906 	struct vm_page *pg;
    907 	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
    908 
    909 	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
    910 
    911 #ifdef DIAGNOSTIC
    912 	if (vm_map_pmap(map) != pmap_kernel())
    913 		panic("uvm_km_alloc1");
    914 #endif
    915 
    916 	size = round_page(size);
    917 	kva = vm_map_min(map);		/* hint */
    918 
    919 	/*
    920 	 * allocate some virtual space
    921 	 */
    922 
    923 	if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
    924 	      UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    925 			  UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
    926 		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
    927 		return(0);
    928 	}
    929 
    930 	/*
    931 	 * recover object offset from virtual address
    932 	 */
    933 
    934 	offset = kva - vm_map_min(kernel_map);
    935 	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
    936 
    937 	/*
    938 	 * now allocate the memory.  we must be careful about released pages.
    939 	 */
    940 
    941 	loopva = kva;
    942 	while (size) {
    943 		simple_lock(&uvm.kernel_object->vmobjlock);
    944 		pg = uvm_pagelookup(uvm.kernel_object, offset);
    945 
    946 		/*
    947 		 * if we found a page in an unallocated region, it must be
    948 		 * released
    949 		 */
    950 		if (pg) {
    951 			if ((pg->flags & PG_RELEASED) == 0)
    952 				panic("uvm_km_alloc1: non-released page");
    953 			pg->flags |= PG_WANTED;
    954 			UVM_UNLOCK_AND_WAIT(pg, &uvm.kernel_object->vmobjlock,
    955 			    0, "km_alloc", 0);
    956 			continue;   /* retry */
    957 		}
    958 
    959 		/* allocate ram */
    960 		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
    961 		if (pg) {
    962 			pg->flags &= ~PG_BUSY;	/* new page */
    963 			UVM_PAGE_OWN(pg, NULL);
    964 		}
    965 		simple_unlock(&uvm.kernel_object->vmobjlock);
    966 		if (pg == NULL) {
    967 			uvm_wait("km_alloc1w");	/* wait for memory */
    968 			continue;
    969 		}
    970 
    971 		/*
    972 		 * map it in; note we're never called with an intrsafe
    973 		 * object, so we always use regular old pmap_enter().
    974 		 */
    975 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    976 		    UVM_PROT_ALL, TRUE, VM_PROT_READ|VM_PROT_WRITE);
    977 
    978 		loopva += PAGE_SIZE;
    979 		offset += PAGE_SIZE;
    980 		size -= PAGE_SIZE;
    981 	}
    982 
    983 	/*
    984 	 * zero on request (note that "size" is now zero due to the above loop
    985 	 * so we need to subtract kva from loopva to reconstruct the size).
    986 	 */
    987 
    988 	if (zeroit)
    989 		memset((caddr_t)kva, 0, loopva - kva);
    990 
    991 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    992 	return(kva);
    993 }
    994 
    995 /*
    996  * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
    997  *
    998  * => memory is not allocated until fault time
    999  */
   1000 
   1001 vaddr_t
   1002 uvm_km_valloc(map, size)
   1003 	vm_map_t map;
   1004 	vsize_t size;
   1005 {
   1006 	vaddr_t kva;
   1007 	UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
   1008 
   1009 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
   1010 
   1011 #ifdef DIAGNOSTIC
   1012 	if (vm_map_pmap(map) != pmap_kernel())
   1013 		panic("uvm_km_valloc");
   1014 #endif
   1015 
   1016 	size = round_page(size);
   1017 	kva = vm_map_min(map);		/* hint */
   1018 
   1019 	/*
   1020 	 * allocate some virtual space.  will be demand filled by kernel_object.
   1021 	 */
   1022 
   1023 	if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
   1024 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
   1025 	    UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
   1026 		UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
   1027 		return(0);
   1028 	}
   1029 
   1030 	UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
   1031 	return(kva);
   1032 }
   1033 
   1034 /*
   1035  * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
   1036  *
   1037  * => memory is not allocated until fault time
   1038  * => if no room in map, wait for space to free, unless requested size
   1039  *    is larger than map (in which case we return 0)
   1040  */
   1041 
   1042 vaddr_t
   1043 uvm_km_valloc_wait(map, size)
   1044 	vm_map_t map;
   1045 	vsize_t size;
   1046 {
   1047 	vaddr_t kva;
   1048 	UVMHIST_FUNC("uvm_km_valloc_wait"); UVMHIST_CALLED(maphist);
   1049 
   1050 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
   1051 
   1052 #ifdef DIAGNOSTIC
   1053 	if (vm_map_pmap(map) != pmap_kernel())
   1054 		panic("uvm_km_valloc_wait");
   1055 #endif
   1056 
   1057 	size = round_page(size);
   1058 	if (size > vm_map_max(map) - vm_map_min(map))
   1059 		return(0);
   1060 
   1061 	while (1) {
   1062 		kva = vm_map_min(map);		/* hint */
   1063 
   1064 		/*
   1065 		 * allocate some virtual space.   will be demand filled
   1066 		 * by kernel_object.
   1067 		 */
   1068 
   1069 		if (uvm_map(map, &kva, size, uvm.kernel_object,
   1070 		    UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL,
   1071 		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
   1072 		    == KERN_SUCCESS) {
   1073 			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
   1074 			return(kva);
   1075 		}
   1076 
   1077 		/*
   1078 		 * failed.  sleep for a while (on map)
   1079 		 */
   1080 
   1081 		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
   1082 		tsleep((caddr_t)map, PVM, "vallocwait", 0);
   1083 	}
   1084 	/*NOTREACHED*/
   1085 }
   1086 
   1087 /* Sanity; must specify both or none. */
   1088 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
   1089     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
   1090 #error Must specify MAP and UNMAP together.
   1091 #endif
   1092 
   1093 /*
   1094  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
   1095  *
   1096  * => if the pmap specifies an alternate mapping method, we use it.
   1097  */
   1098 
   1099 /* ARGSUSED */
   1100 vaddr_t
   1101 uvm_km_alloc_poolpage1(map, obj, waitok)
   1102 	vm_map_t map;
   1103 	struct uvm_object *obj;
   1104 	boolean_t waitok;
   1105 {
   1106 #if defined(PMAP_MAP_POOLPAGE)
   1107 	struct vm_page *pg;
   1108 	vaddr_t va;
   1109 
   1110  again:
   1111 	pg = uvm_pagealloc(NULL, 0, NULL, 0);
   1112 	if (pg == NULL) {
   1113 		if (waitok) {
   1114 			uvm_wait("plpg");
   1115 			goto again;
   1116 		} else
   1117 			return (0);
   1118 	}
   1119 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
   1120 	if (va == 0)
   1121 		uvm_pagefree(pg);
   1122 	return (va);
   1123 #else
   1124 	vaddr_t va;
   1125 	int s;
   1126 
   1127 	/*
   1128 	 * NOTE: We may be called with a map that doens't require splimp
   1129 	 * protection (e.g. kernel_map).  However, it does not hurt to
   1130 	 * go to splimp in this case (since unprocted maps will never be
   1131 	 * accessed in interrupt context).
   1132 	 *
   1133 	 * XXX We may want to consider changing the interface to this
   1134 	 * XXX function.
   1135 	 */
   1136 
   1137 	s = splimp();
   1138 	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
   1139 	splx(s);
   1140 	return (va);
   1141 #endif /* PMAP_MAP_POOLPAGE */
   1142 }
   1143 
   1144 /*
   1145  * uvm_km_free_poolpage: free a previously allocated pool page
   1146  *
   1147  * => if the pmap specifies an alternate unmapping method, we use it.
   1148  */
   1149 
   1150 /* ARGSUSED */
   1151 void
   1152 uvm_km_free_poolpage1(map, addr)
   1153 	vm_map_t map;
   1154 	vaddr_t addr;
   1155 {
   1156 #if defined(PMAP_UNMAP_POOLPAGE)
   1157 	paddr_t pa;
   1158 
   1159 	pa = PMAP_UNMAP_POOLPAGE(addr);
   1160 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
   1161 #else
   1162 	int s;
   1163 
   1164 	/*
   1165 	 * NOTE: We may be called with a map that doens't require splimp
   1166 	 * protection (e.g. kernel_map).  However, it does not hurt to
   1167 	 * go to splimp in this case (since unprocted maps will never be
   1168 	 * accessed in interrupt context).
   1169 	 *
   1170 	 * XXX We may want to consider changing the interface to this
   1171 	 * XXX function.
   1172 	 */
   1173 
   1174 	s = splimp();
   1175 	uvm_km_free(map, addr, PAGE_SIZE);
   1176 	splx(s);
   1177 #endif /* PMAP_UNMAP_POOLPAGE */
   1178 }
   1179