uvm_km.c revision 1.29 1 /* $NetBSD: uvm_km.c,v 1.29 1999/07/18 22:55:30 chs Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
42 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 #include "opt_uvmhist.h"
70 #include "opt_pmap_new.h"
71
72 /*
73 * uvm_km.c: handle kernel memory allocation and management
74 */
75
76 /*
77 * overview of kernel memory management:
78 *
79 * the kernel virtual address space is mapped by "kernel_map." kernel_map
80 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
81 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
82 *
83 * the kernel_map has several "submaps." submaps can only appear in
84 * the kernel_map (user processes can't use them). submaps "take over"
85 * the management of a sub-range of the kernel's address space. submaps
86 * are typically allocated at boot time and are never released. kernel
87 * virtual address space that is mapped by a submap is locked by the
88 * submap's lock -- not the kernel_map's lock.
89 *
90 * thus, the useful feature of submaps is that they allow us to break
91 * up the locking and protection of the kernel address space into smaller
92 * chunks.
93 *
94 * the vm system has several standard kernel submaps, including:
95 * kmem_map => contains only wired kernel memory for the kernel
96 * malloc. *** access to kmem_map must be protected
97 * by splimp() because we are allowed to call malloc()
98 * at interrupt time ***
99 * mb_map => memory for large mbufs, *** protected by splimp ***
100 * pager_map => used to map "buf" structures into kernel space
101 * exec_map => used during exec to handle exec args
102 * etc...
103 *
104 * the kernel allocates its private memory out of special uvm_objects whose
105 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
106 * are "special" and never die). all kernel objects should be thought of
107 * as large, fixed-sized, sparsely populated uvm_objects. each kernel
108 * object is equal to the size of kernel virtual address space (i.e. the
109 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
110 *
111 * most kernel private memory lives in kernel_object. the only exception
112 * to this is for memory that belongs to submaps that must be protected
113 * by splimp(). each of these submaps has their own private kernel
114 * object (e.g. kmem_object, mb_object).
115 *
116 * note that just because a kernel object spans the entire kernel virutal
117 * address space doesn't mean that it has to be mapped into the entire space.
118 * large chunks of a kernel object's space go unused either because
119 * that area of kernel VM is unmapped, or there is some other type of
120 * object mapped into that range (e.g. a vnode). for submap's kernel
121 * objects, the only part of the object that can ever be populated is the
122 * offsets that are managed by the submap.
123 *
124 * note that the "offset" in a kernel object is always the kernel virtual
125 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
126 * example:
127 * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
128 * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
129 * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
130 * then that means that the page at offset 0x235000 in kernel_object is
131 * mapped at 0xf8235000.
132 *
133 * note that the offsets in kmem_object and mb_object also follow this
134 * rule. this means that the offsets for kmem_object must fall in the
135 * range of [vm_map_min(kmem_object) - vm_map_min(kernel_map)] to
136 * [vm_map_max(kmem_object) - vm_map_min(kernel_map)], so the offsets
137 * in those objects will typically not start at zero.
138 *
139 * kernel object have one other special property: when the kernel virtual
140 * memory mapping them is unmapped, the backing memory in the object is
141 * freed right away. this is done with the uvm_km_pgremove() function.
142 * this has to be done because there is no backing store for kernel pages
143 * and no need to save them after they are no longer referenced.
144 */
145
146 #include <sys/param.h>
147 #include <sys/systm.h>
148 #include <sys/proc.h>
149
150 #include <vm/vm.h>
151 #include <vm/vm_page.h>
152 #include <vm/vm_kern.h>
153
154 #include <uvm/uvm.h>
155
156 /*
157 * global data structures
158 */
159
160 vm_map_t kernel_map = NULL;
161
162 struct vmi_list vmi_list;
163 simple_lock_data_t vmi_list_slock;
164
165 /*
166 * local data structues
167 */
168
169 static struct vm_map kernel_map_store;
170 static struct uvm_object kmem_object_store;
171 static struct uvm_object mb_object_store;
172
173 /*
174 * All pager operations here are NULL, but the object must have
175 * a pager ops vector associated with it; various places assume
176 * it to be so.
177 */
178 static struct uvm_pagerops km_pager;
179
180 /*
181 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
182 * KVM already allocated for text, data, bss, and static data structures).
183 *
184 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
185 * we assume that [min -> start] has already been allocated and that
186 * "end" is the end.
187 */
188
189 void
190 uvm_km_init(start, end)
191 vaddr_t start, end;
192 {
193 vaddr_t base = VM_MIN_KERNEL_ADDRESS;
194
195 /*
196 * first, initialize the interrupt-safe map list.
197 */
198 LIST_INIT(&vmi_list);
199 simple_lock_init(&vmi_list_slock);
200
201 /*
202 * next, init kernel memory objects.
203 */
204
205 /* kernel_object: for pageable anonymous kernel memory */
206 uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
207 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
208
209 /*
210 * kmem_object: for use by the kernel malloc(). Memory is always
211 * wired, and this object (and the kmem_map) can be accessed at
212 * interrupt time.
213 */
214 simple_lock_init(&kmem_object_store.vmobjlock);
215 kmem_object_store.pgops = &km_pager;
216 TAILQ_INIT(&kmem_object_store.memq);
217 kmem_object_store.uo_npages = 0;
218 /* we are special. we never die */
219 kmem_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
220 uvmexp.kmem_object = &kmem_object_store;
221
222 /*
223 * mb_object: for mbuf cluster pages on platforms which use the
224 * mb_map. Memory is always wired, and this object (and the mb_map)
225 * can be accessed at interrupt time.
226 */
227 simple_lock_init(&mb_object_store.vmobjlock);
228 mb_object_store.pgops = &km_pager;
229 TAILQ_INIT(&mb_object_store.memq);
230 mb_object_store.uo_npages = 0;
231 /* we are special. we never die */
232 mb_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
233 uvmexp.mb_object = &mb_object_store;
234
235 /*
236 * init the map and reserve allready allocated kernel space
237 * before installing.
238 */
239
240 uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
241 kernel_map_store.pmap = pmap_kernel();
242 if (uvm_map(&kernel_map_store, &base, start - base, NULL,
243 UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
244 UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != KERN_SUCCESS)
245 panic("uvm_km_init: could not reserve space for kernel");
246
247 /*
248 * install!
249 */
250
251 kernel_map = &kernel_map_store;
252 }
253
254 /*
255 * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
256 * is allocated all references to that area of VM must go through it. this
257 * allows the locking of VAs in kernel_map to be broken up into regions.
258 *
259 * => if `fixed' is true, *min specifies where the region described
260 * by the submap must start
261 * => if submap is non NULL we use that as the submap, otherwise we
262 * alloc a new map
263 */
264 struct vm_map *
265 uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
266 struct vm_map *map;
267 vaddr_t *min, *max; /* OUT, OUT */
268 vsize_t size;
269 int flags;
270 boolean_t fixed;
271 struct vm_map *submap;
272 {
273 int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
274
275 size = round_page(size); /* round up to pagesize */
276
277 /*
278 * first allocate a blank spot in the parent map
279 */
280
281 if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET,
282 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
283 UVM_ADV_RANDOM, mapflags)) != KERN_SUCCESS) {
284 panic("uvm_km_suballoc: unable to allocate space in parent map");
285 }
286
287 /*
288 * set VM bounds (min is filled in by uvm_map)
289 */
290
291 *max = *min + size;
292
293 /*
294 * add references to pmap and create or init the submap
295 */
296
297 pmap_reference(vm_map_pmap(map));
298 if (submap == NULL) {
299 submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
300 if (submap == NULL)
301 panic("uvm_km_suballoc: unable to create submap");
302 } else {
303 uvm_map_setup(submap, *min, *max, flags);
304 submap->pmap = vm_map_pmap(map);
305 }
306
307 /*
308 * now let uvm_map_submap plug in it...
309 */
310
311 if (uvm_map_submap(map, *min, *max, submap) != KERN_SUCCESS)
312 panic("uvm_km_suballoc: submap allocation failed");
313
314 return(submap);
315 }
316
317 /*
318 * uvm_km_pgremove: remove pages from a kernel uvm_object.
319 *
320 * => when you unmap a part of anonymous kernel memory you want to toss
321 * the pages right away. (this gets called from uvm_unmap_...).
322 */
323
324 #define UKM_HASH_PENALTY 4 /* a guess */
325
326 void
327 uvm_km_pgremove(uobj, start, end)
328 struct uvm_object *uobj;
329 vaddr_t start, end;
330 {
331 boolean_t by_list;
332 struct vm_page *pp, *ppnext;
333 vaddr_t curoff;
334 UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
335
336 simple_lock(&uobj->vmobjlock); /* lock object */
337
338 #ifdef DIAGNOSTIC
339 if (uobj->pgops != &aobj_pager)
340 panic("uvm_km_pgremove: object %p not an aobj", uobj);
341 #endif
342
343 /* choose cheapest traversal */
344 by_list = (uobj->uo_npages <=
345 ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
346
347 if (by_list)
348 goto loop_by_list;
349
350 /* by hash */
351
352 for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
353 pp = uvm_pagelookup(uobj, curoff);
354 if (pp == NULL)
355 continue;
356
357 UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,
358 pp->flags & PG_BUSY, 0, 0);
359
360 /* now do the actual work */
361 if (pp->flags & PG_BUSY) {
362 /* owner must check for this when done */
363 pp->flags |= PG_RELEASED;
364 } else {
365 /* free the swap slot... */
366 uao_dropswap(uobj, curoff >> PAGE_SHIFT);
367
368 /*
369 * ...and free the page; note it may be on the
370 * active or inactive queues.
371 */
372 uvm_lock_pageq();
373 uvm_pagefree(pp);
374 uvm_unlock_pageq();
375 }
376 /* done */
377 }
378 simple_unlock(&uobj->vmobjlock);
379 return;
380
381 loop_by_list:
382
383 for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
384 ppnext = pp->listq.tqe_next;
385 if (pp->offset < start || pp->offset >= end) {
386 continue;
387 }
388
389 UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,
390 pp->flags & PG_BUSY, 0, 0);
391
392 /* now do the actual work */
393 if (pp->flags & PG_BUSY) {
394 /* owner must check for this when done */
395 pp->flags |= PG_RELEASED;
396 } else {
397 /* free the swap slot... */
398 uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
399
400 /*
401 * ...and free the page; note it may be on the
402 * active or inactive queues.
403 */
404 uvm_lock_pageq();
405 uvm_pagefree(pp);
406 uvm_unlock_pageq();
407 }
408 /* done */
409 }
410 simple_unlock(&uobj->vmobjlock);
411 return;
412 }
413
414
415 /*
416 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
417 * objects
418 *
419 * => when you unmap a part of anonymous kernel memory you want to toss
420 * the pages right away. (this gets called from uvm_unmap_...).
421 * => none of the pages will ever be busy, and none of them will ever
422 * be on the active or inactive queues (because these objects are
423 * never allowed to "page").
424 */
425
426 void
427 uvm_km_pgremove_intrsafe(uobj, start, end)
428 struct uvm_object *uobj;
429 vaddr_t start, end;
430 {
431 boolean_t by_list;
432 struct vm_page *pp, *ppnext;
433 vaddr_t curoff;
434 UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
435
436 simple_lock(&uobj->vmobjlock); /* lock object */
437
438 #ifdef DIAGNOSTIC
439 if (UVM_OBJ_IS_INTRSAFE_OBJECT(uobj) == 0)
440 panic("uvm_km_pgremove_intrsafe: object %p not intrsafe", uobj);
441 #endif
442
443 /* choose cheapest traversal */
444 by_list = (uobj->uo_npages <=
445 ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
446
447 if (by_list)
448 goto loop_by_list;
449
450 /* by hash */
451
452 for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
453 pp = uvm_pagelookup(uobj, curoff);
454 if (pp == NULL)
455 continue;
456
457 UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,
458 pp->flags & PG_BUSY, 0, 0);
459 #ifdef DIAGNOSTIC
460 if (pp->flags & PG_BUSY)
461 panic("uvm_km_pgremove_intrsafe: busy page");
462 if (pp->pqflags & PQ_ACTIVE)
463 panic("uvm_km_pgremove_intrsafe: active page");
464 if (pp->pqflags & PQ_INACTIVE)
465 panic("uvm_km_pgremove_intrsafe: inactive page");
466 #endif
467
468 /* free the page */
469 uvm_pagefree(pp);
470 }
471 simple_unlock(&uobj->vmobjlock);
472 return;
473
474 loop_by_list:
475
476 for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
477 ppnext = pp->listq.tqe_next;
478 if (pp->offset < start || pp->offset >= end) {
479 continue;
480 }
481
482 UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,
483 pp->flags & PG_BUSY, 0, 0);
484
485 #ifdef DIAGNOSTIC
486 if (pp->flags & PG_BUSY)
487 panic("uvm_km_pgremove_intrsafe: busy page");
488 if (pp->pqflags & PQ_ACTIVE)
489 panic("uvm_km_pgremove_intrsafe: active page");
490 if (pp->pqflags & PQ_INACTIVE)
491 panic("uvm_km_pgremove_intrsafe: inactive page");
492 #endif
493
494 /* free the page */
495 uvm_pagefree(pp);
496 }
497 simple_unlock(&uobj->vmobjlock);
498 return;
499 }
500
501
502 /*
503 * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
504 *
505 * => we map wired memory into the specified map using the obj passed in
506 * => NOTE: we can return NULL even if we can wait if there is not enough
507 * free VM space in the map... caller should be prepared to handle
508 * this case.
509 * => we return KVA of memory allocated
510 * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
511 * lock the map
512 */
513
514 vaddr_t
515 uvm_km_kmemalloc(map, obj, size, flags)
516 vm_map_t map;
517 struct uvm_object *obj;
518 vsize_t size;
519 int flags;
520 {
521 vaddr_t kva, loopva;
522 vaddr_t offset;
523 struct vm_page *pg;
524 UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
525
526
527 UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
528 map, obj, size, flags);
529 #ifdef DIAGNOSTIC
530 /* sanity check */
531 if (vm_map_pmap(map) != pmap_kernel())
532 panic("uvm_km_kmemalloc: invalid map");
533 #endif
534
535 /*
536 * setup for call
537 */
538
539 size = round_page(size);
540 kva = vm_map_min(map); /* hint */
541
542 /*
543 * allocate some virtual space
544 */
545
546 if (uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
547 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
548 UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
549 != KERN_SUCCESS) {
550 UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
551 return(0);
552 }
553
554 /*
555 * if all we wanted was VA, return now
556 */
557
558 if (flags & UVM_KMF_VALLOC) {
559 UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
560 return(kva);
561 }
562 /*
563 * recover object offset from virtual address
564 */
565
566 offset = kva - vm_map_min(kernel_map);
567 UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
568
569 /*
570 * now allocate and map in the memory... note that we are the only ones
571 * whom should ever get a handle on this area of VM.
572 */
573
574 loopva = kva;
575 while (size) {
576 simple_lock(&obj->vmobjlock);
577 pg = uvm_pagealloc(obj, offset, NULL, 0);
578 if (pg) {
579 pg->flags &= ~PG_BUSY; /* new page */
580 UVM_PAGE_OWN(pg, NULL);
581 }
582 simple_unlock(&obj->vmobjlock);
583
584 /*
585 * out of memory?
586 */
587
588 if (pg == NULL) {
589 if (flags & UVM_KMF_NOWAIT) {
590 /* free everything! */
591 uvm_unmap(map, kva, kva + size);
592 return(0);
593 } else {
594 uvm_wait("km_getwait2"); /* sleep here */
595 continue;
596 }
597 }
598
599 /*
600 * map it in: note that we call pmap_enter with the map and
601 * object unlocked in case we are kmem_map/kmem_object
602 * (because if pmap_enter wants to allocate out of kmem_object
603 * it will need to lock it itself!)
604 */
605 if (UVM_OBJ_IS_INTRSAFE_OBJECT(obj)) {
606 #if defined(PMAP_NEW)
607 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
608 VM_PROT_ALL);
609 #else
610 pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
611 UVM_PROT_ALL, TRUE, VM_PROT_READ|VM_PROT_WRITE);
612 #endif
613 } else {
614 pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
615 UVM_PROT_ALL, TRUE, VM_PROT_READ|VM_PROT_WRITE);
616 }
617 loopva += PAGE_SIZE;
618 offset += PAGE_SIZE;
619 size -= PAGE_SIZE;
620 }
621
622 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
623 return(kva);
624 }
625
626 /*
627 * uvm_km_free: free an area of kernel memory
628 */
629
630 void
631 uvm_km_free(map, addr, size)
632 vm_map_t map;
633 vaddr_t addr;
634 vsize_t size;
635 {
636
637 uvm_unmap(map, trunc_page(addr), round_page(addr+size));
638 }
639
640 /*
641 * uvm_km_free_wakeup: free an area of kernel memory and wake up
642 * anyone waiting for vm space.
643 *
644 * => XXX: "wanted" bit + unlock&wait on other end?
645 */
646
647 void
648 uvm_km_free_wakeup(map, addr, size)
649 vm_map_t map;
650 vaddr_t addr;
651 vsize_t size;
652 {
653 vm_map_entry_t dead_entries;
654
655 vm_map_lock(map);
656 (void)uvm_unmap_remove(map, trunc_page(addr), round_page(addr+size),
657 &dead_entries);
658 thread_wakeup(map);
659 vm_map_unlock(map);
660
661 if (dead_entries != NULL)
662 uvm_unmap_detach(dead_entries, 0);
663 }
664
665 /*
666 * uvm_km_alloc1: allocate wired down memory in the kernel map.
667 *
668 * => we can sleep if needed
669 */
670
671 vaddr_t
672 uvm_km_alloc1(map, size, zeroit)
673 vm_map_t map;
674 vsize_t size;
675 boolean_t zeroit;
676 {
677 vaddr_t kva, loopva, offset;
678 struct vm_page *pg;
679 UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
680
681 UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
682
683 #ifdef DIAGNOSTIC
684 if (vm_map_pmap(map) != pmap_kernel())
685 panic("uvm_km_alloc1");
686 #endif
687
688 size = round_page(size);
689 kva = vm_map_min(map); /* hint */
690
691 /*
692 * allocate some virtual space
693 */
694
695 if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
696 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
697 UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
698 UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
699 return(0);
700 }
701
702 /*
703 * recover object offset from virtual address
704 */
705
706 offset = kva - vm_map_min(kernel_map);
707 UVMHIST_LOG(maphist," kva=0x%x, offset=0x%x", kva, offset,0,0);
708
709 /*
710 * now allocate the memory. we must be careful about released pages.
711 */
712
713 loopva = kva;
714 while (size) {
715 simple_lock(&uvm.kernel_object->vmobjlock);
716 pg = uvm_pagelookup(uvm.kernel_object, offset);
717
718 /*
719 * if we found a page in an unallocated region, it must be
720 * released
721 */
722 if (pg) {
723 if ((pg->flags & PG_RELEASED) == 0)
724 panic("uvm_km_alloc1: non-released page");
725 pg->flags |= PG_WANTED;
726 UVM_UNLOCK_AND_WAIT(pg, &uvm.kernel_object->vmobjlock,
727 0, "km_alloc", 0);
728 continue; /* retry */
729 }
730
731 /* allocate ram */
732 pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
733 if (pg) {
734 pg->flags &= ~PG_BUSY; /* new page */
735 UVM_PAGE_OWN(pg, NULL);
736 }
737 simple_unlock(&uvm.kernel_object->vmobjlock);
738 if (pg == NULL) {
739 uvm_wait("km_alloc1w"); /* wait for memory */
740 continue;
741 }
742
743 /*
744 * map it in; note we're never called with an intrsafe
745 * object, so we always use regular old pmap_enter().
746 */
747 pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
748 UVM_PROT_ALL, TRUE, VM_PROT_READ|VM_PROT_WRITE);
749
750 loopva += PAGE_SIZE;
751 offset += PAGE_SIZE;
752 size -= PAGE_SIZE;
753 }
754
755 /*
756 * zero on request (note that "size" is now zero due to the above loop
757 * so we need to subtract kva from loopva to reconstruct the size).
758 */
759
760 if (zeroit)
761 memset((caddr_t)kva, 0, loopva - kva);
762
763 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
764 return(kva);
765 }
766
767 /*
768 * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
769 *
770 * => memory is not allocated until fault time
771 */
772
773 vaddr_t
774 uvm_km_valloc(map, size)
775 vm_map_t map;
776 vsize_t size;
777 {
778 vaddr_t kva;
779 UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
780
781 UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
782
783 #ifdef DIAGNOSTIC
784 if (vm_map_pmap(map) != pmap_kernel())
785 panic("uvm_km_valloc");
786 #endif
787
788 size = round_page(size);
789 kva = vm_map_min(map); /* hint */
790
791 /*
792 * allocate some virtual space. will be demand filled by kernel_object.
793 */
794
795 if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
796 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
797 UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
798 UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
799 return(0);
800 }
801
802 UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
803 return(kva);
804 }
805
806 /*
807 * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
808 *
809 * => memory is not allocated until fault time
810 * => if no room in map, wait for space to free, unless requested size
811 * is larger than map (in which case we return 0)
812 */
813
814 vaddr_t
815 uvm_km_valloc_wait(map, size)
816 vm_map_t map;
817 vsize_t size;
818 {
819 vaddr_t kva;
820 UVMHIST_FUNC("uvm_km_valloc_wait"); UVMHIST_CALLED(maphist);
821
822 UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
823
824 #ifdef DIAGNOSTIC
825 if (vm_map_pmap(map) != pmap_kernel())
826 panic("uvm_km_valloc_wait");
827 #endif
828
829 size = round_page(size);
830 if (size > vm_map_max(map) - vm_map_min(map))
831 return(0);
832
833 while (1) {
834 kva = vm_map_min(map); /* hint */
835
836 /*
837 * allocate some virtual space. will be demand filled
838 * by kernel_object.
839 */
840
841 if (uvm_map(map, &kva, size, uvm.kernel_object,
842 UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL,
843 UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
844 == KERN_SUCCESS) {
845 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
846 return(kva);
847 }
848
849 /*
850 * failed. sleep for a while (on map)
851 */
852
853 UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
854 tsleep((caddr_t)map, PVM, "vallocwait", 0);
855 }
856 /*NOTREACHED*/
857 }
858
859 /* Sanity; must specify both or none. */
860 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
861 (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
862 #error Must specify MAP and UNMAP together.
863 #endif
864
865 /*
866 * uvm_km_alloc_poolpage: allocate a page for the pool allocator
867 *
868 * => if the pmap specifies an alternate mapping method, we use it.
869 */
870
871 /* ARGSUSED */
872 vaddr_t
873 uvm_km_alloc_poolpage1(map, obj, waitok)
874 vm_map_t map;
875 struct uvm_object *obj;
876 boolean_t waitok;
877 {
878 #if defined(PMAP_MAP_POOLPAGE)
879 struct vm_page *pg;
880 vaddr_t va;
881
882 again:
883 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
884 if (pg == NULL) {
885 if (waitok) {
886 uvm_wait("plpg");
887 goto again;
888 } else
889 return (0);
890 }
891 va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
892 if (va == 0)
893 uvm_pagefree(pg);
894 return (va);
895 #else
896 vaddr_t va;
897 int s;
898
899 /*
900 * NOTE: We may be called with a map that doens't require splimp
901 * protection (e.g. kernel_map). However, it does not hurt to
902 * go to splimp in this case (since unprocted maps will never be
903 * accessed in interrupt context).
904 *
905 * XXX We may want to consider changing the interface to this
906 * XXX function.
907 */
908
909 s = splimp();
910 va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
911 splx(s);
912 return (va);
913 #endif /* PMAP_MAP_POOLPAGE */
914 }
915
916 /*
917 * uvm_km_free_poolpage: free a previously allocated pool page
918 *
919 * => if the pmap specifies an alternate unmapping method, we use it.
920 */
921
922 /* ARGSUSED */
923 void
924 uvm_km_free_poolpage1(map, addr)
925 vm_map_t map;
926 vaddr_t addr;
927 {
928 #if defined(PMAP_UNMAP_POOLPAGE)
929 paddr_t pa;
930
931 pa = PMAP_UNMAP_POOLPAGE(addr);
932 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
933 #else
934 int s;
935
936 /*
937 * NOTE: We may be called with a map that doens't require splimp
938 * protection (e.g. kernel_map). However, it does not hurt to
939 * go to splimp in this case (since unprocted maps will never be
940 * accessed in interrupt context).
941 *
942 * XXX We may want to consider changing the interface to this
943 * XXX function.
944 */
945
946 s = splimp();
947 uvm_km_free(map, addr, PAGE_SIZE);
948 splx(s);
949 #endif /* PMAP_UNMAP_POOLPAGE */
950 }
951