Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.33
      1 /*	$NetBSD: uvm_km.c,v 1.33 1999/11/13 00:24:38 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     42  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 #include "opt_uvmhist.h"
     70 
     71 /*
     72  * uvm_km.c: handle kernel memory allocation and management
     73  */
     74 
     75 /*
     76  * overview of kernel memory management:
     77  *
     78  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     79  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     80  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     81  *
     82  * the kernel_map has several "submaps."   submaps can only appear in
     83  * the kernel_map (user processes can't use them).   submaps "take over"
     84  * the management of a sub-range of the kernel's address space.  submaps
     85  * are typically allocated at boot time and are never released.   kernel
     86  * virtual address space that is mapped by a submap is locked by the
     87  * submap's lock -- not the kernel_map's lock.
     88  *
     89  * thus, the useful feature of submaps is that they allow us to break
     90  * up the locking and protection of the kernel address space into smaller
     91  * chunks.
     92  *
     93  * the vm system has several standard kernel submaps, including:
     94  *   kmem_map => contains only wired kernel memory for the kernel
     95  *		malloc.   *** access to kmem_map must be protected
     96  *		by splimp() because we are allowed to call malloc()
     97  *		at interrupt time ***
     98  *   mb_map => memory for large mbufs,  *** protected by splimp ***
     99  *   pager_map => used to map "buf" structures into kernel space
    100  *   exec_map => used during exec to handle exec args
    101  *   etc...
    102  *
    103  * the kernel allocates its private memory out of special uvm_objects whose
    104  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
    105  * are "special" and never die).   all kernel objects should be thought of
    106  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
    107  * object is equal to the size of kernel virtual address space (i.e. the
    108  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    109  *
    110  * most kernel private memory lives in kernel_object.   the only exception
    111  * to this is for memory that belongs to submaps that must be protected
    112  * by splimp().    each of these submaps has their own private kernel
    113  * object (e.g. kmem_object, mb_object).
    114  *
    115  * note that just because a kernel object spans the entire kernel virutal
    116  * address space doesn't mean that it has to be mapped into the entire space.
    117  * large chunks of a kernel object's space go unused either because
    118  * that area of kernel VM is unmapped, or there is some other type of
    119  * object mapped into that range (e.g. a vnode).    for submap's kernel
    120  * objects, the only part of the object that can ever be populated is the
    121  * offsets that are managed by the submap.
    122  *
    123  * note that the "offset" in a kernel object is always the kernel virtual
    124  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    125  * example:
    126  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    127  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    128  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    129  *   then that means that the page at offset 0x235000 in kernel_object is
    130  *   mapped at 0xf8235000.
    131  *
    132  * note that the offsets in kmem_object and mb_object also follow this
    133  * rule.   this means that the offsets for kmem_object must fall in the
    134  * range of [vm_map_min(kmem_object) - vm_map_min(kernel_map)] to
    135  * [vm_map_max(kmem_object) - vm_map_min(kernel_map)], so the offsets
    136  * in those objects will typically not start at zero.
    137  *
    138  * kernel object have one other special property: when the kernel virtual
    139  * memory mapping them is unmapped, the backing memory in the object is
    140  * freed right away.   this is done with the uvm_km_pgremove() function.
    141  * this has to be done because there is no backing store for kernel pages
    142  * and no need to save them after they are no longer referenced.
    143  */
    144 
    145 #include <sys/param.h>
    146 #include <sys/systm.h>
    147 #include <sys/proc.h>
    148 
    149 #include <vm/vm.h>
    150 #include <vm/vm_page.h>
    151 #include <vm/vm_kern.h>
    152 
    153 #include <uvm/uvm.h>
    154 
    155 /*
    156  * global data structures
    157  */
    158 
    159 vm_map_t kernel_map = NULL;
    160 
    161 struct vmi_list vmi_list;
    162 simple_lock_data_t vmi_list_slock;
    163 
    164 /*
    165  * local data structues
    166  */
    167 
    168 static struct vm_map		kernel_map_store;
    169 static struct uvm_object	kmem_object_store;
    170 static struct uvm_object	mb_object_store;
    171 
    172 /*
    173  * All pager operations here are NULL, but the object must have
    174  * a pager ops vector associated with it; various places assume
    175  * it to be so.
    176  */
    177 static struct uvm_pagerops	km_pager;
    178 
    179 /*
    180  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
    181  * KVM already allocated for text, data, bss, and static data structures).
    182  *
    183  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    184  *    we assume that [min -> start] has already been allocated and that
    185  *    "end" is the end.
    186  */
    187 
    188 void
    189 uvm_km_init(start, end)
    190 	vaddr_t start, end;
    191 {
    192 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    193 
    194 	/*
    195 	 * first, initialize the interrupt-safe map list.
    196 	 */
    197 	LIST_INIT(&vmi_list);
    198 	simple_lock_init(&vmi_list_slock);
    199 
    200 	/*
    201 	 * next, init kernel memory objects.
    202 	 */
    203 
    204 	/* kernel_object: for pageable anonymous kernel memory */
    205 	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    206 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    207 
    208 	/*
    209 	 * kmem_object: for use by the kernel malloc().  Memory is always
    210 	 * wired, and this object (and the kmem_map) can be accessed at
    211 	 * interrupt time.
    212 	 */
    213 	simple_lock_init(&kmem_object_store.vmobjlock);
    214 	kmem_object_store.pgops = &km_pager;
    215 	TAILQ_INIT(&kmem_object_store.memq);
    216 	kmem_object_store.uo_npages = 0;
    217 	/* we are special.  we never die */
    218 	kmem_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
    219 	uvmexp.kmem_object = &kmem_object_store;
    220 
    221 	/*
    222 	 * mb_object: for mbuf cluster pages on platforms which use the
    223 	 * mb_map.  Memory is always wired, and this object (and the mb_map)
    224 	 * can be accessed at interrupt time.
    225 	 */
    226 	simple_lock_init(&mb_object_store.vmobjlock);
    227 	mb_object_store.pgops = &km_pager;
    228 	TAILQ_INIT(&mb_object_store.memq);
    229 	mb_object_store.uo_npages = 0;
    230 	/* we are special.  we never die */
    231 	mb_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
    232 	uvmexp.mb_object = &mb_object_store;
    233 
    234 	/*
    235 	 * init the map and reserve allready allocated kernel space
    236 	 * before installing.
    237 	 */
    238 
    239 	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
    240 	kernel_map_store.pmap = pmap_kernel();
    241 	if (uvm_map(&kernel_map_store, &base, start - base, NULL,
    242 	    UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    243 	    UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != KERN_SUCCESS)
    244 		panic("uvm_km_init: could not reserve space for kernel");
    245 
    246 	/*
    247 	 * install!
    248 	 */
    249 
    250 	kernel_map = &kernel_map_store;
    251 }
    252 
    253 /*
    254  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    255  * is allocated all references to that area of VM must go through it.  this
    256  * allows the locking of VAs in kernel_map to be broken up into regions.
    257  *
    258  * => if `fixed' is true, *min specifies where the region described
    259  *      by the submap must start
    260  * => if submap is non NULL we use that as the submap, otherwise we
    261  *	alloc a new map
    262  */
    263 struct vm_map *
    264 uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
    265 	struct vm_map *map;
    266 	vaddr_t *min, *max;		/* OUT, OUT */
    267 	vsize_t size;
    268 	int flags;
    269 	boolean_t fixed;
    270 	struct vm_map *submap;
    271 {
    272 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    273 
    274 	size = round_page(size);	/* round up to pagesize */
    275 
    276 	/*
    277 	 * first allocate a blank spot in the parent map
    278 	 */
    279 
    280 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET,
    281 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    282 	    UVM_ADV_RANDOM, mapflags)) != KERN_SUCCESS) {
    283 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
    284 	}
    285 
    286 	/*
    287 	 * set VM bounds (min is filled in by uvm_map)
    288 	 */
    289 
    290 	*max = *min + size;
    291 
    292 	/*
    293 	 * add references to pmap and create or init the submap
    294 	 */
    295 
    296 	pmap_reference(vm_map_pmap(map));
    297 	if (submap == NULL) {
    298 		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
    299 		if (submap == NULL)
    300 			panic("uvm_km_suballoc: unable to create submap");
    301 	} else {
    302 		uvm_map_setup(submap, *min, *max, flags);
    303 		submap->pmap = vm_map_pmap(map);
    304 	}
    305 
    306 	/*
    307 	 * now let uvm_map_submap plug in it...
    308 	 */
    309 
    310 	if (uvm_map_submap(map, *min, *max, submap) != KERN_SUCCESS)
    311 		panic("uvm_km_suballoc: submap allocation failed");
    312 
    313 	return(submap);
    314 }
    315 
    316 /*
    317  * uvm_km_pgremove: remove pages from a kernel uvm_object.
    318  *
    319  * => when you unmap a part of anonymous kernel memory you want to toss
    320  *    the pages right away.    (this gets called from uvm_unmap_...).
    321  */
    322 
    323 #define UKM_HASH_PENALTY 4      /* a guess */
    324 
    325 void
    326 uvm_km_pgremove(uobj, start, end)
    327 	struct uvm_object *uobj;
    328 	vaddr_t start, end;
    329 {
    330 	boolean_t by_list;
    331 	struct vm_page *pp, *ppnext;
    332 	vaddr_t curoff;
    333 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
    334 
    335 	simple_lock(&uobj->vmobjlock);		/* lock object */
    336 
    337 #ifdef DIAGNOSTIC
    338 	if (uobj->pgops != &aobj_pager)
    339 		panic("uvm_km_pgremove: object %p not an aobj", uobj);
    340 #endif
    341 
    342 	/* choose cheapest traversal */
    343 	by_list = (uobj->uo_npages <=
    344 	     ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
    345 
    346 	if (by_list)
    347 		goto loop_by_list;
    348 
    349 	/* by hash */
    350 
    351 	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
    352 		pp = uvm_pagelookup(uobj, curoff);
    353 		if (pp == NULL)
    354 			continue;
    355 
    356 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    357 		    pp->flags & PG_BUSY, 0, 0);
    358 
    359 		/* now do the actual work */
    360 		if (pp->flags & PG_BUSY) {
    361 			/* owner must check for this when done */
    362 			pp->flags |= PG_RELEASED;
    363 		} else {
    364 			/* free the swap slot... */
    365 			uao_dropswap(uobj, curoff >> PAGE_SHIFT);
    366 
    367 			/*
    368 			 * ...and free the page; note it may be on the
    369 			 * active or inactive queues.
    370 			 */
    371 			uvm_lock_pageq();
    372 			uvm_pagefree(pp);
    373 			uvm_unlock_pageq();
    374 		}
    375 		/* done */
    376 	}
    377 	simple_unlock(&uobj->vmobjlock);
    378 	return;
    379 
    380 loop_by_list:
    381 
    382 	for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
    383 		ppnext = pp->listq.tqe_next;
    384 		if (pp->offset < start || pp->offset >= end) {
    385 			continue;
    386 		}
    387 
    388 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    389 		    pp->flags & PG_BUSY, 0, 0);
    390 
    391 		/* now do the actual work */
    392 		if (pp->flags & PG_BUSY) {
    393 			/* owner must check for this when done */
    394 			pp->flags |= PG_RELEASED;
    395 		} else {
    396 			/* free the swap slot... */
    397 			uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
    398 
    399 			/*
    400 			 * ...and free the page; note it may be on the
    401 			 * active or inactive queues.
    402 			 */
    403 			uvm_lock_pageq();
    404 			uvm_pagefree(pp);
    405 			uvm_unlock_pageq();
    406 		}
    407 		/* done */
    408 	}
    409 	simple_unlock(&uobj->vmobjlock);
    410 	return;
    411 }
    412 
    413 
    414 /*
    415  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
    416  *    objects
    417  *
    418  * => when you unmap a part of anonymous kernel memory you want to toss
    419  *    the pages right away.    (this gets called from uvm_unmap_...).
    420  * => none of the pages will ever be busy, and none of them will ever
    421  *    be on the active or inactive queues (because these objects are
    422  *    never allowed to "page").
    423  */
    424 
    425 void
    426 uvm_km_pgremove_intrsafe(uobj, start, end)
    427 	struct uvm_object *uobj;
    428 	vaddr_t start, end;
    429 {
    430 	boolean_t by_list;
    431 	struct vm_page *pp, *ppnext;
    432 	vaddr_t curoff;
    433 	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
    434 
    435 	simple_lock(&uobj->vmobjlock);		/* lock object */
    436 
    437 #ifdef DIAGNOSTIC
    438 	if (UVM_OBJ_IS_INTRSAFE_OBJECT(uobj) == 0)
    439 		panic("uvm_km_pgremove_intrsafe: object %p not intrsafe", uobj);
    440 #endif
    441 
    442 	/* choose cheapest traversal */
    443 	by_list = (uobj->uo_npages <=
    444 	     ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
    445 
    446 	if (by_list)
    447 		goto loop_by_list;
    448 
    449 	/* by hash */
    450 
    451 	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
    452 		pp = uvm_pagelookup(uobj, curoff);
    453 		if (pp == NULL)
    454 			continue;
    455 
    456 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    457 		    pp->flags & PG_BUSY, 0, 0);
    458 #ifdef DIAGNOSTIC
    459 		if (pp->flags & PG_BUSY)
    460 			panic("uvm_km_pgremove_intrsafe: busy page");
    461 		if (pp->pqflags & PQ_ACTIVE)
    462 			panic("uvm_km_pgremove_intrsafe: active page");
    463 		if (pp->pqflags & PQ_INACTIVE)
    464 			panic("uvm_km_pgremove_intrsafe: inactive page");
    465 #endif
    466 
    467 		/* free the page */
    468 		uvm_pagefree(pp);
    469 	}
    470 	simple_unlock(&uobj->vmobjlock);
    471 	return;
    472 
    473 loop_by_list:
    474 
    475 	for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
    476 		ppnext = pp->listq.tqe_next;
    477 		if (pp->offset < start || pp->offset >= end) {
    478 			continue;
    479 		}
    480 
    481 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    482 		    pp->flags & PG_BUSY, 0, 0);
    483 
    484 #ifdef DIAGNOSTIC
    485 		if (pp->flags & PG_BUSY)
    486 			panic("uvm_km_pgremove_intrsafe: busy page");
    487 		if (pp->pqflags & PQ_ACTIVE)
    488 			panic("uvm_km_pgremove_intrsafe: active page");
    489 		if (pp->pqflags & PQ_INACTIVE)
    490 			panic("uvm_km_pgremove_intrsafe: inactive page");
    491 #endif
    492 
    493 		/* free the page */
    494 		uvm_pagefree(pp);
    495 	}
    496 	simple_unlock(&uobj->vmobjlock);
    497 	return;
    498 }
    499 
    500 
    501 /*
    502  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
    503  *
    504  * => we map wired memory into the specified map using the obj passed in
    505  * => NOTE: we can return NULL even if we can wait if there is not enough
    506  *	free VM space in the map... caller should be prepared to handle
    507  *	this case.
    508  * => we return KVA of memory allocated
    509  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
    510  *	lock the map
    511  */
    512 
    513 vaddr_t
    514 uvm_km_kmemalloc(map, obj, size, flags)
    515 	vm_map_t map;
    516 	struct uvm_object *obj;
    517 	vsize_t size;
    518 	int flags;
    519 {
    520 	vaddr_t kva, loopva;
    521 	vaddr_t offset;
    522 	struct vm_page *pg;
    523 	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
    524 
    525 
    526 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
    527 	map, obj, size, flags);
    528 #ifdef DIAGNOSTIC
    529 	/* sanity check */
    530 	if (vm_map_pmap(map) != pmap_kernel())
    531 		panic("uvm_km_kmemalloc: invalid map");
    532 #endif
    533 
    534 	/*
    535 	 * setup for call
    536 	 */
    537 
    538 	size = round_page(size);
    539 	kva = vm_map_min(map);	/* hint */
    540 
    541 	/*
    542 	 * allocate some virtual space
    543 	 */
    544 
    545 	if (uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    546 	      UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    547 			  UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
    548 			!= KERN_SUCCESS) {
    549 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    550 		return(0);
    551 	}
    552 
    553 	/*
    554 	 * if all we wanted was VA, return now
    555 	 */
    556 
    557 	if (flags & UVM_KMF_VALLOC) {
    558 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
    559 		return(kva);
    560 	}
    561 	/*
    562 	 * recover object offset from virtual address
    563 	 */
    564 
    565 	offset = kva - vm_map_min(kernel_map);
    566 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
    567 
    568 	/*
    569 	 * now allocate and map in the memory... note that we are the only ones
    570 	 * whom should ever get a handle on this area of VM.
    571 	 */
    572 
    573 	loopva = kva;
    574 	while (size) {
    575 		simple_lock(&obj->vmobjlock);
    576 		pg = uvm_pagealloc(obj, offset, NULL, 0);
    577 		if (pg) {
    578 			pg->flags &= ~PG_BUSY;	/* new page */
    579 			UVM_PAGE_OWN(pg, NULL);
    580 		}
    581 		simple_unlock(&obj->vmobjlock);
    582 
    583 		/*
    584 		 * out of memory?
    585 		 */
    586 
    587 		if (pg == NULL) {
    588 			if (flags & UVM_KMF_NOWAIT) {
    589 				/* free everything! */
    590 				uvm_unmap(map, kva, kva + size);
    591 				return(0);
    592 			} else {
    593 				uvm_wait("km_getwait2");	/* sleep here */
    594 				continue;
    595 			}
    596 		}
    597 
    598 		/*
    599 		 * map it in: note that we call pmap_enter with the map and
    600 		 * object unlocked in case we are kmem_map/kmem_object
    601 		 * (because if pmap_enter wants to allocate out of kmem_object
    602 		 * it will need to lock it itself!)
    603 		 */
    604 		if (UVM_OBJ_IS_INTRSAFE_OBJECT(obj)) {
    605 			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    606 			    VM_PROT_ALL);
    607 		} else {
    608 			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    609 			    UVM_PROT_ALL,
    610 			    PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
    611 		}
    612 		loopva += PAGE_SIZE;
    613 		offset += PAGE_SIZE;
    614 		size -= PAGE_SIZE;
    615 	}
    616 
    617 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    618 	return(kva);
    619 }
    620 
    621 /*
    622  * uvm_km_free: free an area of kernel memory
    623  */
    624 
    625 void
    626 uvm_km_free(map, addr, size)
    627 	vm_map_t map;
    628 	vaddr_t addr;
    629 	vsize_t size;
    630 {
    631 
    632 	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
    633 }
    634 
    635 /*
    636  * uvm_km_free_wakeup: free an area of kernel memory and wake up
    637  * anyone waiting for vm space.
    638  *
    639  * => XXX: "wanted" bit + unlock&wait on other end?
    640  */
    641 
    642 void
    643 uvm_km_free_wakeup(map, addr, size)
    644 	vm_map_t map;
    645 	vaddr_t addr;
    646 	vsize_t size;
    647 {
    648 	vm_map_entry_t dead_entries;
    649 
    650 	vm_map_lock(map);
    651 	(void)uvm_unmap_remove(map, trunc_page(addr), round_page(addr+size),
    652 			 &dead_entries);
    653 	wakeup(map);
    654 	vm_map_unlock(map);
    655 
    656 	if (dead_entries != NULL)
    657 		uvm_unmap_detach(dead_entries, 0);
    658 }
    659 
    660 /*
    661  * uvm_km_alloc1: allocate wired down memory in the kernel map.
    662  *
    663  * => we can sleep if needed
    664  */
    665 
    666 vaddr_t
    667 uvm_km_alloc1(map, size, zeroit)
    668 	vm_map_t map;
    669 	vsize_t size;
    670 	boolean_t zeroit;
    671 {
    672 	vaddr_t kva, loopva, offset;
    673 	struct vm_page *pg;
    674 	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
    675 
    676 	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
    677 
    678 #ifdef DIAGNOSTIC
    679 	if (vm_map_pmap(map) != pmap_kernel())
    680 		panic("uvm_km_alloc1");
    681 #endif
    682 
    683 	size = round_page(size);
    684 	kva = vm_map_min(map);		/* hint */
    685 
    686 	/*
    687 	 * allocate some virtual space
    688 	 */
    689 
    690 	if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
    691 	      UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    692 			  UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
    693 		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
    694 		return(0);
    695 	}
    696 
    697 	/*
    698 	 * recover object offset from virtual address
    699 	 */
    700 
    701 	offset = kva - vm_map_min(kernel_map);
    702 	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
    703 
    704 	/*
    705 	 * now allocate the memory.  we must be careful about released pages.
    706 	 */
    707 
    708 	loopva = kva;
    709 	while (size) {
    710 		simple_lock(&uvm.kernel_object->vmobjlock);
    711 		pg = uvm_pagelookup(uvm.kernel_object, offset);
    712 
    713 		/*
    714 		 * if we found a page in an unallocated region, it must be
    715 		 * released
    716 		 */
    717 		if (pg) {
    718 			if ((pg->flags & PG_RELEASED) == 0)
    719 				panic("uvm_km_alloc1: non-released page");
    720 			pg->flags |= PG_WANTED;
    721 			UVM_UNLOCK_AND_WAIT(pg, &uvm.kernel_object->vmobjlock,
    722 			    FALSE, "km_alloc", 0);
    723 			continue;   /* retry */
    724 		}
    725 
    726 		/* allocate ram */
    727 		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
    728 		if (pg) {
    729 			pg->flags &= ~PG_BUSY;	/* new page */
    730 			UVM_PAGE_OWN(pg, NULL);
    731 		}
    732 		simple_unlock(&uvm.kernel_object->vmobjlock);
    733 		if (pg == NULL) {
    734 			uvm_wait("km_alloc1w");	/* wait for memory */
    735 			continue;
    736 		}
    737 
    738 		/*
    739 		 * map it in; note we're never called with an intrsafe
    740 		 * object, so we always use regular old pmap_enter().
    741 		 */
    742 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    743 		    UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
    744 
    745 		loopva += PAGE_SIZE;
    746 		offset += PAGE_SIZE;
    747 		size -= PAGE_SIZE;
    748 	}
    749 
    750 	/*
    751 	 * zero on request (note that "size" is now zero due to the above loop
    752 	 * so we need to subtract kva from loopva to reconstruct the size).
    753 	 */
    754 
    755 	if (zeroit)
    756 		memset((caddr_t)kva, 0, loopva - kva);
    757 
    758 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    759 	return(kva);
    760 }
    761 
    762 /*
    763  * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
    764  *
    765  * => memory is not allocated until fault time
    766  */
    767 
    768 vaddr_t
    769 uvm_km_valloc(map, size)
    770 	vm_map_t map;
    771 	vsize_t size;
    772 {
    773 	vaddr_t kva;
    774 	UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
    775 
    776 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    777 
    778 #ifdef DIAGNOSTIC
    779 	if (vm_map_pmap(map) != pmap_kernel())
    780 		panic("uvm_km_valloc");
    781 #endif
    782 
    783 	size = round_page(size);
    784 	kva = vm_map_min(map);		/* hint */
    785 
    786 	/*
    787 	 * allocate some virtual space.  will be demand filled by kernel_object.
    788 	 */
    789 
    790 	if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
    791 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    792 	    UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
    793 		UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
    794 		return(0);
    795 	}
    796 
    797 	UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
    798 	return(kva);
    799 }
    800 
    801 /*
    802  * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
    803  *
    804  * => memory is not allocated until fault time
    805  * => if no room in map, wait for space to free, unless requested size
    806  *    is larger than map (in which case we return 0)
    807  */
    808 
    809 vaddr_t
    810 uvm_km_valloc_wait(map, size)
    811 	vm_map_t map;
    812 	vsize_t size;
    813 {
    814 	vaddr_t kva;
    815 	UVMHIST_FUNC("uvm_km_valloc_wait"); UVMHIST_CALLED(maphist);
    816 
    817 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    818 
    819 #ifdef DIAGNOSTIC
    820 	if (vm_map_pmap(map) != pmap_kernel())
    821 		panic("uvm_km_valloc_wait");
    822 #endif
    823 
    824 	size = round_page(size);
    825 	if (size > vm_map_max(map) - vm_map_min(map))
    826 		return(0);
    827 
    828 	while (1) {
    829 		kva = vm_map_min(map);		/* hint */
    830 
    831 		/*
    832 		 * allocate some virtual space.   will be demand filled
    833 		 * by kernel_object.
    834 		 */
    835 
    836 		if (uvm_map(map, &kva, size, uvm.kernel_object,
    837 		    UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL,
    838 		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
    839 		    == KERN_SUCCESS) {
    840 			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    841 			return(kva);
    842 		}
    843 
    844 		/*
    845 		 * failed.  sleep for a while (on map)
    846 		 */
    847 
    848 		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
    849 		tsleep((caddr_t)map, PVM, "vallocwait", 0);
    850 	}
    851 	/*NOTREACHED*/
    852 }
    853 
    854 /* Sanity; must specify both or none. */
    855 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    856     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    857 #error Must specify MAP and UNMAP together.
    858 #endif
    859 
    860 /*
    861  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
    862  *
    863  * => if the pmap specifies an alternate mapping method, we use it.
    864  */
    865 
    866 /* ARGSUSED */
    867 vaddr_t
    868 uvm_km_alloc_poolpage1(map, obj, waitok)
    869 	vm_map_t map;
    870 	struct uvm_object *obj;
    871 	boolean_t waitok;
    872 {
    873 #if defined(PMAP_MAP_POOLPAGE)
    874 	struct vm_page *pg;
    875 	vaddr_t va;
    876 
    877  again:
    878 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    879 	if (pg == NULL) {
    880 		if (waitok) {
    881 			uvm_wait("plpg");
    882 			goto again;
    883 		} else
    884 			return (0);
    885 	}
    886 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    887 	if (va == 0)
    888 		uvm_pagefree(pg);
    889 	return (va);
    890 #else
    891 	vaddr_t va;
    892 	int s;
    893 
    894 	/*
    895 	 * NOTE: We may be called with a map that doens't require splimp
    896 	 * protection (e.g. kernel_map).  However, it does not hurt to
    897 	 * go to splimp in this case (since unprocted maps will never be
    898 	 * accessed in interrupt context).
    899 	 *
    900 	 * XXX We may want to consider changing the interface to this
    901 	 * XXX function.
    902 	 */
    903 
    904 	s = splimp();
    905 	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
    906 	splx(s);
    907 	return (va);
    908 #endif /* PMAP_MAP_POOLPAGE */
    909 }
    910 
    911 /*
    912  * uvm_km_free_poolpage: free a previously allocated pool page
    913  *
    914  * => if the pmap specifies an alternate unmapping method, we use it.
    915  */
    916 
    917 /* ARGSUSED */
    918 void
    919 uvm_km_free_poolpage1(map, addr)
    920 	vm_map_t map;
    921 	vaddr_t addr;
    922 {
    923 #if defined(PMAP_UNMAP_POOLPAGE)
    924 	paddr_t pa;
    925 
    926 	pa = PMAP_UNMAP_POOLPAGE(addr);
    927 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    928 #else
    929 	int s;
    930 
    931 	/*
    932 	 * NOTE: We may be called with a map that doens't require splimp
    933 	 * protection (e.g. kernel_map).  However, it does not hurt to
    934 	 * go to splimp in this case (since unprocted maps will never be
    935 	 * accessed in interrupt context).
    936 	 *
    937 	 * XXX We may want to consider changing the interface to this
    938 	 * XXX function.
    939 	 */
    940 
    941 	s = splimp();
    942 	uvm_km_free(map, addr, PAGE_SIZE);
    943 	splx(s);
    944 #endif /* PMAP_UNMAP_POOLPAGE */
    945 }
    946