uvm_km.c revision 1.35 1 /* $NetBSD: uvm_km.c,v 1.35 2000/05/08 23:10:20 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
42 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 #include "opt_uvmhist.h"
70
71 /*
72 * uvm_km.c: handle kernel memory allocation and management
73 */
74
75 /*
76 * overview of kernel memory management:
77 *
78 * the kernel virtual address space is mapped by "kernel_map." kernel_map
79 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
80 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
81 *
82 * the kernel_map has several "submaps." submaps can only appear in
83 * the kernel_map (user processes can't use them). submaps "take over"
84 * the management of a sub-range of the kernel's address space. submaps
85 * are typically allocated at boot time and are never released. kernel
86 * virtual address space that is mapped by a submap is locked by the
87 * submap's lock -- not the kernel_map's lock.
88 *
89 * thus, the useful feature of submaps is that they allow us to break
90 * up the locking and protection of the kernel address space into smaller
91 * chunks.
92 *
93 * the vm system has several standard kernel submaps, including:
94 * kmem_map => contains only wired kernel memory for the kernel
95 * malloc. *** access to kmem_map must be protected
96 * by splimp() because we are allowed to call malloc()
97 * at interrupt time ***
98 * mb_map => memory for large mbufs, *** protected by splimp ***
99 * pager_map => used to map "buf" structures into kernel space
100 * exec_map => used during exec to handle exec args
101 * etc...
102 *
103 * the kernel allocates its private memory out of special uvm_objects whose
104 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
105 * are "special" and never die). all kernel objects should be thought of
106 * as large, fixed-sized, sparsely populated uvm_objects. each kernel
107 * object is equal to the size of kernel virtual address space (i.e. the
108 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
109 *
110 * most kernel private memory lives in kernel_object. the only exception
111 * to this is for memory that belongs to submaps that must be protected
112 * by splimp(). each of these submaps has their own private kernel
113 * object (e.g. kmem_object, mb_object).
114 *
115 * note that just because a kernel object spans the entire kernel virutal
116 * address space doesn't mean that it has to be mapped into the entire space.
117 * large chunks of a kernel object's space go unused either because
118 * that area of kernel VM is unmapped, or there is some other type of
119 * object mapped into that range (e.g. a vnode). for submap's kernel
120 * objects, the only part of the object that can ever be populated is the
121 * offsets that are managed by the submap.
122 *
123 * note that the "offset" in a kernel object is always the kernel virtual
124 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
125 * example:
126 * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
127 * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
128 * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
129 * then that means that the page at offset 0x235000 in kernel_object is
130 * mapped at 0xf8235000.
131 *
132 * note that the offsets in kmem_object and mb_object also follow this
133 * rule. this means that the offsets for kmem_object must fall in the
134 * range of [vm_map_min(kmem_object) - vm_map_min(kernel_map)] to
135 * [vm_map_max(kmem_object) - vm_map_min(kernel_map)], so the offsets
136 * in those objects will typically not start at zero.
137 *
138 * kernel object have one other special property: when the kernel virtual
139 * memory mapping them is unmapped, the backing memory in the object is
140 * freed right away. this is done with the uvm_km_pgremove() function.
141 * this has to be done because there is no backing store for kernel pages
142 * and no need to save them after they are no longer referenced.
143 */
144
145 #include <sys/param.h>
146 #include <sys/systm.h>
147 #include <sys/proc.h>
148
149 #include <vm/vm.h>
150 #include <vm/vm_page.h>
151 #include <vm/vm_kern.h>
152
153 #include <uvm/uvm.h>
154
155 /*
156 * global data structures
157 */
158
159 vm_map_t kernel_map = NULL;
160
161 struct vmi_list vmi_list;
162 simple_lock_data_t vmi_list_slock;
163
164 /*
165 * local data structues
166 */
167
168 static struct vm_map kernel_map_store;
169 static struct uvm_object kmem_object_store;
170 static struct uvm_object mb_object_store;
171
172 /*
173 * All pager operations here are NULL, but the object must have
174 * a pager ops vector associated with it; various places assume
175 * it to be so.
176 */
177 static struct uvm_pagerops km_pager;
178
179 /*
180 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
181 * KVM already allocated for text, data, bss, and static data structures).
182 *
183 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
184 * we assume that [min -> start] has already been allocated and that
185 * "end" is the end.
186 */
187
188 void
189 uvm_km_init(start, end)
190 vaddr_t start, end;
191 {
192 vaddr_t base = VM_MIN_KERNEL_ADDRESS;
193
194 /*
195 * first, initialize the interrupt-safe map list.
196 */
197 LIST_INIT(&vmi_list);
198 simple_lock_init(&vmi_list_slock);
199
200 /*
201 * next, init kernel memory objects.
202 */
203
204 /* kernel_object: for pageable anonymous kernel memory */
205 uao_init();
206 uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
207 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
208
209 /*
210 * kmem_object: for use by the kernel malloc(). Memory is always
211 * wired, and this object (and the kmem_map) can be accessed at
212 * interrupt time.
213 */
214 simple_lock_init(&kmem_object_store.vmobjlock);
215 kmem_object_store.pgops = &km_pager;
216 TAILQ_INIT(&kmem_object_store.memq);
217 kmem_object_store.uo_npages = 0;
218 /* we are special. we never die */
219 kmem_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
220 uvmexp.kmem_object = &kmem_object_store;
221
222 /*
223 * mb_object: for mbuf cluster pages on platforms which use the
224 * mb_map. Memory is always wired, and this object (and the mb_map)
225 * can be accessed at interrupt time.
226 */
227 simple_lock_init(&mb_object_store.vmobjlock);
228 mb_object_store.pgops = &km_pager;
229 TAILQ_INIT(&mb_object_store.memq);
230 mb_object_store.uo_npages = 0;
231 /* we are special. we never die */
232 mb_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
233 uvmexp.mb_object = &mb_object_store;
234
235 /*
236 * init the map and reserve allready allocated kernel space
237 * before installing.
238 */
239
240 uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
241 kernel_map_store.pmap = pmap_kernel();
242 if (uvm_map(&kernel_map_store, &base, start - base, NULL,
243 UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
244 UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != KERN_SUCCESS)
245 panic("uvm_km_init: could not reserve space for kernel");
246
247 /*
248 * install!
249 */
250
251 kernel_map = &kernel_map_store;
252 }
253
254 /*
255 * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
256 * is allocated all references to that area of VM must go through it. this
257 * allows the locking of VAs in kernel_map to be broken up into regions.
258 *
259 * => if `fixed' is true, *min specifies where the region described
260 * by the submap must start
261 * => if submap is non NULL we use that as the submap, otherwise we
262 * alloc a new map
263 */
264 struct vm_map *
265 uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
266 struct vm_map *map;
267 vaddr_t *min, *max; /* OUT, OUT */
268 vsize_t size;
269 int flags;
270 boolean_t fixed;
271 struct vm_map *submap;
272 {
273 int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
274
275 size = round_page(size); /* round up to pagesize */
276
277 /*
278 * first allocate a blank spot in the parent map
279 */
280
281 if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET,
282 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
283 UVM_ADV_RANDOM, mapflags)) != KERN_SUCCESS) {
284 panic("uvm_km_suballoc: unable to allocate space in parent map");
285 }
286
287 /*
288 * set VM bounds (min is filled in by uvm_map)
289 */
290
291 *max = *min + size;
292
293 /*
294 * add references to pmap and create or init the submap
295 */
296
297 pmap_reference(vm_map_pmap(map));
298 if (submap == NULL) {
299 submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
300 if (submap == NULL)
301 panic("uvm_km_suballoc: unable to create submap");
302 } else {
303 uvm_map_setup(submap, *min, *max, flags);
304 submap->pmap = vm_map_pmap(map);
305 }
306
307 /*
308 * now let uvm_map_submap plug in it...
309 */
310
311 if (uvm_map_submap(map, *min, *max, submap) != KERN_SUCCESS)
312 panic("uvm_km_suballoc: submap allocation failed");
313
314 return(submap);
315 }
316
317 /*
318 * uvm_km_pgremove: remove pages from a kernel uvm_object.
319 *
320 * => when you unmap a part of anonymous kernel memory you want to toss
321 * the pages right away. (this gets called from uvm_unmap_...).
322 */
323
324 #define UKM_HASH_PENALTY 4 /* a guess */
325
326 void
327 uvm_km_pgremove(uobj, start, end)
328 struct uvm_object *uobj;
329 vaddr_t start, end;
330 {
331 boolean_t by_list;
332 struct vm_page *pp, *ppnext;
333 vaddr_t curoff;
334 UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
335
336 simple_lock(&uobj->vmobjlock); /* lock object */
337
338 #ifdef DIAGNOSTIC
339 if (__predict_false(uobj->pgops != &aobj_pager))
340 panic("uvm_km_pgremove: object %p not an aobj", uobj);
341 #endif
342
343 /* choose cheapest traversal */
344 by_list = (uobj->uo_npages <=
345 ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
346
347 if (by_list)
348 goto loop_by_list;
349
350 /* by hash */
351
352 for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
353 pp = uvm_pagelookup(uobj, curoff);
354 if (pp == NULL)
355 continue;
356
357 UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,
358 pp->flags & PG_BUSY, 0, 0);
359
360 /* now do the actual work */
361 if (pp->flags & PG_BUSY) {
362 /* owner must check for this when done */
363 pp->flags |= PG_RELEASED;
364 } else {
365 /* free the swap slot... */
366 uao_dropswap(uobj, curoff >> PAGE_SHIFT);
367
368 /*
369 * ...and free the page; note it may be on the
370 * active or inactive queues.
371 */
372 uvm_lock_pageq();
373 uvm_pagefree(pp);
374 uvm_unlock_pageq();
375 }
376 /* done */
377 }
378 simple_unlock(&uobj->vmobjlock);
379 return;
380
381 loop_by_list:
382
383 for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
384 ppnext = pp->listq.tqe_next;
385 if (pp->offset < start || pp->offset >= end) {
386 continue;
387 }
388
389 UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,
390 pp->flags & PG_BUSY, 0, 0);
391
392 /* now do the actual work */
393 if (pp->flags & PG_BUSY) {
394 /* owner must check for this when done */
395 pp->flags |= PG_RELEASED;
396 } else {
397 /* free the swap slot... */
398 uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
399
400 /*
401 * ...and free the page; note it may be on the
402 * active or inactive queues.
403 */
404 uvm_lock_pageq();
405 uvm_pagefree(pp);
406 uvm_unlock_pageq();
407 }
408 /* done */
409 }
410 simple_unlock(&uobj->vmobjlock);
411 return;
412 }
413
414
415 /*
416 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
417 * objects
418 *
419 * => when you unmap a part of anonymous kernel memory you want to toss
420 * the pages right away. (this gets called from uvm_unmap_...).
421 * => none of the pages will ever be busy, and none of them will ever
422 * be on the active or inactive queues (because these objects are
423 * never allowed to "page").
424 */
425
426 void
427 uvm_km_pgremove_intrsafe(uobj, start, end)
428 struct uvm_object *uobj;
429 vaddr_t start, end;
430 {
431 boolean_t by_list;
432 struct vm_page *pp, *ppnext;
433 vaddr_t curoff;
434 UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
435
436 simple_lock(&uobj->vmobjlock); /* lock object */
437
438 #ifdef DIAGNOSTIC
439 if (__predict_false(UVM_OBJ_IS_INTRSAFE_OBJECT(uobj) == 0))
440 panic("uvm_km_pgremove_intrsafe: object %p not intrsafe", uobj);
441 #endif
442
443 /* choose cheapest traversal */
444 by_list = (uobj->uo_npages <=
445 ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
446
447 if (by_list)
448 goto loop_by_list;
449
450 /* by hash */
451
452 for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
453 pp = uvm_pagelookup(uobj, curoff);
454 if (pp == NULL)
455 continue;
456
457 UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,
458 pp->flags & PG_BUSY, 0, 0);
459 #ifdef DIAGNOSTIC
460 if (__predict_false(pp->flags & PG_BUSY))
461 panic("uvm_km_pgremove_intrsafe: busy page");
462 if (__predict_false(pp->pqflags & PQ_ACTIVE))
463 panic("uvm_km_pgremove_intrsafe: active page");
464 if (__predict_false(pp->pqflags & PQ_INACTIVE))
465 panic("uvm_km_pgremove_intrsafe: inactive page");
466 #endif
467
468 /* free the page */
469 uvm_pagefree(pp);
470 }
471 simple_unlock(&uobj->vmobjlock);
472 return;
473
474 loop_by_list:
475
476 for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
477 ppnext = pp->listq.tqe_next;
478 if (pp->offset < start || pp->offset >= end) {
479 continue;
480 }
481
482 UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,
483 pp->flags & PG_BUSY, 0, 0);
484
485 #ifdef DIAGNOSTIC
486 if (__predict_false(pp->flags & PG_BUSY))
487 panic("uvm_km_pgremove_intrsafe: busy page");
488 if (__predict_false(pp->pqflags & PQ_ACTIVE))
489 panic("uvm_km_pgremove_intrsafe: active page");
490 if (__predict_false(pp->pqflags & PQ_INACTIVE))
491 panic("uvm_km_pgremove_intrsafe: inactive page");
492 #endif
493
494 /* free the page */
495 uvm_pagefree(pp);
496 }
497 simple_unlock(&uobj->vmobjlock);
498 return;
499 }
500
501
502 /*
503 * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
504 *
505 * => we map wired memory into the specified map using the obj passed in
506 * => NOTE: we can return NULL even if we can wait if there is not enough
507 * free VM space in the map... caller should be prepared to handle
508 * this case.
509 * => we return KVA of memory allocated
510 * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
511 * lock the map
512 */
513
514 vaddr_t
515 uvm_km_kmemalloc(map, obj, size, flags)
516 vm_map_t map;
517 struct uvm_object *obj;
518 vsize_t size;
519 int flags;
520 {
521 vaddr_t kva, loopva;
522 vaddr_t offset;
523 struct vm_page *pg;
524 UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
525
526
527 UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
528 map, obj, size, flags);
529 #ifdef DIAGNOSTIC
530 /* sanity check */
531 if (__predict_false(vm_map_pmap(map) != pmap_kernel()))
532 panic("uvm_km_kmemalloc: invalid map");
533 #endif
534
535 /*
536 * setup for call
537 */
538
539 size = round_page(size);
540 kva = vm_map_min(map); /* hint */
541
542 /*
543 * allocate some virtual space
544 */
545
546 if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
547 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
548 UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
549 != KERN_SUCCESS)) {
550 UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
551 return(0);
552 }
553
554 /*
555 * if all we wanted was VA, return now
556 */
557
558 if (flags & UVM_KMF_VALLOC) {
559 UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
560 return(kva);
561 }
562 /*
563 * recover object offset from virtual address
564 */
565
566 offset = kva - vm_map_min(kernel_map);
567 UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
568
569 /*
570 * now allocate and map in the memory... note that we are the only ones
571 * whom should ever get a handle on this area of VM.
572 */
573
574 loopva = kva;
575 while (size) {
576 simple_lock(&obj->vmobjlock);
577 pg = uvm_pagealloc(obj, offset, NULL, 0);
578 if (pg) {
579 pg->flags &= ~PG_BUSY; /* new page */
580 UVM_PAGE_OWN(pg, NULL);
581 }
582 simple_unlock(&obj->vmobjlock);
583
584 /*
585 * out of memory?
586 */
587
588 if (__predict_false(pg == NULL)) {
589 if (flags & UVM_KMF_NOWAIT) {
590 /* free everything! */
591 uvm_unmap(map, kva, kva + size);
592 return(0);
593 } else {
594 uvm_wait("km_getwait2"); /* sleep here */
595 continue;
596 }
597 }
598
599 /*
600 * map it in: note that we call pmap_enter with the map and
601 * object unlocked in case we are kmem_map/kmem_object
602 * (because if pmap_enter wants to allocate out of kmem_object
603 * it will need to lock it itself!)
604 */
605 if (UVM_OBJ_IS_INTRSAFE_OBJECT(obj)) {
606 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
607 VM_PROT_ALL);
608 } else {
609 pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
610 UVM_PROT_ALL,
611 PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
612 }
613 loopva += PAGE_SIZE;
614 offset += PAGE_SIZE;
615 size -= PAGE_SIZE;
616 }
617
618 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
619 return(kva);
620 }
621
622 /*
623 * uvm_km_free: free an area of kernel memory
624 */
625
626 void
627 uvm_km_free(map, addr, size)
628 vm_map_t map;
629 vaddr_t addr;
630 vsize_t size;
631 {
632
633 uvm_unmap(map, trunc_page(addr), round_page(addr+size));
634 }
635
636 /*
637 * uvm_km_free_wakeup: free an area of kernel memory and wake up
638 * anyone waiting for vm space.
639 *
640 * => XXX: "wanted" bit + unlock&wait on other end?
641 */
642
643 void
644 uvm_km_free_wakeup(map, addr, size)
645 vm_map_t map;
646 vaddr_t addr;
647 vsize_t size;
648 {
649 vm_map_entry_t dead_entries;
650
651 vm_map_lock(map);
652 (void)uvm_unmap_remove(map, trunc_page(addr), round_page(addr+size),
653 &dead_entries);
654 wakeup(map);
655 vm_map_unlock(map);
656
657 if (dead_entries != NULL)
658 uvm_unmap_detach(dead_entries, 0);
659 }
660
661 /*
662 * uvm_km_alloc1: allocate wired down memory in the kernel map.
663 *
664 * => we can sleep if needed
665 */
666
667 vaddr_t
668 uvm_km_alloc1(map, size, zeroit)
669 vm_map_t map;
670 vsize_t size;
671 boolean_t zeroit;
672 {
673 vaddr_t kva, loopva, offset;
674 struct vm_page *pg;
675 UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
676
677 UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
678
679 #ifdef DIAGNOSTIC
680 if (vm_map_pmap(map) != pmap_kernel())
681 panic("uvm_km_alloc1");
682 #endif
683
684 size = round_page(size);
685 kva = vm_map_min(map); /* hint */
686
687 /*
688 * allocate some virtual space
689 */
690
691 if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
692 UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
693 UVM_INH_NONE, UVM_ADV_RANDOM,
694 0)) != KERN_SUCCESS)) {
695 UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
696 return(0);
697 }
698
699 /*
700 * recover object offset from virtual address
701 */
702
703 offset = kva - vm_map_min(kernel_map);
704 UVMHIST_LOG(maphist," kva=0x%x, offset=0x%x", kva, offset,0,0);
705
706 /*
707 * now allocate the memory. we must be careful about released pages.
708 */
709
710 loopva = kva;
711 while (size) {
712 simple_lock(&uvm.kernel_object->vmobjlock);
713 pg = uvm_pagelookup(uvm.kernel_object, offset);
714
715 /*
716 * if we found a page in an unallocated region, it must be
717 * released
718 */
719 if (pg) {
720 if ((pg->flags & PG_RELEASED) == 0)
721 panic("uvm_km_alloc1: non-released page");
722 pg->flags |= PG_WANTED;
723 UVM_UNLOCK_AND_WAIT(pg, &uvm.kernel_object->vmobjlock,
724 FALSE, "km_alloc", 0);
725 continue; /* retry */
726 }
727
728 /* allocate ram */
729 pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
730 if (pg) {
731 pg->flags &= ~PG_BUSY; /* new page */
732 UVM_PAGE_OWN(pg, NULL);
733 }
734 simple_unlock(&uvm.kernel_object->vmobjlock);
735 if (__predict_false(pg == NULL)) {
736 uvm_wait("km_alloc1w"); /* wait for memory */
737 continue;
738 }
739
740 /*
741 * map it in; note we're never called with an intrsafe
742 * object, so we always use regular old pmap_enter().
743 */
744 pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
745 UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
746
747 loopva += PAGE_SIZE;
748 offset += PAGE_SIZE;
749 size -= PAGE_SIZE;
750 }
751
752 /*
753 * zero on request (note that "size" is now zero due to the above loop
754 * so we need to subtract kva from loopva to reconstruct the size).
755 */
756
757 if (zeroit)
758 memset((caddr_t)kva, 0, loopva - kva);
759
760 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
761 return(kva);
762 }
763
764 /*
765 * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
766 *
767 * => memory is not allocated until fault time
768 */
769
770 vaddr_t
771 uvm_km_valloc(map, size)
772 vm_map_t map;
773 vsize_t size;
774 {
775 vaddr_t kva;
776 UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
777
778 UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
779
780 #ifdef DIAGNOSTIC
781 if (__predict_false(vm_map_pmap(map) != pmap_kernel()))
782 panic("uvm_km_valloc");
783 #endif
784
785 size = round_page(size);
786 kva = vm_map_min(map); /* hint */
787
788 /*
789 * allocate some virtual space. will be demand filled by kernel_object.
790 */
791
792 if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
793 UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
794 UVM_INH_NONE, UVM_ADV_RANDOM,
795 0)) != KERN_SUCCESS)) {
796 UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
797 return(0);
798 }
799
800 UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
801 return(kva);
802 }
803
804 /*
805 * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
806 *
807 * => memory is not allocated until fault time
808 * => if no room in map, wait for space to free, unless requested size
809 * is larger than map (in which case we return 0)
810 */
811
812 vaddr_t
813 uvm_km_valloc_wait(map, size)
814 vm_map_t map;
815 vsize_t size;
816 {
817 vaddr_t kva;
818 UVMHIST_FUNC("uvm_km_valloc_wait"); UVMHIST_CALLED(maphist);
819
820 UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
821
822 #ifdef DIAGNOSTIC
823 if (__predict_false(vm_map_pmap(map) != pmap_kernel()))
824 panic("uvm_km_valloc_wait");
825 #endif
826
827 size = round_page(size);
828 if (size > vm_map_max(map) - vm_map_min(map))
829 return(0);
830
831 while (1) {
832 kva = vm_map_min(map); /* hint */
833
834 /*
835 * allocate some virtual space. will be demand filled
836 * by kernel_object.
837 */
838
839 if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
840 UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL,
841 UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
842 == KERN_SUCCESS)) {
843 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
844 return(kva);
845 }
846
847 /*
848 * failed. sleep for a while (on map)
849 */
850
851 UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
852 tsleep((caddr_t)map, PVM, "vallocwait", 0);
853 }
854 /*NOTREACHED*/
855 }
856
857 /* Sanity; must specify both or none. */
858 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
859 (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
860 #error Must specify MAP and UNMAP together.
861 #endif
862
863 /*
864 * uvm_km_alloc_poolpage: allocate a page for the pool allocator
865 *
866 * => if the pmap specifies an alternate mapping method, we use it.
867 */
868
869 /* ARGSUSED */
870 vaddr_t
871 uvm_km_alloc_poolpage1(map, obj, waitok)
872 vm_map_t map;
873 struct uvm_object *obj;
874 boolean_t waitok;
875 {
876 #if defined(PMAP_MAP_POOLPAGE)
877 struct vm_page *pg;
878 vaddr_t va;
879
880 again:
881 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
882 if (__predict_false(pg == NULL)) {
883 if (waitok) {
884 uvm_wait("plpg");
885 goto again;
886 } else
887 return (0);
888 }
889 va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
890 if (__predict_false(va == 0))
891 uvm_pagefree(pg);
892 return (va);
893 #else
894 vaddr_t va;
895 int s;
896
897 /*
898 * NOTE: We may be called with a map that doens't require splimp
899 * protection (e.g. kernel_map). However, it does not hurt to
900 * go to splimp in this case (since unprocted maps will never be
901 * accessed in interrupt context).
902 *
903 * XXX We may want to consider changing the interface to this
904 * XXX function.
905 */
906
907 s = splimp();
908 va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
909 splx(s);
910 return (va);
911 #endif /* PMAP_MAP_POOLPAGE */
912 }
913
914 /*
915 * uvm_km_free_poolpage: free a previously allocated pool page
916 *
917 * => if the pmap specifies an alternate unmapping method, we use it.
918 */
919
920 /* ARGSUSED */
921 void
922 uvm_km_free_poolpage1(map, addr)
923 vm_map_t map;
924 vaddr_t addr;
925 {
926 #if defined(PMAP_UNMAP_POOLPAGE)
927 paddr_t pa;
928
929 pa = PMAP_UNMAP_POOLPAGE(addr);
930 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
931 #else
932 int s;
933
934 /*
935 * NOTE: We may be called with a map that doens't require splimp
936 * protection (e.g. kernel_map). However, it does not hurt to
937 * go to splimp in this case (since unprocted maps will never be
938 * accessed in interrupt context).
939 *
940 * XXX We may want to consider changing the interface to this
941 * XXX function.
942 */
943
944 s = splimp();
945 uvm_km_free(map, addr, PAGE_SIZE);
946 splx(s);
947 #endif /* PMAP_UNMAP_POOLPAGE */
948 }
949