uvm_km.c revision 1.38 1 /* $NetBSD: uvm_km.c,v 1.38 2000/07/24 20:10:53 jeffs Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
42 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 #include "opt_uvmhist.h"
70
71 /*
72 * uvm_km.c: handle kernel memory allocation and management
73 */
74
75 /*
76 * overview of kernel memory management:
77 *
78 * the kernel virtual address space is mapped by "kernel_map." kernel_map
79 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
80 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
81 *
82 * the kernel_map has several "submaps." submaps can only appear in
83 * the kernel_map (user processes can't use them). submaps "take over"
84 * the management of a sub-range of the kernel's address space. submaps
85 * are typically allocated at boot time and are never released. kernel
86 * virtual address space that is mapped by a submap is locked by the
87 * submap's lock -- not the kernel_map's lock.
88 *
89 * thus, the useful feature of submaps is that they allow us to break
90 * up the locking and protection of the kernel address space into smaller
91 * chunks.
92 *
93 * the vm system has several standard kernel submaps, including:
94 * kmem_map => contains only wired kernel memory for the kernel
95 * malloc. *** access to kmem_map must be protected
96 * by splimp() because we are allowed to call malloc()
97 * at interrupt time ***
98 * mb_map => memory for large mbufs, *** protected by splimp ***
99 * pager_map => used to map "buf" structures into kernel space
100 * exec_map => used during exec to handle exec args
101 * etc...
102 *
103 * the kernel allocates its private memory out of special uvm_objects whose
104 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
105 * are "special" and never die). all kernel objects should be thought of
106 * as large, fixed-sized, sparsely populated uvm_objects. each kernel
107 * object is equal to the size of kernel virtual address space (i.e. the
108 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
109 *
110 * most kernel private memory lives in kernel_object. the only exception
111 * to this is for memory that belongs to submaps that must be protected
112 * by splimp(). each of these submaps has their own private kernel
113 * object (e.g. kmem_object, mb_object).
114 *
115 * note that just because a kernel object spans the entire kernel virutal
116 * address space doesn't mean that it has to be mapped into the entire space.
117 * large chunks of a kernel object's space go unused either because
118 * that area of kernel VM is unmapped, or there is some other type of
119 * object mapped into that range (e.g. a vnode). for submap's kernel
120 * objects, the only part of the object that can ever be populated is the
121 * offsets that are managed by the submap.
122 *
123 * note that the "offset" in a kernel object is always the kernel virtual
124 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
125 * example:
126 * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
127 * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
128 * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
129 * then that means that the page at offset 0x235000 in kernel_object is
130 * mapped at 0xf8235000.
131 *
132 * note that the offsets in kmem_object and mb_object also follow this
133 * rule. this means that the offsets for kmem_object must fall in the
134 * range of [vm_map_min(kmem_object) - vm_map_min(kernel_map)] to
135 * [vm_map_max(kmem_object) - vm_map_min(kernel_map)], so the offsets
136 * in those objects will typically not start at zero.
137 *
138 * kernel object have one other special property: when the kernel virtual
139 * memory mapping them is unmapped, the backing memory in the object is
140 * freed right away. this is done with the uvm_km_pgremove() function.
141 * this has to be done because there is no backing store for kernel pages
142 * and no need to save them after they are no longer referenced.
143 */
144
145 #include <sys/param.h>
146 #include <sys/systm.h>
147 #include <sys/proc.h>
148
149 #include <uvm/uvm.h>
150
151 /*
152 * global data structures
153 */
154
155 vm_map_t kernel_map = NULL;
156
157 struct vmi_list vmi_list;
158 simple_lock_data_t vmi_list_slock;
159
160 /*
161 * local data structues
162 */
163
164 static struct vm_map kernel_map_store;
165 static struct uvm_object kmem_object_store;
166 static struct uvm_object mb_object_store;
167
168 /*
169 * All pager operations here are NULL, but the object must have
170 * a pager ops vector associated with it; various places assume
171 * it to be so.
172 */
173 static struct uvm_pagerops km_pager;
174
175 /*
176 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
177 * KVM already allocated for text, data, bss, and static data structures).
178 *
179 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
180 * we assume that [min -> start] has already been allocated and that
181 * "end" is the end.
182 */
183
184 void
185 uvm_km_init(start, end)
186 vaddr_t start, end;
187 {
188 vaddr_t base = VM_MIN_KERNEL_ADDRESS;
189
190 /*
191 * first, initialize the interrupt-safe map list.
192 */
193 LIST_INIT(&vmi_list);
194 simple_lock_init(&vmi_list_slock);
195
196 /*
197 * next, init kernel memory objects.
198 */
199
200 /* kernel_object: for pageable anonymous kernel memory */
201 uao_init();
202 uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
203 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
204
205 /*
206 * kmem_object: for use by the kernel malloc(). Memory is always
207 * wired, and this object (and the kmem_map) can be accessed at
208 * interrupt time.
209 */
210 simple_lock_init(&kmem_object_store.vmobjlock);
211 kmem_object_store.pgops = &km_pager;
212 TAILQ_INIT(&kmem_object_store.memq);
213 kmem_object_store.uo_npages = 0;
214 /* we are special. we never die */
215 kmem_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
216 uvmexp.kmem_object = &kmem_object_store;
217
218 /*
219 * mb_object: for mbuf cluster pages on platforms which use the
220 * mb_map. Memory is always wired, and this object (and the mb_map)
221 * can be accessed at interrupt time.
222 */
223 simple_lock_init(&mb_object_store.vmobjlock);
224 mb_object_store.pgops = &km_pager;
225 TAILQ_INIT(&mb_object_store.memq);
226 mb_object_store.uo_npages = 0;
227 /* we are special. we never die */
228 mb_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
229 uvmexp.mb_object = &mb_object_store;
230
231 /*
232 * init the map and reserve allready allocated kernel space
233 * before installing.
234 */
235
236 uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
237 kernel_map_store.pmap = pmap_kernel();
238 if (uvm_map(&kernel_map_store, &base, start - base, NULL,
239 UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
240 UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != KERN_SUCCESS)
241 panic("uvm_km_init: could not reserve space for kernel");
242
243 /*
244 * install!
245 */
246
247 kernel_map = &kernel_map_store;
248 }
249
250 /*
251 * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
252 * is allocated all references to that area of VM must go through it. this
253 * allows the locking of VAs in kernel_map to be broken up into regions.
254 *
255 * => if `fixed' is true, *min specifies where the region described
256 * by the submap must start
257 * => if submap is non NULL we use that as the submap, otherwise we
258 * alloc a new map
259 */
260 struct vm_map *
261 uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
262 struct vm_map *map;
263 vaddr_t *min, *max; /* OUT, OUT */
264 vsize_t size;
265 int flags;
266 boolean_t fixed;
267 struct vm_map *submap;
268 {
269 int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
270
271 size = round_page(size); /* round up to pagesize */
272
273 /*
274 * first allocate a blank spot in the parent map
275 */
276
277 if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET,
278 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
279 UVM_ADV_RANDOM, mapflags)) != KERN_SUCCESS) {
280 panic("uvm_km_suballoc: unable to allocate space in parent map");
281 }
282
283 /*
284 * set VM bounds (min is filled in by uvm_map)
285 */
286
287 *max = *min + size;
288
289 /*
290 * add references to pmap and create or init the submap
291 */
292
293 pmap_reference(vm_map_pmap(map));
294 if (submap == NULL) {
295 submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
296 if (submap == NULL)
297 panic("uvm_km_suballoc: unable to create submap");
298 } else {
299 uvm_map_setup(submap, *min, *max, flags);
300 submap->pmap = vm_map_pmap(map);
301 }
302
303 /*
304 * now let uvm_map_submap plug in it...
305 */
306
307 if (uvm_map_submap(map, *min, *max, submap) != KERN_SUCCESS)
308 panic("uvm_km_suballoc: submap allocation failed");
309
310 return(submap);
311 }
312
313 /*
314 * uvm_km_pgremove: remove pages from a kernel uvm_object.
315 *
316 * => when you unmap a part of anonymous kernel memory you want to toss
317 * the pages right away. (this gets called from uvm_unmap_...).
318 */
319
320 #define UKM_HASH_PENALTY 4 /* a guess */
321
322 void
323 uvm_km_pgremove(uobj, start, end)
324 struct uvm_object *uobj;
325 vaddr_t start, end;
326 {
327 boolean_t by_list;
328 struct vm_page *pp, *ppnext;
329 vaddr_t curoff;
330 UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
331
332 simple_lock(&uobj->vmobjlock); /* lock object */
333
334 #ifdef DIAGNOSTIC
335 if (__predict_false(uobj->pgops != &aobj_pager))
336 panic("uvm_km_pgremove: object %p not an aobj", uobj);
337 #endif
338
339 /* choose cheapest traversal */
340 by_list = (uobj->uo_npages <=
341 ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
342
343 if (by_list)
344 goto loop_by_list;
345
346 /* by hash */
347
348 for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
349 pp = uvm_pagelookup(uobj, curoff);
350 if (pp == NULL)
351 continue;
352
353 UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,
354 pp->flags & PG_BUSY, 0, 0);
355
356 /* now do the actual work */
357 if (pp->flags & PG_BUSY) {
358 /* owner must check for this when done */
359 pp->flags |= PG_RELEASED;
360 } else {
361 /* free the swap slot... */
362 uao_dropswap(uobj, curoff >> PAGE_SHIFT);
363
364 /*
365 * ...and free the page; note it may be on the
366 * active or inactive queues.
367 */
368 uvm_lock_pageq();
369 uvm_pagefree(pp);
370 uvm_unlock_pageq();
371 }
372 /* done */
373 }
374 simple_unlock(&uobj->vmobjlock);
375 return;
376
377 loop_by_list:
378
379 for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
380 ppnext = pp->listq.tqe_next;
381 if (pp->offset < start || pp->offset >= end) {
382 continue;
383 }
384
385 UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,
386 pp->flags & PG_BUSY, 0, 0);
387
388 /* now do the actual work */
389 if (pp->flags & PG_BUSY) {
390 /* owner must check for this when done */
391 pp->flags |= PG_RELEASED;
392 } else {
393 /* free the swap slot... */
394 uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
395
396 /*
397 * ...and free the page; note it may be on the
398 * active or inactive queues.
399 */
400 uvm_lock_pageq();
401 uvm_pagefree(pp);
402 uvm_unlock_pageq();
403 }
404 /* done */
405 }
406 simple_unlock(&uobj->vmobjlock);
407 return;
408 }
409
410
411 /*
412 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
413 * objects
414 *
415 * => when you unmap a part of anonymous kernel memory you want to toss
416 * the pages right away. (this gets called from uvm_unmap_...).
417 * => none of the pages will ever be busy, and none of them will ever
418 * be on the active or inactive queues (because these objects are
419 * never allowed to "page").
420 */
421
422 void
423 uvm_km_pgremove_intrsafe(uobj, start, end)
424 struct uvm_object *uobj;
425 vaddr_t start, end;
426 {
427 boolean_t by_list;
428 struct vm_page *pp, *ppnext;
429 vaddr_t curoff;
430 UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
431
432 simple_lock(&uobj->vmobjlock); /* lock object */
433
434 #ifdef DIAGNOSTIC
435 if (__predict_false(UVM_OBJ_IS_INTRSAFE_OBJECT(uobj) == 0))
436 panic("uvm_km_pgremove_intrsafe: object %p not intrsafe", uobj);
437 #endif
438
439 /* choose cheapest traversal */
440 by_list = (uobj->uo_npages <=
441 ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
442
443 if (by_list)
444 goto loop_by_list;
445
446 /* by hash */
447
448 for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
449 pp = uvm_pagelookup(uobj, curoff);
450 if (pp == NULL)
451 continue;
452
453 UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,
454 pp->flags & PG_BUSY, 0, 0);
455 #ifdef DIAGNOSTIC
456 if (__predict_false(pp->flags & PG_BUSY))
457 panic("uvm_km_pgremove_intrsafe: busy page");
458 if (__predict_false(pp->pqflags & PQ_ACTIVE))
459 panic("uvm_km_pgremove_intrsafe: active page");
460 if (__predict_false(pp->pqflags & PQ_INACTIVE))
461 panic("uvm_km_pgremove_intrsafe: inactive page");
462 #endif
463
464 /* free the page */
465 uvm_pagefree(pp);
466 }
467 simple_unlock(&uobj->vmobjlock);
468 return;
469
470 loop_by_list:
471
472 for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
473 ppnext = pp->listq.tqe_next;
474 if (pp->offset < start || pp->offset >= end) {
475 continue;
476 }
477
478 UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,
479 pp->flags & PG_BUSY, 0, 0);
480
481 #ifdef DIAGNOSTIC
482 if (__predict_false(pp->flags & PG_BUSY))
483 panic("uvm_km_pgremove_intrsafe: busy page");
484 if (__predict_false(pp->pqflags & PQ_ACTIVE))
485 panic("uvm_km_pgremove_intrsafe: active page");
486 if (__predict_false(pp->pqflags & PQ_INACTIVE))
487 panic("uvm_km_pgremove_intrsafe: inactive page");
488 #endif
489
490 /* free the page */
491 uvm_pagefree(pp);
492 }
493 simple_unlock(&uobj->vmobjlock);
494 return;
495 }
496
497
498 /*
499 * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
500 *
501 * => we map wired memory into the specified map using the obj passed in
502 * => NOTE: we can return NULL even if we can wait if there is not enough
503 * free VM space in the map... caller should be prepared to handle
504 * this case.
505 * => we return KVA of memory allocated
506 * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
507 * lock the map
508 */
509
510 vaddr_t
511 uvm_km_kmemalloc(map, obj, size, flags)
512 vm_map_t map;
513 struct uvm_object *obj;
514 vsize_t size;
515 int flags;
516 {
517 vaddr_t kva, loopva;
518 vaddr_t offset;
519 struct vm_page *pg;
520 UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
521
522
523 UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
524 map, obj, size, flags);
525 #ifdef DIAGNOSTIC
526 /* sanity check */
527 if (__predict_false(vm_map_pmap(map) != pmap_kernel()))
528 panic("uvm_km_kmemalloc: invalid map");
529 #endif
530
531 /*
532 * setup for call
533 */
534
535 size = round_page(size);
536 kva = vm_map_min(map); /* hint */
537
538 /*
539 * allocate some virtual space
540 */
541
542 if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
543 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
544 UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
545 != KERN_SUCCESS)) {
546 UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
547 return(0);
548 }
549
550 /*
551 * if all we wanted was VA, return now
552 */
553
554 if (flags & UVM_KMF_VALLOC) {
555 UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
556 return(kva);
557 }
558 /*
559 * recover object offset from virtual address
560 */
561
562 offset = kva - vm_map_min(kernel_map);
563 UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
564
565 /*
566 * now allocate and map in the memory... note that we are the only ones
567 * whom should ever get a handle on this area of VM.
568 */
569
570 loopva = kva;
571 while (size) {
572 simple_lock(&obj->vmobjlock);
573 pg = uvm_pagealloc(obj, offset, NULL, 0);
574 if (pg) {
575 pg->flags &= ~PG_BUSY; /* new page */
576 UVM_PAGE_OWN(pg, NULL);
577 }
578 simple_unlock(&obj->vmobjlock);
579
580 /*
581 * out of memory?
582 */
583
584 if (__predict_false(pg == NULL)) {
585 if (flags & UVM_KMF_NOWAIT) {
586 /* free everything! */
587 uvm_unmap(map, kva, kva + size);
588 return(0);
589 } else {
590 uvm_wait("km_getwait2"); /* sleep here */
591 continue;
592 }
593 }
594
595 /*
596 * map it in: note that we call pmap_enter with the map and
597 * object unlocked in case we are kmem_map/kmem_object
598 * (because if pmap_enter wants to allocate out of kmem_object
599 * it will need to lock it itself!)
600 */
601 if (UVM_OBJ_IS_INTRSAFE_OBJECT(obj)) {
602 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
603 VM_PROT_ALL);
604 } else {
605 pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
606 UVM_PROT_ALL,
607 PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
608 }
609 loopva += PAGE_SIZE;
610 offset += PAGE_SIZE;
611 size -= PAGE_SIZE;
612 }
613
614 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
615 return(kva);
616 }
617
618 /*
619 * uvm_km_free: free an area of kernel memory
620 */
621
622 void
623 uvm_km_free(map, addr, size)
624 vm_map_t map;
625 vaddr_t addr;
626 vsize_t size;
627 {
628
629 uvm_unmap(map, trunc_page(addr), round_page(addr+size));
630 }
631
632 /*
633 * uvm_km_free_wakeup: free an area of kernel memory and wake up
634 * anyone waiting for vm space.
635 *
636 * => XXX: "wanted" bit + unlock&wait on other end?
637 */
638
639 void
640 uvm_km_free_wakeup(map, addr, size)
641 vm_map_t map;
642 vaddr_t addr;
643 vsize_t size;
644 {
645 vm_map_entry_t dead_entries;
646
647 vm_map_lock(map);
648 (void)uvm_unmap_remove(map, trunc_page(addr), round_page(addr+size),
649 &dead_entries);
650 wakeup(map);
651 vm_map_unlock(map);
652
653 if (dead_entries != NULL)
654 uvm_unmap_detach(dead_entries, 0);
655 }
656
657 /*
658 * uvm_km_alloc1: allocate wired down memory in the kernel map.
659 *
660 * => we can sleep if needed
661 */
662
663 vaddr_t
664 uvm_km_alloc1(map, size, zeroit)
665 vm_map_t map;
666 vsize_t size;
667 boolean_t zeroit;
668 {
669 vaddr_t kva, loopva, offset;
670 struct vm_page *pg;
671 UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
672
673 UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
674
675 #ifdef DIAGNOSTIC
676 if (vm_map_pmap(map) != pmap_kernel())
677 panic("uvm_km_alloc1");
678 #endif
679
680 size = round_page(size);
681 kva = vm_map_min(map); /* hint */
682
683 /*
684 * allocate some virtual space
685 */
686
687 if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
688 UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
689 UVM_INH_NONE, UVM_ADV_RANDOM,
690 0)) != KERN_SUCCESS)) {
691 UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
692 return(0);
693 }
694
695 /*
696 * recover object offset from virtual address
697 */
698
699 offset = kva - vm_map_min(kernel_map);
700 UVMHIST_LOG(maphist," kva=0x%x, offset=0x%x", kva, offset,0,0);
701
702 /*
703 * now allocate the memory. we must be careful about released pages.
704 */
705
706 loopva = kva;
707 while (size) {
708 simple_lock(&uvm.kernel_object->vmobjlock);
709 pg = uvm_pagelookup(uvm.kernel_object, offset);
710
711 /*
712 * if we found a page in an unallocated region, it must be
713 * released
714 */
715 if (pg) {
716 if ((pg->flags & PG_RELEASED) == 0)
717 panic("uvm_km_alloc1: non-released page");
718 pg->flags |= PG_WANTED;
719 UVM_UNLOCK_AND_WAIT(pg, &uvm.kernel_object->vmobjlock,
720 FALSE, "km_alloc", 0);
721 continue; /* retry */
722 }
723
724 /* allocate ram */
725 pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
726 if (pg) {
727 pg->flags &= ~PG_BUSY; /* new page */
728 UVM_PAGE_OWN(pg, NULL);
729 }
730 simple_unlock(&uvm.kernel_object->vmobjlock);
731 if (__predict_false(pg == NULL)) {
732 uvm_wait("km_alloc1w"); /* wait for memory */
733 continue;
734 }
735
736 /*
737 * map it in; note we're never called with an intrsafe
738 * object, so we always use regular old pmap_enter().
739 */
740 pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
741 UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
742
743 loopva += PAGE_SIZE;
744 offset += PAGE_SIZE;
745 size -= PAGE_SIZE;
746 }
747
748 /*
749 * zero on request (note that "size" is now zero due to the above loop
750 * so we need to subtract kva from loopva to reconstruct the size).
751 */
752
753 if (zeroit)
754 memset((caddr_t)kva, 0, loopva - kva);
755
756 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
757 return(kva);
758 }
759
760 /*
761 * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
762 *
763 * => memory is not allocated until fault time
764 */
765
766 vaddr_t
767 uvm_km_valloc(map, size)
768 vm_map_t map;
769 vsize_t size;
770 {
771 vaddr_t kva;
772 UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
773
774 UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
775
776 #ifdef DIAGNOSTIC
777 if (__predict_false(vm_map_pmap(map) != pmap_kernel()))
778 panic("uvm_km_valloc");
779 #endif
780
781 size = round_page(size);
782 kva = vm_map_min(map); /* hint */
783
784 /*
785 * allocate some virtual space. will be demand filled by kernel_object.
786 */
787
788 if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
789 UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
790 UVM_INH_NONE, UVM_ADV_RANDOM,
791 0)) != KERN_SUCCESS)) {
792 UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
793 return(0);
794 }
795
796 UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
797 return(kva);
798 }
799
800 /*
801 * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
802 *
803 * => memory is not allocated until fault time
804 * => if no room in map, wait for space to free, unless requested size
805 * is larger than map (in which case we return 0)
806 */
807
808 vaddr_t
809 uvm_km_valloc_prefer_wait(map, size, prefer)
810 vm_map_t map;
811 vsize_t size;
812 voff_t prefer;
813 {
814 vaddr_t kva;
815 UVMHIST_FUNC("uvm_km_valloc_prefer_wait"); UVMHIST_CALLED(maphist);
816
817 UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
818
819 #ifdef DIAGNOSTIC
820 if (__predict_false(vm_map_pmap(map) != pmap_kernel()))
821 panic("uvm_km_valloc_wait");
822 #endif
823
824 size = round_page(size);
825 if (size > vm_map_max(map) - vm_map_min(map))
826 return(0);
827
828 while (1) {
829 kva = vm_map_min(map); /* hint */
830
831 /*
832 * allocate some virtual space. will be demand filled
833 * by kernel_object.
834 */
835
836 if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
837 prefer, UVM_MAPFLAG(UVM_PROT_ALL,
838 UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
839 == KERN_SUCCESS)) {
840 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
841 return(kva);
842 }
843
844 /*
845 * failed. sleep for a while (on map)
846 */
847
848 UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
849 tsleep((caddr_t)map, PVM, "vallocwait", 0);
850 }
851 /*NOTREACHED*/
852 }
853
854 vaddr_t
855 uvm_km_valloc_wait(map, size)
856 vm_map_t map;
857 vsize_t size;
858 {
859 return uvm_km_valloc_prefer_wait(map, size, UVM_UNKNOWN_OFFSET);
860 }
861
862 /* Sanity; must specify both or none. */
863 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
864 (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
865 #error Must specify MAP and UNMAP together.
866 #endif
867
868 /*
869 * uvm_km_alloc_poolpage: allocate a page for the pool allocator
870 *
871 * => if the pmap specifies an alternate mapping method, we use it.
872 */
873
874 /* ARGSUSED */
875 vaddr_t
876 uvm_km_alloc_poolpage1(map, obj, waitok)
877 vm_map_t map;
878 struct uvm_object *obj;
879 boolean_t waitok;
880 {
881 #if defined(PMAP_MAP_POOLPAGE)
882 struct vm_page *pg;
883 vaddr_t va;
884
885 again:
886 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
887 if (__predict_false(pg == NULL)) {
888 if (waitok) {
889 uvm_wait("plpg");
890 goto again;
891 } else
892 return (0);
893 }
894 va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
895 if (__predict_false(va == 0))
896 uvm_pagefree(pg);
897 return (va);
898 #else
899 vaddr_t va;
900 int s;
901
902 /*
903 * NOTE: We may be called with a map that doens't require splimp
904 * protection (e.g. kernel_map). However, it does not hurt to
905 * go to splimp in this case (since unprocted maps will never be
906 * accessed in interrupt context).
907 *
908 * XXX We may want to consider changing the interface to this
909 * XXX function.
910 */
911
912 s = splimp();
913 va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
914 splx(s);
915 return (va);
916 #endif /* PMAP_MAP_POOLPAGE */
917 }
918
919 /*
920 * uvm_km_free_poolpage: free a previously allocated pool page
921 *
922 * => if the pmap specifies an alternate unmapping method, we use it.
923 */
924
925 /* ARGSUSED */
926 void
927 uvm_km_free_poolpage1(map, addr)
928 vm_map_t map;
929 vaddr_t addr;
930 {
931 #if defined(PMAP_UNMAP_POOLPAGE)
932 paddr_t pa;
933
934 pa = PMAP_UNMAP_POOLPAGE(addr);
935 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
936 #else
937 int s;
938
939 /*
940 * NOTE: We may be called with a map that doens't require splimp
941 * protection (e.g. kernel_map). However, it does not hurt to
942 * go to splimp in this case (since unprocted maps will never be
943 * accessed in interrupt context).
944 *
945 * XXX We may want to consider changing the interface to this
946 * XXX function.
947 */
948
949 s = splimp();
950 uvm_km_free(map, addr, PAGE_SIZE);
951 splx(s);
952 #endif /* PMAP_UNMAP_POOLPAGE */
953 }
954