Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.41
      1 /*	$NetBSD: uvm_km.c,v 1.41 2000/11/27 04:36:40 nisimura Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     42  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 #include "opt_uvmhist.h"
     70 
     71 /*
     72  * uvm_km.c: handle kernel memory allocation and management
     73  */
     74 
     75 /*
     76  * overview of kernel memory management:
     77  *
     78  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     79  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     80  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     81  *
     82  * the kernel_map has several "submaps."   submaps can only appear in
     83  * the kernel_map (user processes can't use them).   submaps "take over"
     84  * the management of a sub-range of the kernel's address space.  submaps
     85  * are typically allocated at boot time and are never released.   kernel
     86  * virtual address space that is mapped by a submap is locked by the
     87  * submap's lock -- not the kernel_map's lock.
     88  *
     89  * thus, the useful feature of submaps is that they allow us to break
     90  * up the locking and protection of the kernel address space into smaller
     91  * chunks.
     92  *
     93  * the vm system has several standard kernel submaps, including:
     94  *   kmem_map => contains only wired kernel memory for the kernel
     95  *		malloc.   *** access to kmem_map must be protected
     96  *		by splimp() because we are allowed to call malloc()
     97  *		at interrupt time ***
     98  *   mb_map => memory for large mbufs,  *** protected by splimp ***
     99  *   pager_map => used to map "buf" structures into kernel space
    100  *   exec_map => used during exec to handle exec args
    101  *   etc...
    102  *
    103  * the kernel allocates its private memory out of special uvm_objects whose
    104  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
    105  * are "special" and never die).   all kernel objects should be thought of
    106  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
    107  * object is equal to the size of kernel virtual address space (i.e. the
    108  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    109  *
    110  * most kernel private memory lives in kernel_object.   the only exception
    111  * to this is for memory that belongs to submaps that must be protected
    112  * by splimp().    each of these submaps has their own private kernel
    113  * object (e.g. kmem_object, mb_object).
    114  *
    115  * note that just because a kernel object spans the entire kernel virutal
    116  * address space doesn't mean that it has to be mapped into the entire space.
    117  * large chunks of a kernel object's space go unused either because
    118  * that area of kernel VM is unmapped, or there is some other type of
    119  * object mapped into that range (e.g. a vnode).    for submap's kernel
    120  * objects, the only part of the object that can ever be populated is the
    121  * offsets that are managed by the submap.
    122  *
    123  * note that the "offset" in a kernel object is always the kernel virtual
    124  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    125  * example:
    126  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    127  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    128  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    129  *   then that means that the page at offset 0x235000 in kernel_object is
    130  *   mapped at 0xf8235000.
    131  *
    132  * note that the offsets in kmem_object and mb_object also follow this
    133  * rule.   this means that the offsets for kmem_object must fall in the
    134  * range of [vm_map_min(kmem_object) - vm_map_min(kernel_map)] to
    135  * [vm_map_max(kmem_object) - vm_map_min(kernel_map)], so the offsets
    136  * in those objects will typically not start at zero.
    137  *
    138  * kernel object have one other special property: when the kernel virtual
    139  * memory mapping them is unmapped, the backing memory in the object is
    140  * freed right away.   this is done with the uvm_km_pgremove() function.
    141  * this has to be done because there is no backing store for kernel pages
    142  * and no need to save them after they are no longer referenced.
    143  */
    144 
    145 #include <sys/param.h>
    146 #include <sys/systm.h>
    147 #include <sys/proc.h>
    148 
    149 #include <uvm/uvm.h>
    150 
    151 /*
    152  * global data structures
    153  */
    154 
    155 vm_map_t kernel_map = NULL;
    156 
    157 struct vmi_list vmi_list;
    158 simple_lock_data_t vmi_list_slock;
    159 
    160 /*
    161  * local data structues
    162  */
    163 
    164 static struct vm_map		kernel_map_store;
    165 static struct uvm_object	kmem_object_store;
    166 static struct uvm_object	mb_object_store;
    167 
    168 /*
    169  * All pager operations here are NULL, but the object must have
    170  * a pager ops vector associated with it; various places assume
    171  * it to be so.
    172  */
    173 static struct uvm_pagerops	km_pager;
    174 
    175 /*
    176  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
    177  * KVM already allocated for text, data, bss, and static data structures).
    178  *
    179  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    180  *    we assume that [min -> start] has already been allocated and that
    181  *    "end" is the end.
    182  */
    183 
    184 void
    185 uvm_km_init(start, end)
    186 	vaddr_t start, end;
    187 {
    188 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    189 
    190 	/*
    191 	 * first, initialize the interrupt-safe map list.
    192 	 */
    193 	LIST_INIT(&vmi_list);
    194 	simple_lock_init(&vmi_list_slock);
    195 
    196 	/*
    197 	 * next, init kernel memory objects.
    198 	 */
    199 
    200 	/* kernel_object: for pageable anonymous kernel memory */
    201 	uao_init();
    202 	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    203 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    204 
    205 	/*
    206 	 * kmem_object: for use by the kernel malloc().  Memory is always
    207 	 * wired, and this object (and the kmem_map) can be accessed at
    208 	 * interrupt time.
    209 	 */
    210 	simple_lock_init(&kmem_object_store.vmobjlock);
    211 	kmem_object_store.pgops = &km_pager;
    212 	TAILQ_INIT(&kmem_object_store.memq);
    213 	kmem_object_store.uo_npages = 0;
    214 	/* we are special.  we never die */
    215 	kmem_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
    216 	uvmexp.kmem_object = &kmem_object_store;
    217 
    218 	/*
    219 	 * mb_object: for mbuf cluster pages on platforms which use the
    220 	 * mb_map.  Memory is always wired, and this object (and the mb_map)
    221 	 * can be accessed at interrupt time.
    222 	 */
    223 	simple_lock_init(&mb_object_store.vmobjlock);
    224 	mb_object_store.pgops = &km_pager;
    225 	TAILQ_INIT(&mb_object_store.memq);
    226 	mb_object_store.uo_npages = 0;
    227 	/* we are special.  we never die */
    228 	mb_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
    229 	uvmexp.mb_object = &mb_object_store;
    230 
    231 	/*
    232 	 * init the map and reserve allready allocated kernel space
    233 	 * before installing.
    234 	 */
    235 
    236 	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
    237 	kernel_map_store.pmap = pmap_kernel();
    238 	if (uvm_map(&kernel_map_store, &base, start - base, NULL,
    239 	    UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    240 	    UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != KERN_SUCCESS)
    241 		panic("uvm_km_init: could not reserve space for kernel");
    242 
    243 	/*
    244 	 * install!
    245 	 */
    246 
    247 	kernel_map = &kernel_map_store;
    248 }
    249 
    250 /*
    251  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    252  * is allocated all references to that area of VM must go through it.  this
    253  * allows the locking of VAs in kernel_map to be broken up into regions.
    254  *
    255  * => if `fixed' is true, *min specifies where the region described
    256  *      by the submap must start
    257  * => if submap is non NULL we use that as the submap, otherwise we
    258  *	alloc a new map
    259  */
    260 struct vm_map *
    261 uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
    262 	struct vm_map *map;
    263 	vaddr_t *min, *max;		/* OUT, OUT */
    264 	vsize_t size;
    265 	int flags;
    266 	boolean_t fixed;
    267 	struct vm_map *submap;
    268 {
    269 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    270 
    271 	size = round_page(size);	/* round up to pagesize */
    272 
    273 	/*
    274 	 * first allocate a blank spot in the parent map
    275 	 */
    276 
    277 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
    278 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    279 	    UVM_ADV_RANDOM, mapflags)) != KERN_SUCCESS) {
    280 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
    281 	}
    282 
    283 	/*
    284 	 * set VM bounds (min is filled in by uvm_map)
    285 	 */
    286 
    287 	*max = *min + size;
    288 
    289 	/*
    290 	 * add references to pmap and create or init the submap
    291 	 */
    292 
    293 	pmap_reference(vm_map_pmap(map));
    294 	if (submap == NULL) {
    295 		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
    296 		if (submap == NULL)
    297 			panic("uvm_km_suballoc: unable to create submap");
    298 	} else {
    299 		uvm_map_setup(submap, *min, *max, flags);
    300 		submap->pmap = vm_map_pmap(map);
    301 	}
    302 
    303 	/*
    304 	 * now let uvm_map_submap plug in it...
    305 	 */
    306 
    307 	if (uvm_map_submap(map, *min, *max, submap) != KERN_SUCCESS)
    308 		panic("uvm_km_suballoc: submap allocation failed");
    309 
    310 	return(submap);
    311 }
    312 
    313 /*
    314  * uvm_km_pgremove: remove pages from a kernel uvm_object.
    315  *
    316  * => when you unmap a part of anonymous kernel memory you want to toss
    317  *    the pages right away.    (this gets called from uvm_unmap_...).
    318  */
    319 
    320 #define UKM_HASH_PENALTY 4      /* a guess */
    321 
    322 void
    323 uvm_km_pgremove(uobj, start, end)
    324 	struct uvm_object *uobj;
    325 	vaddr_t start, end;
    326 {
    327 	boolean_t by_list;
    328 	struct vm_page *pp, *ppnext;
    329 	vaddr_t curoff;
    330 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
    331 
    332 	KASSERT(uobj->pgops == &aobj_pager);
    333 	simple_lock(&uobj->vmobjlock);
    334 
    335 	/* choose cheapest traversal */
    336 	by_list = (uobj->uo_npages <=
    337 	     ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
    338 
    339 	if (by_list)
    340 		goto loop_by_list;
    341 
    342 	/* by hash */
    343 
    344 	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
    345 		pp = uvm_pagelookup(uobj, curoff);
    346 		if (pp == NULL)
    347 			continue;
    348 
    349 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    350 		    pp->flags & PG_BUSY, 0, 0);
    351 
    352 		/* now do the actual work */
    353 		if (pp->flags & PG_BUSY) {
    354 			/* owner must check for this when done */
    355 			pp->flags |= PG_RELEASED;
    356 		} else {
    357 			/* free the swap slot... */
    358 			uao_dropswap(uobj, curoff >> PAGE_SHIFT);
    359 
    360 			/*
    361 			 * ...and free the page; note it may be on the
    362 			 * active or inactive queues.
    363 			 */
    364 			uvm_lock_pageq();
    365 			uvm_pagefree(pp);
    366 			uvm_unlock_pageq();
    367 		}
    368 	}
    369 	simple_unlock(&uobj->vmobjlock);
    370 	return;
    371 
    372 loop_by_list:
    373 
    374 	for (pp = TAILQ_FIRST(&uobj->memq); pp != NULL; pp = ppnext) {
    375 		ppnext = TAILQ_NEXT(pp, listq);
    376 		if (pp->offset < start || pp->offset >= end) {
    377 			continue;
    378 		}
    379 
    380 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    381 		    pp->flags & PG_BUSY, 0, 0);
    382 
    383 		if (pp->flags & PG_BUSY) {
    384 			/* owner must check for this when done */
    385 			pp->flags |= PG_RELEASED;
    386 		} else {
    387 			/* free the swap slot... */
    388 			uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
    389 
    390 			/*
    391 			 * ...and free the page; note it may be on the
    392 			 * active or inactive queues.
    393 			 */
    394 			uvm_lock_pageq();
    395 			uvm_pagefree(pp);
    396 			uvm_unlock_pageq();
    397 		}
    398 	}
    399 	simple_unlock(&uobj->vmobjlock);
    400 }
    401 
    402 
    403 /*
    404  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
    405  *    objects
    406  *
    407  * => when you unmap a part of anonymous kernel memory you want to toss
    408  *    the pages right away.    (this gets called from uvm_unmap_...).
    409  * => none of the pages will ever be busy, and none of them will ever
    410  *    be on the active or inactive queues (because these objects are
    411  *    never allowed to "page").
    412  */
    413 
    414 void
    415 uvm_km_pgremove_intrsafe(uobj, start, end)
    416 	struct uvm_object *uobj;
    417 	vaddr_t start, end;
    418 {
    419 	boolean_t by_list;
    420 	struct vm_page *pp, *ppnext;
    421 	vaddr_t curoff;
    422 	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
    423 
    424 	KASSERT(UVM_OBJ_IS_INTRSAFE_OBJECT(uobj));
    425 	simple_lock(&uobj->vmobjlock);		/* lock object */
    426 
    427 	/* choose cheapest traversal */
    428 	by_list = (uobj->uo_npages <=
    429 	     ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
    430 
    431 	if (by_list)
    432 		goto loop_by_list;
    433 
    434 	/* by hash */
    435 
    436 	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
    437 		pp = uvm_pagelookup(uobj, curoff);
    438 		if (pp == NULL) {
    439 			continue;
    440 		}
    441 
    442 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    443 		    pp->flags & PG_BUSY, 0, 0);
    444 		KASSERT((pp->flags & PG_BUSY) == 0);
    445 		KASSERT((pp->pqflags & PQ_ACTIVE) == 0);
    446 		KASSERT((pp->pqflags & PQ_INACTIVE) == 0);
    447 		uvm_pagefree(pp);
    448 	}
    449 	simple_unlock(&uobj->vmobjlock);
    450 	return;
    451 
    452 loop_by_list:
    453 
    454 	for (pp = TAILQ_FIRST(&uobj->memq); pp != NULL; pp = ppnext) {
    455 		ppnext = TAILQ_NEXT(pp, listq);
    456 		if (pp->offset < start || pp->offset >= end) {
    457 			continue;
    458 		}
    459 
    460 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    461 		    pp->flags & PG_BUSY, 0, 0);
    462 		KASSERT((pp->flags & PG_BUSY) == 0);
    463 		KASSERT((pp->pqflags & PQ_ACTIVE) == 0);
    464 		KASSERT((pp->pqflags & PQ_INACTIVE) == 0);
    465 		uvm_pagefree(pp);
    466 	}
    467 	simple_unlock(&uobj->vmobjlock);
    468 }
    469 
    470 
    471 /*
    472  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
    473  *
    474  * => we map wired memory into the specified map using the obj passed in
    475  * => NOTE: we can return NULL even if we can wait if there is not enough
    476  *	free VM space in the map... caller should be prepared to handle
    477  *	this case.
    478  * => we return KVA of memory allocated
    479  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
    480  *	lock the map
    481  */
    482 
    483 vaddr_t
    484 uvm_km_kmemalloc(map, obj, size, flags)
    485 	vm_map_t map;
    486 	struct uvm_object *obj;
    487 	vsize_t size;
    488 	int flags;
    489 {
    490 	vaddr_t kva, loopva;
    491 	vaddr_t offset;
    492 	struct vm_page *pg;
    493 	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
    494 
    495 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
    496 		    map, obj, size, flags);
    497 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    498 
    499 	/*
    500 	 * setup for call
    501 	 */
    502 
    503 	size = round_page(size);
    504 	kva = vm_map_min(map);	/* hint */
    505 
    506 	/*
    507 	 * allocate some virtual space
    508 	 */
    509 
    510 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    511 	      0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    512 			  UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
    513 			!= KERN_SUCCESS)) {
    514 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    515 		return(0);
    516 	}
    517 
    518 	/*
    519 	 * if all we wanted was VA, return now
    520 	 */
    521 
    522 	if (flags & UVM_KMF_VALLOC) {
    523 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
    524 		return(kva);
    525 	}
    526 
    527 	/*
    528 	 * recover object offset from virtual address
    529 	 */
    530 
    531 	offset = kva - vm_map_min(kernel_map);
    532 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
    533 
    534 	/*
    535 	 * now allocate and map in the memory... note that we are the only ones
    536 	 * whom should ever get a handle on this area of VM.
    537 	 */
    538 
    539 	loopva = kva;
    540 	while (size) {
    541 		simple_lock(&obj->vmobjlock);
    542 		pg = uvm_pagealloc(obj, offset, NULL, 0);
    543 		if (pg) {
    544 			pg->flags &= ~PG_BUSY;	/* new page */
    545 			UVM_PAGE_OWN(pg, NULL);
    546 		}
    547 		simple_unlock(&obj->vmobjlock);
    548 
    549 		/*
    550 		 * out of memory?
    551 		 */
    552 
    553 		if (__predict_false(pg == NULL)) {
    554 			if (flags & UVM_KMF_NOWAIT) {
    555 				/* free everything! */
    556 				uvm_unmap(map, kva, kva + size);
    557 				return(0);
    558 			} else {
    559 				uvm_wait("km_getwait2");	/* sleep here */
    560 				continue;
    561 			}
    562 		}
    563 
    564 		/*
    565 		 * map it in: note that we call pmap_enter with the map and
    566 		 * object unlocked in case we are kmem_map/kmem_object
    567 		 * (because if pmap_enter wants to allocate out of kmem_object
    568 		 * it will need to lock it itself!)
    569 		 */
    570 
    571 		if (UVM_OBJ_IS_INTRSAFE_OBJECT(obj)) {
    572 			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    573 			    VM_PROT_ALL);
    574 		} else {
    575 			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    576 			    UVM_PROT_ALL,
    577 			    PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
    578 		}
    579 		loopva += PAGE_SIZE;
    580 		offset += PAGE_SIZE;
    581 		size -= PAGE_SIZE;
    582 	}
    583 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    584 	return(kva);
    585 }
    586 
    587 /*
    588  * uvm_km_free: free an area of kernel memory
    589  */
    590 
    591 void
    592 uvm_km_free(map, addr, size)
    593 	vm_map_t map;
    594 	vaddr_t addr;
    595 	vsize_t size;
    596 {
    597 	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
    598 }
    599 
    600 /*
    601  * uvm_km_free_wakeup: free an area of kernel memory and wake up
    602  * anyone waiting for vm space.
    603  *
    604  * => XXX: "wanted" bit + unlock&wait on other end?
    605  */
    606 
    607 void
    608 uvm_km_free_wakeup(map, addr, size)
    609 	vm_map_t map;
    610 	vaddr_t addr;
    611 	vsize_t size;
    612 {
    613 	vm_map_entry_t dead_entries;
    614 
    615 	vm_map_lock(map);
    616 	(void)uvm_unmap_remove(map, trunc_page(addr), round_page(addr+size),
    617 			 &dead_entries);
    618 	wakeup(map);
    619 	vm_map_unlock(map);
    620 
    621 	if (dead_entries != NULL)
    622 		uvm_unmap_detach(dead_entries, 0);
    623 }
    624 
    625 /*
    626  * uvm_km_alloc1: allocate wired down memory in the kernel map.
    627  *
    628  * => we can sleep if needed
    629  */
    630 
    631 vaddr_t
    632 uvm_km_alloc1(map, size, zeroit)
    633 	vm_map_t map;
    634 	vsize_t size;
    635 	boolean_t zeroit;
    636 {
    637 	vaddr_t kva, loopva, offset;
    638 	struct vm_page *pg;
    639 	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
    640 
    641 	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
    642 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    643 
    644 	size = round_page(size);
    645 	kva = vm_map_min(map);		/* hint */
    646 
    647 	/*
    648 	 * allocate some virtual space
    649 	 */
    650 
    651 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
    652 	      UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    653 					      UVM_INH_NONE, UVM_ADV_RANDOM,
    654 					      0)) != KERN_SUCCESS)) {
    655 		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
    656 		return(0);
    657 	}
    658 
    659 	/*
    660 	 * recover object offset from virtual address
    661 	 */
    662 
    663 	offset = kva - vm_map_min(kernel_map);
    664 	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
    665 
    666 	/*
    667 	 * now allocate the memory.  we must be careful about released pages.
    668 	 */
    669 
    670 	loopva = kva;
    671 	while (size) {
    672 		simple_lock(&uvm.kernel_object->vmobjlock);
    673 		pg = uvm_pagelookup(uvm.kernel_object, offset);
    674 
    675 		/*
    676 		 * if we found a page in an unallocated region, it must be
    677 		 * released
    678 		 */
    679 		if (pg) {
    680 			if ((pg->flags & PG_RELEASED) == 0)
    681 				panic("uvm_km_alloc1: non-released page");
    682 			pg->flags |= PG_WANTED;
    683 			UVM_UNLOCK_AND_WAIT(pg, &uvm.kernel_object->vmobjlock,
    684 			    FALSE, "km_alloc", 0);
    685 			continue;   /* retry */
    686 		}
    687 
    688 		/* allocate ram */
    689 		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
    690 		if (pg) {
    691 			pg->flags &= ~PG_BUSY;	/* new page */
    692 			UVM_PAGE_OWN(pg, NULL);
    693 		}
    694 		simple_unlock(&uvm.kernel_object->vmobjlock);
    695 		if (__predict_false(pg == NULL)) {
    696 			uvm_wait("km_alloc1w");	/* wait for memory */
    697 			continue;
    698 		}
    699 
    700 		/*
    701 		 * map it in; note we're never called with an intrsafe
    702 		 * object, so we always use regular old pmap_enter().
    703 		 */
    704 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    705 		    UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
    706 
    707 		loopva += PAGE_SIZE;
    708 		offset += PAGE_SIZE;
    709 		size -= PAGE_SIZE;
    710 	}
    711 
    712 	/*
    713 	 * zero on request (note that "size" is now zero due to the above loop
    714 	 * so we need to subtract kva from loopva to reconstruct the size).
    715 	 */
    716 
    717 	if (zeroit)
    718 		memset((caddr_t)kva, 0, loopva - kva);
    719 
    720 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    721 	return(kva);
    722 }
    723 
    724 /*
    725  * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
    726  *
    727  * => memory is not allocated until fault time
    728  */
    729 
    730 vaddr_t
    731 uvm_km_valloc(map, size)
    732 	vm_map_t map;
    733 	vsize_t size;
    734 {
    735 	return(uvm_km_valloc_align(map, size, 0));
    736 }
    737 
    738 vaddr_t
    739 uvm_km_valloc_align(map, size, align)
    740 	vm_map_t map;
    741 	vsize_t size;
    742 	vsize_t align;
    743 {
    744 	vaddr_t kva;
    745 	UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
    746 
    747 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    748 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    749 
    750 	size = round_page(size);
    751 	kva = vm_map_min(map);		/* hint */
    752 
    753 	/*
    754 	 * allocate some virtual space.  will be demand filled by kernel_object.
    755 	 */
    756 
    757 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
    758 	    UVM_UNKNOWN_OFFSET, align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    759 					    UVM_INH_NONE, UVM_ADV_RANDOM,
    760 					    0)) != KERN_SUCCESS)) {
    761 		UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
    762 		return(0);
    763 	}
    764 
    765 	UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
    766 	return(kva);
    767 }
    768 
    769 /*
    770  * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
    771  *
    772  * => memory is not allocated until fault time
    773  * => if no room in map, wait for space to free, unless requested size
    774  *    is larger than map (in which case we return 0)
    775  */
    776 
    777 vaddr_t
    778 uvm_km_valloc_prefer_wait(map, size, prefer)
    779 	vm_map_t map;
    780 	vsize_t size;
    781 	voff_t prefer;
    782 {
    783 	vaddr_t kva;
    784 	UVMHIST_FUNC("uvm_km_valloc_prefer_wait"); UVMHIST_CALLED(maphist);
    785 
    786 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    787 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    788 
    789 	size = round_page(size);
    790 	if (size > vm_map_max(map) - vm_map_min(map))
    791 		return(0);
    792 
    793 	while (1) {
    794 		kva = vm_map_min(map);		/* hint */
    795 
    796 		/*
    797 		 * allocate some virtual space.   will be demand filled
    798 		 * by kernel_object.
    799 		 */
    800 
    801 		if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
    802 		    prefer, 0, UVM_MAPFLAG(UVM_PROT_ALL,
    803 		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
    804 		    == KERN_SUCCESS)) {
    805 			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    806 			return(kva);
    807 		}
    808 
    809 		/*
    810 		 * failed.  sleep for a while (on map)
    811 		 */
    812 
    813 		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
    814 		tsleep((caddr_t)map, PVM, "vallocwait", 0);
    815 	}
    816 	/*NOTREACHED*/
    817 }
    818 
    819 vaddr_t
    820 uvm_km_valloc_wait(map, size)
    821 	vm_map_t map;
    822 	vsize_t size;
    823 {
    824 	return uvm_km_valloc_prefer_wait(map, size, UVM_UNKNOWN_OFFSET);
    825 }
    826 
    827 /* Sanity; must specify both or none. */
    828 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    829     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    830 #error Must specify MAP and UNMAP together.
    831 #endif
    832 
    833 /*
    834  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
    835  *
    836  * => if the pmap specifies an alternate mapping method, we use it.
    837  */
    838 
    839 /* ARGSUSED */
    840 vaddr_t
    841 uvm_km_alloc_poolpage1(map, obj, waitok)
    842 	vm_map_t map;
    843 	struct uvm_object *obj;
    844 	boolean_t waitok;
    845 {
    846 #if defined(PMAP_MAP_POOLPAGE)
    847 	struct vm_page *pg;
    848 	vaddr_t va;
    849 
    850  again:
    851 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    852 	if (__predict_false(pg == NULL)) {
    853 		if (waitok) {
    854 			uvm_wait("plpg");
    855 			goto again;
    856 		} else
    857 			return (0);
    858 	}
    859 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    860 	if (__predict_false(va == 0))
    861 		uvm_pagefree(pg);
    862 	return (va);
    863 #else
    864 	vaddr_t va;
    865 	int s;
    866 
    867 	/*
    868 	 * NOTE: We may be called with a map that doens't require splimp
    869 	 * protection (e.g. kernel_map).  However, it does not hurt to
    870 	 * go to splimp in this case (since unprocted maps will never be
    871 	 * accessed in interrupt context).
    872 	 *
    873 	 * XXX We may want to consider changing the interface to this
    874 	 * XXX function.
    875 	 */
    876 
    877 	s = splimp();
    878 	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
    879 	splx(s);
    880 	return (va);
    881 #endif /* PMAP_MAP_POOLPAGE */
    882 }
    883 
    884 /*
    885  * uvm_km_free_poolpage: free a previously allocated pool page
    886  *
    887  * => if the pmap specifies an alternate unmapping method, we use it.
    888  */
    889 
    890 /* ARGSUSED */
    891 void
    892 uvm_km_free_poolpage1(map, addr)
    893 	vm_map_t map;
    894 	vaddr_t addr;
    895 {
    896 #if defined(PMAP_UNMAP_POOLPAGE)
    897 	paddr_t pa;
    898 
    899 	pa = PMAP_UNMAP_POOLPAGE(addr);
    900 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    901 #else
    902 	int s;
    903 
    904 	/*
    905 	 * NOTE: We may be called with a map that doens't require splimp
    906 	 * protection (e.g. kernel_map).  However, it does not hurt to
    907 	 * go to splimp in this case (since unprocted maps will never be
    908 	 * accessed in interrupt context).
    909 	 *
    910 	 * XXX We may want to consider changing the interface to this
    911 	 * XXX function.
    912 	 */
    913 
    914 	s = splimp();
    915 	uvm_km_free(map, addr, PAGE_SIZE);
    916 	splx(s);
    917 #endif /* PMAP_UNMAP_POOLPAGE */
    918 }
    919