Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.51
      1 /*	$NetBSD: uvm_km.c,v 1.51 2001/09/10 21:19:42 chris Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     42  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 #include "opt_uvmhist.h"
     70 
     71 /*
     72  * uvm_km.c: handle kernel memory allocation and management
     73  */
     74 
     75 /*
     76  * overview of kernel memory management:
     77  *
     78  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     79  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     80  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     81  *
     82  * the kernel_map has several "submaps."   submaps can only appear in
     83  * the kernel_map (user processes can't use them).   submaps "take over"
     84  * the management of a sub-range of the kernel's address space.  submaps
     85  * are typically allocated at boot time and are never released.   kernel
     86  * virtual address space that is mapped by a submap is locked by the
     87  * submap's lock -- not the kernel_map's lock.
     88  *
     89  * thus, the useful feature of submaps is that they allow us to break
     90  * up the locking and protection of the kernel address space into smaller
     91  * chunks.
     92  *
     93  * the vm system has several standard kernel submaps, including:
     94  *   kmem_map => contains only wired kernel memory for the kernel
     95  *		malloc.   *** access to kmem_map must be protected
     96  *		by splvm() because we are allowed to call malloc()
     97  *		at interrupt time ***
     98  *   mb_map => memory for large mbufs,  *** protected by splvm ***
     99  *   pager_map => used to map "buf" structures into kernel space
    100  *   exec_map => used during exec to handle exec args
    101  *   etc...
    102  *
    103  * the kernel allocates its private memory out of special uvm_objects whose
    104  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
    105  * are "special" and never die).   all kernel objects should be thought of
    106  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
    107  * object is equal to the size of kernel virtual address space (i.e. the
    108  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    109  *
    110  * most kernel private memory lives in kernel_object.   the only exception
    111  * to this is for memory that belongs to submaps that must be protected
    112  * by splvm().    each of these submaps has their own private kernel
    113  * object (e.g. kmem_object, mb_object).
    114  *
    115  * note that just because a kernel object spans the entire kernel virutal
    116  * address space doesn't mean that it has to be mapped into the entire space.
    117  * large chunks of a kernel object's space go unused either because
    118  * that area of kernel VM is unmapped, or there is some other type of
    119  * object mapped into that range (e.g. a vnode).    for submap's kernel
    120  * objects, the only part of the object that can ever be populated is the
    121  * offsets that are managed by the submap.
    122  *
    123  * note that the "offset" in a kernel object is always the kernel virtual
    124  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    125  * example:
    126  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    127  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    128  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    129  *   then that means that the page at offset 0x235000 in kernel_object is
    130  *   mapped at 0xf8235000.
    131  *
    132  * note that the offsets in kmem_object and mb_object also follow this
    133  * rule.   this means that the offsets for kmem_object must fall in the
    134  * range of [vm_map_min(kmem_object) - vm_map_min(kernel_map)] to
    135  * [vm_map_max(kmem_object) - vm_map_min(kernel_map)], so the offsets
    136  * in those objects will typically not start at zero.
    137  *
    138  * kernel object have one other special property: when the kernel virtual
    139  * memory mapping them is unmapped, the backing memory in the object is
    140  * freed right away.   this is done with the uvm_km_pgremove() function.
    141  * this has to be done because there is no backing store for kernel pages
    142  * and no need to save them after they are no longer referenced.
    143  */
    144 
    145 #include <sys/param.h>
    146 #include <sys/systm.h>
    147 #include <sys/proc.h>
    148 
    149 #include <uvm/uvm.h>
    150 
    151 /*
    152  * global data structures
    153  */
    154 
    155 struct vm_map *kernel_map = NULL;
    156 
    157 /*
    158  * local data structues
    159  */
    160 
    161 static struct vm_map		kernel_map_store;
    162 static struct uvm_object	kmem_object_store;
    163 static struct uvm_object	mb_object_store;
    164 
    165 /*
    166  * All pager operations here are NULL, but the object must have
    167  * a pager ops vector associated with it; various places assume
    168  * it to be so.
    169  */
    170 static struct uvm_pagerops	km_pager;
    171 
    172 /*
    173  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
    174  * KVM already allocated for text, data, bss, and static data structures).
    175  *
    176  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    177  *    we assume that [min -> start] has already been allocated and that
    178  *    "end" is the end.
    179  */
    180 
    181 void
    182 uvm_km_init(start, end)
    183 	vaddr_t start, end;
    184 {
    185 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    186 
    187 	/*
    188 	 * next, init kernel memory objects.
    189 	 */
    190 
    191 	/* kernel_object: for pageable anonymous kernel memory */
    192 	uao_init();
    193 	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    194 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    195 
    196 	/*
    197 	 * kmem_object: for use by the kernel malloc().  Memory is always
    198 	 * wired, and this object (and the kmem_map) can be accessed at
    199 	 * interrupt time.
    200 	 */
    201 	simple_lock_init(&kmem_object_store.vmobjlock);
    202 	kmem_object_store.pgops = &km_pager;
    203 	TAILQ_INIT(&kmem_object_store.memq);
    204 	kmem_object_store.uo_npages = 0;
    205 	/* we are special.  we never die */
    206 	kmem_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
    207 	uvmexp.kmem_object = &kmem_object_store;
    208 
    209 	/*
    210 	 * mb_object: for mbuf cluster pages on platforms which use the
    211 	 * mb_map.  Memory is always wired, and this object (and the mb_map)
    212 	 * can be accessed at interrupt time.
    213 	 */
    214 	simple_lock_init(&mb_object_store.vmobjlock);
    215 	mb_object_store.pgops = &km_pager;
    216 	TAILQ_INIT(&mb_object_store.memq);
    217 	mb_object_store.uo_npages = 0;
    218 	/* we are special.  we never die */
    219 	mb_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
    220 	uvmexp.mb_object = &mb_object_store;
    221 
    222 	/*
    223 	 * init the map and reserve allready allocated kernel space
    224 	 * before installing.
    225 	 */
    226 
    227 	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
    228 	kernel_map_store.pmap = pmap_kernel();
    229 	if (uvm_map(&kernel_map_store, &base, start - base, NULL,
    230 	    UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    231 	    UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != 0)
    232 		panic("uvm_km_init: could not reserve space for kernel");
    233 
    234 	/*
    235 	 * install!
    236 	 */
    237 
    238 	kernel_map = &kernel_map_store;
    239 }
    240 
    241 /*
    242  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    243  * is allocated all references to that area of VM must go through it.  this
    244  * allows the locking of VAs in kernel_map to be broken up into regions.
    245  *
    246  * => if `fixed' is true, *min specifies where the region described
    247  *      by the submap must start
    248  * => if submap is non NULL we use that as the submap, otherwise we
    249  *	alloc a new map
    250  */
    251 struct vm_map *
    252 uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
    253 	struct vm_map *map;
    254 	vaddr_t *min, *max;		/* OUT, OUT */
    255 	vsize_t size;
    256 	int flags;
    257 	boolean_t fixed;
    258 	struct vm_map *submap;
    259 {
    260 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    261 
    262 	size = round_page(size);	/* round up to pagesize */
    263 
    264 	/*
    265 	 * first allocate a blank spot in the parent map
    266 	 */
    267 
    268 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
    269 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    270 	    UVM_ADV_RANDOM, mapflags)) != 0) {
    271 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
    272 	}
    273 
    274 	/*
    275 	 * set VM bounds (min is filled in by uvm_map)
    276 	 */
    277 
    278 	*max = *min + size;
    279 
    280 	/*
    281 	 * add references to pmap and create or init the submap
    282 	 */
    283 
    284 	pmap_reference(vm_map_pmap(map));
    285 	if (submap == NULL) {
    286 		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
    287 		if (submap == NULL)
    288 			panic("uvm_km_suballoc: unable to create submap");
    289 	} else {
    290 		uvm_map_setup(submap, *min, *max, flags);
    291 		submap->pmap = vm_map_pmap(map);
    292 	}
    293 
    294 	/*
    295 	 * now let uvm_map_submap plug in it...
    296 	 */
    297 
    298 	if (uvm_map_submap(map, *min, *max, submap) != 0)
    299 		panic("uvm_km_suballoc: submap allocation failed");
    300 
    301 	return(submap);
    302 }
    303 
    304 /*
    305  * uvm_km_pgremove: remove pages from a kernel uvm_object.
    306  *
    307  * => when you unmap a part of anonymous kernel memory you want to toss
    308  *    the pages right away.    (this gets called from uvm_unmap_...).
    309  */
    310 
    311 #define UKM_HASH_PENALTY 4      /* a guess */
    312 
    313 void
    314 uvm_km_pgremove(uobj, start, end)
    315 	struct uvm_object *uobj;
    316 	vaddr_t start, end;
    317 {
    318 	boolean_t by_list;
    319 	struct vm_page *pp, *ppnext;
    320 	vaddr_t curoff;
    321 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
    322 
    323 	KASSERT(uobj->pgops == &aobj_pager);
    324 	simple_lock(&uobj->vmobjlock);
    325 
    326 	/* choose cheapest traversal */
    327 	by_list = (uobj->uo_npages <=
    328 	     ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
    329 
    330 	if (by_list)
    331 		goto loop_by_list;
    332 
    333 	/* by hash */
    334 
    335 	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
    336 		pp = uvm_pagelookup(uobj, curoff);
    337 		if (pp == NULL)
    338 			continue;
    339 
    340 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    341 		    pp->flags & PG_BUSY, 0, 0);
    342 
    343 		/* now do the actual work */
    344 		if (pp->flags & PG_BUSY) {
    345 			/* owner must check for this when done */
    346 			pp->flags |= PG_RELEASED;
    347 		} else {
    348 			/* free the swap slot... */
    349 			uao_dropswap(uobj, curoff >> PAGE_SHIFT);
    350 
    351 			/*
    352 			 * ...and free the page; note it may be on the
    353 			 * active or inactive queues.
    354 			 */
    355 			uvm_lock_pageq();
    356 			uvm_pagefree(pp);
    357 			uvm_unlock_pageq();
    358 		}
    359 	}
    360 	simple_unlock(&uobj->vmobjlock);
    361 	return;
    362 
    363 loop_by_list:
    364 
    365 	for (pp = TAILQ_FIRST(&uobj->memq); pp != NULL; pp = ppnext) {
    366 		ppnext = TAILQ_NEXT(pp, listq);
    367 		if (pp->offset < start || pp->offset >= end) {
    368 			continue;
    369 		}
    370 
    371 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    372 		    pp->flags & PG_BUSY, 0, 0);
    373 
    374 		if (pp->flags & PG_BUSY) {
    375 			/* owner must check for this when done */
    376 			pp->flags |= PG_RELEASED;
    377 		} else {
    378 			/* free the swap slot... */
    379 			uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
    380 
    381 			/*
    382 			 * ...and free the page; note it may be on the
    383 			 * active or inactive queues.
    384 			 */
    385 			uvm_lock_pageq();
    386 			uvm_pagefree(pp);
    387 			uvm_unlock_pageq();
    388 		}
    389 	}
    390 	simple_unlock(&uobj->vmobjlock);
    391 }
    392 
    393 
    394 /*
    395  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
    396  *    objects
    397  *
    398  * => when you unmap a part of anonymous kernel memory you want to toss
    399  *    the pages right away.    (this gets called from uvm_unmap_...).
    400  * => none of the pages will ever be busy, and none of them will ever
    401  *    be on the active or inactive queues (because these objects are
    402  *    never allowed to "page").
    403  */
    404 
    405 void
    406 uvm_km_pgremove_intrsafe(uobj, start, end)
    407 	struct uvm_object *uobj;
    408 	vaddr_t start, end;
    409 {
    410 	boolean_t by_list;
    411 	struct vm_page *pp, *ppnext;
    412 	vaddr_t curoff;
    413 	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
    414 
    415 	KASSERT(UVM_OBJ_IS_INTRSAFE_OBJECT(uobj));
    416 	simple_lock(&uobj->vmobjlock);		/* lock object */
    417 
    418 	/* choose cheapest traversal */
    419 	by_list = (uobj->uo_npages <=
    420 	     ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
    421 
    422 	if (by_list)
    423 		goto loop_by_list;
    424 
    425 	/* by hash */
    426 
    427 	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
    428 		pp = uvm_pagelookup(uobj, curoff);
    429 		if (pp == NULL) {
    430 			continue;
    431 		}
    432 
    433 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    434 		    pp->flags & PG_BUSY, 0, 0);
    435 		KASSERT((pp->flags & PG_BUSY) == 0);
    436 		KASSERT((pp->pqflags & PQ_ACTIVE) == 0);
    437 		KASSERT((pp->pqflags & PQ_INACTIVE) == 0);
    438 		uvm_pagefree(pp);
    439 	}
    440 	simple_unlock(&uobj->vmobjlock);
    441 	return;
    442 
    443 loop_by_list:
    444 
    445 	for (pp = TAILQ_FIRST(&uobj->memq); pp != NULL; pp = ppnext) {
    446 		ppnext = TAILQ_NEXT(pp, listq);
    447 		if (pp->offset < start || pp->offset >= end) {
    448 			continue;
    449 		}
    450 
    451 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    452 		    pp->flags & PG_BUSY, 0, 0);
    453 		KASSERT((pp->flags & PG_BUSY) == 0);
    454 		KASSERT((pp->pqflags & PQ_ACTIVE) == 0);
    455 		KASSERT((pp->pqflags & PQ_INACTIVE) == 0);
    456 		uvm_pagefree(pp);
    457 	}
    458 	simple_unlock(&uobj->vmobjlock);
    459 }
    460 
    461 
    462 /*
    463  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
    464  *
    465  * => we map wired memory into the specified map using the obj passed in
    466  * => NOTE: we can return NULL even if we can wait if there is not enough
    467  *	free VM space in the map... caller should be prepared to handle
    468  *	this case.
    469  * => we return KVA of memory allocated
    470  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
    471  *	lock the map
    472  */
    473 
    474 vaddr_t
    475 uvm_km_kmemalloc(map, obj, size, flags)
    476 	struct vm_map *map;
    477 	struct uvm_object *obj;
    478 	vsize_t size;
    479 	int flags;
    480 {
    481 	vaddr_t kva, loopva;
    482 	vaddr_t offset;
    483 	vsize_t loopsize;
    484 	struct vm_page *pg;
    485 	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
    486 
    487 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
    488 		    map, obj, size, flags);
    489 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    490 
    491 	/*
    492 	 * setup for call
    493 	 */
    494 
    495 	size = round_page(size);
    496 	kva = vm_map_min(map);	/* hint */
    497 
    498 	/*
    499 	 * allocate some virtual space
    500 	 */
    501 
    502 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    503 	      0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    504 			  UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
    505 			!= 0)) {
    506 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    507 		return(0);
    508 	}
    509 
    510 	/*
    511 	 * if all we wanted was VA, return now
    512 	 */
    513 
    514 	if (flags & UVM_KMF_VALLOC) {
    515 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
    516 		return(kva);
    517 	}
    518 
    519 	/*
    520 	 * recover object offset from virtual address
    521 	 */
    522 
    523 	offset = kva - vm_map_min(kernel_map);
    524 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
    525 
    526 	/*
    527 	 * now allocate and map in the memory... note that we are the only ones
    528 	 * whom should ever get a handle on this area of VM.
    529 	 */
    530 
    531 	loopva = kva;
    532 	loopsize = size;
    533 	while (loopsize) {
    534 		simple_lock(&obj->vmobjlock);
    535 		pg = uvm_pagealloc(obj, offset, NULL, 0);
    536 		if (__predict_true(pg != NULL)) {
    537 			pg->flags &= ~PG_BUSY;	/* new page */
    538 			UVM_PAGE_OWN(pg, NULL);
    539 		}
    540 		simple_unlock(&obj->vmobjlock);
    541 
    542 		/*
    543 		 * out of memory?
    544 		 */
    545 
    546 		if (__predict_false(pg == NULL)) {
    547 			if (flags & UVM_KMF_NOWAIT) {
    548 				/* free everything! */
    549 				uvm_unmap(map, kva, kva + size);
    550 				return(0);
    551 			} else {
    552 				uvm_wait("km_getwait2");	/* sleep here */
    553 				continue;
    554 			}
    555 		}
    556 
    557 		/*
    558 		 * map it in: note that we call pmap_enter with the map and
    559 		 * object unlocked in case we are kmem_map/kmem_object
    560 		 * (because if pmap_enter wants to allocate out of kmem_object
    561 		 * it will need to lock it itself!)
    562 		 */
    563 
    564 		if (UVM_OBJ_IS_INTRSAFE_OBJECT(obj)) {
    565 			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    566 			    VM_PROT_ALL);
    567 		} else {
    568 			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    569 			    UVM_PROT_ALL,
    570 			    PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
    571 		}
    572 		loopva += PAGE_SIZE;
    573 		offset += PAGE_SIZE;
    574 		loopsize -= PAGE_SIZE;
    575 	}
    576 
    577        	pmap_update(pmap_kernel());
    578 
    579 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    580 	return(kva);
    581 }
    582 
    583 /*
    584  * uvm_km_free: free an area of kernel memory
    585  */
    586 
    587 void
    588 uvm_km_free(map, addr, size)
    589 	struct vm_map *map;
    590 	vaddr_t addr;
    591 	vsize_t size;
    592 {
    593 	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
    594 }
    595 
    596 /*
    597  * uvm_km_free_wakeup: free an area of kernel memory and wake up
    598  * anyone waiting for vm space.
    599  *
    600  * => XXX: "wanted" bit + unlock&wait on other end?
    601  */
    602 
    603 void
    604 uvm_km_free_wakeup(map, addr, size)
    605 	struct vm_map *map;
    606 	vaddr_t addr;
    607 	vsize_t size;
    608 {
    609 	struct vm_map_entry *dead_entries;
    610 
    611 	vm_map_lock(map);
    612 	uvm_unmap_remove(map, trunc_page(addr), round_page(addr + size),
    613 	    &dead_entries);
    614 	wakeup(map);
    615 	vm_map_unlock(map);
    616 	if (dead_entries != NULL)
    617 		uvm_unmap_detach(dead_entries, 0);
    618 }
    619 
    620 /*
    621  * uvm_km_alloc1: allocate wired down memory in the kernel map.
    622  *
    623  * => we can sleep if needed
    624  */
    625 
    626 vaddr_t
    627 uvm_km_alloc1(map, size, zeroit)
    628 	struct vm_map *map;
    629 	vsize_t size;
    630 	boolean_t zeroit;
    631 {
    632 	vaddr_t kva, loopva, offset;
    633 	struct vm_page *pg;
    634 	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
    635 
    636 	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
    637 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    638 
    639 	size = round_page(size);
    640 	kva = vm_map_min(map);		/* hint */
    641 
    642 	/*
    643 	 * allocate some virtual space
    644 	 */
    645 
    646 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
    647 	      UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    648 					      UVM_INH_NONE, UVM_ADV_RANDOM,
    649 					      0)) != 0)) {
    650 		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
    651 		return(0);
    652 	}
    653 
    654 	/*
    655 	 * recover object offset from virtual address
    656 	 */
    657 
    658 	offset = kva - vm_map_min(kernel_map);
    659 	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
    660 
    661 	/*
    662 	 * now allocate the memory.  we must be careful about released pages.
    663 	 */
    664 
    665 	loopva = kva;
    666 	while (size) {
    667 		simple_lock(&uvm.kernel_object->vmobjlock);
    668 		pg = uvm_pagelookup(uvm.kernel_object, offset);
    669 
    670 		/*
    671 		 * if we found a page in an unallocated region, it must be
    672 		 * released
    673 		 */
    674 		if (pg) {
    675 			if ((pg->flags & PG_RELEASED) == 0)
    676 				panic("uvm_km_alloc1: non-released page");
    677 			pg->flags |= PG_WANTED;
    678 			UVM_UNLOCK_AND_WAIT(pg, &uvm.kernel_object->vmobjlock,
    679 			    FALSE, "km_alloc", 0);
    680 			continue;   /* retry */
    681 		}
    682 
    683 		/* allocate ram */
    684 		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
    685 		if (pg) {
    686 			pg->flags &= ~PG_BUSY;	/* new page */
    687 			UVM_PAGE_OWN(pg, NULL);
    688 		}
    689 		simple_unlock(&uvm.kernel_object->vmobjlock);
    690 		if (__predict_false(pg == NULL)) {
    691 			uvm_wait("km_alloc1w");	/* wait for memory */
    692 			continue;
    693 		}
    694 
    695 		/*
    696 		 * map it in; note we're never called with an intrsafe
    697 		 * object, so we always use regular old pmap_enter().
    698 		 */
    699 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    700 		    UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
    701 
    702 		loopva += PAGE_SIZE;
    703 		offset += PAGE_SIZE;
    704 		size -= PAGE_SIZE;
    705 	}
    706 
    707 	pmap_update(map->pmap);
    708 
    709 	/*
    710 	 * zero on request (note that "size" is now zero due to the above loop
    711 	 * so we need to subtract kva from loopva to reconstruct the size).
    712 	 */
    713 
    714 	if (zeroit)
    715 		memset((caddr_t)kva, 0, loopva - kva);
    716 
    717 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    718 	return(kva);
    719 }
    720 
    721 /*
    722  * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
    723  *
    724  * => memory is not allocated until fault time
    725  */
    726 
    727 vaddr_t
    728 uvm_km_valloc(map, size)
    729 	struct vm_map *map;
    730 	vsize_t size;
    731 {
    732 	return(uvm_km_valloc_align(map, size, 0));
    733 }
    734 
    735 vaddr_t
    736 uvm_km_valloc_align(map, size, align)
    737 	struct vm_map *map;
    738 	vsize_t size;
    739 	vsize_t align;
    740 {
    741 	vaddr_t kva;
    742 	UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
    743 
    744 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    745 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    746 
    747 	size = round_page(size);
    748 	kva = vm_map_min(map);		/* hint */
    749 
    750 	/*
    751 	 * allocate some virtual space.  will be demand filled by kernel_object.
    752 	 */
    753 
    754 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
    755 	    UVM_UNKNOWN_OFFSET, align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    756 					    UVM_INH_NONE, UVM_ADV_RANDOM,
    757 					    0)) != 0)) {
    758 		UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
    759 		return(0);
    760 	}
    761 
    762 	UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
    763 	return(kva);
    764 }
    765 
    766 /*
    767  * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
    768  *
    769  * => memory is not allocated until fault time
    770  * => if no room in map, wait for space to free, unless requested size
    771  *    is larger than map (in which case we return 0)
    772  */
    773 
    774 vaddr_t
    775 uvm_km_valloc_prefer_wait(map, size, prefer)
    776 	struct vm_map *map;
    777 	vsize_t size;
    778 	voff_t prefer;
    779 {
    780 	vaddr_t kva;
    781 	UVMHIST_FUNC("uvm_km_valloc_prefer_wait"); UVMHIST_CALLED(maphist);
    782 
    783 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    784 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    785 
    786 	size = round_page(size);
    787 	if (size > vm_map_max(map) - vm_map_min(map))
    788 		return(0);
    789 
    790 	while (1) {
    791 		kva = vm_map_min(map);		/* hint */
    792 
    793 		/*
    794 		 * allocate some virtual space.   will be demand filled
    795 		 * by kernel_object.
    796 		 */
    797 
    798 		if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
    799 		    prefer, 0, UVM_MAPFLAG(UVM_PROT_ALL,
    800 		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
    801 		    == 0)) {
    802 			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    803 			return(kva);
    804 		}
    805 
    806 		/*
    807 		 * failed.  sleep for a while (on map)
    808 		 */
    809 
    810 		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
    811 		tsleep((caddr_t)map, PVM, "vallocwait", 0);
    812 	}
    813 	/*NOTREACHED*/
    814 }
    815 
    816 vaddr_t
    817 uvm_km_valloc_wait(map, size)
    818 	struct vm_map *map;
    819 	vsize_t size;
    820 {
    821 	return uvm_km_valloc_prefer_wait(map, size, UVM_UNKNOWN_OFFSET);
    822 }
    823 
    824 /* Sanity; must specify both or none. */
    825 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    826     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    827 #error Must specify MAP and UNMAP together.
    828 #endif
    829 
    830 /*
    831  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
    832  *
    833  * => if the pmap specifies an alternate mapping method, we use it.
    834  */
    835 
    836 /* ARGSUSED */
    837 vaddr_t
    838 uvm_km_alloc_poolpage1(map, obj, waitok)
    839 	struct vm_map *map;
    840 	struct uvm_object *obj;
    841 	boolean_t waitok;
    842 {
    843 #if defined(PMAP_MAP_POOLPAGE)
    844 	struct vm_page *pg;
    845 	vaddr_t va;
    846 
    847  again:
    848 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    849 	if (__predict_false(pg == NULL)) {
    850 		if (waitok) {
    851 			uvm_wait("plpg");
    852 			goto again;
    853 		} else
    854 			return (0);
    855 	}
    856 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    857 	if (__predict_false(va == 0))
    858 		uvm_pagefree(pg);
    859 	return (va);
    860 #else
    861 	vaddr_t va;
    862 	int s;
    863 
    864 	/*
    865 	 * NOTE: We may be called with a map that doens't require splvm
    866 	 * protection (e.g. kernel_map).  However, it does not hurt to
    867 	 * go to splvm in this case (since unprocted maps will never be
    868 	 * accessed in interrupt context).
    869 	 *
    870 	 * XXX We may want to consider changing the interface to this
    871 	 * XXX function.
    872 	 */
    873 
    874 	s = splvm();
    875 	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
    876 	splx(s);
    877 	return (va);
    878 #endif /* PMAP_MAP_POOLPAGE */
    879 }
    880 
    881 /*
    882  * uvm_km_free_poolpage: free a previously allocated pool page
    883  *
    884  * => if the pmap specifies an alternate unmapping method, we use it.
    885  */
    886 
    887 /* ARGSUSED */
    888 void
    889 uvm_km_free_poolpage1(map, addr)
    890 	struct vm_map *map;
    891 	vaddr_t addr;
    892 {
    893 #if defined(PMAP_UNMAP_POOLPAGE)
    894 	paddr_t pa;
    895 
    896 	pa = PMAP_UNMAP_POOLPAGE(addr);
    897 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    898 #else
    899 	int s;
    900 
    901 	/*
    902 	 * NOTE: We may be called with a map that doens't require splvm
    903 	 * protection (e.g. kernel_map).  However, it does not hurt to
    904 	 * go to splvm in this case (since unprocted maps will never be
    905 	 * accessed in interrupt context).
    906 	 *
    907 	 * XXX We may want to consider changing the interface to this
    908 	 * XXX function.
    909 	 */
    910 
    911 	s = splvm();
    912 	uvm_km_free(map, addr, PAGE_SIZE);
    913 	splx(s);
    914 #endif /* PMAP_UNMAP_POOLPAGE */
    915 }
    916