uvm_km.c revision 1.52 1 /* $NetBSD: uvm_km.c,v 1.52 2001/09/15 20:36:46 chs Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
42 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 #include "opt_uvmhist.h"
70
71 /*
72 * uvm_km.c: handle kernel memory allocation and management
73 */
74
75 /*
76 * overview of kernel memory management:
77 *
78 * the kernel virtual address space is mapped by "kernel_map." kernel_map
79 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
80 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
81 *
82 * the kernel_map has several "submaps." submaps can only appear in
83 * the kernel_map (user processes can't use them). submaps "take over"
84 * the management of a sub-range of the kernel's address space. submaps
85 * are typically allocated at boot time and are never released. kernel
86 * virtual address space that is mapped by a submap is locked by the
87 * submap's lock -- not the kernel_map's lock.
88 *
89 * thus, the useful feature of submaps is that they allow us to break
90 * up the locking and protection of the kernel address space into smaller
91 * chunks.
92 *
93 * the vm system has several standard kernel submaps, including:
94 * kmem_map => contains only wired kernel memory for the kernel
95 * malloc. *** access to kmem_map must be protected
96 * by splvm() because we are allowed to call malloc()
97 * at interrupt time ***
98 * mb_map => memory for large mbufs, *** protected by splvm ***
99 * pager_map => used to map "buf" structures into kernel space
100 * exec_map => used during exec to handle exec args
101 * etc...
102 *
103 * the kernel allocates its private memory out of special uvm_objects whose
104 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
105 * are "special" and never die). all kernel objects should be thought of
106 * as large, fixed-sized, sparsely populated uvm_objects. each kernel
107 * object is equal to the size of kernel virtual address space (i.e. the
108 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
109 *
110 * most kernel private memory lives in kernel_object. the only exception
111 * to this is for memory that belongs to submaps that must be protected
112 * by splvm(). pages in these submaps are not assigned to an object.
113 *
114 * note that just because a kernel object spans the entire kernel virutal
115 * address space doesn't mean that it has to be mapped into the entire space.
116 * large chunks of a kernel object's space go unused either because
117 * that area of kernel VM is unmapped, or there is some other type of
118 * object mapped into that range (e.g. a vnode). for submap's kernel
119 * objects, the only part of the object that can ever be populated is the
120 * offsets that are managed by the submap.
121 *
122 * note that the "offset" in a kernel object is always the kernel virtual
123 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
124 * example:
125 * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
126 * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
127 * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
128 * then that means that the page at offset 0x235000 in kernel_object is
129 * mapped at 0xf8235000.
130 *
131 * kernel object have one other special property: when the kernel virtual
132 * memory mapping them is unmapped, the backing memory in the object is
133 * freed right away. this is done with the uvm_km_pgremove() function.
134 * this has to be done because there is no backing store for kernel pages
135 * and no need to save them after they are no longer referenced.
136 */
137
138 #include <sys/param.h>
139 #include <sys/systm.h>
140 #include <sys/proc.h>
141
142 #include <uvm/uvm.h>
143
144 /*
145 * global data structures
146 */
147
148 struct vm_map *kernel_map = NULL;
149
150 /*
151 * local data structues
152 */
153
154 static struct vm_map kernel_map_store;
155
156 /*
157 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
158 * KVM already allocated for text, data, bss, and static data structures).
159 *
160 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
161 * we assume that [min -> start] has already been allocated and that
162 * "end" is the end.
163 */
164
165 void
166 uvm_km_init(start, end)
167 vaddr_t start, end;
168 {
169 vaddr_t base = VM_MIN_KERNEL_ADDRESS;
170
171 /*
172 * next, init kernel memory objects.
173 */
174
175 /* kernel_object: for pageable anonymous kernel memory */
176 uao_init();
177 uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
178 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
179
180 /*
181 * init the map and reserve allready allocated kernel space
182 * before installing.
183 */
184
185 uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
186 kernel_map_store.pmap = pmap_kernel();
187 if (uvm_map(&kernel_map_store, &base, start - base, NULL,
188 UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
189 UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != 0)
190 panic("uvm_km_init: could not reserve space for kernel");
191
192 /*
193 * install!
194 */
195
196 kernel_map = &kernel_map_store;
197 }
198
199 /*
200 * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
201 * is allocated all references to that area of VM must go through it. this
202 * allows the locking of VAs in kernel_map to be broken up into regions.
203 *
204 * => if `fixed' is true, *min specifies where the region described
205 * by the submap must start
206 * => if submap is non NULL we use that as the submap, otherwise we
207 * alloc a new map
208 */
209 struct vm_map *
210 uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
211 struct vm_map *map;
212 vaddr_t *min, *max; /* IN/OUT, OUT */
213 vsize_t size;
214 int flags;
215 boolean_t fixed;
216 struct vm_map *submap;
217 {
218 int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
219
220 size = round_page(size); /* round up to pagesize */
221
222 /*
223 * first allocate a blank spot in the parent map
224 */
225
226 if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
227 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
228 UVM_ADV_RANDOM, mapflags)) != 0) {
229 panic("uvm_km_suballoc: unable to allocate space in parent map");
230 }
231
232 /*
233 * set VM bounds (min is filled in by uvm_map)
234 */
235
236 *max = *min + size;
237
238 /*
239 * add references to pmap and create or init the submap
240 */
241
242 pmap_reference(vm_map_pmap(map));
243 if (submap == NULL) {
244 submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
245 if (submap == NULL)
246 panic("uvm_km_suballoc: unable to create submap");
247 } else {
248 uvm_map_setup(submap, *min, *max, flags);
249 submap->pmap = vm_map_pmap(map);
250 }
251
252 /*
253 * now let uvm_map_submap plug in it...
254 */
255
256 if (uvm_map_submap(map, *min, *max, submap) != 0)
257 panic("uvm_km_suballoc: submap allocation failed");
258
259 return(submap);
260 }
261
262 /*
263 * uvm_km_pgremove: remove pages from a kernel uvm_object.
264 *
265 * => when you unmap a part of anonymous kernel memory you want to toss
266 * the pages right away. (this gets called from uvm_unmap_...).
267 */
268
269 void
270 uvm_km_pgremove(uobj, start, end)
271 struct uvm_object *uobj;
272 vaddr_t start, end;
273 {
274 boolean_t by_list;
275 struct vm_page *pg, *nextpg;
276 voff_t curoff, nextoff;
277 UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
278
279 KASSERT(uobj->pgops == &aobj_pager);
280 simple_lock(&uobj->vmobjlock);
281
282 /* choose cheapest traversal */
283 by_list = (uobj->uo_npages <=
284 ((end - start) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
285 if (by_list)
286 goto loop_by_list;
287
288 for (curoff = start; curoff < end; curoff = nextoff) {
289 nextoff = curoff + PAGE_SIZE;
290 pg = uvm_pagelookup(uobj, curoff);
291 if (pg == NULL) {
292 continue;
293 }
294 if (pg->flags & PG_BUSY) {
295 pg->flags |= PG_WANTED;
296 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
297 "km_pgrm", 0);
298 simple_lock(&uobj->vmobjlock);
299 nextoff = curoff;
300 continue;
301 }
302
303 /*
304 * free the swap slot, then the page.
305 */
306
307 uao_dropswap(uobj, curoff >> PAGE_SHIFT);
308 uvm_lock_pageq();
309 uvm_pagefree(pg);
310 uvm_unlock_pageq();
311 }
312 simple_unlock(&uobj->vmobjlock);
313 return;
314
315 loop_by_list:
316 for (pg = TAILQ_FIRST(&uobj->memq); pg != NULL; pg = nextpg) {
317 nextpg = TAILQ_NEXT(pg, listq);
318 if (pg->offset < start || pg->offset >= end) {
319 continue;
320 }
321 if (pg->flags & PG_BUSY) {
322 pg->flags |= PG_WANTED;
323 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
324 "km_pgrm", 0);
325 simple_lock(&uobj->vmobjlock);
326 nextpg = TAILQ_FIRST(&uobj->memq);
327 continue;
328 }
329
330 /*
331 * free the swap slot, then the page.
332 */
333
334 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
335 uvm_lock_pageq();
336 uvm_pagefree(pg);
337 uvm_unlock_pageq();
338 }
339 simple_unlock(&uobj->vmobjlock);
340 }
341
342
343 /*
344 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
345 * maps
346 *
347 * => when you unmap a part of anonymous kernel memory you want to toss
348 * the pages right away. (this is called from uvm_unmap_...).
349 * => none of the pages will ever be busy, and none of them will ever
350 * be on the active or inactive queues (because they have no object).
351 */
352
353 void
354 uvm_km_pgremove_intrsafe(start, end)
355 vaddr_t start, end;
356 {
357 struct vm_page *pg;
358 paddr_t pa;
359 UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
360
361 for (; start < end; start += PAGE_SIZE) {
362 if (!pmap_extract(pmap_kernel(), start, &pa)) {
363 continue;
364 }
365 pg = PHYS_TO_VM_PAGE(pa);
366 KASSERT(pg);
367 KASSERT(pg->uobject == NULL && pg->uanon == NULL);
368 uvm_pagefree(pg);
369 }
370 }
371
372
373 /*
374 * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
375 *
376 * => we map wired memory into the specified map using the obj passed in
377 * => NOTE: we can return NULL even if we can wait if there is not enough
378 * free VM space in the map... caller should be prepared to handle
379 * this case.
380 * => we return KVA of memory allocated
381 * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
382 * lock the map
383 */
384
385 vaddr_t
386 uvm_km_kmemalloc(map, obj, size, flags)
387 struct vm_map *map;
388 struct uvm_object *obj;
389 vsize_t size;
390 int flags;
391 {
392 vaddr_t kva, loopva;
393 vaddr_t offset;
394 vsize_t loopsize;
395 struct vm_page *pg;
396 UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
397
398 UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
399 map, obj, size, flags);
400 KASSERT(vm_map_pmap(map) == pmap_kernel());
401
402 /*
403 * setup for call
404 */
405
406 size = round_page(size);
407 kva = vm_map_min(map); /* hint */
408
409 /*
410 * allocate some virtual space
411 */
412
413 if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
414 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
415 UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
416 != 0)) {
417 UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
418 return(0);
419 }
420
421 /*
422 * if all we wanted was VA, return now
423 */
424
425 if (flags & UVM_KMF_VALLOC) {
426 UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
427 return(kva);
428 }
429
430 /*
431 * recover object offset from virtual address
432 */
433
434 offset = kva - vm_map_min(kernel_map);
435 UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
436
437 /*
438 * now allocate and map in the memory... note that we are the only ones
439 * whom should ever get a handle on this area of VM.
440 */
441
442 loopva = kva;
443 loopsize = size;
444 while (loopsize) {
445 if (obj) {
446 simple_lock(&obj->vmobjlock);
447 }
448 pg = uvm_pagealloc(obj, offset, NULL, UVM_PGA_USERESERVE);
449 if (__predict_true(pg != NULL)) {
450 pg->flags &= ~PG_BUSY; /* new page */
451 UVM_PAGE_OWN(pg, NULL);
452 }
453 if (obj) {
454 simple_unlock(&obj->vmobjlock);
455 }
456
457 /*
458 * out of memory?
459 */
460
461 if (__predict_false(pg == NULL)) {
462 if (flags & UVM_KMF_NOWAIT) {
463 /* free everything! */
464 uvm_unmap(map, kva, kva + size);
465 return(0);
466 } else {
467 uvm_wait("km_getwait2"); /* sleep here */
468 continue;
469 }
470 }
471
472 /*
473 * map it in
474 */
475
476 if (obj == NULL) {
477 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
478 VM_PROT_ALL);
479 } else {
480 pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
481 UVM_PROT_ALL,
482 PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
483 }
484 loopva += PAGE_SIZE;
485 offset += PAGE_SIZE;
486 loopsize -= PAGE_SIZE;
487 }
488
489 pmap_update(pmap_kernel());
490
491 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
492 return(kva);
493 }
494
495 /*
496 * uvm_km_free: free an area of kernel memory
497 */
498
499 void
500 uvm_km_free(map, addr, size)
501 struct vm_map *map;
502 vaddr_t addr;
503 vsize_t size;
504 {
505 uvm_unmap(map, trunc_page(addr), round_page(addr+size));
506 }
507
508 /*
509 * uvm_km_free_wakeup: free an area of kernel memory and wake up
510 * anyone waiting for vm space.
511 *
512 * => XXX: "wanted" bit + unlock&wait on other end?
513 */
514
515 void
516 uvm_km_free_wakeup(map, addr, size)
517 struct vm_map *map;
518 vaddr_t addr;
519 vsize_t size;
520 {
521 struct vm_map_entry *dead_entries;
522
523 vm_map_lock(map);
524 uvm_unmap_remove(map, trunc_page(addr), round_page(addr + size),
525 &dead_entries);
526 wakeup(map);
527 vm_map_unlock(map);
528 if (dead_entries != NULL)
529 uvm_unmap_detach(dead_entries, 0);
530 }
531
532 /*
533 * uvm_km_alloc1: allocate wired down memory in the kernel map.
534 *
535 * => we can sleep if needed
536 */
537
538 vaddr_t
539 uvm_km_alloc1(map, size, zeroit)
540 struct vm_map *map;
541 vsize_t size;
542 boolean_t zeroit;
543 {
544 vaddr_t kva, loopva, offset;
545 struct vm_page *pg;
546 UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
547
548 UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
549 KASSERT(vm_map_pmap(map) == pmap_kernel());
550
551 size = round_page(size);
552 kva = vm_map_min(map); /* hint */
553
554 /*
555 * allocate some virtual space
556 */
557
558 if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
559 UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
560 UVM_INH_NONE, UVM_ADV_RANDOM,
561 0)) != 0)) {
562 UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
563 return(0);
564 }
565
566 /*
567 * recover object offset from virtual address
568 */
569
570 offset = kva - vm_map_min(kernel_map);
571 UVMHIST_LOG(maphist," kva=0x%x, offset=0x%x", kva, offset,0,0);
572
573 /*
574 * now allocate the memory.
575 */
576
577 loopva = kva;
578 while (size) {
579 simple_lock(&uvm.kernel_object->vmobjlock);
580 KASSERT(uvm_pagelookup(uvm.kernel_object, offset) == NULL);
581 pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
582 if (pg) {
583 pg->flags &= ~PG_BUSY;
584 UVM_PAGE_OWN(pg, NULL);
585 }
586 simple_unlock(&uvm.kernel_object->vmobjlock);
587 if (pg == NULL) {
588 uvm_wait("km_alloc1w");
589 continue;
590 }
591 pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
592 UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
593 loopva += PAGE_SIZE;
594 offset += PAGE_SIZE;
595 size -= PAGE_SIZE;
596 }
597 pmap_update(map->pmap);
598
599 /*
600 * zero on request (note that "size" is now zero due to the above loop
601 * so we need to subtract kva from loopva to reconstruct the size).
602 */
603
604 if (zeroit)
605 memset((caddr_t)kva, 0, loopva - kva);
606 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
607 return(kva);
608 }
609
610 /*
611 * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
612 *
613 * => memory is not allocated until fault time
614 */
615
616 vaddr_t
617 uvm_km_valloc(map, size)
618 struct vm_map *map;
619 vsize_t size;
620 {
621 return(uvm_km_valloc_align(map, size, 0));
622 }
623
624 vaddr_t
625 uvm_km_valloc_align(map, size, align)
626 struct vm_map *map;
627 vsize_t size;
628 vsize_t align;
629 {
630 vaddr_t kva;
631 UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
632
633 UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
634 KASSERT(vm_map_pmap(map) == pmap_kernel());
635
636 size = round_page(size);
637 kva = vm_map_min(map); /* hint */
638
639 /*
640 * allocate some virtual space. will be demand filled by kernel_object.
641 */
642
643 if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
644 UVM_UNKNOWN_OFFSET, align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
645 UVM_INH_NONE, UVM_ADV_RANDOM,
646 0)) != 0)) {
647 UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
648 return(0);
649 }
650
651 UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
652 return(kva);
653 }
654
655 /*
656 * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
657 *
658 * => memory is not allocated until fault time
659 * => if no room in map, wait for space to free, unless requested size
660 * is larger than map (in which case we return 0)
661 */
662
663 vaddr_t
664 uvm_km_valloc_prefer_wait(map, size, prefer)
665 struct vm_map *map;
666 vsize_t size;
667 voff_t prefer;
668 {
669 vaddr_t kva;
670 UVMHIST_FUNC("uvm_km_valloc_prefer_wait"); UVMHIST_CALLED(maphist);
671
672 UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
673 KASSERT(vm_map_pmap(map) == pmap_kernel());
674
675 size = round_page(size);
676 if (size > vm_map_max(map) - vm_map_min(map))
677 return(0);
678
679 for (;;) {
680 kva = vm_map_min(map); /* hint */
681
682 /*
683 * allocate some virtual space. will be demand filled
684 * by kernel_object.
685 */
686
687 if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
688 prefer, 0, UVM_MAPFLAG(UVM_PROT_ALL,
689 UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
690 == 0)) {
691 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
692 return(kva);
693 }
694
695 /*
696 * failed. sleep for a while (on map)
697 */
698
699 UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
700 tsleep((caddr_t)map, PVM, "vallocwait", 0);
701 }
702 /*NOTREACHED*/
703 }
704
705 vaddr_t
706 uvm_km_valloc_wait(map, size)
707 struct vm_map *map;
708 vsize_t size;
709 {
710 return uvm_km_valloc_prefer_wait(map, size, UVM_UNKNOWN_OFFSET);
711 }
712
713 /* Sanity; must specify both or none. */
714 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
715 (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
716 #error Must specify MAP and UNMAP together.
717 #endif
718
719 /*
720 * uvm_km_alloc_poolpage: allocate a page for the pool allocator
721 *
722 * => if the pmap specifies an alternate mapping method, we use it.
723 */
724
725 /* ARGSUSED */
726 vaddr_t
727 uvm_km_alloc_poolpage1(map, obj, waitok)
728 struct vm_map *map;
729 struct uvm_object *obj;
730 boolean_t waitok;
731 {
732 #if defined(PMAP_MAP_POOLPAGE)
733 struct vm_page *pg;
734 vaddr_t va;
735
736 again:
737 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
738 if (__predict_false(pg == NULL)) {
739 if (waitok) {
740 uvm_wait("plpg");
741 goto again;
742 } else
743 return (0);
744 }
745 va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
746 if (__predict_false(va == 0))
747 uvm_pagefree(pg);
748 return (va);
749 #else
750 vaddr_t va;
751 int s;
752
753 /*
754 * NOTE: We may be called with a map that doens't require splvm
755 * protection (e.g. kernel_map). However, it does not hurt to
756 * go to splvm in this case (since unprocted maps will never be
757 * accessed in interrupt context).
758 *
759 * XXX We may want to consider changing the interface to this
760 * XXX function.
761 */
762
763 s = splvm();
764 va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
765 splx(s);
766 return (va);
767 #endif /* PMAP_MAP_POOLPAGE */
768 }
769
770 /*
771 * uvm_km_free_poolpage: free a previously allocated pool page
772 *
773 * => if the pmap specifies an alternate unmapping method, we use it.
774 */
775
776 /* ARGSUSED */
777 void
778 uvm_km_free_poolpage1(map, addr)
779 struct vm_map *map;
780 vaddr_t addr;
781 {
782 #if defined(PMAP_UNMAP_POOLPAGE)
783 paddr_t pa;
784
785 pa = PMAP_UNMAP_POOLPAGE(addr);
786 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
787 #else
788 int s;
789
790 /*
791 * NOTE: We may be called with a map that doens't require splvm
792 * protection (e.g. kernel_map). However, it does not hurt to
793 * go to splvm in this case (since unprocted maps will never be
794 * accessed in interrupt context).
795 *
796 * XXX We may want to consider changing the interface to this
797 * XXX function.
798 */
799
800 s = splvm();
801 uvm_km_free(map, addr, PAGE_SIZE);
802 splx(s);
803 #endif /* PMAP_UNMAP_POOLPAGE */
804 }
805