uvm_km.c revision 1.55 1 /* $NetBSD: uvm_km.c,v 1.55 2001/11/10 07:37:00 lukem Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
42 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_km.c: handle kernel memory allocation and management
71 */
72
73 /*
74 * overview of kernel memory management:
75 *
76 * the kernel virtual address space is mapped by "kernel_map." kernel_map
77 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
78 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
79 *
80 * the kernel_map has several "submaps." submaps can only appear in
81 * the kernel_map (user processes can't use them). submaps "take over"
82 * the management of a sub-range of the kernel's address space. submaps
83 * are typically allocated at boot time and are never released. kernel
84 * virtual address space that is mapped by a submap is locked by the
85 * submap's lock -- not the kernel_map's lock.
86 *
87 * thus, the useful feature of submaps is that they allow us to break
88 * up the locking and protection of the kernel address space into smaller
89 * chunks.
90 *
91 * the vm system has several standard kernel submaps, including:
92 * kmem_map => contains only wired kernel memory for the kernel
93 * malloc. *** access to kmem_map must be protected
94 * by splvm() because we are allowed to call malloc()
95 * at interrupt time ***
96 * mb_map => memory for large mbufs, *** protected by splvm ***
97 * pager_map => used to map "buf" structures into kernel space
98 * exec_map => used during exec to handle exec args
99 * etc...
100 *
101 * the kernel allocates its private memory out of special uvm_objects whose
102 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
103 * are "special" and never die). all kernel objects should be thought of
104 * as large, fixed-sized, sparsely populated uvm_objects. each kernel
105 * object is equal to the size of kernel virtual address space (i.e. the
106 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
107 *
108 * most kernel private memory lives in kernel_object. the only exception
109 * to this is for memory that belongs to submaps that must be protected
110 * by splvm(). pages in these submaps are not assigned to an object.
111 *
112 * note that just because a kernel object spans the entire kernel virutal
113 * address space doesn't mean that it has to be mapped into the entire space.
114 * large chunks of a kernel object's space go unused either because
115 * that area of kernel VM is unmapped, or there is some other type of
116 * object mapped into that range (e.g. a vnode). for submap's kernel
117 * objects, the only part of the object that can ever be populated is the
118 * offsets that are managed by the submap.
119 *
120 * note that the "offset" in a kernel object is always the kernel virtual
121 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
122 * example:
123 * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
124 * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
125 * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
126 * then that means that the page at offset 0x235000 in kernel_object is
127 * mapped at 0xf8235000.
128 *
129 * kernel object have one other special property: when the kernel virtual
130 * memory mapping them is unmapped, the backing memory in the object is
131 * freed right away. this is done with the uvm_km_pgremove() function.
132 * this has to be done because there is no backing store for kernel pages
133 * and no need to save them after they are no longer referenced.
134 */
135
136 #include <sys/cdefs.h>
137 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.55 2001/11/10 07:37:00 lukem Exp $");
138
139 #include "opt_uvmhist.h"
140
141 #include <sys/param.h>
142 #include <sys/systm.h>
143 #include <sys/proc.h>
144
145 #include <uvm/uvm.h>
146
147 /*
148 * global data structures
149 */
150
151 struct vm_map *kernel_map = NULL;
152
153 /*
154 * local data structues
155 */
156
157 static struct vm_map kernel_map_store;
158
159 /*
160 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
161 * KVM already allocated for text, data, bss, and static data structures).
162 *
163 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
164 * we assume that [min -> start] has already been allocated and that
165 * "end" is the end.
166 */
167
168 void
169 uvm_km_init(start, end)
170 vaddr_t start, end;
171 {
172 vaddr_t base = VM_MIN_KERNEL_ADDRESS;
173
174 /*
175 * next, init kernel memory objects.
176 */
177
178 /* kernel_object: for pageable anonymous kernel memory */
179 uao_init();
180 uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
181 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
182
183 /*
184 * init the map and reserve already allocated kernel space
185 * before installing.
186 */
187
188 uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
189 kernel_map_store.pmap = pmap_kernel();
190 if (uvm_map(&kernel_map_store, &base, start - base, NULL,
191 UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
192 UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != 0)
193 panic("uvm_km_init: could not reserve space for kernel");
194
195 /*
196 * install!
197 */
198
199 kernel_map = &kernel_map_store;
200 }
201
202 /*
203 * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
204 * is allocated all references to that area of VM must go through it. this
205 * allows the locking of VAs in kernel_map to be broken up into regions.
206 *
207 * => if `fixed' is true, *min specifies where the region described
208 * by the submap must start
209 * => if submap is non NULL we use that as the submap, otherwise we
210 * alloc a new map
211 */
212 struct vm_map *
213 uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
214 struct vm_map *map;
215 vaddr_t *min, *max; /* IN/OUT, OUT */
216 vsize_t size;
217 int flags;
218 boolean_t fixed;
219 struct vm_map *submap;
220 {
221 int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
222
223 size = round_page(size); /* round up to pagesize */
224
225 /*
226 * first allocate a blank spot in the parent map
227 */
228
229 if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
230 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
231 UVM_ADV_RANDOM, mapflags)) != 0) {
232 panic("uvm_km_suballoc: unable to allocate space in parent map");
233 }
234
235 /*
236 * set VM bounds (min is filled in by uvm_map)
237 */
238
239 *max = *min + size;
240
241 /*
242 * add references to pmap and create or init the submap
243 */
244
245 pmap_reference(vm_map_pmap(map));
246 if (submap == NULL) {
247 submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
248 if (submap == NULL)
249 panic("uvm_km_suballoc: unable to create submap");
250 } else {
251 uvm_map_setup(submap, *min, *max, flags);
252 submap->pmap = vm_map_pmap(map);
253 }
254
255 /*
256 * now let uvm_map_submap plug in it...
257 */
258
259 if (uvm_map_submap(map, *min, *max, submap) != 0)
260 panic("uvm_km_suballoc: submap allocation failed");
261
262 return(submap);
263 }
264
265 /*
266 * uvm_km_pgremove: remove pages from a kernel uvm_object.
267 *
268 * => when you unmap a part of anonymous kernel memory you want to toss
269 * the pages right away. (this gets called from uvm_unmap_...).
270 */
271
272 void
273 uvm_km_pgremove(uobj, start, end)
274 struct uvm_object *uobj;
275 vaddr_t start, end;
276 {
277 struct vm_page *pg;
278 voff_t curoff, nextoff;
279 int swpgonlydelta = 0;
280 UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
281
282 KASSERT(uobj->pgops == &aobj_pager);
283 simple_lock(&uobj->vmobjlock);
284
285 for (curoff = start; curoff < end; curoff = nextoff) {
286 nextoff = curoff + PAGE_SIZE;
287 pg = uvm_pagelookup(uobj, curoff);
288 if (pg != NULL && pg->flags & PG_BUSY) {
289 pg->flags |= PG_WANTED;
290 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
291 "km_pgrm", 0);
292 simple_lock(&uobj->vmobjlock);
293 nextoff = curoff;
294 continue;
295 }
296
297 /*
298 * free the swap slot, then the page.
299 */
300
301 if (pg == NULL &&
302 uao_find_swslot(uobj, curoff >> PAGE_SHIFT) != 0) {
303 swpgonlydelta++;
304 }
305 uao_dropswap(uobj, curoff >> PAGE_SHIFT);
306 if (pg != NULL) {
307 uvm_lock_pageq();
308 uvm_pagefree(pg);
309 uvm_unlock_pageq();
310 }
311 }
312 simple_unlock(&uobj->vmobjlock);
313
314 if (swpgonlydelta > 0) {
315 simple_lock(&uvm.swap_data_lock);
316 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
317 uvmexp.swpgonly -= swpgonlydelta;
318 simple_unlock(&uvm.swap_data_lock);
319 }
320 }
321
322
323 /*
324 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
325 * maps
326 *
327 * => when you unmap a part of anonymous kernel memory you want to toss
328 * the pages right away. (this is called from uvm_unmap_...).
329 * => none of the pages will ever be busy, and none of them will ever
330 * be on the active or inactive queues (because they have no object).
331 */
332
333 void
334 uvm_km_pgremove_intrsafe(start, end)
335 vaddr_t start, end;
336 {
337 struct vm_page *pg;
338 paddr_t pa;
339 UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
340
341 for (; start < end; start += PAGE_SIZE) {
342 if (!pmap_extract(pmap_kernel(), start, &pa)) {
343 continue;
344 }
345 pg = PHYS_TO_VM_PAGE(pa);
346 KASSERT(pg);
347 KASSERT(pg->uobject == NULL && pg->uanon == NULL);
348 uvm_pagefree(pg);
349 }
350 }
351
352
353 /*
354 * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
355 *
356 * => we map wired memory into the specified map using the obj passed in
357 * => NOTE: we can return NULL even if we can wait if there is not enough
358 * free VM space in the map... caller should be prepared to handle
359 * this case.
360 * => we return KVA of memory allocated
361 * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
362 * lock the map
363 */
364
365 vaddr_t
366 uvm_km_kmemalloc(map, obj, size, flags)
367 struct vm_map *map;
368 struct uvm_object *obj;
369 vsize_t size;
370 int flags;
371 {
372 vaddr_t kva, loopva;
373 vaddr_t offset;
374 vsize_t loopsize;
375 struct vm_page *pg;
376 UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
377
378 UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
379 map, obj, size, flags);
380 KASSERT(vm_map_pmap(map) == pmap_kernel());
381
382 /*
383 * setup for call
384 */
385
386 size = round_page(size);
387 kva = vm_map_min(map); /* hint */
388
389 /*
390 * allocate some virtual space
391 */
392
393 if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
394 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
395 UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
396 != 0)) {
397 UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
398 return(0);
399 }
400
401 /*
402 * if all we wanted was VA, return now
403 */
404
405 if (flags & UVM_KMF_VALLOC) {
406 UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
407 return(kva);
408 }
409
410 /*
411 * recover object offset from virtual address
412 */
413
414 offset = kva - vm_map_min(kernel_map);
415 UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
416
417 /*
418 * now allocate and map in the memory... note that we are the only ones
419 * whom should ever get a handle on this area of VM.
420 */
421
422 loopva = kva;
423 loopsize = size;
424 while (loopsize) {
425 if (obj) {
426 simple_lock(&obj->vmobjlock);
427 }
428 pg = uvm_pagealloc(obj, offset, NULL, UVM_PGA_USERESERVE);
429 if (__predict_true(pg != NULL)) {
430 pg->flags &= ~PG_BUSY; /* new page */
431 UVM_PAGE_OWN(pg, NULL);
432 }
433 if (obj) {
434 simple_unlock(&obj->vmobjlock);
435 }
436
437 /*
438 * out of memory?
439 */
440
441 if (__predict_false(pg == NULL)) {
442 if (flags & UVM_KMF_NOWAIT) {
443 /* free everything! */
444 uvm_unmap(map, kva, kva + size);
445 return(0);
446 } else {
447 uvm_wait("km_getwait2"); /* sleep here */
448 continue;
449 }
450 }
451
452 /*
453 * map it in
454 */
455
456 if (obj == NULL) {
457 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
458 VM_PROT_ALL);
459 } else {
460 pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
461 UVM_PROT_ALL,
462 PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
463 }
464 loopva += PAGE_SIZE;
465 offset += PAGE_SIZE;
466 loopsize -= PAGE_SIZE;
467 }
468
469 pmap_update(pmap_kernel());
470
471 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
472 return(kva);
473 }
474
475 /*
476 * uvm_km_free: free an area of kernel memory
477 */
478
479 void
480 uvm_km_free(map, addr, size)
481 struct vm_map *map;
482 vaddr_t addr;
483 vsize_t size;
484 {
485 uvm_unmap(map, trunc_page(addr), round_page(addr+size));
486 }
487
488 /*
489 * uvm_km_free_wakeup: free an area of kernel memory and wake up
490 * anyone waiting for vm space.
491 *
492 * => XXX: "wanted" bit + unlock&wait on other end?
493 */
494
495 void
496 uvm_km_free_wakeup(map, addr, size)
497 struct vm_map *map;
498 vaddr_t addr;
499 vsize_t size;
500 {
501 struct vm_map_entry *dead_entries;
502
503 vm_map_lock(map);
504 uvm_unmap_remove(map, trunc_page(addr), round_page(addr + size),
505 &dead_entries);
506 wakeup(map);
507 vm_map_unlock(map);
508 if (dead_entries != NULL)
509 uvm_unmap_detach(dead_entries, 0);
510 }
511
512 /*
513 * uvm_km_alloc1: allocate wired down memory in the kernel map.
514 *
515 * => we can sleep if needed
516 */
517
518 vaddr_t
519 uvm_km_alloc1(map, size, zeroit)
520 struct vm_map *map;
521 vsize_t size;
522 boolean_t zeroit;
523 {
524 vaddr_t kva, loopva, offset;
525 struct vm_page *pg;
526 UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
527
528 UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
529 KASSERT(vm_map_pmap(map) == pmap_kernel());
530
531 size = round_page(size);
532 kva = vm_map_min(map); /* hint */
533
534 /*
535 * allocate some virtual space
536 */
537
538 if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
539 UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
540 UVM_INH_NONE, UVM_ADV_RANDOM,
541 0)) != 0)) {
542 UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
543 return(0);
544 }
545
546 /*
547 * recover object offset from virtual address
548 */
549
550 offset = kva - vm_map_min(kernel_map);
551 UVMHIST_LOG(maphist," kva=0x%x, offset=0x%x", kva, offset,0,0);
552
553 /*
554 * now allocate the memory.
555 */
556
557 loopva = kva;
558 while (size) {
559 simple_lock(&uvm.kernel_object->vmobjlock);
560 KASSERT(uvm_pagelookup(uvm.kernel_object, offset) == NULL);
561 pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
562 if (pg) {
563 pg->flags &= ~PG_BUSY;
564 UVM_PAGE_OWN(pg, NULL);
565 }
566 simple_unlock(&uvm.kernel_object->vmobjlock);
567 if (pg == NULL) {
568 uvm_wait("km_alloc1w");
569 continue;
570 }
571 pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
572 UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
573 loopva += PAGE_SIZE;
574 offset += PAGE_SIZE;
575 size -= PAGE_SIZE;
576 }
577 pmap_update(map->pmap);
578
579 /*
580 * zero on request (note that "size" is now zero due to the above loop
581 * so we need to subtract kva from loopva to reconstruct the size).
582 */
583
584 if (zeroit)
585 memset((caddr_t)kva, 0, loopva - kva);
586 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
587 return(kva);
588 }
589
590 /*
591 * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
592 *
593 * => memory is not allocated until fault time
594 */
595
596 vaddr_t
597 uvm_km_valloc(map, size)
598 struct vm_map *map;
599 vsize_t size;
600 {
601 return(uvm_km_valloc_align(map, size, 0));
602 }
603
604 vaddr_t
605 uvm_km_valloc_align(map, size, align)
606 struct vm_map *map;
607 vsize_t size;
608 vsize_t align;
609 {
610 vaddr_t kva;
611 UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
612
613 UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
614 KASSERT(vm_map_pmap(map) == pmap_kernel());
615
616 size = round_page(size);
617 kva = vm_map_min(map); /* hint */
618
619 /*
620 * allocate some virtual space. will be demand filled by kernel_object.
621 */
622
623 if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
624 UVM_UNKNOWN_OFFSET, align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
625 UVM_INH_NONE, UVM_ADV_RANDOM,
626 0)) != 0)) {
627 UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
628 return(0);
629 }
630
631 UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
632 return(kva);
633 }
634
635 /*
636 * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
637 *
638 * => memory is not allocated until fault time
639 * => if no room in map, wait for space to free, unless requested size
640 * is larger than map (in which case we return 0)
641 */
642
643 vaddr_t
644 uvm_km_valloc_prefer_wait(map, size, prefer)
645 struct vm_map *map;
646 vsize_t size;
647 voff_t prefer;
648 {
649 vaddr_t kva;
650 UVMHIST_FUNC("uvm_km_valloc_prefer_wait"); UVMHIST_CALLED(maphist);
651
652 UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
653 KASSERT(vm_map_pmap(map) == pmap_kernel());
654
655 size = round_page(size);
656 if (size > vm_map_max(map) - vm_map_min(map))
657 return(0);
658
659 for (;;) {
660 kva = vm_map_min(map); /* hint */
661
662 /*
663 * allocate some virtual space. will be demand filled
664 * by kernel_object.
665 */
666
667 if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
668 prefer, 0, UVM_MAPFLAG(UVM_PROT_ALL,
669 UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
670 == 0)) {
671 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
672 return(kva);
673 }
674
675 /*
676 * failed. sleep for a while (on map)
677 */
678
679 UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
680 tsleep((caddr_t)map, PVM, "vallocwait", 0);
681 }
682 /*NOTREACHED*/
683 }
684
685 vaddr_t
686 uvm_km_valloc_wait(map, size)
687 struct vm_map *map;
688 vsize_t size;
689 {
690 return uvm_km_valloc_prefer_wait(map, size, UVM_UNKNOWN_OFFSET);
691 }
692
693 /* Sanity; must specify both or none. */
694 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
695 (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
696 #error Must specify MAP and UNMAP together.
697 #endif
698
699 /*
700 * uvm_km_alloc_poolpage: allocate a page for the pool allocator
701 *
702 * => if the pmap specifies an alternate mapping method, we use it.
703 */
704
705 /* ARGSUSED */
706 vaddr_t
707 uvm_km_alloc_poolpage1(map, obj, waitok)
708 struct vm_map *map;
709 struct uvm_object *obj;
710 boolean_t waitok;
711 {
712 #if defined(PMAP_MAP_POOLPAGE)
713 struct vm_page *pg;
714 vaddr_t va;
715
716 again:
717 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
718 if (__predict_false(pg == NULL)) {
719 if (waitok) {
720 uvm_wait("plpg");
721 goto again;
722 } else
723 return (0);
724 }
725 va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
726 if (__predict_false(va == 0))
727 uvm_pagefree(pg);
728 return (va);
729 #else
730 vaddr_t va;
731 int s;
732
733 /*
734 * NOTE: We may be called with a map that doens't require splvm
735 * protection (e.g. kernel_map). However, it does not hurt to
736 * go to splvm in this case (since unprocted maps will never be
737 * accessed in interrupt context).
738 *
739 * XXX We may want to consider changing the interface to this
740 * XXX function.
741 */
742
743 s = splvm();
744 va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
745 splx(s);
746 return (va);
747 #endif /* PMAP_MAP_POOLPAGE */
748 }
749
750 /*
751 * uvm_km_free_poolpage: free a previously allocated pool page
752 *
753 * => if the pmap specifies an alternate unmapping method, we use it.
754 */
755
756 /* ARGSUSED */
757 void
758 uvm_km_free_poolpage1(map, addr)
759 struct vm_map *map;
760 vaddr_t addr;
761 {
762 #if defined(PMAP_UNMAP_POOLPAGE)
763 paddr_t pa;
764
765 pa = PMAP_UNMAP_POOLPAGE(addr);
766 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
767 #else
768 int s;
769
770 /*
771 * NOTE: We may be called with a map that doens't require splvm
772 * protection (e.g. kernel_map). However, it does not hurt to
773 * go to splvm in this case (since unprocted maps will never be
774 * accessed in interrupt context).
775 *
776 * XXX We may want to consider changing the interface to this
777 * XXX function.
778 */
779
780 s = splvm();
781 uvm_km_free(map, addr, PAGE_SIZE);
782 splx(s);
783 #endif /* PMAP_UNMAP_POOLPAGE */
784 }
785