Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.55
      1 /*	$NetBSD: uvm_km.c,v 1.55 2001/11/10 07:37:00 lukem Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     42  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_km.c: handle kernel memory allocation and management
     71  */
     72 
     73 /*
     74  * overview of kernel memory management:
     75  *
     76  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     77  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     78  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     79  *
     80  * the kernel_map has several "submaps."   submaps can only appear in
     81  * the kernel_map (user processes can't use them).   submaps "take over"
     82  * the management of a sub-range of the kernel's address space.  submaps
     83  * are typically allocated at boot time and are never released.   kernel
     84  * virtual address space that is mapped by a submap is locked by the
     85  * submap's lock -- not the kernel_map's lock.
     86  *
     87  * thus, the useful feature of submaps is that they allow us to break
     88  * up the locking and protection of the kernel address space into smaller
     89  * chunks.
     90  *
     91  * the vm system has several standard kernel submaps, including:
     92  *   kmem_map => contains only wired kernel memory for the kernel
     93  *		malloc.   *** access to kmem_map must be protected
     94  *		by splvm() because we are allowed to call malloc()
     95  *		at interrupt time ***
     96  *   mb_map => memory for large mbufs,  *** protected by splvm ***
     97  *   pager_map => used to map "buf" structures into kernel space
     98  *   exec_map => used during exec to handle exec args
     99  *   etc...
    100  *
    101  * the kernel allocates its private memory out of special uvm_objects whose
    102  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
    103  * are "special" and never die).   all kernel objects should be thought of
    104  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
    105  * object is equal to the size of kernel virtual address space (i.e. the
    106  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    107  *
    108  * most kernel private memory lives in kernel_object.   the only exception
    109  * to this is for memory that belongs to submaps that must be protected
    110  * by splvm().  pages in these submaps are not assigned to an object.
    111  *
    112  * note that just because a kernel object spans the entire kernel virutal
    113  * address space doesn't mean that it has to be mapped into the entire space.
    114  * large chunks of a kernel object's space go unused either because
    115  * that area of kernel VM is unmapped, or there is some other type of
    116  * object mapped into that range (e.g. a vnode).    for submap's kernel
    117  * objects, the only part of the object that can ever be populated is the
    118  * offsets that are managed by the submap.
    119  *
    120  * note that the "offset" in a kernel object is always the kernel virtual
    121  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    122  * example:
    123  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    124  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    125  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    126  *   then that means that the page at offset 0x235000 in kernel_object is
    127  *   mapped at 0xf8235000.
    128  *
    129  * kernel object have one other special property: when the kernel virtual
    130  * memory mapping them is unmapped, the backing memory in the object is
    131  * freed right away.   this is done with the uvm_km_pgremove() function.
    132  * this has to be done because there is no backing store for kernel pages
    133  * and no need to save them after they are no longer referenced.
    134  */
    135 
    136 #include <sys/cdefs.h>
    137 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.55 2001/11/10 07:37:00 lukem Exp $");
    138 
    139 #include "opt_uvmhist.h"
    140 
    141 #include <sys/param.h>
    142 #include <sys/systm.h>
    143 #include <sys/proc.h>
    144 
    145 #include <uvm/uvm.h>
    146 
    147 /*
    148  * global data structures
    149  */
    150 
    151 struct vm_map *kernel_map = NULL;
    152 
    153 /*
    154  * local data structues
    155  */
    156 
    157 static struct vm_map		kernel_map_store;
    158 
    159 /*
    160  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
    161  * KVM already allocated for text, data, bss, and static data structures).
    162  *
    163  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    164  *    we assume that [min -> start] has already been allocated and that
    165  *    "end" is the end.
    166  */
    167 
    168 void
    169 uvm_km_init(start, end)
    170 	vaddr_t start, end;
    171 {
    172 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    173 
    174 	/*
    175 	 * next, init kernel memory objects.
    176 	 */
    177 
    178 	/* kernel_object: for pageable anonymous kernel memory */
    179 	uao_init();
    180 	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    181 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    182 
    183 	/*
    184 	 * init the map and reserve already allocated kernel space
    185 	 * before installing.
    186 	 */
    187 
    188 	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
    189 	kernel_map_store.pmap = pmap_kernel();
    190 	if (uvm_map(&kernel_map_store, &base, start - base, NULL,
    191 	    UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    192 	    UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != 0)
    193 		panic("uvm_km_init: could not reserve space for kernel");
    194 
    195 	/*
    196 	 * install!
    197 	 */
    198 
    199 	kernel_map = &kernel_map_store;
    200 }
    201 
    202 /*
    203  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    204  * is allocated all references to that area of VM must go through it.  this
    205  * allows the locking of VAs in kernel_map to be broken up into regions.
    206  *
    207  * => if `fixed' is true, *min specifies where the region described
    208  *      by the submap must start
    209  * => if submap is non NULL we use that as the submap, otherwise we
    210  *	alloc a new map
    211  */
    212 struct vm_map *
    213 uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
    214 	struct vm_map *map;
    215 	vaddr_t *min, *max;		/* IN/OUT, OUT */
    216 	vsize_t size;
    217 	int flags;
    218 	boolean_t fixed;
    219 	struct vm_map *submap;
    220 {
    221 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    222 
    223 	size = round_page(size);	/* round up to pagesize */
    224 
    225 	/*
    226 	 * first allocate a blank spot in the parent map
    227 	 */
    228 
    229 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
    230 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    231 	    UVM_ADV_RANDOM, mapflags)) != 0) {
    232 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
    233 	}
    234 
    235 	/*
    236 	 * set VM bounds (min is filled in by uvm_map)
    237 	 */
    238 
    239 	*max = *min + size;
    240 
    241 	/*
    242 	 * add references to pmap and create or init the submap
    243 	 */
    244 
    245 	pmap_reference(vm_map_pmap(map));
    246 	if (submap == NULL) {
    247 		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
    248 		if (submap == NULL)
    249 			panic("uvm_km_suballoc: unable to create submap");
    250 	} else {
    251 		uvm_map_setup(submap, *min, *max, flags);
    252 		submap->pmap = vm_map_pmap(map);
    253 	}
    254 
    255 	/*
    256 	 * now let uvm_map_submap plug in it...
    257 	 */
    258 
    259 	if (uvm_map_submap(map, *min, *max, submap) != 0)
    260 		panic("uvm_km_suballoc: submap allocation failed");
    261 
    262 	return(submap);
    263 }
    264 
    265 /*
    266  * uvm_km_pgremove: remove pages from a kernel uvm_object.
    267  *
    268  * => when you unmap a part of anonymous kernel memory you want to toss
    269  *    the pages right away.    (this gets called from uvm_unmap_...).
    270  */
    271 
    272 void
    273 uvm_km_pgremove(uobj, start, end)
    274 	struct uvm_object *uobj;
    275 	vaddr_t start, end;
    276 {
    277 	struct vm_page *pg;
    278 	voff_t curoff, nextoff;
    279 	int swpgonlydelta = 0;
    280 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
    281 
    282 	KASSERT(uobj->pgops == &aobj_pager);
    283 	simple_lock(&uobj->vmobjlock);
    284 
    285 	for (curoff = start; curoff < end; curoff = nextoff) {
    286 		nextoff = curoff + PAGE_SIZE;
    287 		pg = uvm_pagelookup(uobj, curoff);
    288 		if (pg != NULL && pg->flags & PG_BUSY) {
    289 			pg->flags |= PG_WANTED;
    290 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
    291 				    "km_pgrm", 0);
    292 			simple_lock(&uobj->vmobjlock);
    293 			nextoff = curoff;
    294 			continue;
    295 		}
    296 
    297 		/*
    298 		 * free the swap slot, then the page.
    299 		 */
    300 
    301 		if (pg == NULL &&
    302 		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) != 0) {
    303 			swpgonlydelta++;
    304 		}
    305 		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
    306 		if (pg != NULL) {
    307 			uvm_lock_pageq();
    308 			uvm_pagefree(pg);
    309 			uvm_unlock_pageq();
    310 		}
    311 	}
    312 	simple_unlock(&uobj->vmobjlock);
    313 
    314 	if (swpgonlydelta > 0) {
    315 		simple_lock(&uvm.swap_data_lock);
    316 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
    317 		uvmexp.swpgonly -= swpgonlydelta;
    318 		simple_unlock(&uvm.swap_data_lock);
    319 	}
    320 }
    321 
    322 
    323 /*
    324  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
    325  *    maps
    326  *
    327  * => when you unmap a part of anonymous kernel memory you want to toss
    328  *    the pages right away.    (this is called from uvm_unmap_...).
    329  * => none of the pages will ever be busy, and none of them will ever
    330  *    be on the active or inactive queues (because they have no object).
    331  */
    332 
    333 void
    334 uvm_km_pgremove_intrsafe(start, end)
    335 	vaddr_t start, end;
    336 {
    337 	struct vm_page *pg;
    338 	paddr_t pa;
    339 	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
    340 
    341 	for (; start < end; start += PAGE_SIZE) {
    342 		if (!pmap_extract(pmap_kernel(), start, &pa)) {
    343 			continue;
    344 		}
    345 		pg = PHYS_TO_VM_PAGE(pa);
    346 		KASSERT(pg);
    347 		KASSERT(pg->uobject == NULL && pg->uanon == NULL);
    348 		uvm_pagefree(pg);
    349 	}
    350 }
    351 
    352 
    353 /*
    354  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
    355  *
    356  * => we map wired memory into the specified map using the obj passed in
    357  * => NOTE: we can return NULL even if we can wait if there is not enough
    358  *	free VM space in the map... caller should be prepared to handle
    359  *	this case.
    360  * => we return KVA of memory allocated
    361  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
    362  *	lock the map
    363  */
    364 
    365 vaddr_t
    366 uvm_km_kmemalloc(map, obj, size, flags)
    367 	struct vm_map *map;
    368 	struct uvm_object *obj;
    369 	vsize_t size;
    370 	int flags;
    371 {
    372 	vaddr_t kva, loopva;
    373 	vaddr_t offset;
    374 	vsize_t loopsize;
    375 	struct vm_page *pg;
    376 	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
    377 
    378 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
    379 		    map, obj, size, flags);
    380 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    381 
    382 	/*
    383 	 * setup for call
    384 	 */
    385 
    386 	size = round_page(size);
    387 	kva = vm_map_min(map);	/* hint */
    388 
    389 	/*
    390 	 * allocate some virtual space
    391 	 */
    392 
    393 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    394 	      0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    395 			  UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
    396 			!= 0)) {
    397 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    398 		return(0);
    399 	}
    400 
    401 	/*
    402 	 * if all we wanted was VA, return now
    403 	 */
    404 
    405 	if (flags & UVM_KMF_VALLOC) {
    406 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
    407 		return(kva);
    408 	}
    409 
    410 	/*
    411 	 * recover object offset from virtual address
    412 	 */
    413 
    414 	offset = kva - vm_map_min(kernel_map);
    415 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
    416 
    417 	/*
    418 	 * now allocate and map in the memory... note that we are the only ones
    419 	 * whom should ever get a handle on this area of VM.
    420 	 */
    421 
    422 	loopva = kva;
    423 	loopsize = size;
    424 	while (loopsize) {
    425 		if (obj) {
    426 			simple_lock(&obj->vmobjlock);
    427 		}
    428 		pg = uvm_pagealloc(obj, offset, NULL, UVM_PGA_USERESERVE);
    429 		if (__predict_true(pg != NULL)) {
    430 			pg->flags &= ~PG_BUSY;	/* new page */
    431 			UVM_PAGE_OWN(pg, NULL);
    432 		}
    433 		if (obj) {
    434 			simple_unlock(&obj->vmobjlock);
    435 		}
    436 
    437 		/*
    438 		 * out of memory?
    439 		 */
    440 
    441 		if (__predict_false(pg == NULL)) {
    442 			if (flags & UVM_KMF_NOWAIT) {
    443 				/* free everything! */
    444 				uvm_unmap(map, kva, kva + size);
    445 				return(0);
    446 			} else {
    447 				uvm_wait("km_getwait2");	/* sleep here */
    448 				continue;
    449 			}
    450 		}
    451 
    452 		/*
    453 		 * map it in
    454 		 */
    455 
    456 		if (obj == NULL) {
    457 			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    458 			    VM_PROT_ALL);
    459 		} else {
    460 			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    461 			    UVM_PROT_ALL,
    462 			    PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
    463 		}
    464 		loopva += PAGE_SIZE;
    465 		offset += PAGE_SIZE;
    466 		loopsize -= PAGE_SIZE;
    467 	}
    468 
    469        	pmap_update(pmap_kernel());
    470 
    471 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    472 	return(kva);
    473 }
    474 
    475 /*
    476  * uvm_km_free: free an area of kernel memory
    477  */
    478 
    479 void
    480 uvm_km_free(map, addr, size)
    481 	struct vm_map *map;
    482 	vaddr_t addr;
    483 	vsize_t size;
    484 {
    485 	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
    486 }
    487 
    488 /*
    489  * uvm_km_free_wakeup: free an area of kernel memory and wake up
    490  * anyone waiting for vm space.
    491  *
    492  * => XXX: "wanted" bit + unlock&wait on other end?
    493  */
    494 
    495 void
    496 uvm_km_free_wakeup(map, addr, size)
    497 	struct vm_map *map;
    498 	vaddr_t addr;
    499 	vsize_t size;
    500 {
    501 	struct vm_map_entry *dead_entries;
    502 
    503 	vm_map_lock(map);
    504 	uvm_unmap_remove(map, trunc_page(addr), round_page(addr + size),
    505 	    &dead_entries);
    506 	wakeup(map);
    507 	vm_map_unlock(map);
    508 	if (dead_entries != NULL)
    509 		uvm_unmap_detach(dead_entries, 0);
    510 }
    511 
    512 /*
    513  * uvm_km_alloc1: allocate wired down memory in the kernel map.
    514  *
    515  * => we can sleep if needed
    516  */
    517 
    518 vaddr_t
    519 uvm_km_alloc1(map, size, zeroit)
    520 	struct vm_map *map;
    521 	vsize_t size;
    522 	boolean_t zeroit;
    523 {
    524 	vaddr_t kva, loopva, offset;
    525 	struct vm_page *pg;
    526 	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
    527 
    528 	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
    529 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    530 
    531 	size = round_page(size);
    532 	kva = vm_map_min(map);		/* hint */
    533 
    534 	/*
    535 	 * allocate some virtual space
    536 	 */
    537 
    538 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
    539 	      UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    540 					      UVM_INH_NONE, UVM_ADV_RANDOM,
    541 					      0)) != 0)) {
    542 		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
    543 		return(0);
    544 	}
    545 
    546 	/*
    547 	 * recover object offset from virtual address
    548 	 */
    549 
    550 	offset = kva - vm_map_min(kernel_map);
    551 	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
    552 
    553 	/*
    554 	 * now allocate the memory.
    555 	 */
    556 
    557 	loopva = kva;
    558 	while (size) {
    559 		simple_lock(&uvm.kernel_object->vmobjlock);
    560 		KASSERT(uvm_pagelookup(uvm.kernel_object, offset) == NULL);
    561 		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
    562 		if (pg) {
    563 			pg->flags &= ~PG_BUSY;
    564 			UVM_PAGE_OWN(pg, NULL);
    565 		}
    566 		simple_unlock(&uvm.kernel_object->vmobjlock);
    567 		if (pg == NULL) {
    568 			uvm_wait("km_alloc1w");
    569 			continue;
    570 		}
    571 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    572 		    UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
    573 		loopva += PAGE_SIZE;
    574 		offset += PAGE_SIZE;
    575 		size -= PAGE_SIZE;
    576 	}
    577 	pmap_update(map->pmap);
    578 
    579 	/*
    580 	 * zero on request (note that "size" is now zero due to the above loop
    581 	 * so we need to subtract kva from loopva to reconstruct the size).
    582 	 */
    583 
    584 	if (zeroit)
    585 		memset((caddr_t)kva, 0, loopva - kva);
    586 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    587 	return(kva);
    588 }
    589 
    590 /*
    591  * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
    592  *
    593  * => memory is not allocated until fault time
    594  */
    595 
    596 vaddr_t
    597 uvm_km_valloc(map, size)
    598 	struct vm_map *map;
    599 	vsize_t size;
    600 {
    601 	return(uvm_km_valloc_align(map, size, 0));
    602 }
    603 
    604 vaddr_t
    605 uvm_km_valloc_align(map, size, align)
    606 	struct vm_map *map;
    607 	vsize_t size;
    608 	vsize_t align;
    609 {
    610 	vaddr_t kva;
    611 	UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
    612 
    613 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    614 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    615 
    616 	size = round_page(size);
    617 	kva = vm_map_min(map);		/* hint */
    618 
    619 	/*
    620 	 * allocate some virtual space.  will be demand filled by kernel_object.
    621 	 */
    622 
    623 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
    624 	    UVM_UNKNOWN_OFFSET, align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    625 					    UVM_INH_NONE, UVM_ADV_RANDOM,
    626 					    0)) != 0)) {
    627 		UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
    628 		return(0);
    629 	}
    630 
    631 	UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
    632 	return(kva);
    633 }
    634 
    635 /*
    636  * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
    637  *
    638  * => memory is not allocated until fault time
    639  * => if no room in map, wait for space to free, unless requested size
    640  *    is larger than map (in which case we return 0)
    641  */
    642 
    643 vaddr_t
    644 uvm_km_valloc_prefer_wait(map, size, prefer)
    645 	struct vm_map *map;
    646 	vsize_t size;
    647 	voff_t prefer;
    648 {
    649 	vaddr_t kva;
    650 	UVMHIST_FUNC("uvm_km_valloc_prefer_wait"); UVMHIST_CALLED(maphist);
    651 
    652 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    653 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    654 
    655 	size = round_page(size);
    656 	if (size > vm_map_max(map) - vm_map_min(map))
    657 		return(0);
    658 
    659 	for (;;) {
    660 		kva = vm_map_min(map);		/* hint */
    661 
    662 		/*
    663 		 * allocate some virtual space.   will be demand filled
    664 		 * by kernel_object.
    665 		 */
    666 
    667 		if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
    668 		    prefer, 0, UVM_MAPFLAG(UVM_PROT_ALL,
    669 		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
    670 		    == 0)) {
    671 			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    672 			return(kva);
    673 		}
    674 
    675 		/*
    676 		 * failed.  sleep for a while (on map)
    677 		 */
    678 
    679 		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
    680 		tsleep((caddr_t)map, PVM, "vallocwait", 0);
    681 	}
    682 	/*NOTREACHED*/
    683 }
    684 
    685 vaddr_t
    686 uvm_km_valloc_wait(map, size)
    687 	struct vm_map *map;
    688 	vsize_t size;
    689 {
    690 	return uvm_km_valloc_prefer_wait(map, size, UVM_UNKNOWN_OFFSET);
    691 }
    692 
    693 /* Sanity; must specify both or none. */
    694 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    695     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    696 #error Must specify MAP and UNMAP together.
    697 #endif
    698 
    699 /*
    700  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
    701  *
    702  * => if the pmap specifies an alternate mapping method, we use it.
    703  */
    704 
    705 /* ARGSUSED */
    706 vaddr_t
    707 uvm_km_alloc_poolpage1(map, obj, waitok)
    708 	struct vm_map *map;
    709 	struct uvm_object *obj;
    710 	boolean_t waitok;
    711 {
    712 #if defined(PMAP_MAP_POOLPAGE)
    713 	struct vm_page *pg;
    714 	vaddr_t va;
    715 
    716  again:
    717 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    718 	if (__predict_false(pg == NULL)) {
    719 		if (waitok) {
    720 			uvm_wait("plpg");
    721 			goto again;
    722 		} else
    723 			return (0);
    724 	}
    725 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    726 	if (__predict_false(va == 0))
    727 		uvm_pagefree(pg);
    728 	return (va);
    729 #else
    730 	vaddr_t va;
    731 	int s;
    732 
    733 	/*
    734 	 * NOTE: We may be called with a map that doens't require splvm
    735 	 * protection (e.g. kernel_map).  However, it does not hurt to
    736 	 * go to splvm in this case (since unprocted maps will never be
    737 	 * accessed in interrupt context).
    738 	 *
    739 	 * XXX We may want to consider changing the interface to this
    740 	 * XXX function.
    741 	 */
    742 
    743 	s = splvm();
    744 	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
    745 	splx(s);
    746 	return (va);
    747 #endif /* PMAP_MAP_POOLPAGE */
    748 }
    749 
    750 /*
    751  * uvm_km_free_poolpage: free a previously allocated pool page
    752  *
    753  * => if the pmap specifies an alternate unmapping method, we use it.
    754  */
    755 
    756 /* ARGSUSED */
    757 void
    758 uvm_km_free_poolpage1(map, addr)
    759 	struct vm_map *map;
    760 	vaddr_t addr;
    761 {
    762 #if defined(PMAP_UNMAP_POOLPAGE)
    763 	paddr_t pa;
    764 
    765 	pa = PMAP_UNMAP_POOLPAGE(addr);
    766 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    767 #else
    768 	int s;
    769 
    770 	/*
    771 	 * NOTE: We may be called with a map that doens't require splvm
    772 	 * protection (e.g. kernel_map).  However, it does not hurt to
    773 	 * go to splvm in this case (since unprocted maps will never be
    774 	 * accessed in interrupt context).
    775 	 *
    776 	 * XXX We may want to consider changing the interface to this
    777 	 * XXX function.
    778 	 */
    779 
    780 	s = splvm();
    781 	uvm_km_free(map, addr, PAGE_SIZE);
    782 	splx(s);
    783 #endif /* PMAP_UNMAP_POOLPAGE */
    784 }
    785