uvm_km.c revision 1.56 1 /* $NetBSD: uvm_km.c,v 1.56 2002/03/07 20:15:32 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
42 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_km.c: handle kernel memory allocation and management
71 */
72
73 /*
74 * overview of kernel memory management:
75 *
76 * the kernel virtual address space is mapped by "kernel_map." kernel_map
77 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
78 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
79 *
80 * the kernel_map has several "submaps." submaps can only appear in
81 * the kernel_map (user processes can't use them). submaps "take over"
82 * the management of a sub-range of the kernel's address space. submaps
83 * are typically allocated at boot time and are never released. kernel
84 * virtual address space that is mapped by a submap is locked by the
85 * submap's lock -- not the kernel_map's lock.
86 *
87 * thus, the useful feature of submaps is that they allow us to break
88 * up the locking and protection of the kernel address space into smaller
89 * chunks.
90 *
91 * the vm system has several standard kernel submaps, including:
92 * kmem_map => contains only wired kernel memory for the kernel
93 * malloc. *** access to kmem_map must be protected
94 * by splvm() because we are allowed to call malloc()
95 * at interrupt time ***
96 * mb_map => memory for large mbufs, *** protected by splvm ***
97 * pager_map => used to map "buf" structures into kernel space
98 * exec_map => used during exec to handle exec args
99 * etc...
100 *
101 * the kernel allocates its private memory out of special uvm_objects whose
102 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
103 * are "special" and never die). all kernel objects should be thought of
104 * as large, fixed-sized, sparsely populated uvm_objects. each kernel
105 * object is equal to the size of kernel virtual address space (i.e. the
106 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
107 *
108 * most kernel private memory lives in kernel_object. the only exception
109 * to this is for memory that belongs to submaps that must be protected
110 * by splvm(). pages in these submaps are not assigned to an object.
111 *
112 * note that just because a kernel object spans the entire kernel virutal
113 * address space doesn't mean that it has to be mapped into the entire space.
114 * large chunks of a kernel object's space go unused either because
115 * that area of kernel VM is unmapped, or there is some other type of
116 * object mapped into that range (e.g. a vnode). for submap's kernel
117 * objects, the only part of the object that can ever be populated is the
118 * offsets that are managed by the submap.
119 *
120 * note that the "offset" in a kernel object is always the kernel virtual
121 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
122 * example:
123 * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
124 * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
125 * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
126 * then that means that the page at offset 0x235000 in kernel_object is
127 * mapped at 0xf8235000.
128 *
129 * kernel object have one other special property: when the kernel virtual
130 * memory mapping them is unmapped, the backing memory in the object is
131 * freed right away. this is done with the uvm_km_pgremove() function.
132 * this has to be done because there is no backing store for kernel pages
133 * and no need to save them after they are no longer referenced.
134 */
135
136 #include <sys/cdefs.h>
137 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.56 2002/03/07 20:15:32 thorpej Exp $");
138
139 #include "opt_uvmhist.h"
140
141 #include <sys/param.h>
142 #include <sys/systm.h>
143 #include <sys/proc.h>
144
145 #include <uvm/uvm.h>
146
147 /*
148 * global data structures
149 */
150
151 struct vm_map *kernel_map = NULL;
152
153 /*
154 * local data structues
155 */
156
157 static struct vm_map kernel_map_store;
158
159 /*
160 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
161 * KVM already allocated for text, data, bss, and static data structures).
162 *
163 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
164 * we assume that [min -> start] has already been allocated and that
165 * "end" is the end.
166 */
167
168 void
169 uvm_km_init(start, end)
170 vaddr_t start, end;
171 {
172 vaddr_t base = VM_MIN_KERNEL_ADDRESS;
173
174 /*
175 * next, init kernel memory objects.
176 */
177
178 /* kernel_object: for pageable anonymous kernel memory */
179 uao_init();
180 uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
181 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
182
183 /*
184 * init the map and reserve any space that might already
185 * have been allocated kernel space before installing.
186 */
187
188 uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
189 kernel_map_store.pmap = pmap_kernel();
190 if (start != base &&
191 uvm_map(&kernel_map_store, &base, start - base, NULL,
192 UVM_UNKNOWN_OFFSET, 0,
193 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
194 UVM_ADV_RANDOM, UVM_FLAG_FIXED)) != 0)
195 panic("uvm_km_init: could not reserve space for kernel");
196
197 /*
198 * install!
199 */
200
201 kernel_map = &kernel_map_store;
202 }
203
204 /*
205 * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
206 * is allocated all references to that area of VM must go through it. this
207 * allows the locking of VAs in kernel_map to be broken up into regions.
208 *
209 * => if `fixed' is true, *min specifies where the region described
210 * by the submap must start
211 * => if submap is non NULL we use that as the submap, otherwise we
212 * alloc a new map
213 */
214 struct vm_map *
215 uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
216 struct vm_map *map;
217 vaddr_t *min, *max; /* IN/OUT, OUT */
218 vsize_t size;
219 int flags;
220 boolean_t fixed;
221 struct vm_map *submap;
222 {
223 int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
224
225 size = round_page(size); /* round up to pagesize */
226
227 /*
228 * first allocate a blank spot in the parent map
229 */
230
231 if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
232 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
233 UVM_ADV_RANDOM, mapflags)) != 0) {
234 panic("uvm_km_suballoc: unable to allocate space in parent map");
235 }
236
237 /*
238 * set VM bounds (min is filled in by uvm_map)
239 */
240
241 *max = *min + size;
242
243 /*
244 * add references to pmap and create or init the submap
245 */
246
247 pmap_reference(vm_map_pmap(map));
248 if (submap == NULL) {
249 submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
250 if (submap == NULL)
251 panic("uvm_km_suballoc: unable to create submap");
252 } else {
253 uvm_map_setup(submap, *min, *max, flags);
254 submap->pmap = vm_map_pmap(map);
255 }
256
257 /*
258 * now let uvm_map_submap plug in it...
259 */
260
261 if (uvm_map_submap(map, *min, *max, submap) != 0)
262 panic("uvm_km_suballoc: submap allocation failed");
263
264 return(submap);
265 }
266
267 /*
268 * uvm_km_pgremove: remove pages from a kernel uvm_object.
269 *
270 * => when you unmap a part of anonymous kernel memory you want to toss
271 * the pages right away. (this gets called from uvm_unmap_...).
272 */
273
274 void
275 uvm_km_pgremove(uobj, start, end)
276 struct uvm_object *uobj;
277 vaddr_t start, end;
278 {
279 struct vm_page *pg;
280 voff_t curoff, nextoff;
281 int swpgonlydelta = 0;
282 UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
283
284 KASSERT(uobj->pgops == &aobj_pager);
285 simple_lock(&uobj->vmobjlock);
286
287 for (curoff = start; curoff < end; curoff = nextoff) {
288 nextoff = curoff + PAGE_SIZE;
289 pg = uvm_pagelookup(uobj, curoff);
290 if (pg != NULL && pg->flags & PG_BUSY) {
291 pg->flags |= PG_WANTED;
292 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
293 "km_pgrm", 0);
294 simple_lock(&uobj->vmobjlock);
295 nextoff = curoff;
296 continue;
297 }
298
299 /*
300 * free the swap slot, then the page.
301 */
302
303 if (pg == NULL &&
304 uao_find_swslot(uobj, curoff >> PAGE_SHIFT) != 0) {
305 swpgonlydelta++;
306 }
307 uao_dropswap(uobj, curoff >> PAGE_SHIFT);
308 if (pg != NULL) {
309 uvm_lock_pageq();
310 uvm_pagefree(pg);
311 uvm_unlock_pageq();
312 }
313 }
314 simple_unlock(&uobj->vmobjlock);
315
316 if (swpgonlydelta > 0) {
317 simple_lock(&uvm.swap_data_lock);
318 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
319 uvmexp.swpgonly -= swpgonlydelta;
320 simple_unlock(&uvm.swap_data_lock);
321 }
322 }
323
324
325 /*
326 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
327 * maps
328 *
329 * => when you unmap a part of anonymous kernel memory you want to toss
330 * the pages right away. (this is called from uvm_unmap_...).
331 * => none of the pages will ever be busy, and none of them will ever
332 * be on the active or inactive queues (because they have no object).
333 */
334
335 void
336 uvm_km_pgremove_intrsafe(start, end)
337 vaddr_t start, end;
338 {
339 struct vm_page *pg;
340 paddr_t pa;
341 UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
342
343 for (; start < end; start += PAGE_SIZE) {
344 if (!pmap_extract(pmap_kernel(), start, &pa)) {
345 continue;
346 }
347 pg = PHYS_TO_VM_PAGE(pa);
348 KASSERT(pg);
349 KASSERT(pg->uobject == NULL && pg->uanon == NULL);
350 uvm_pagefree(pg);
351 }
352 }
353
354
355 /*
356 * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
357 *
358 * => we map wired memory into the specified map using the obj passed in
359 * => NOTE: we can return NULL even if we can wait if there is not enough
360 * free VM space in the map... caller should be prepared to handle
361 * this case.
362 * => we return KVA of memory allocated
363 * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
364 * lock the map
365 */
366
367 vaddr_t
368 uvm_km_kmemalloc(map, obj, size, flags)
369 struct vm_map *map;
370 struct uvm_object *obj;
371 vsize_t size;
372 int flags;
373 {
374 vaddr_t kva, loopva;
375 vaddr_t offset;
376 vsize_t loopsize;
377 struct vm_page *pg;
378 UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
379
380 UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
381 map, obj, size, flags);
382 KASSERT(vm_map_pmap(map) == pmap_kernel());
383
384 /*
385 * setup for call
386 */
387
388 size = round_page(size);
389 kva = vm_map_min(map); /* hint */
390
391 /*
392 * allocate some virtual space
393 */
394
395 if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
396 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
397 UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
398 != 0)) {
399 UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
400 return(0);
401 }
402
403 /*
404 * if all we wanted was VA, return now
405 */
406
407 if (flags & UVM_KMF_VALLOC) {
408 UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
409 return(kva);
410 }
411
412 /*
413 * recover object offset from virtual address
414 */
415
416 offset = kva - vm_map_min(kernel_map);
417 UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
418
419 /*
420 * now allocate and map in the memory... note that we are the only ones
421 * whom should ever get a handle on this area of VM.
422 */
423
424 loopva = kva;
425 loopsize = size;
426 while (loopsize) {
427 if (obj) {
428 simple_lock(&obj->vmobjlock);
429 }
430 pg = uvm_pagealloc(obj, offset, NULL, UVM_PGA_USERESERVE);
431 if (__predict_true(pg != NULL)) {
432 pg->flags &= ~PG_BUSY; /* new page */
433 UVM_PAGE_OWN(pg, NULL);
434 }
435 if (obj) {
436 simple_unlock(&obj->vmobjlock);
437 }
438
439 /*
440 * out of memory?
441 */
442
443 if (__predict_false(pg == NULL)) {
444 if (flags & UVM_KMF_NOWAIT) {
445 /* free everything! */
446 uvm_unmap(map, kva, kva + size);
447 return(0);
448 } else {
449 uvm_wait("km_getwait2"); /* sleep here */
450 continue;
451 }
452 }
453
454 /*
455 * map it in
456 */
457
458 if (obj == NULL) {
459 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
460 VM_PROT_ALL);
461 } else {
462 pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
463 UVM_PROT_ALL,
464 PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
465 }
466 loopva += PAGE_SIZE;
467 offset += PAGE_SIZE;
468 loopsize -= PAGE_SIZE;
469 }
470
471 pmap_update(pmap_kernel());
472
473 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
474 return(kva);
475 }
476
477 /*
478 * uvm_km_free: free an area of kernel memory
479 */
480
481 void
482 uvm_km_free(map, addr, size)
483 struct vm_map *map;
484 vaddr_t addr;
485 vsize_t size;
486 {
487 uvm_unmap(map, trunc_page(addr), round_page(addr+size));
488 }
489
490 /*
491 * uvm_km_free_wakeup: free an area of kernel memory and wake up
492 * anyone waiting for vm space.
493 *
494 * => XXX: "wanted" bit + unlock&wait on other end?
495 */
496
497 void
498 uvm_km_free_wakeup(map, addr, size)
499 struct vm_map *map;
500 vaddr_t addr;
501 vsize_t size;
502 {
503 struct vm_map_entry *dead_entries;
504
505 vm_map_lock(map);
506 uvm_unmap_remove(map, trunc_page(addr), round_page(addr + size),
507 &dead_entries);
508 wakeup(map);
509 vm_map_unlock(map);
510 if (dead_entries != NULL)
511 uvm_unmap_detach(dead_entries, 0);
512 }
513
514 /*
515 * uvm_km_alloc1: allocate wired down memory in the kernel map.
516 *
517 * => we can sleep if needed
518 */
519
520 vaddr_t
521 uvm_km_alloc1(map, size, zeroit)
522 struct vm_map *map;
523 vsize_t size;
524 boolean_t zeroit;
525 {
526 vaddr_t kva, loopva, offset;
527 struct vm_page *pg;
528 UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
529
530 UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
531 KASSERT(vm_map_pmap(map) == pmap_kernel());
532
533 size = round_page(size);
534 kva = vm_map_min(map); /* hint */
535
536 /*
537 * allocate some virtual space
538 */
539
540 if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
541 UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
542 UVM_INH_NONE, UVM_ADV_RANDOM,
543 0)) != 0)) {
544 UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
545 return(0);
546 }
547
548 /*
549 * recover object offset from virtual address
550 */
551
552 offset = kva - vm_map_min(kernel_map);
553 UVMHIST_LOG(maphist," kva=0x%x, offset=0x%x", kva, offset,0,0);
554
555 /*
556 * now allocate the memory.
557 */
558
559 loopva = kva;
560 while (size) {
561 simple_lock(&uvm.kernel_object->vmobjlock);
562 KASSERT(uvm_pagelookup(uvm.kernel_object, offset) == NULL);
563 pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
564 if (pg) {
565 pg->flags &= ~PG_BUSY;
566 UVM_PAGE_OWN(pg, NULL);
567 }
568 simple_unlock(&uvm.kernel_object->vmobjlock);
569 if (pg == NULL) {
570 uvm_wait("km_alloc1w");
571 continue;
572 }
573 pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
574 UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
575 loopva += PAGE_SIZE;
576 offset += PAGE_SIZE;
577 size -= PAGE_SIZE;
578 }
579 pmap_update(map->pmap);
580
581 /*
582 * zero on request (note that "size" is now zero due to the above loop
583 * so we need to subtract kva from loopva to reconstruct the size).
584 */
585
586 if (zeroit)
587 memset((caddr_t)kva, 0, loopva - kva);
588 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
589 return(kva);
590 }
591
592 /*
593 * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
594 *
595 * => memory is not allocated until fault time
596 */
597
598 vaddr_t
599 uvm_km_valloc(map, size)
600 struct vm_map *map;
601 vsize_t size;
602 {
603 return(uvm_km_valloc_align(map, size, 0));
604 }
605
606 vaddr_t
607 uvm_km_valloc_align(map, size, align)
608 struct vm_map *map;
609 vsize_t size;
610 vsize_t align;
611 {
612 vaddr_t kva;
613 UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
614
615 UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
616 KASSERT(vm_map_pmap(map) == pmap_kernel());
617
618 size = round_page(size);
619 kva = vm_map_min(map); /* hint */
620
621 /*
622 * allocate some virtual space. will be demand filled by kernel_object.
623 */
624
625 if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
626 UVM_UNKNOWN_OFFSET, align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
627 UVM_INH_NONE, UVM_ADV_RANDOM,
628 0)) != 0)) {
629 UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
630 return(0);
631 }
632
633 UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
634 return(kva);
635 }
636
637 /*
638 * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
639 *
640 * => memory is not allocated until fault time
641 * => if no room in map, wait for space to free, unless requested size
642 * is larger than map (in which case we return 0)
643 */
644
645 vaddr_t
646 uvm_km_valloc_prefer_wait(map, size, prefer)
647 struct vm_map *map;
648 vsize_t size;
649 voff_t prefer;
650 {
651 vaddr_t kva;
652 UVMHIST_FUNC("uvm_km_valloc_prefer_wait"); UVMHIST_CALLED(maphist);
653
654 UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
655 KASSERT(vm_map_pmap(map) == pmap_kernel());
656
657 size = round_page(size);
658 if (size > vm_map_max(map) - vm_map_min(map))
659 return(0);
660
661 for (;;) {
662 kva = vm_map_min(map); /* hint */
663
664 /*
665 * allocate some virtual space. will be demand filled
666 * by kernel_object.
667 */
668
669 if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
670 prefer, 0, UVM_MAPFLAG(UVM_PROT_ALL,
671 UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
672 == 0)) {
673 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
674 return(kva);
675 }
676
677 /*
678 * failed. sleep for a while (on map)
679 */
680
681 UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
682 tsleep((caddr_t)map, PVM, "vallocwait", 0);
683 }
684 /*NOTREACHED*/
685 }
686
687 vaddr_t
688 uvm_km_valloc_wait(map, size)
689 struct vm_map *map;
690 vsize_t size;
691 {
692 return uvm_km_valloc_prefer_wait(map, size, UVM_UNKNOWN_OFFSET);
693 }
694
695 /* Sanity; must specify both or none. */
696 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
697 (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
698 #error Must specify MAP and UNMAP together.
699 #endif
700
701 /*
702 * uvm_km_alloc_poolpage: allocate a page for the pool allocator
703 *
704 * => if the pmap specifies an alternate mapping method, we use it.
705 */
706
707 /* ARGSUSED */
708 vaddr_t
709 uvm_km_alloc_poolpage1(map, obj, waitok)
710 struct vm_map *map;
711 struct uvm_object *obj;
712 boolean_t waitok;
713 {
714 #if defined(PMAP_MAP_POOLPAGE)
715 struct vm_page *pg;
716 vaddr_t va;
717
718 again:
719 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
720 if (__predict_false(pg == NULL)) {
721 if (waitok) {
722 uvm_wait("plpg");
723 goto again;
724 } else
725 return (0);
726 }
727 va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
728 if (__predict_false(va == 0))
729 uvm_pagefree(pg);
730 return (va);
731 #else
732 vaddr_t va;
733 int s;
734
735 /*
736 * NOTE: We may be called with a map that doens't require splvm
737 * protection (e.g. kernel_map). However, it does not hurt to
738 * go to splvm in this case (since unprocted maps will never be
739 * accessed in interrupt context).
740 *
741 * XXX We may want to consider changing the interface to this
742 * XXX function.
743 */
744
745 s = splvm();
746 va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
747 splx(s);
748 return (va);
749 #endif /* PMAP_MAP_POOLPAGE */
750 }
751
752 /*
753 * uvm_km_free_poolpage: free a previously allocated pool page
754 *
755 * => if the pmap specifies an alternate unmapping method, we use it.
756 */
757
758 /* ARGSUSED */
759 void
760 uvm_km_free_poolpage1(map, addr)
761 struct vm_map *map;
762 vaddr_t addr;
763 {
764 #if defined(PMAP_UNMAP_POOLPAGE)
765 paddr_t pa;
766
767 pa = PMAP_UNMAP_POOLPAGE(addr);
768 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
769 #else
770 int s;
771
772 /*
773 * NOTE: We may be called with a map that doens't require splvm
774 * protection (e.g. kernel_map). However, it does not hurt to
775 * go to splvm in this case (since unprocted maps will never be
776 * accessed in interrupt context).
777 *
778 * XXX We may want to consider changing the interface to this
779 * XXX function.
780 */
781
782 s = splvm();
783 uvm_km_free(map, addr, PAGE_SIZE);
784 splx(s);
785 #endif /* PMAP_UNMAP_POOLPAGE */
786 }
787