Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.61
      1 /*	$NetBSD: uvm_km.c,v 1.61 2003/05/08 18:13:28 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     42  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_km.c: handle kernel memory allocation and management
     71  */
     72 
     73 /*
     74  * overview of kernel memory management:
     75  *
     76  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     77  * starts at virtual_avail and goes to virtual_end.  note that virtual_avail
     78  * is equal to vm_map_min(kernel_map).
     79  *
     80  * the kernel_map has several "submaps."   submaps can only appear in
     81  * the kernel_map (user processes can't use them).   submaps "take over"
     82  * the management of a sub-range of the kernel's address space.  submaps
     83  * are typically allocated at boot time and are never released.   kernel
     84  * virtual address space that is mapped by a submap is locked by the
     85  * submap's lock -- not the kernel_map's lock.
     86  *
     87  * thus, the useful feature of submaps is that they allow us to break
     88  * up the locking and protection of the kernel address space into smaller
     89  * chunks.
     90  *
     91  * the vm system has several standard kernel submaps, including:
     92  *   kmem_map => contains only wired kernel memory for the kernel
     93  *		malloc.   *** access to kmem_map must be protected
     94  *		by splvm() because we are allowed to call malloc()
     95  *		at interrupt time ***
     96  *   mb_map => memory for large mbufs,  *** protected by splvm ***
     97  *   pager_map => used to map "buf" structures into kernel space
     98  *   exec_map => used during exec to handle exec args
     99  *   etc...
    100  *
    101  * the kernel allocates its private memory out of special uvm_objects whose
    102  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
    103  * are "special" and never die).   all kernel objects should be thought of
    104  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
    105  * object is equal to the size of managed kernel virtual address space (i.e.
    106  * the value "virtual_end - virtual_avail").
    107  *
    108  * most kernel private memory lives in kernel_object.   the only exception
    109  * to this is for memory that belongs to submaps that must be protected
    110  * by splvm().  pages in these submaps are not assigned to an object.
    111  *
    112  * note that just because a kernel object spans the entire kernel virutal
    113  * address space doesn't mean that it has to be mapped into the entire space.
    114  * large chunks of a kernel object's space go unused either because
    115  * that area of kernel VM is unmapped, or there is some other type of
    116  * object mapped into that range (e.g. a vnode).    for submap's kernel
    117  * objects, the only part of the object that can ever be populated is the
    118  * offsets that are managed by the submap.
    119  *
    120  * note that the "offset" in a kernel object is always the kernel virtual
    121  * address minus virtual_avail (aka vm_map_min(kernel_map)).
    122  * example:
    123  *   suppose virtual_avail is 0xf8000000 and the kernel does a
    124  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    125  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    126  *   then that means that the page at offset 0x235000 in kernel_object is
    127  *   mapped at 0xf8235000.
    128  *
    129  * kernel object have one other special property: when the kernel virtual
    130  * memory mapping them is unmapped, the backing memory in the object is
    131  * freed right away.   this is done with the uvm_km_pgremove() function.
    132  * this has to be done because there is no backing store for kernel pages
    133  * and no need to save them after they are no longer referenced.
    134  */
    135 
    136 #include <sys/cdefs.h>
    137 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.61 2003/05/08 18:13:28 thorpej Exp $");
    138 
    139 #include "opt_uvmhist.h"
    140 
    141 #include <sys/param.h>
    142 #include <sys/systm.h>
    143 #include <sys/proc.h>
    144 
    145 #include <uvm/uvm.h>
    146 
    147 /*
    148  * global data structures
    149  */
    150 
    151 vaddr_t virtual_avail;		/* start of managed kernel virtual memory */
    152 vaddr_t virtual_end;		/* end of managed kernel virtual memory */
    153 
    154 struct vm_map *kernel_map = NULL;
    155 
    156 /*
    157  * local data structues
    158  */
    159 
    160 static struct vm_map		kernel_map_store;
    161 
    162 /*
    163  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
    164  * KVM already allocated for text, data, bss, and static data structures).
    165  *
    166  * => KVM is defined by virtual_avail/virtual_end.
    167  *    we assume that any regions that have already been allocated from
    168  *    the total kernel address space have already been accounted for in
    169  *    the values of virtual_avail and virtual_end.
    170  */
    171 
    172 void
    173 uvm_km_init(void)
    174 {
    175 
    176 	/*
    177 	 * virtual_avail and virtual_end should already be page-aligned.
    178 	 */
    179 
    180 	KASSERT((virtual_avail & PAGE_MASK) == 0);
    181 	KASSERT((virtual_end & PAGE_MASK) == 0);
    182 
    183 	/*
    184 	 * next, init kernel memory objects.
    185 	 */
    186 
    187 	/* kernel_object: for pageable anonymous kernel memory */
    188 	uao_init();
    189 	uvm.kernel_object = uao_create(virtual_end - virtual_avail,
    190 				       UAO_FLAG_KERNOBJ);
    191 
    192 	/*
    193 	 * init the map and reserve any space that might already
    194 	 * have been allocated kernel space before installing.
    195 	 */
    196 
    197 	uvm_map_setup(&kernel_map_store, virtual_avail, virtual_end,
    198 		      VM_MAP_PAGEABLE);
    199 	kernel_map_store.pmap = pmap_kernel();
    200 
    201 	/*
    202 	 * install!
    203 	 */
    204 
    205 	kernel_map = &kernel_map_store;
    206 }
    207 
    208 /*
    209  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    210  * is allocated all references to that area of VM must go through it.  this
    211  * allows the locking of VAs in kernel_map to be broken up into regions.
    212  *
    213  * => if `fixed' is true, *min specifies where the region described
    214  *      by the submap must start
    215  * => if submap is non NULL we use that as the submap, otherwise we
    216  *	alloc a new map
    217  */
    218 struct vm_map *
    219 uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
    220 	struct vm_map *map;
    221 	vaddr_t *min, *max;		/* IN/OUT, OUT */
    222 	vsize_t size;
    223 	int flags;
    224 	boolean_t fixed;
    225 	struct vm_map *submap;
    226 {
    227 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    228 
    229 	size = round_page(size);	/* round up to pagesize */
    230 
    231 	/*
    232 	 * first allocate a blank spot in the parent map
    233 	 */
    234 
    235 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
    236 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    237 	    UVM_ADV_RANDOM, mapflags)) != 0) {
    238 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
    239 	}
    240 
    241 	/*
    242 	 * set VM bounds (min is filled in by uvm_map)
    243 	 */
    244 
    245 	*max = *min + size;
    246 
    247 	/*
    248 	 * add references to pmap and create or init the submap
    249 	 */
    250 
    251 	pmap_reference(vm_map_pmap(map));
    252 	if (submap == NULL) {
    253 		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
    254 		if (submap == NULL)
    255 			panic("uvm_km_suballoc: unable to create submap");
    256 	} else {
    257 		uvm_map_setup(submap, *min, *max, flags);
    258 		submap->pmap = vm_map_pmap(map);
    259 	}
    260 
    261 	/*
    262 	 * now let uvm_map_submap plug in it...
    263 	 */
    264 
    265 	if (uvm_map_submap(map, *min, *max, submap) != 0)
    266 		panic("uvm_km_suballoc: submap allocation failed");
    267 
    268 	return(submap);
    269 }
    270 
    271 /*
    272  * uvm_km_pgremove: remove pages from a kernel uvm_object.
    273  *
    274  * => when you unmap a part of anonymous kernel memory you want to toss
    275  *    the pages right away.    (this gets called from uvm_unmap_...).
    276  */
    277 
    278 void
    279 uvm_km_pgremove(uobj, start, end)
    280 	struct uvm_object *uobj;
    281 	vaddr_t start, end;
    282 {
    283 	struct vm_page *pg;
    284 	voff_t curoff, nextoff;
    285 	int swpgonlydelta = 0;
    286 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
    287 
    288 	KASSERT(uobj->pgops == &aobj_pager);
    289 	simple_lock(&uobj->vmobjlock);
    290 
    291 	for (curoff = start; curoff < end; curoff = nextoff) {
    292 		nextoff = curoff + PAGE_SIZE;
    293 		pg = uvm_pagelookup(uobj, curoff);
    294 		if (pg != NULL && pg->flags & PG_BUSY) {
    295 			pg->flags |= PG_WANTED;
    296 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
    297 				    "km_pgrm", 0);
    298 			simple_lock(&uobj->vmobjlock);
    299 			nextoff = curoff;
    300 			continue;
    301 		}
    302 
    303 		/*
    304 		 * free the swap slot, then the page.
    305 		 */
    306 
    307 		if (pg == NULL &&
    308 		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) != 0) {
    309 			swpgonlydelta++;
    310 		}
    311 		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
    312 		if (pg != NULL) {
    313 			uvm_lock_pageq();
    314 			uvm_pagefree(pg);
    315 			uvm_unlock_pageq();
    316 		}
    317 	}
    318 	simple_unlock(&uobj->vmobjlock);
    319 
    320 	if (swpgonlydelta > 0) {
    321 		simple_lock(&uvm.swap_data_lock);
    322 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
    323 		uvmexp.swpgonly -= swpgonlydelta;
    324 		simple_unlock(&uvm.swap_data_lock);
    325 	}
    326 }
    327 
    328 
    329 /*
    330  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
    331  *    maps
    332  *
    333  * => when you unmap a part of anonymous kernel memory you want to toss
    334  *    the pages right away.    (this is called from uvm_unmap_...).
    335  * => none of the pages will ever be busy, and none of them will ever
    336  *    be on the active or inactive queues (because they have no object).
    337  */
    338 
    339 void
    340 uvm_km_pgremove_intrsafe(start, end)
    341 	vaddr_t start, end;
    342 {
    343 	struct vm_page *pg;
    344 	paddr_t pa;
    345 	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
    346 
    347 	for (; start < end; start += PAGE_SIZE) {
    348 		if (!pmap_extract(pmap_kernel(), start, &pa)) {
    349 			continue;
    350 		}
    351 		pg = PHYS_TO_VM_PAGE(pa);
    352 		KASSERT(pg);
    353 		KASSERT(pg->uobject == NULL && pg->uanon == NULL);
    354 		uvm_pagefree(pg);
    355 	}
    356 }
    357 
    358 
    359 /*
    360  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
    361  *
    362  * => we map wired memory into the specified map using the obj passed in
    363  * => NOTE: we can return NULL even if we can wait if there is not enough
    364  *	free VM space in the map... caller should be prepared to handle
    365  *	this case.
    366  * => we return KVA of memory allocated
    367  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
    368  *	lock the map
    369  */
    370 
    371 vaddr_t
    372 uvm_km_kmemalloc(map, obj, size, flags)
    373 	struct vm_map *map;
    374 	struct uvm_object *obj;
    375 	vsize_t size;
    376 	int flags;
    377 {
    378 	vaddr_t kva, loopva;
    379 	vaddr_t offset;
    380 	vsize_t loopsize;
    381 	struct vm_page *pg;
    382 	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
    383 
    384 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
    385 		    map, obj, size, flags);
    386 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    387 
    388 	/*
    389 	 * setup for call
    390 	 */
    391 
    392 	size = round_page(size);
    393 	kva = vm_map_min(map);	/* hint */
    394 
    395 	/*
    396 	 * allocate some virtual space
    397 	 */
    398 
    399 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    400 	      0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    401 			  UVM_ADV_RANDOM,
    402 			  (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT))))
    403 			!= 0)) {
    404 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    405 		return(0);
    406 	}
    407 
    408 	/*
    409 	 * if all we wanted was VA, return now
    410 	 */
    411 
    412 	if (flags & UVM_KMF_VALLOC) {
    413 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
    414 		return(kva);
    415 	}
    416 
    417 	/*
    418 	 * recover object offset from virtual address
    419 	 */
    420 
    421 	offset = kva - vm_map_min(kernel_map);
    422 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
    423 
    424 	/*
    425 	 * now allocate and map in the memory... note that we are the only ones
    426 	 * whom should ever get a handle on this area of VM.
    427 	 */
    428 
    429 	loopva = kva;
    430 	loopsize = size;
    431 	while (loopsize) {
    432 		if (obj) {
    433 			simple_lock(&obj->vmobjlock);
    434 		}
    435 		pg = uvm_pagealloc(obj, offset, NULL, UVM_PGA_USERESERVE);
    436 		if (__predict_true(pg != NULL)) {
    437 			pg->flags &= ~PG_BUSY;	/* new page */
    438 			UVM_PAGE_OWN(pg, NULL);
    439 		}
    440 		if (obj) {
    441 			simple_unlock(&obj->vmobjlock);
    442 		}
    443 
    444 		/*
    445 		 * out of memory?
    446 		 */
    447 
    448 		if (__predict_false(pg == NULL)) {
    449 			if ((flags & UVM_KMF_NOWAIT) ||
    450 			    ((flags & UVM_KMF_CANFAIL) &&
    451 			     uvmexp.swpgonly == uvmexp.swpages)) {
    452 				/* free everything! */
    453 				uvm_unmap(map, kva, kva + size);
    454 				return (0);
    455 			} else {
    456 				uvm_wait("km_getwait2");	/* sleep here */
    457 				continue;
    458 			}
    459 		}
    460 
    461 		/*
    462 		 * map it in
    463 		 */
    464 
    465 		if (obj == NULL) {
    466 			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    467 			    VM_PROT_READ | VM_PROT_WRITE);
    468 		} else {
    469 			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    470 			    UVM_PROT_ALL,
    471 			    PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
    472 		}
    473 		loopva += PAGE_SIZE;
    474 		offset += PAGE_SIZE;
    475 		loopsize -= PAGE_SIZE;
    476 	}
    477 
    478        	pmap_update(pmap_kernel());
    479 
    480 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    481 	return(kva);
    482 }
    483 
    484 /*
    485  * uvm_km_free: free an area of kernel memory
    486  */
    487 
    488 void
    489 uvm_km_free(map, addr, size)
    490 	struct vm_map *map;
    491 	vaddr_t addr;
    492 	vsize_t size;
    493 {
    494 	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
    495 }
    496 
    497 /*
    498  * uvm_km_free_wakeup: free an area of kernel memory and wake up
    499  * anyone waiting for vm space.
    500  *
    501  * => XXX: "wanted" bit + unlock&wait on other end?
    502  */
    503 
    504 void
    505 uvm_km_free_wakeup(map, addr, size)
    506 	struct vm_map *map;
    507 	vaddr_t addr;
    508 	vsize_t size;
    509 {
    510 	struct vm_map_entry *dead_entries;
    511 
    512 	vm_map_lock(map);
    513 	uvm_unmap_remove(map, trunc_page(addr), round_page(addr + size),
    514 	    &dead_entries);
    515 	wakeup(map);
    516 	vm_map_unlock(map);
    517 	if (dead_entries != NULL)
    518 		uvm_unmap_detach(dead_entries, 0);
    519 }
    520 
    521 /*
    522  * uvm_km_alloc1: allocate wired down memory in the kernel map.
    523  *
    524  * => we can sleep if needed
    525  */
    526 
    527 vaddr_t
    528 uvm_km_alloc1(map, size, zeroit)
    529 	struct vm_map *map;
    530 	vsize_t size;
    531 	boolean_t zeroit;
    532 {
    533 	vaddr_t kva, loopva, offset;
    534 	struct vm_page *pg;
    535 	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
    536 
    537 	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
    538 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    539 
    540 	size = round_page(size);
    541 	kva = vm_map_min(map);		/* hint */
    542 
    543 	/*
    544 	 * allocate some virtual space
    545 	 */
    546 
    547 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
    548 	      UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    549 					      UVM_INH_NONE, UVM_ADV_RANDOM,
    550 					      0)) != 0)) {
    551 		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
    552 		return(0);
    553 	}
    554 
    555 	/*
    556 	 * recover object offset from virtual address
    557 	 */
    558 
    559 	offset = kva - vm_map_min(kernel_map);
    560 	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
    561 
    562 	/*
    563 	 * now allocate the memory.
    564 	 */
    565 
    566 	loopva = kva;
    567 	while (size) {
    568 		simple_lock(&uvm.kernel_object->vmobjlock);
    569 		KASSERT(uvm_pagelookup(uvm.kernel_object, offset) == NULL);
    570 		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
    571 		if (pg) {
    572 			pg->flags &= ~PG_BUSY;
    573 			UVM_PAGE_OWN(pg, NULL);
    574 		}
    575 		simple_unlock(&uvm.kernel_object->vmobjlock);
    576 		if (pg == NULL) {
    577 			uvm_wait("km_alloc1w");
    578 			continue;
    579 		}
    580 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    581 		    UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
    582 		loopva += PAGE_SIZE;
    583 		offset += PAGE_SIZE;
    584 		size -= PAGE_SIZE;
    585 	}
    586 	pmap_update(map->pmap);
    587 
    588 	/*
    589 	 * zero on request (note that "size" is now zero due to the above loop
    590 	 * so we need to subtract kva from loopva to reconstruct the size).
    591 	 */
    592 
    593 	if (zeroit)
    594 		memset((caddr_t)kva, 0, loopva - kva);
    595 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    596 	return(kva);
    597 }
    598 
    599 /*
    600  * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
    601  *
    602  * => memory is not allocated until fault time
    603  */
    604 
    605 vaddr_t
    606 uvm_km_valloc(map, size)
    607 	struct vm_map *map;
    608 	vsize_t size;
    609 {
    610 	return(uvm_km_valloc_align(map, size, 0));
    611 }
    612 
    613 vaddr_t
    614 uvm_km_valloc_align(map, size, align)
    615 	struct vm_map *map;
    616 	vsize_t size;
    617 	vsize_t align;
    618 {
    619 	vaddr_t kva;
    620 	UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
    621 
    622 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    623 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    624 
    625 	size = round_page(size);
    626 	kva = vm_map_min(map);		/* hint */
    627 
    628 	/*
    629 	 * allocate some virtual space.  will be demand filled by kernel_object.
    630 	 */
    631 
    632 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
    633 	    UVM_UNKNOWN_OFFSET, align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    634 					    UVM_INH_NONE, UVM_ADV_RANDOM,
    635 					    0)) != 0)) {
    636 		UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
    637 		return(0);
    638 	}
    639 
    640 	UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
    641 	return(kva);
    642 }
    643 
    644 /*
    645  * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
    646  *
    647  * => memory is not allocated until fault time
    648  * => if no room in map, wait for space to free, unless requested size
    649  *    is larger than map (in which case we return 0)
    650  */
    651 
    652 vaddr_t
    653 uvm_km_valloc_prefer_wait(map, size, prefer)
    654 	struct vm_map *map;
    655 	vsize_t size;
    656 	voff_t prefer;
    657 {
    658 	vaddr_t kva;
    659 	UVMHIST_FUNC("uvm_km_valloc_prefer_wait"); UVMHIST_CALLED(maphist);
    660 
    661 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    662 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    663 
    664 	size = round_page(size);
    665 	if (size > vm_map_max(map) - vm_map_min(map))
    666 		return(0);
    667 
    668 	for (;;) {
    669 		kva = vm_map_min(map);		/* hint */
    670 
    671 		/*
    672 		 * allocate some virtual space.   will be demand filled
    673 		 * by kernel_object.
    674 		 */
    675 
    676 		if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
    677 		    prefer, 0, UVM_MAPFLAG(UVM_PROT_ALL,
    678 		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
    679 		    == 0)) {
    680 			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    681 			return(kva);
    682 		}
    683 
    684 		/*
    685 		 * failed.  sleep for a while (on map)
    686 		 */
    687 
    688 		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
    689 		tsleep((caddr_t)map, PVM, "vallocwait", 0);
    690 	}
    691 	/*NOTREACHED*/
    692 }
    693 
    694 vaddr_t
    695 uvm_km_valloc_wait(map, size)
    696 	struct vm_map *map;
    697 	vsize_t size;
    698 {
    699 	return uvm_km_valloc_prefer_wait(map, size, UVM_UNKNOWN_OFFSET);
    700 }
    701 
    702 /* Sanity; must specify both or none. */
    703 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    704     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    705 #error Must specify MAP and UNMAP together.
    706 #endif
    707 
    708 /*
    709  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
    710  *
    711  * => if the pmap specifies an alternate mapping method, we use it.
    712  */
    713 
    714 /* ARGSUSED */
    715 vaddr_t
    716 uvm_km_alloc_poolpage1(map, obj, waitok)
    717 	struct vm_map *map;
    718 	struct uvm_object *obj;
    719 	boolean_t waitok;
    720 {
    721 #if defined(PMAP_MAP_POOLPAGE)
    722 	struct vm_page *pg;
    723 	vaddr_t va;
    724 
    725  again:
    726 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    727 	if (__predict_false(pg == NULL)) {
    728 		if (waitok) {
    729 			uvm_wait("plpg");
    730 			goto again;
    731 		} else
    732 			return (0);
    733 	}
    734 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    735 	if (__predict_false(va == 0))
    736 		uvm_pagefree(pg);
    737 	return (va);
    738 #else
    739 	vaddr_t va;
    740 	int s;
    741 
    742 	/*
    743 	 * NOTE: We may be called with a map that doens't require splvm
    744 	 * protection (e.g. kernel_map).  However, it does not hurt to
    745 	 * go to splvm in this case (since unprocted maps will never be
    746 	 * accessed in interrupt context).
    747 	 *
    748 	 * XXX We may want to consider changing the interface to this
    749 	 * XXX function.
    750 	 */
    751 
    752 	s = splvm();
    753 	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE,
    754 	    waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK);
    755 	splx(s);
    756 	return (va);
    757 #endif /* PMAP_MAP_POOLPAGE */
    758 }
    759 
    760 /*
    761  * uvm_km_free_poolpage: free a previously allocated pool page
    762  *
    763  * => if the pmap specifies an alternate unmapping method, we use it.
    764  */
    765 
    766 /* ARGSUSED */
    767 void
    768 uvm_km_free_poolpage1(map, addr)
    769 	struct vm_map *map;
    770 	vaddr_t addr;
    771 {
    772 #if defined(PMAP_UNMAP_POOLPAGE)
    773 	paddr_t pa;
    774 
    775 	pa = PMAP_UNMAP_POOLPAGE(addr);
    776 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    777 #else
    778 	int s;
    779 
    780 	/*
    781 	 * NOTE: We may be called with a map that doens't require splvm
    782 	 * protection (e.g. kernel_map).  However, it does not hurt to
    783 	 * go to splvm in this case (since unprocted maps will never be
    784 	 * accessed in interrupt context).
    785 	 *
    786 	 * XXX We may want to consider changing the interface to this
    787 	 * XXX function.
    788 	 */
    789 
    790 	s = splvm();
    791 	uvm_km_free(map, addr, PAGE_SIZE);
    792 	splx(s);
    793 #endif /* PMAP_UNMAP_POOLPAGE */
    794 }
    795