uvm_km.c revision 1.62 1 /* $NetBSD: uvm_km.c,v 1.62 2003/05/10 21:10:23 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
42 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_km.c: handle kernel memory allocation and management
71 */
72
73 /*
74 * overview of kernel memory management:
75 *
76 * the kernel virtual address space is mapped by "kernel_map." kernel_map
77 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
78 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
79 *
80 * the kernel_map has several "submaps." submaps can only appear in
81 * the kernel_map (user processes can't use them). submaps "take over"
82 * the management of a sub-range of the kernel's address space. submaps
83 * are typically allocated at boot time and are never released. kernel
84 * virtual address space that is mapped by a submap is locked by the
85 * submap's lock -- not the kernel_map's lock.
86 *
87 * thus, the useful feature of submaps is that they allow us to break
88 * up the locking and protection of the kernel address space into smaller
89 * chunks.
90 *
91 * the vm system has several standard kernel submaps, including:
92 * kmem_map => contains only wired kernel memory for the kernel
93 * malloc. *** access to kmem_map must be protected
94 * by splvm() because we are allowed to call malloc()
95 * at interrupt time ***
96 * mb_map => memory for large mbufs, *** protected by splvm ***
97 * pager_map => used to map "buf" structures into kernel space
98 * exec_map => used during exec to handle exec args
99 * etc...
100 *
101 * the kernel allocates its private memory out of special uvm_objects whose
102 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
103 * are "special" and never die). all kernel objects should be thought of
104 * as large, fixed-sized, sparsely populated uvm_objects. each kernel
105 * object is equal to the size of kernel virtual address space (i.e. the
106 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
107 *
108 * most kernel private memory lives in kernel_object. the only exception
109 * to this is for memory that belongs to submaps that must be protected
110 * by splvm(). pages in these submaps are not assigned to an object.
111 *
112 * note that just because a kernel object spans the entire kernel virutal
113 * address space doesn't mean that it has to be mapped into the entire space.
114 * large chunks of a kernel object's space go unused either because
115 * that area of kernel VM is unmapped, or there is some other type of
116 * object mapped into that range (e.g. a vnode). for submap's kernel
117 * objects, the only part of the object that can ever be populated is the
118 * offsets that are managed by the submap.
119 *
120 * note that the "offset" in a kernel object is always the kernel virtual
121 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
122 * example:
123 * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
124 * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
125 * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
126 * then that means that the page at offset 0x235000 in kernel_object is
127 * mapped at 0xf8235000.
128 *
129 * kernel object have one other special property: when the kernel virtual
130 * memory mapping them is unmapped, the backing memory in the object is
131 * freed right away. this is done with the uvm_km_pgremove() function.
132 * this has to be done because there is no backing store for kernel pages
133 * and no need to save them after they are no longer referenced.
134 */
135
136 #include <sys/cdefs.h>
137 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.62 2003/05/10 21:10:23 thorpej Exp $");
138
139 #include "opt_uvmhist.h"
140
141 #include <sys/param.h>
142 #include <sys/systm.h>
143 #include <sys/proc.h>
144
145 #include <uvm/uvm.h>
146
147 /*
148 * global data structures
149 */
150
151 struct vm_map *kernel_map = NULL;
152
153 /*
154 * local data structues
155 */
156
157 static struct vm_map kernel_map_store;
158
159 /*
160 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
161 * KVM already allocated for text, data, bss, and static data structures).
162 *
163 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
164 * we assume that [min -> start] has already been allocated and that
165 * "end" is the end.
166 */
167
168 void
169 uvm_km_init(start, end)
170 vaddr_t start, end;
171 {
172 vaddr_t base = VM_MIN_KERNEL_ADDRESS;
173
174 /*
175 * next, init kernel memory objects.
176 */
177
178 /* kernel_object: for pageable anonymous kernel memory */
179 uao_init();
180 uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
181 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
182
183 /*
184 * init the map and reserve any space that might already
185 * have been allocated kernel space before installing.
186 */
187
188 uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
189 kernel_map_store.pmap = pmap_kernel();
190 if (start != base &&
191 uvm_map(&kernel_map_store, &base, start - base, NULL,
192 UVM_UNKNOWN_OFFSET, 0,
193 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
194 UVM_ADV_RANDOM, UVM_FLAG_FIXED)) != 0)
195 panic("uvm_km_init: could not reserve space for kernel");
196
197 /*
198 * install!
199 */
200
201 kernel_map = &kernel_map_store;
202 }
203
204 /*
205 * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
206 * is allocated all references to that area of VM must go through it. this
207 * allows the locking of VAs in kernel_map to be broken up into regions.
208 *
209 * => if `fixed' is true, *min specifies where the region described
210 * by the submap must start
211 * => if submap is non NULL we use that as the submap, otherwise we
212 * alloc a new map
213 */
214 struct vm_map *
215 uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
216 struct vm_map *map;
217 vaddr_t *min, *max; /* IN/OUT, OUT */
218 vsize_t size;
219 int flags;
220 boolean_t fixed;
221 struct vm_map *submap;
222 {
223 int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
224
225 size = round_page(size); /* round up to pagesize */
226
227 /*
228 * first allocate a blank spot in the parent map
229 */
230
231 if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
232 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
233 UVM_ADV_RANDOM, mapflags)) != 0) {
234 panic("uvm_km_suballoc: unable to allocate space in parent map");
235 }
236
237 /*
238 * set VM bounds (min is filled in by uvm_map)
239 */
240
241 *max = *min + size;
242
243 /*
244 * add references to pmap and create or init the submap
245 */
246
247 pmap_reference(vm_map_pmap(map));
248 if (submap == NULL) {
249 submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
250 if (submap == NULL)
251 panic("uvm_km_suballoc: unable to create submap");
252 } else {
253 uvm_map_setup(submap, *min, *max, flags);
254 submap->pmap = vm_map_pmap(map);
255 }
256
257 /*
258 * now let uvm_map_submap plug in it...
259 */
260
261 if (uvm_map_submap(map, *min, *max, submap) != 0)
262 panic("uvm_km_suballoc: submap allocation failed");
263
264 return(submap);
265 }
266
267 /*
268 * uvm_km_pgremove: remove pages from a kernel uvm_object.
269 *
270 * => when you unmap a part of anonymous kernel memory you want to toss
271 * the pages right away. (this gets called from uvm_unmap_...).
272 */
273
274 void
275 uvm_km_pgremove(uobj, start, end)
276 struct uvm_object *uobj;
277 vaddr_t start, end;
278 {
279 struct vm_page *pg;
280 voff_t curoff, nextoff;
281 int swpgonlydelta = 0;
282 UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
283
284 KASSERT(uobj->pgops == &aobj_pager);
285 simple_lock(&uobj->vmobjlock);
286
287 for (curoff = start; curoff < end; curoff = nextoff) {
288 nextoff = curoff + PAGE_SIZE;
289 pg = uvm_pagelookup(uobj, curoff);
290 if (pg != NULL && pg->flags & PG_BUSY) {
291 pg->flags |= PG_WANTED;
292 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
293 "km_pgrm", 0);
294 simple_lock(&uobj->vmobjlock);
295 nextoff = curoff;
296 continue;
297 }
298
299 /*
300 * free the swap slot, then the page.
301 */
302
303 if (pg == NULL &&
304 uao_find_swslot(uobj, curoff >> PAGE_SHIFT) != 0) {
305 swpgonlydelta++;
306 }
307 uao_dropswap(uobj, curoff >> PAGE_SHIFT);
308 if (pg != NULL) {
309 uvm_lock_pageq();
310 uvm_pagefree(pg);
311 uvm_unlock_pageq();
312 }
313 }
314 simple_unlock(&uobj->vmobjlock);
315
316 if (swpgonlydelta > 0) {
317 simple_lock(&uvm.swap_data_lock);
318 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
319 uvmexp.swpgonly -= swpgonlydelta;
320 simple_unlock(&uvm.swap_data_lock);
321 }
322 }
323
324
325 /*
326 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
327 * maps
328 *
329 * => when you unmap a part of anonymous kernel memory you want to toss
330 * the pages right away. (this is called from uvm_unmap_...).
331 * => none of the pages will ever be busy, and none of them will ever
332 * be on the active or inactive queues (because they have no object).
333 */
334
335 void
336 uvm_km_pgremove_intrsafe(start, end)
337 vaddr_t start, end;
338 {
339 struct vm_page *pg;
340 paddr_t pa;
341 UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
342
343 for (; start < end; start += PAGE_SIZE) {
344 if (!pmap_extract(pmap_kernel(), start, &pa)) {
345 continue;
346 }
347 pg = PHYS_TO_VM_PAGE(pa);
348 KASSERT(pg);
349 KASSERT(pg->uobject == NULL && pg->uanon == NULL);
350 uvm_pagefree(pg);
351 }
352 }
353
354
355 /*
356 * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
357 *
358 * => we map wired memory into the specified map using the obj passed in
359 * => NOTE: we can return NULL even if we can wait if there is not enough
360 * free VM space in the map... caller should be prepared to handle
361 * this case.
362 * => we return KVA of memory allocated
363 * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
364 * lock the map
365 */
366
367 vaddr_t
368 uvm_km_kmemalloc(map, obj, size, flags)
369 struct vm_map *map;
370 struct uvm_object *obj;
371 vsize_t size;
372 int flags;
373 {
374 vaddr_t kva, loopva;
375 vaddr_t offset;
376 vsize_t loopsize;
377 struct vm_page *pg;
378 UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
379
380 UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
381 map, obj, size, flags);
382 KASSERT(vm_map_pmap(map) == pmap_kernel());
383
384 /*
385 * setup for call
386 */
387
388 size = round_page(size);
389 kva = vm_map_min(map); /* hint */
390
391 /*
392 * allocate some virtual space
393 */
394
395 if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
396 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
397 UVM_ADV_RANDOM,
398 (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT))))
399 != 0)) {
400 UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
401 return(0);
402 }
403
404 /*
405 * if all we wanted was VA, return now
406 */
407
408 if (flags & UVM_KMF_VALLOC) {
409 UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
410 return(kva);
411 }
412
413 /*
414 * recover object offset from virtual address
415 */
416
417 offset = kva - vm_map_min(kernel_map);
418 UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
419
420 /*
421 * now allocate and map in the memory... note that we are the only ones
422 * whom should ever get a handle on this area of VM.
423 */
424
425 loopva = kva;
426 loopsize = size;
427 while (loopsize) {
428 if (obj) {
429 simple_lock(&obj->vmobjlock);
430 }
431 pg = uvm_pagealloc(obj, offset, NULL, UVM_PGA_USERESERVE);
432 if (__predict_true(pg != NULL)) {
433 pg->flags &= ~PG_BUSY; /* new page */
434 UVM_PAGE_OWN(pg, NULL);
435 }
436 if (obj) {
437 simple_unlock(&obj->vmobjlock);
438 }
439
440 /*
441 * out of memory?
442 */
443
444 if (__predict_false(pg == NULL)) {
445 if ((flags & UVM_KMF_NOWAIT) ||
446 ((flags & UVM_KMF_CANFAIL) &&
447 uvmexp.swpgonly == uvmexp.swpages)) {
448 /* free everything! */
449 uvm_unmap(map, kva, kva + size);
450 return (0);
451 } else {
452 uvm_wait("km_getwait2"); /* sleep here */
453 continue;
454 }
455 }
456
457 /*
458 * map it in
459 */
460
461 if (obj == NULL) {
462 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
463 VM_PROT_READ | VM_PROT_WRITE);
464 } else {
465 pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
466 UVM_PROT_ALL,
467 PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
468 }
469 loopva += PAGE_SIZE;
470 offset += PAGE_SIZE;
471 loopsize -= PAGE_SIZE;
472 }
473
474 pmap_update(pmap_kernel());
475
476 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
477 return(kva);
478 }
479
480 /*
481 * uvm_km_free: free an area of kernel memory
482 */
483
484 void
485 uvm_km_free(map, addr, size)
486 struct vm_map *map;
487 vaddr_t addr;
488 vsize_t size;
489 {
490 uvm_unmap(map, trunc_page(addr), round_page(addr+size));
491 }
492
493 /*
494 * uvm_km_free_wakeup: free an area of kernel memory and wake up
495 * anyone waiting for vm space.
496 *
497 * => XXX: "wanted" bit + unlock&wait on other end?
498 */
499
500 void
501 uvm_km_free_wakeup(map, addr, size)
502 struct vm_map *map;
503 vaddr_t addr;
504 vsize_t size;
505 {
506 struct vm_map_entry *dead_entries;
507
508 vm_map_lock(map);
509 uvm_unmap_remove(map, trunc_page(addr), round_page(addr + size),
510 &dead_entries);
511 wakeup(map);
512 vm_map_unlock(map);
513 if (dead_entries != NULL)
514 uvm_unmap_detach(dead_entries, 0);
515 }
516
517 /*
518 * uvm_km_alloc1: allocate wired down memory in the kernel map.
519 *
520 * => we can sleep if needed
521 */
522
523 vaddr_t
524 uvm_km_alloc1(map, size, zeroit)
525 struct vm_map *map;
526 vsize_t size;
527 boolean_t zeroit;
528 {
529 vaddr_t kva, loopva, offset;
530 struct vm_page *pg;
531 UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
532
533 UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
534 KASSERT(vm_map_pmap(map) == pmap_kernel());
535
536 size = round_page(size);
537 kva = vm_map_min(map); /* hint */
538
539 /*
540 * allocate some virtual space
541 */
542
543 if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
544 UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
545 UVM_INH_NONE, UVM_ADV_RANDOM,
546 0)) != 0)) {
547 UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
548 return(0);
549 }
550
551 /*
552 * recover object offset from virtual address
553 */
554
555 offset = kva - vm_map_min(kernel_map);
556 UVMHIST_LOG(maphist," kva=0x%x, offset=0x%x", kva, offset,0,0);
557
558 /*
559 * now allocate the memory.
560 */
561
562 loopva = kva;
563 while (size) {
564 simple_lock(&uvm.kernel_object->vmobjlock);
565 KASSERT(uvm_pagelookup(uvm.kernel_object, offset) == NULL);
566 pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
567 if (pg) {
568 pg->flags &= ~PG_BUSY;
569 UVM_PAGE_OWN(pg, NULL);
570 }
571 simple_unlock(&uvm.kernel_object->vmobjlock);
572 if (pg == NULL) {
573 uvm_wait("km_alloc1w");
574 continue;
575 }
576 pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
577 UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
578 loopva += PAGE_SIZE;
579 offset += PAGE_SIZE;
580 size -= PAGE_SIZE;
581 }
582 pmap_update(map->pmap);
583
584 /*
585 * zero on request (note that "size" is now zero due to the above loop
586 * so we need to subtract kva from loopva to reconstruct the size).
587 */
588
589 if (zeroit)
590 memset((caddr_t)kva, 0, loopva - kva);
591 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
592 return(kva);
593 }
594
595 /*
596 * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
597 *
598 * => memory is not allocated until fault time
599 */
600
601 vaddr_t
602 uvm_km_valloc(map, size)
603 struct vm_map *map;
604 vsize_t size;
605 {
606 return(uvm_km_valloc_align(map, size, 0));
607 }
608
609 vaddr_t
610 uvm_km_valloc_align(map, size, align)
611 struct vm_map *map;
612 vsize_t size;
613 vsize_t align;
614 {
615 vaddr_t kva;
616 UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
617
618 UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
619 KASSERT(vm_map_pmap(map) == pmap_kernel());
620
621 size = round_page(size);
622 kva = vm_map_min(map); /* hint */
623
624 /*
625 * allocate some virtual space. will be demand filled by kernel_object.
626 */
627
628 if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
629 UVM_UNKNOWN_OFFSET, align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
630 UVM_INH_NONE, UVM_ADV_RANDOM,
631 0)) != 0)) {
632 UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
633 return(0);
634 }
635
636 UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
637 return(kva);
638 }
639
640 /*
641 * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
642 *
643 * => memory is not allocated until fault time
644 * => if no room in map, wait for space to free, unless requested size
645 * is larger than map (in which case we return 0)
646 */
647
648 vaddr_t
649 uvm_km_valloc_prefer_wait(map, size, prefer)
650 struct vm_map *map;
651 vsize_t size;
652 voff_t prefer;
653 {
654 vaddr_t kva;
655 UVMHIST_FUNC("uvm_km_valloc_prefer_wait"); UVMHIST_CALLED(maphist);
656
657 UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
658 KASSERT(vm_map_pmap(map) == pmap_kernel());
659
660 size = round_page(size);
661 if (size > vm_map_max(map) - vm_map_min(map))
662 return(0);
663
664 for (;;) {
665 kva = vm_map_min(map); /* hint */
666
667 /*
668 * allocate some virtual space. will be demand filled
669 * by kernel_object.
670 */
671
672 if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
673 prefer, 0, UVM_MAPFLAG(UVM_PROT_ALL,
674 UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
675 == 0)) {
676 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
677 return(kva);
678 }
679
680 /*
681 * failed. sleep for a while (on map)
682 */
683
684 UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
685 tsleep((caddr_t)map, PVM, "vallocwait", 0);
686 }
687 /*NOTREACHED*/
688 }
689
690 vaddr_t
691 uvm_km_valloc_wait(map, size)
692 struct vm_map *map;
693 vsize_t size;
694 {
695 return uvm_km_valloc_prefer_wait(map, size, UVM_UNKNOWN_OFFSET);
696 }
697
698 /* Sanity; must specify both or none. */
699 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
700 (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
701 #error Must specify MAP and UNMAP together.
702 #endif
703
704 /*
705 * uvm_km_alloc_poolpage: allocate a page for the pool allocator
706 *
707 * => if the pmap specifies an alternate mapping method, we use it.
708 */
709
710 /* ARGSUSED */
711 vaddr_t
712 uvm_km_alloc_poolpage1(map, obj, waitok)
713 struct vm_map *map;
714 struct uvm_object *obj;
715 boolean_t waitok;
716 {
717 #if defined(PMAP_MAP_POOLPAGE)
718 struct vm_page *pg;
719 vaddr_t va;
720
721 again:
722 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
723 if (__predict_false(pg == NULL)) {
724 if (waitok) {
725 uvm_wait("plpg");
726 goto again;
727 } else
728 return (0);
729 }
730 va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
731 if (__predict_false(va == 0))
732 uvm_pagefree(pg);
733 return (va);
734 #else
735 vaddr_t va;
736 int s;
737
738 /*
739 * NOTE: We may be called with a map that doens't require splvm
740 * protection (e.g. kernel_map). However, it does not hurt to
741 * go to splvm in this case (since unprocted maps will never be
742 * accessed in interrupt context).
743 *
744 * XXX We may want to consider changing the interface to this
745 * XXX function.
746 */
747
748 s = splvm();
749 va = uvm_km_kmemalloc(map, obj, PAGE_SIZE,
750 waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK);
751 splx(s);
752 return (va);
753 #endif /* PMAP_MAP_POOLPAGE */
754 }
755
756 /*
757 * uvm_km_free_poolpage: free a previously allocated pool page
758 *
759 * => if the pmap specifies an alternate unmapping method, we use it.
760 */
761
762 /* ARGSUSED */
763 void
764 uvm_km_free_poolpage1(map, addr)
765 struct vm_map *map;
766 vaddr_t addr;
767 {
768 #if defined(PMAP_UNMAP_POOLPAGE)
769 paddr_t pa;
770
771 pa = PMAP_UNMAP_POOLPAGE(addr);
772 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
773 #else
774 int s;
775
776 /*
777 * NOTE: We may be called with a map that doens't require splvm
778 * protection (e.g. kernel_map). However, it does not hurt to
779 * go to splvm in this case (since unprocted maps will never be
780 * accessed in interrupt context).
781 *
782 * XXX We may want to consider changing the interface to this
783 * XXX function.
784 */
785
786 s = splvm();
787 uvm_km_free(map, addr, PAGE_SIZE);
788 splx(s);
789 #endif /* PMAP_UNMAP_POOLPAGE */
790 }
791