Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.62
      1 /*	$NetBSD: uvm_km.c,v 1.62 2003/05/10 21:10:23 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     42  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_km.c: handle kernel memory allocation and management
     71  */
     72 
     73 /*
     74  * overview of kernel memory management:
     75  *
     76  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     77  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     78  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     79  *
     80  * the kernel_map has several "submaps."   submaps can only appear in
     81  * the kernel_map (user processes can't use them).   submaps "take over"
     82  * the management of a sub-range of the kernel's address space.  submaps
     83  * are typically allocated at boot time and are never released.   kernel
     84  * virtual address space that is mapped by a submap is locked by the
     85  * submap's lock -- not the kernel_map's lock.
     86  *
     87  * thus, the useful feature of submaps is that they allow us to break
     88  * up the locking and protection of the kernel address space into smaller
     89  * chunks.
     90  *
     91  * the vm system has several standard kernel submaps, including:
     92  *   kmem_map => contains only wired kernel memory for the kernel
     93  *		malloc.   *** access to kmem_map must be protected
     94  *		by splvm() because we are allowed to call malloc()
     95  *		at interrupt time ***
     96  *   mb_map => memory for large mbufs,  *** protected by splvm ***
     97  *   pager_map => used to map "buf" structures into kernel space
     98  *   exec_map => used during exec to handle exec args
     99  *   etc...
    100  *
    101  * the kernel allocates its private memory out of special uvm_objects whose
    102  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
    103  * are "special" and never die).   all kernel objects should be thought of
    104  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
    105  * object is equal to the size of kernel virtual address space (i.e. the
    106  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    107  *
    108  * most kernel private memory lives in kernel_object.   the only exception
    109  * to this is for memory that belongs to submaps that must be protected
    110  * by splvm().  pages in these submaps are not assigned to an object.
    111  *
    112  * note that just because a kernel object spans the entire kernel virutal
    113  * address space doesn't mean that it has to be mapped into the entire space.
    114  * large chunks of a kernel object's space go unused either because
    115  * that area of kernel VM is unmapped, or there is some other type of
    116  * object mapped into that range (e.g. a vnode).    for submap's kernel
    117  * objects, the only part of the object that can ever be populated is the
    118  * offsets that are managed by the submap.
    119  *
    120  * note that the "offset" in a kernel object is always the kernel virtual
    121  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    122  * example:
    123  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    124  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    125  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    126  *   then that means that the page at offset 0x235000 in kernel_object is
    127  *   mapped at 0xf8235000.
    128  *
    129  * kernel object have one other special property: when the kernel virtual
    130  * memory mapping them is unmapped, the backing memory in the object is
    131  * freed right away.   this is done with the uvm_km_pgremove() function.
    132  * this has to be done because there is no backing store for kernel pages
    133  * and no need to save them after they are no longer referenced.
    134  */
    135 
    136 #include <sys/cdefs.h>
    137 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.62 2003/05/10 21:10:23 thorpej Exp $");
    138 
    139 #include "opt_uvmhist.h"
    140 
    141 #include <sys/param.h>
    142 #include <sys/systm.h>
    143 #include <sys/proc.h>
    144 
    145 #include <uvm/uvm.h>
    146 
    147 /*
    148  * global data structures
    149  */
    150 
    151 struct vm_map *kernel_map = NULL;
    152 
    153 /*
    154  * local data structues
    155  */
    156 
    157 static struct vm_map		kernel_map_store;
    158 
    159 /*
    160  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
    161  * KVM already allocated for text, data, bss, and static data structures).
    162  *
    163  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    164  *    we assume that [min -> start] has already been allocated and that
    165  *    "end" is the end.
    166  */
    167 
    168 void
    169 uvm_km_init(start, end)
    170 	vaddr_t start, end;
    171 {
    172 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    173 
    174 	/*
    175 	 * next, init kernel memory objects.
    176 	 */
    177 
    178 	/* kernel_object: for pageable anonymous kernel memory */
    179 	uao_init();
    180 	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    181 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    182 
    183 	/*
    184 	 * init the map and reserve any space that might already
    185 	 * have been allocated kernel space before installing.
    186 	 */
    187 
    188 	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
    189 	kernel_map_store.pmap = pmap_kernel();
    190 	if (start != base &&
    191 	    uvm_map(&kernel_map_store, &base, start - base, NULL,
    192 		    UVM_UNKNOWN_OFFSET, 0,
    193 		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    194 		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED)) != 0)
    195 		panic("uvm_km_init: could not reserve space for kernel");
    196 
    197 	/*
    198 	 * install!
    199 	 */
    200 
    201 	kernel_map = &kernel_map_store;
    202 }
    203 
    204 /*
    205  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    206  * is allocated all references to that area of VM must go through it.  this
    207  * allows the locking of VAs in kernel_map to be broken up into regions.
    208  *
    209  * => if `fixed' is true, *min specifies where the region described
    210  *      by the submap must start
    211  * => if submap is non NULL we use that as the submap, otherwise we
    212  *	alloc a new map
    213  */
    214 struct vm_map *
    215 uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
    216 	struct vm_map *map;
    217 	vaddr_t *min, *max;		/* IN/OUT, OUT */
    218 	vsize_t size;
    219 	int flags;
    220 	boolean_t fixed;
    221 	struct vm_map *submap;
    222 {
    223 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    224 
    225 	size = round_page(size);	/* round up to pagesize */
    226 
    227 	/*
    228 	 * first allocate a blank spot in the parent map
    229 	 */
    230 
    231 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
    232 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    233 	    UVM_ADV_RANDOM, mapflags)) != 0) {
    234 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
    235 	}
    236 
    237 	/*
    238 	 * set VM bounds (min is filled in by uvm_map)
    239 	 */
    240 
    241 	*max = *min + size;
    242 
    243 	/*
    244 	 * add references to pmap and create or init the submap
    245 	 */
    246 
    247 	pmap_reference(vm_map_pmap(map));
    248 	if (submap == NULL) {
    249 		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
    250 		if (submap == NULL)
    251 			panic("uvm_km_suballoc: unable to create submap");
    252 	} else {
    253 		uvm_map_setup(submap, *min, *max, flags);
    254 		submap->pmap = vm_map_pmap(map);
    255 	}
    256 
    257 	/*
    258 	 * now let uvm_map_submap plug in it...
    259 	 */
    260 
    261 	if (uvm_map_submap(map, *min, *max, submap) != 0)
    262 		panic("uvm_km_suballoc: submap allocation failed");
    263 
    264 	return(submap);
    265 }
    266 
    267 /*
    268  * uvm_km_pgremove: remove pages from a kernel uvm_object.
    269  *
    270  * => when you unmap a part of anonymous kernel memory you want to toss
    271  *    the pages right away.    (this gets called from uvm_unmap_...).
    272  */
    273 
    274 void
    275 uvm_km_pgremove(uobj, start, end)
    276 	struct uvm_object *uobj;
    277 	vaddr_t start, end;
    278 {
    279 	struct vm_page *pg;
    280 	voff_t curoff, nextoff;
    281 	int swpgonlydelta = 0;
    282 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
    283 
    284 	KASSERT(uobj->pgops == &aobj_pager);
    285 	simple_lock(&uobj->vmobjlock);
    286 
    287 	for (curoff = start; curoff < end; curoff = nextoff) {
    288 		nextoff = curoff + PAGE_SIZE;
    289 		pg = uvm_pagelookup(uobj, curoff);
    290 		if (pg != NULL && pg->flags & PG_BUSY) {
    291 			pg->flags |= PG_WANTED;
    292 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
    293 				    "km_pgrm", 0);
    294 			simple_lock(&uobj->vmobjlock);
    295 			nextoff = curoff;
    296 			continue;
    297 		}
    298 
    299 		/*
    300 		 * free the swap slot, then the page.
    301 		 */
    302 
    303 		if (pg == NULL &&
    304 		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) != 0) {
    305 			swpgonlydelta++;
    306 		}
    307 		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
    308 		if (pg != NULL) {
    309 			uvm_lock_pageq();
    310 			uvm_pagefree(pg);
    311 			uvm_unlock_pageq();
    312 		}
    313 	}
    314 	simple_unlock(&uobj->vmobjlock);
    315 
    316 	if (swpgonlydelta > 0) {
    317 		simple_lock(&uvm.swap_data_lock);
    318 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
    319 		uvmexp.swpgonly -= swpgonlydelta;
    320 		simple_unlock(&uvm.swap_data_lock);
    321 	}
    322 }
    323 
    324 
    325 /*
    326  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
    327  *    maps
    328  *
    329  * => when you unmap a part of anonymous kernel memory you want to toss
    330  *    the pages right away.    (this is called from uvm_unmap_...).
    331  * => none of the pages will ever be busy, and none of them will ever
    332  *    be on the active or inactive queues (because they have no object).
    333  */
    334 
    335 void
    336 uvm_km_pgremove_intrsafe(start, end)
    337 	vaddr_t start, end;
    338 {
    339 	struct vm_page *pg;
    340 	paddr_t pa;
    341 	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
    342 
    343 	for (; start < end; start += PAGE_SIZE) {
    344 		if (!pmap_extract(pmap_kernel(), start, &pa)) {
    345 			continue;
    346 		}
    347 		pg = PHYS_TO_VM_PAGE(pa);
    348 		KASSERT(pg);
    349 		KASSERT(pg->uobject == NULL && pg->uanon == NULL);
    350 		uvm_pagefree(pg);
    351 	}
    352 }
    353 
    354 
    355 /*
    356  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
    357  *
    358  * => we map wired memory into the specified map using the obj passed in
    359  * => NOTE: we can return NULL even if we can wait if there is not enough
    360  *	free VM space in the map... caller should be prepared to handle
    361  *	this case.
    362  * => we return KVA of memory allocated
    363  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
    364  *	lock the map
    365  */
    366 
    367 vaddr_t
    368 uvm_km_kmemalloc(map, obj, size, flags)
    369 	struct vm_map *map;
    370 	struct uvm_object *obj;
    371 	vsize_t size;
    372 	int flags;
    373 {
    374 	vaddr_t kva, loopva;
    375 	vaddr_t offset;
    376 	vsize_t loopsize;
    377 	struct vm_page *pg;
    378 	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
    379 
    380 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
    381 		    map, obj, size, flags);
    382 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    383 
    384 	/*
    385 	 * setup for call
    386 	 */
    387 
    388 	size = round_page(size);
    389 	kva = vm_map_min(map);	/* hint */
    390 
    391 	/*
    392 	 * allocate some virtual space
    393 	 */
    394 
    395 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    396 	      0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    397 			  UVM_ADV_RANDOM,
    398 			  (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT))))
    399 			!= 0)) {
    400 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    401 		return(0);
    402 	}
    403 
    404 	/*
    405 	 * if all we wanted was VA, return now
    406 	 */
    407 
    408 	if (flags & UVM_KMF_VALLOC) {
    409 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
    410 		return(kva);
    411 	}
    412 
    413 	/*
    414 	 * recover object offset from virtual address
    415 	 */
    416 
    417 	offset = kva - vm_map_min(kernel_map);
    418 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
    419 
    420 	/*
    421 	 * now allocate and map in the memory... note that we are the only ones
    422 	 * whom should ever get a handle on this area of VM.
    423 	 */
    424 
    425 	loopva = kva;
    426 	loopsize = size;
    427 	while (loopsize) {
    428 		if (obj) {
    429 			simple_lock(&obj->vmobjlock);
    430 		}
    431 		pg = uvm_pagealloc(obj, offset, NULL, UVM_PGA_USERESERVE);
    432 		if (__predict_true(pg != NULL)) {
    433 			pg->flags &= ~PG_BUSY;	/* new page */
    434 			UVM_PAGE_OWN(pg, NULL);
    435 		}
    436 		if (obj) {
    437 			simple_unlock(&obj->vmobjlock);
    438 		}
    439 
    440 		/*
    441 		 * out of memory?
    442 		 */
    443 
    444 		if (__predict_false(pg == NULL)) {
    445 			if ((flags & UVM_KMF_NOWAIT) ||
    446 			    ((flags & UVM_KMF_CANFAIL) &&
    447 			     uvmexp.swpgonly == uvmexp.swpages)) {
    448 				/* free everything! */
    449 				uvm_unmap(map, kva, kva + size);
    450 				return (0);
    451 			} else {
    452 				uvm_wait("km_getwait2");	/* sleep here */
    453 				continue;
    454 			}
    455 		}
    456 
    457 		/*
    458 		 * map it in
    459 		 */
    460 
    461 		if (obj == NULL) {
    462 			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    463 			    VM_PROT_READ | VM_PROT_WRITE);
    464 		} else {
    465 			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    466 			    UVM_PROT_ALL,
    467 			    PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
    468 		}
    469 		loopva += PAGE_SIZE;
    470 		offset += PAGE_SIZE;
    471 		loopsize -= PAGE_SIZE;
    472 	}
    473 
    474        	pmap_update(pmap_kernel());
    475 
    476 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    477 	return(kva);
    478 }
    479 
    480 /*
    481  * uvm_km_free: free an area of kernel memory
    482  */
    483 
    484 void
    485 uvm_km_free(map, addr, size)
    486 	struct vm_map *map;
    487 	vaddr_t addr;
    488 	vsize_t size;
    489 {
    490 	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
    491 }
    492 
    493 /*
    494  * uvm_km_free_wakeup: free an area of kernel memory and wake up
    495  * anyone waiting for vm space.
    496  *
    497  * => XXX: "wanted" bit + unlock&wait on other end?
    498  */
    499 
    500 void
    501 uvm_km_free_wakeup(map, addr, size)
    502 	struct vm_map *map;
    503 	vaddr_t addr;
    504 	vsize_t size;
    505 {
    506 	struct vm_map_entry *dead_entries;
    507 
    508 	vm_map_lock(map);
    509 	uvm_unmap_remove(map, trunc_page(addr), round_page(addr + size),
    510 	    &dead_entries);
    511 	wakeup(map);
    512 	vm_map_unlock(map);
    513 	if (dead_entries != NULL)
    514 		uvm_unmap_detach(dead_entries, 0);
    515 }
    516 
    517 /*
    518  * uvm_km_alloc1: allocate wired down memory in the kernel map.
    519  *
    520  * => we can sleep if needed
    521  */
    522 
    523 vaddr_t
    524 uvm_km_alloc1(map, size, zeroit)
    525 	struct vm_map *map;
    526 	vsize_t size;
    527 	boolean_t zeroit;
    528 {
    529 	vaddr_t kva, loopva, offset;
    530 	struct vm_page *pg;
    531 	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
    532 
    533 	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
    534 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    535 
    536 	size = round_page(size);
    537 	kva = vm_map_min(map);		/* hint */
    538 
    539 	/*
    540 	 * allocate some virtual space
    541 	 */
    542 
    543 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
    544 	      UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    545 					      UVM_INH_NONE, UVM_ADV_RANDOM,
    546 					      0)) != 0)) {
    547 		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
    548 		return(0);
    549 	}
    550 
    551 	/*
    552 	 * recover object offset from virtual address
    553 	 */
    554 
    555 	offset = kva - vm_map_min(kernel_map);
    556 	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
    557 
    558 	/*
    559 	 * now allocate the memory.
    560 	 */
    561 
    562 	loopva = kva;
    563 	while (size) {
    564 		simple_lock(&uvm.kernel_object->vmobjlock);
    565 		KASSERT(uvm_pagelookup(uvm.kernel_object, offset) == NULL);
    566 		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
    567 		if (pg) {
    568 			pg->flags &= ~PG_BUSY;
    569 			UVM_PAGE_OWN(pg, NULL);
    570 		}
    571 		simple_unlock(&uvm.kernel_object->vmobjlock);
    572 		if (pg == NULL) {
    573 			uvm_wait("km_alloc1w");
    574 			continue;
    575 		}
    576 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    577 		    UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
    578 		loopva += PAGE_SIZE;
    579 		offset += PAGE_SIZE;
    580 		size -= PAGE_SIZE;
    581 	}
    582 	pmap_update(map->pmap);
    583 
    584 	/*
    585 	 * zero on request (note that "size" is now zero due to the above loop
    586 	 * so we need to subtract kva from loopva to reconstruct the size).
    587 	 */
    588 
    589 	if (zeroit)
    590 		memset((caddr_t)kva, 0, loopva - kva);
    591 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    592 	return(kva);
    593 }
    594 
    595 /*
    596  * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
    597  *
    598  * => memory is not allocated until fault time
    599  */
    600 
    601 vaddr_t
    602 uvm_km_valloc(map, size)
    603 	struct vm_map *map;
    604 	vsize_t size;
    605 {
    606 	return(uvm_km_valloc_align(map, size, 0));
    607 }
    608 
    609 vaddr_t
    610 uvm_km_valloc_align(map, size, align)
    611 	struct vm_map *map;
    612 	vsize_t size;
    613 	vsize_t align;
    614 {
    615 	vaddr_t kva;
    616 	UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
    617 
    618 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    619 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    620 
    621 	size = round_page(size);
    622 	kva = vm_map_min(map);		/* hint */
    623 
    624 	/*
    625 	 * allocate some virtual space.  will be demand filled by kernel_object.
    626 	 */
    627 
    628 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
    629 	    UVM_UNKNOWN_OFFSET, align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    630 					    UVM_INH_NONE, UVM_ADV_RANDOM,
    631 					    0)) != 0)) {
    632 		UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
    633 		return(0);
    634 	}
    635 
    636 	UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
    637 	return(kva);
    638 }
    639 
    640 /*
    641  * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
    642  *
    643  * => memory is not allocated until fault time
    644  * => if no room in map, wait for space to free, unless requested size
    645  *    is larger than map (in which case we return 0)
    646  */
    647 
    648 vaddr_t
    649 uvm_km_valloc_prefer_wait(map, size, prefer)
    650 	struct vm_map *map;
    651 	vsize_t size;
    652 	voff_t prefer;
    653 {
    654 	vaddr_t kva;
    655 	UVMHIST_FUNC("uvm_km_valloc_prefer_wait"); UVMHIST_CALLED(maphist);
    656 
    657 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    658 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    659 
    660 	size = round_page(size);
    661 	if (size > vm_map_max(map) - vm_map_min(map))
    662 		return(0);
    663 
    664 	for (;;) {
    665 		kva = vm_map_min(map);		/* hint */
    666 
    667 		/*
    668 		 * allocate some virtual space.   will be demand filled
    669 		 * by kernel_object.
    670 		 */
    671 
    672 		if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
    673 		    prefer, 0, UVM_MAPFLAG(UVM_PROT_ALL,
    674 		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
    675 		    == 0)) {
    676 			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    677 			return(kva);
    678 		}
    679 
    680 		/*
    681 		 * failed.  sleep for a while (on map)
    682 		 */
    683 
    684 		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
    685 		tsleep((caddr_t)map, PVM, "vallocwait", 0);
    686 	}
    687 	/*NOTREACHED*/
    688 }
    689 
    690 vaddr_t
    691 uvm_km_valloc_wait(map, size)
    692 	struct vm_map *map;
    693 	vsize_t size;
    694 {
    695 	return uvm_km_valloc_prefer_wait(map, size, UVM_UNKNOWN_OFFSET);
    696 }
    697 
    698 /* Sanity; must specify both or none. */
    699 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    700     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    701 #error Must specify MAP and UNMAP together.
    702 #endif
    703 
    704 /*
    705  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
    706  *
    707  * => if the pmap specifies an alternate mapping method, we use it.
    708  */
    709 
    710 /* ARGSUSED */
    711 vaddr_t
    712 uvm_km_alloc_poolpage1(map, obj, waitok)
    713 	struct vm_map *map;
    714 	struct uvm_object *obj;
    715 	boolean_t waitok;
    716 {
    717 #if defined(PMAP_MAP_POOLPAGE)
    718 	struct vm_page *pg;
    719 	vaddr_t va;
    720 
    721  again:
    722 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    723 	if (__predict_false(pg == NULL)) {
    724 		if (waitok) {
    725 			uvm_wait("plpg");
    726 			goto again;
    727 		} else
    728 			return (0);
    729 	}
    730 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    731 	if (__predict_false(va == 0))
    732 		uvm_pagefree(pg);
    733 	return (va);
    734 #else
    735 	vaddr_t va;
    736 	int s;
    737 
    738 	/*
    739 	 * NOTE: We may be called with a map that doens't require splvm
    740 	 * protection (e.g. kernel_map).  However, it does not hurt to
    741 	 * go to splvm in this case (since unprocted maps will never be
    742 	 * accessed in interrupt context).
    743 	 *
    744 	 * XXX We may want to consider changing the interface to this
    745 	 * XXX function.
    746 	 */
    747 
    748 	s = splvm();
    749 	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE,
    750 	    waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK);
    751 	splx(s);
    752 	return (va);
    753 #endif /* PMAP_MAP_POOLPAGE */
    754 }
    755 
    756 /*
    757  * uvm_km_free_poolpage: free a previously allocated pool page
    758  *
    759  * => if the pmap specifies an alternate unmapping method, we use it.
    760  */
    761 
    762 /* ARGSUSED */
    763 void
    764 uvm_km_free_poolpage1(map, addr)
    765 	struct vm_map *map;
    766 	vaddr_t addr;
    767 {
    768 #if defined(PMAP_UNMAP_POOLPAGE)
    769 	paddr_t pa;
    770 
    771 	pa = PMAP_UNMAP_POOLPAGE(addr);
    772 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    773 #else
    774 	int s;
    775 
    776 	/*
    777 	 * NOTE: We may be called with a map that doens't require splvm
    778 	 * protection (e.g. kernel_map).  However, it does not hurt to
    779 	 * go to splvm in this case (since unprocted maps will never be
    780 	 * accessed in interrupt context).
    781 	 *
    782 	 * XXX We may want to consider changing the interface to this
    783 	 * XXX function.
    784 	 */
    785 
    786 	s = splvm();
    787 	uvm_km_free(map, addr, PAGE_SIZE);
    788 	splx(s);
    789 #endif /* PMAP_UNMAP_POOLPAGE */
    790 }
    791