uvm_km.c revision 1.71 1 /* $NetBSD: uvm_km.c,v 1.71 2005/01/01 21:02:13 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
42 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_km.c: handle kernel memory allocation and management
71 */
72
73 /*
74 * overview of kernel memory management:
75 *
76 * the kernel virtual address space is mapped by "kernel_map." kernel_map
77 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
78 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
79 *
80 * the kernel_map has several "submaps." submaps can only appear in
81 * the kernel_map (user processes can't use them). submaps "take over"
82 * the management of a sub-range of the kernel's address space. submaps
83 * are typically allocated at boot time and are never released. kernel
84 * virtual address space that is mapped by a submap is locked by the
85 * submap's lock -- not the kernel_map's lock.
86 *
87 * thus, the useful feature of submaps is that they allow us to break
88 * up the locking and protection of the kernel address space into smaller
89 * chunks.
90 *
91 * the vm system has several standard kernel submaps, including:
92 * kmem_map => contains only wired kernel memory for the kernel
93 * malloc. *** access to kmem_map must be protected
94 * by splvm() because we are allowed to call malloc()
95 * at interrupt time ***
96 * mb_map => memory for large mbufs, *** protected by splvm ***
97 * pager_map => used to map "buf" structures into kernel space
98 * exec_map => used during exec to handle exec args
99 * etc...
100 *
101 * the kernel allocates its private memory out of special uvm_objects whose
102 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
103 * are "special" and never die). all kernel objects should be thought of
104 * as large, fixed-sized, sparsely populated uvm_objects. each kernel
105 * object is equal to the size of kernel virtual address space (i.e. the
106 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
107 *
108 * most kernel private memory lives in kernel_object. the only exception
109 * to this is for memory that belongs to submaps that must be protected
110 * by splvm(). pages in these submaps are not assigned to an object.
111 *
112 * note that just because a kernel object spans the entire kernel virutal
113 * address space doesn't mean that it has to be mapped into the entire space.
114 * large chunks of a kernel object's space go unused either because
115 * that area of kernel VM is unmapped, or there is some other type of
116 * object mapped into that range (e.g. a vnode). for submap's kernel
117 * objects, the only part of the object that can ever be populated is the
118 * offsets that are managed by the submap.
119 *
120 * note that the "offset" in a kernel object is always the kernel virtual
121 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
122 * example:
123 * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
124 * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
125 * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
126 * then that means that the page at offset 0x235000 in kernel_object is
127 * mapped at 0xf8235000.
128 *
129 * kernel object have one other special property: when the kernel virtual
130 * memory mapping them is unmapped, the backing memory in the object is
131 * freed right away. this is done with the uvm_km_pgremove() function.
132 * this has to be done because there is no backing store for kernel pages
133 * and no need to save them after they are no longer referenced.
134 */
135
136 #include <sys/cdefs.h>
137 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.71 2005/01/01 21:02:13 yamt Exp $");
138
139 #include "opt_uvmhist.h"
140
141 #include <sys/param.h>
142 #include <sys/malloc.h>
143 #include <sys/systm.h>
144 #include <sys/proc.h>
145
146 #include <uvm/uvm.h>
147
148 /*
149 * global data structures
150 */
151
152 struct vm_map *kernel_map = NULL;
153
154 /*
155 * local data structues
156 */
157
158 static struct vm_map_kernel kernel_map_store;
159 static struct vm_map_entry kernel_first_mapent_store;
160
161 /*
162 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
163 * KVM already allocated for text, data, bss, and static data structures).
164 *
165 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
166 * we assume that [min -> start] has already been allocated and that
167 * "end" is the end.
168 */
169
170 void
171 uvm_km_init(start, end)
172 vaddr_t start, end;
173 {
174 vaddr_t base = VM_MIN_KERNEL_ADDRESS;
175
176 /*
177 * next, init kernel memory objects.
178 */
179
180 /* kernel_object: for pageable anonymous kernel memory */
181 uao_init();
182 uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
183 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
184
185 /*
186 * init the map and reserve any space that might already
187 * have been allocated kernel space before installing.
188 */
189
190 uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
191 kernel_map_store.vmk_map.pmap = pmap_kernel();
192 if (start != base) {
193 int error;
194 struct uvm_map_args args;
195
196 error = uvm_map_prepare(&kernel_map_store.vmk_map,
197 base, start - base,
198 NULL, UVM_UNKNOWN_OFFSET, 0,
199 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
200 UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
201 if (!error) {
202 kernel_first_mapent_store.flags =
203 UVM_MAP_KERNEL | UVM_MAP_FIRST;
204 error = uvm_map_enter(&kernel_map_store.vmk_map, &args,
205 &kernel_first_mapent_store);
206 }
207
208 if (error)
209 panic(
210 "uvm_km_init: could not reserve space for kernel");
211 }
212
213 /*
214 * install!
215 */
216
217 kernel_map = &kernel_map_store.vmk_map;
218 }
219
220 /*
221 * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
222 * is allocated all references to that area of VM must go through it. this
223 * allows the locking of VAs in kernel_map to be broken up into regions.
224 *
225 * => if `fixed' is true, *min specifies where the region described
226 * by the submap must start
227 * => if submap is non NULL we use that as the submap, otherwise we
228 * alloc a new map
229 */
230 struct vm_map *
231 uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
232 struct vm_map *map;
233 vaddr_t *min, *max; /* IN/OUT, OUT */
234 vsize_t size;
235 int flags;
236 boolean_t fixed;
237 struct vm_map_kernel *submap;
238 {
239 int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
240
241 KASSERT(vm_map_pmap(map) == pmap_kernel());
242
243 size = round_page(size); /* round up to pagesize */
244
245 /*
246 * first allocate a blank spot in the parent map
247 */
248
249 if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
250 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
251 UVM_ADV_RANDOM, mapflags)) != 0) {
252 panic("uvm_km_suballoc: unable to allocate space in parent map");
253 }
254
255 /*
256 * set VM bounds (min is filled in by uvm_map)
257 */
258
259 *max = *min + size;
260
261 /*
262 * add references to pmap and create or init the submap
263 */
264
265 pmap_reference(vm_map_pmap(map));
266 if (submap == NULL) {
267 submap = malloc(sizeof(*submap), M_VMMAP, M_WAITOK);
268 if (submap == NULL)
269 panic("uvm_km_suballoc: unable to create submap");
270 }
271 uvm_map_setup_kernel(submap, *min, *max, flags);
272 submap->vmk_map.pmap = vm_map_pmap(map);
273
274 /*
275 * now let uvm_map_submap plug in it...
276 */
277
278 if (uvm_map_submap(map, *min, *max, &submap->vmk_map) != 0)
279 panic("uvm_km_suballoc: submap allocation failed");
280
281 return(&submap->vmk_map);
282 }
283
284 /*
285 * uvm_km_pgremove: remove pages from a kernel uvm_object.
286 *
287 * => when you unmap a part of anonymous kernel memory you want to toss
288 * the pages right away. (this gets called from uvm_unmap_...).
289 */
290
291 void
292 uvm_km_pgremove(uobj, start, end)
293 struct uvm_object *uobj;
294 vaddr_t start, end;
295 {
296 struct vm_page *pg;
297 voff_t curoff, nextoff;
298 int swpgonlydelta = 0;
299 UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
300
301 KASSERT(uobj->pgops == &aobj_pager);
302 simple_lock(&uobj->vmobjlock);
303
304 for (curoff = start; curoff < end; curoff = nextoff) {
305 nextoff = curoff + PAGE_SIZE;
306 pg = uvm_pagelookup(uobj, curoff);
307 if (pg != NULL && pg->flags & PG_BUSY) {
308 pg->flags |= PG_WANTED;
309 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
310 "km_pgrm", 0);
311 simple_lock(&uobj->vmobjlock);
312 nextoff = curoff;
313 continue;
314 }
315
316 /*
317 * free the swap slot, then the page.
318 */
319
320 if (pg == NULL &&
321 uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
322 swpgonlydelta++;
323 }
324 uao_dropswap(uobj, curoff >> PAGE_SHIFT);
325 if (pg != NULL) {
326 uvm_lock_pageq();
327 uvm_pagefree(pg);
328 uvm_unlock_pageq();
329 }
330 }
331 simple_unlock(&uobj->vmobjlock);
332
333 if (swpgonlydelta > 0) {
334 simple_lock(&uvm.swap_data_lock);
335 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
336 uvmexp.swpgonly -= swpgonlydelta;
337 simple_unlock(&uvm.swap_data_lock);
338 }
339 }
340
341
342 /*
343 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
344 * maps
345 *
346 * => when you unmap a part of anonymous kernel memory you want to toss
347 * the pages right away. (this is called from uvm_unmap_...).
348 * => none of the pages will ever be busy, and none of them will ever
349 * be on the active or inactive queues (because they have no object).
350 */
351
352 void
353 uvm_km_pgremove_intrsafe(start, end)
354 vaddr_t start, end;
355 {
356 struct vm_page *pg;
357 paddr_t pa;
358 UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
359
360 for (; start < end; start += PAGE_SIZE) {
361 if (!pmap_extract(pmap_kernel(), start, &pa)) {
362 continue;
363 }
364 pg = PHYS_TO_VM_PAGE(pa);
365 KASSERT(pg);
366 KASSERT(pg->uobject == NULL && pg->uanon == NULL);
367 uvm_pagefree(pg);
368 }
369 }
370
371
372 /*
373 * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
374 *
375 * => we map wired memory into the specified map using the obj passed in
376 * => NOTE: we can return NULL even if we can wait if there is not enough
377 * free VM space in the map... caller should be prepared to handle
378 * this case.
379 * => we return KVA of memory allocated
380 * => align,prefer - passed on to uvm_map()
381 * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
382 * lock the map
383 */
384
385 vaddr_t
386 uvm_km_kmemalloc1(map, obj, size, align, prefer, flags)
387 struct vm_map *map;
388 struct uvm_object *obj;
389 vsize_t size;
390 vsize_t align;
391 voff_t prefer;
392 int flags;
393 {
394 vaddr_t kva, loopva;
395 vaddr_t offset;
396 vsize_t loopsize;
397 struct vm_page *pg;
398 UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
399
400 UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
401 map, obj, size, flags);
402 KASSERT(vm_map_pmap(map) == pmap_kernel());
403
404 /*
405 * setup for call
406 */
407
408 size = round_page(size);
409 kva = vm_map_min(map); /* hint */
410
411 /*
412 * allocate some virtual space
413 */
414
415 if (__predict_false(uvm_map(map, &kva, size, obj, prefer, align,
416 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
417 UVM_ADV_RANDOM,
418 (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT))
419 | UVM_FLAG_QUANTUM))
420 != 0)) {
421 UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
422 return(0);
423 }
424
425 /*
426 * if all we wanted was VA, return now
427 */
428
429 if (flags & UVM_KMF_VALLOC) {
430 UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
431 return(kva);
432 }
433
434 /*
435 * recover object offset from virtual address
436 */
437
438 offset = kva - vm_map_min(kernel_map);
439 UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
440
441 /*
442 * now allocate and map in the memory... note that we are the only ones
443 * whom should ever get a handle on this area of VM.
444 */
445
446 loopva = kva;
447 loopsize = size;
448 while (loopsize) {
449 if (obj) {
450 simple_lock(&obj->vmobjlock);
451 }
452 pg = uvm_pagealloc(obj, offset, NULL, UVM_PGA_USERESERVE);
453 if (__predict_true(pg != NULL)) {
454 pg->flags &= ~PG_BUSY; /* new page */
455 UVM_PAGE_OWN(pg, NULL);
456 }
457 if (obj) {
458 simple_unlock(&obj->vmobjlock);
459 }
460
461 /*
462 * out of memory?
463 */
464
465 if (__predict_false(pg == NULL)) {
466 if ((flags & UVM_KMF_NOWAIT) ||
467 ((flags & UVM_KMF_CANFAIL) && uvm_swapisfull())) {
468 /* free everything! */
469 uvm_unmap(map, kva, kva + size);
470 return (0);
471 } else {
472 uvm_wait("km_getwait2"); /* sleep here */
473 continue;
474 }
475 }
476
477 /*
478 * map it in
479 */
480
481 if (obj == NULL) {
482 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
483 VM_PROT_READ | VM_PROT_WRITE);
484 } else {
485 pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
486 UVM_PROT_ALL,
487 PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
488 }
489 loopva += PAGE_SIZE;
490 offset += PAGE_SIZE;
491 loopsize -= PAGE_SIZE;
492 }
493
494 pmap_update(pmap_kernel());
495
496 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
497 return(kva);
498 }
499
500 /*
501 * uvm_km_free: free an area of kernel memory
502 */
503
504 void
505 uvm_km_free(map, addr, size)
506 struct vm_map *map;
507 vaddr_t addr;
508 vsize_t size;
509 {
510 uvm_unmap(map, trunc_page(addr), round_page(addr+size));
511 }
512
513 /*
514 * uvm_km_free_wakeup: free an area of kernel memory and wake up
515 * anyone waiting for vm space.
516 *
517 * => XXX: "wanted" bit + unlock&wait on other end?
518 */
519
520 void
521 uvm_km_free_wakeup(map, addr, size)
522 struct vm_map *map;
523 vaddr_t addr;
524 vsize_t size;
525 {
526 struct vm_map_entry *dead_entries;
527
528 vm_map_lock(map);
529 uvm_unmap_remove(map, trunc_page(addr), round_page(addr + size),
530 &dead_entries, NULL);
531 wakeup(map);
532 vm_map_unlock(map);
533 if (dead_entries != NULL)
534 uvm_unmap_detach(dead_entries, 0);
535 }
536
537 /*
538 * uvm_km_alloc1: allocate wired down memory in the kernel map.
539 *
540 * => we can sleep if needed
541 */
542
543 vaddr_t
544 uvm_km_alloc1(map, size, zeroit)
545 struct vm_map *map;
546 vsize_t size;
547 boolean_t zeroit;
548 {
549 vaddr_t kva, loopva, offset;
550 struct vm_page *pg;
551 UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
552
553 UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
554 KASSERT(vm_map_pmap(map) == pmap_kernel());
555
556 size = round_page(size);
557 kva = vm_map_min(map); /* hint */
558
559 /*
560 * allocate some virtual space
561 */
562
563 if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
564 UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
565 UVM_INH_NONE, UVM_ADV_RANDOM,
566 UVM_FLAG_QUANTUM)) != 0)) {
567 UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
568 return(0);
569 }
570
571 /*
572 * recover object offset from virtual address
573 */
574
575 offset = kva - vm_map_min(kernel_map);
576 UVMHIST_LOG(maphist," kva=0x%x, offset=0x%x", kva, offset,0,0);
577
578 /*
579 * now allocate the memory.
580 */
581
582 loopva = kva;
583 while (size) {
584 simple_lock(&uvm.kernel_object->vmobjlock);
585 KASSERT(uvm_pagelookup(uvm.kernel_object, offset) == NULL);
586 pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
587 if (pg) {
588 pg->flags &= ~PG_BUSY;
589 UVM_PAGE_OWN(pg, NULL);
590 }
591 simple_unlock(&uvm.kernel_object->vmobjlock);
592 if (pg == NULL) {
593 uvm_wait("km_alloc1w");
594 continue;
595 }
596 pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
597 UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
598 loopva += PAGE_SIZE;
599 offset += PAGE_SIZE;
600 size -= PAGE_SIZE;
601 }
602 pmap_update(map->pmap);
603
604 /*
605 * zero on request (note that "size" is now zero due to the above loop
606 * so we need to subtract kva from loopva to reconstruct the size).
607 */
608
609 if (zeroit)
610 memset((caddr_t)kva, 0, loopva - kva);
611 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
612 return(kva);
613 }
614
615 /*
616 * uvm_km_valloc1: allocate zero-fill memory in the kernel's address space
617 *
618 * => memory is not allocated until fault time
619 * => the align, prefer and flags parameters are passed on to uvm_map().
620 *
621 * Note: this function is also the backend for these macros:
622 * uvm_km_valloc
623 * uvm_km_valloc_wait
624 * uvm_km_valloc_prefer
625 * uvm_km_valloc_prefer_wait
626 * uvm_km_valloc_align
627 */
628
629 vaddr_t
630 uvm_km_valloc1(map, size, align, prefer, flags)
631 struct vm_map *map;
632 vsize_t size;
633 vsize_t align;
634 voff_t prefer;
635 uvm_flag_t flags;
636 {
637 vaddr_t kva;
638 UVMHIST_FUNC("uvm_km_valloc1"); UVMHIST_CALLED(maphist);
639
640 UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x, align=0x%x, prefer=0x%x)",
641 map, size, align, prefer);
642
643 KASSERT(vm_map_pmap(map) == pmap_kernel());
644
645 size = round_page(size);
646 /*
647 * Check if requested size is larger than the map, in which
648 * case we can't succeed.
649 */
650 if (size > vm_map_max(map) - vm_map_min(map))
651 return (0);
652
653 flags |= UVM_FLAG_QUANTUM;
654 for (;;) {
655 kva = vm_map_min(map); /* hint */
656
657 /*
658 * allocate some virtual space. will be demand filled
659 * by kernel_object.
660 */
661
662 if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
663 prefer, align, UVM_MAPFLAG(UVM_PROT_ALL,
664 UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, flags))
665 == 0)) {
666 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
667 return (kva);
668 }
669
670 /*
671 * failed. sleep for a while (on map)
672 */
673 if ((flags & UVM_KMF_NOWAIT) != 0)
674 return (0);
675
676 UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
677 tsleep((caddr_t)map, PVM, "vallocwait", 0);
678 }
679 /*NOTREACHED*/
680 }
681
682 /* Function definitions for binary compatibility */
683 vaddr_t
684 uvm_km_kmemalloc(struct vm_map *map, struct uvm_object *obj,
685 vsize_t sz, int flags)
686 {
687 return uvm_km_kmemalloc1(map, obj, sz, 0, UVM_UNKNOWN_OFFSET, flags);
688 }
689
690 vaddr_t uvm_km_valloc(struct vm_map *map, vsize_t sz)
691 {
692 return uvm_km_valloc1(map, sz, 0, UVM_UNKNOWN_OFFSET, UVM_KMF_NOWAIT);
693 }
694
695 vaddr_t uvm_km_valloc_align(struct vm_map *map, vsize_t sz, vsize_t align)
696 {
697 return uvm_km_valloc1(map, sz, align, UVM_UNKNOWN_OFFSET, UVM_KMF_NOWAIT);
698 }
699
700 vaddr_t uvm_km_valloc_prefer_wait(struct vm_map *map, vsize_t sz, voff_t prefer)
701 {
702 return uvm_km_valloc1(map, sz, 0, prefer, 0);
703 }
704
705 vaddr_t uvm_km_valloc_wait(struct vm_map *map, vsize_t sz)
706 {
707 return uvm_km_valloc1(map, sz, 0, UVM_UNKNOWN_OFFSET, 0);
708 }
709
710 /* Sanity; must specify both or none. */
711 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
712 (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
713 #error Must specify MAP and UNMAP together.
714 #endif
715
716 /*
717 * uvm_km_alloc_poolpage: allocate a page for the pool allocator
718 *
719 * => if the pmap specifies an alternate mapping method, we use it.
720 */
721
722 /* ARGSUSED */
723 vaddr_t
724 uvm_km_alloc_poolpage1(map, obj, waitok)
725 struct vm_map *map;
726 struct uvm_object *obj;
727 boolean_t waitok;
728 {
729 #if defined(PMAP_MAP_POOLPAGE)
730 struct vm_page *pg;
731 vaddr_t va;
732
733 again:
734 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
735 if (__predict_false(pg == NULL)) {
736 if (waitok) {
737 uvm_wait("plpg");
738 goto again;
739 } else
740 return (0);
741 }
742 va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
743 if (__predict_false(va == 0))
744 uvm_pagefree(pg);
745 return (va);
746 #else
747 vaddr_t va;
748 int s;
749
750 /*
751 * NOTE: We may be called with a map that doens't require splvm
752 * protection (e.g. kernel_map). However, it does not hurt to
753 * go to splvm in this case (since unprocted maps will never be
754 * accessed in interrupt context).
755 *
756 * XXX We may want to consider changing the interface to this
757 * XXX function.
758 */
759
760 s = splvm();
761 va = uvm_km_kmemalloc(map, obj, PAGE_SIZE,
762 waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK);
763 splx(s);
764 return (va);
765 #endif /* PMAP_MAP_POOLPAGE */
766 }
767
768 /*
769 * uvm_km_free_poolpage: free a previously allocated pool page
770 *
771 * => if the pmap specifies an alternate unmapping method, we use it.
772 */
773
774 /* ARGSUSED */
775 void
776 uvm_km_free_poolpage1(map, addr)
777 struct vm_map *map;
778 vaddr_t addr;
779 {
780 #if defined(PMAP_UNMAP_POOLPAGE)
781 paddr_t pa;
782
783 pa = PMAP_UNMAP_POOLPAGE(addr);
784 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
785 #else
786 int s;
787
788 /*
789 * NOTE: We may be called with a map that doens't require splvm
790 * protection (e.g. kernel_map). However, it does not hurt to
791 * go to splvm in this case (since unprocted maps will never be
792 * accessed in interrupt context).
793 *
794 * XXX We may want to consider changing the interface to this
795 * XXX function.
796 */
797
798 s = splvm();
799 uvm_km_free(map, addr, PAGE_SIZE);
800 splx(s);
801 #endif /* PMAP_UNMAP_POOLPAGE */
802 }
803