Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.71
      1 /*	$NetBSD: uvm_km.c,v 1.71 2005/01/01 21:02:13 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     42  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_km.c: handle kernel memory allocation and management
     71  */
     72 
     73 /*
     74  * overview of kernel memory management:
     75  *
     76  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     77  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     78  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     79  *
     80  * the kernel_map has several "submaps."   submaps can only appear in
     81  * the kernel_map (user processes can't use them).   submaps "take over"
     82  * the management of a sub-range of the kernel's address space.  submaps
     83  * are typically allocated at boot time and are never released.   kernel
     84  * virtual address space that is mapped by a submap is locked by the
     85  * submap's lock -- not the kernel_map's lock.
     86  *
     87  * thus, the useful feature of submaps is that they allow us to break
     88  * up the locking and protection of the kernel address space into smaller
     89  * chunks.
     90  *
     91  * the vm system has several standard kernel submaps, including:
     92  *   kmem_map => contains only wired kernel memory for the kernel
     93  *		malloc.   *** access to kmem_map must be protected
     94  *		by splvm() because we are allowed to call malloc()
     95  *		at interrupt time ***
     96  *   mb_map => memory for large mbufs,  *** protected by splvm ***
     97  *   pager_map => used to map "buf" structures into kernel space
     98  *   exec_map => used during exec to handle exec args
     99  *   etc...
    100  *
    101  * the kernel allocates its private memory out of special uvm_objects whose
    102  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
    103  * are "special" and never die).   all kernel objects should be thought of
    104  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
    105  * object is equal to the size of kernel virtual address space (i.e. the
    106  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    107  *
    108  * most kernel private memory lives in kernel_object.   the only exception
    109  * to this is for memory that belongs to submaps that must be protected
    110  * by splvm().  pages in these submaps are not assigned to an object.
    111  *
    112  * note that just because a kernel object spans the entire kernel virutal
    113  * address space doesn't mean that it has to be mapped into the entire space.
    114  * large chunks of a kernel object's space go unused either because
    115  * that area of kernel VM is unmapped, or there is some other type of
    116  * object mapped into that range (e.g. a vnode).    for submap's kernel
    117  * objects, the only part of the object that can ever be populated is the
    118  * offsets that are managed by the submap.
    119  *
    120  * note that the "offset" in a kernel object is always the kernel virtual
    121  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    122  * example:
    123  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    124  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    125  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    126  *   then that means that the page at offset 0x235000 in kernel_object is
    127  *   mapped at 0xf8235000.
    128  *
    129  * kernel object have one other special property: when the kernel virtual
    130  * memory mapping them is unmapped, the backing memory in the object is
    131  * freed right away.   this is done with the uvm_km_pgremove() function.
    132  * this has to be done because there is no backing store for kernel pages
    133  * and no need to save them after they are no longer referenced.
    134  */
    135 
    136 #include <sys/cdefs.h>
    137 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.71 2005/01/01 21:02:13 yamt Exp $");
    138 
    139 #include "opt_uvmhist.h"
    140 
    141 #include <sys/param.h>
    142 #include <sys/malloc.h>
    143 #include <sys/systm.h>
    144 #include <sys/proc.h>
    145 
    146 #include <uvm/uvm.h>
    147 
    148 /*
    149  * global data structures
    150  */
    151 
    152 struct vm_map *kernel_map = NULL;
    153 
    154 /*
    155  * local data structues
    156  */
    157 
    158 static struct vm_map_kernel	kernel_map_store;
    159 static struct vm_map_entry	kernel_first_mapent_store;
    160 
    161 /*
    162  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
    163  * KVM already allocated for text, data, bss, and static data structures).
    164  *
    165  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    166  *    we assume that [min -> start] has already been allocated and that
    167  *    "end" is the end.
    168  */
    169 
    170 void
    171 uvm_km_init(start, end)
    172 	vaddr_t start, end;
    173 {
    174 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    175 
    176 	/*
    177 	 * next, init kernel memory objects.
    178 	 */
    179 
    180 	/* kernel_object: for pageable anonymous kernel memory */
    181 	uao_init();
    182 	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    183 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    184 
    185 	/*
    186 	 * init the map and reserve any space that might already
    187 	 * have been allocated kernel space before installing.
    188 	 */
    189 
    190 	uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
    191 	kernel_map_store.vmk_map.pmap = pmap_kernel();
    192 	if (start != base) {
    193 		int error;
    194 		struct uvm_map_args args;
    195 
    196 		error = uvm_map_prepare(&kernel_map_store.vmk_map,
    197 		    base, start - base,
    198 		    NULL, UVM_UNKNOWN_OFFSET, 0,
    199 		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    200 		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
    201 		if (!error) {
    202 			kernel_first_mapent_store.flags =
    203 			    UVM_MAP_KERNEL | UVM_MAP_FIRST;
    204 			error = uvm_map_enter(&kernel_map_store.vmk_map, &args,
    205 			    &kernel_first_mapent_store);
    206 		}
    207 
    208 		if (error)
    209 			panic(
    210 			    "uvm_km_init: could not reserve space for kernel");
    211 	}
    212 
    213 	/*
    214 	 * install!
    215 	 */
    216 
    217 	kernel_map = &kernel_map_store.vmk_map;
    218 }
    219 
    220 /*
    221  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    222  * is allocated all references to that area of VM must go through it.  this
    223  * allows the locking of VAs in kernel_map to be broken up into regions.
    224  *
    225  * => if `fixed' is true, *min specifies where the region described
    226  *      by the submap must start
    227  * => if submap is non NULL we use that as the submap, otherwise we
    228  *	alloc a new map
    229  */
    230 struct vm_map *
    231 uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
    232 	struct vm_map *map;
    233 	vaddr_t *min, *max;		/* IN/OUT, OUT */
    234 	vsize_t size;
    235 	int flags;
    236 	boolean_t fixed;
    237 	struct vm_map_kernel *submap;
    238 {
    239 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    240 
    241 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    242 
    243 	size = round_page(size);	/* round up to pagesize */
    244 
    245 	/*
    246 	 * first allocate a blank spot in the parent map
    247 	 */
    248 
    249 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
    250 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    251 	    UVM_ADV_RANDOM, mapflags)) != 0) {
    252 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
    253 	}
    254 
    255 	/*
    256 	 * set VM bounds (min is filled in by uvm_map)
    257 	 */
    258 
    259 	*max = *min + size;
    260 
    261 	/*
    262 	 * add references to pmap and create or init the submap
    263 	 */
    264 
    265 	pmap_reference(vm_map_pmap(map));
    266 	if (submap == NULL) {
    267 		submap = malloc(sizeof(*submap), M_VMMAP, M_WAITOK);
    268 		if (submap == NULL)
    269 			panic("uvm_km_suballoc: unable to create submap");
    270 	}
    271 	uvm_map_setup_kernel(submap, *min, *max, flags);
    272 	submap->vmk_map.pmap = vm_map_pmap(map);
    273 
    274 	/*
    275 	 * now let uvm_map_submap plug in it...
    276 	 */
    277 
    278 	if (uvm_map_submap(map, *min, *max, &submap->vmk_map) != 0)
    279 		panic("uvm_km_suballoc: submap allocation failed");
    280 
    281 	return(&submap->vmk_map);
    282 }
    283 
    284 /*
    285  * uvm_km_pgremove: remove pages from a kernel uvm_object.
    286  *
    287  * => when you unmap a part of anonymous kernel memory you want to toss
    288  *    the pages right away.    (this gets called from uvm_unmap_...).
    289  */
    290 
    291 void
    292 uvm_km_pgremove(uobj, start, end)
    293 	struct uvm_object *uobj;
    294 	vaddr_t start, end;
    295 {
    296 	struct vm_page *pg;
    297 	voff_t curoff, nextoff;
    298 	int swpgonlydelta = 0;
    299 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
    300 
    301 	KASSERT(uobj->pgops == &aobj_pager);
    302 	simple_lock(&uobj->vmobjlock);
    303 
    304 	for (curoff = start; curoff < end; curoff = nextoff) {
    305 		nextoff = curoff + PAGE_SIZE;
    306 		pg = uvm_pagelookup(uobj, curoff);
    307 		if (pg != NULL && pg->flags & PG_BUSY) {
    308 			pg->flags |= PG_WANTED;
    309 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
    310 				    "km_pgrm", 0);
    311 			simple_lock(&uobj->vmobjlock);
    312 			nextoff = curoff;
    313 			continue;
    314 		}
    315 
    316 		/*
    317 		 * free the swap slot, then the page.
    318 		 */
    319 
    320 		if (pg == NULL &&
    321 		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
    322 			swpgonlydelta++;
    323 		}
    324 		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
    325 		if (pg != NULL) {
    326 			uvm_lock_pageq();
    327 			uvm_pagefree(pg);
    328 			uvm_unlock_pageq();
    329 		}
    330 	}
    331 	simple_unlock(&uobj->vmobjlock);
    332 
    333 	if (swpgonlydelta > 0) {
    334 		simple_lock(&uvm.swap_data_lock);
    335 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
    336 		uvmexp.swpgonly -= swpgonlydelta;
    337 		simple_unlock(&uvm.swap_data_lock);
    338 	}
    339 }
    340 
    341 
    342 /*
    343  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
    344  *    maps
    345  *
    346  * => when you unmap a part of anonymous kernel memory you want to toss
    347  *    the pages right away.    (this is called from uvm_unmap_...).
    348  * => none of the pages will ever be busy, and none of them will ever
    349  *    be on the active or inactive queues (because they have no object).
    350  */
    351 
    352 void
    353 uvm_km_pgremove_intrsafe(start, end)
    354 	vaddr_t start, end;
    355 {
    356 	struct vm_page *pg;
    357 	paddr_t pa;
    358 	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
    359 
    360 	for (; start < end; start += PAGE_SIZE) {
    361 		if (!pmap_extract(pmap_kernel(), start, &pa)) {
    362 			continue;
    363 		}
    364 		pg = PHYS_TO_VM_PAGE(pa);
    365 		KASSERT(pg);
    366 		KASSERT(pg->uobject == NULL && pg->uanon == NULL);
    367 		uvm_pagefree(pg);
    368 	}
    369 }
    370 
    371 
    372 /*
    373  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
    374  *
    375  * => we map wired memory into the specified map using the obj passed in
    376  * => NOTE: we can return NULL even if we can wait if there is not enough
    377  *	free VM space in the map... caller should be prepared to handle
    378  *	this case.
    379  * => we return KVA of memory allocated
    380  * => align,prefer - passed on to uvm_map()
    381  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
    382  *	lock the map
    383  */
    384 
    385 vaddr_t
    386 uvm_km_kmemalloc1(map, obj, size, align, prefer, flags)
    387 	struct vm_map *map;
    388 	struct uvm_object *obj;
    389 	vsize_t size;
    390 	vsize_t align;
    391 	voff_t prefer;
    392 	int flags;
    393 {
    394 	vaddr_t kva, loopva;
    395 	vaddr_t offset;
    396 	vsize_t loopsize;
    397 	struct vm_page *pg;
    398 	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
    399 
    400 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
    401 		    map, obj, size, flags);
    402 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    403 
    404 	/*
    405 	 * setup for call
    406 	 */
    407 
    408 	size = round_page(size);
    409 	kva = vm_map_min(map);	/* hint */
    410 
    411 	/*
    412 	 * allocate some virtual space
    413 	 */
    414 
    415 	if (__predict_false(uvm_map(map, &kva, size, obj, prefer, align,
    416 		UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    417 			    UVM_ADV_RANDOM,
    418 			    (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT))
    419 			    | UVM_FLAG_QUANTUM))
    420 			!= 0)) {
    421 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    422 		return(0);
    423 	}
    424 
    425 	/*
    426 	 * if all we wanted was VA, return now
    427 	 */
    428 
    429 	if (flags & UVM_KMF_VALLOC) {
    430 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
    431 		return(kva);
    432 	}
    433 
    434 	/*
    435 	 * recover object offset from virtual address
    436 	 */
    437 
    438 	offset = kva - vm_map_min(kernel_map);
    439 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
    440 
    441 	/*
    442 	 * now allocate and map in the memory... note that we are the only ones
    443 	 * whom should ever get a handle on this area of VM.
    444 	 */
    445 
    446 	loopva = kva;
    447 	loopsize = size;
    448 	while (loopsize) {
    449 		if (obj) {
    450 			simple_lock(&obj->vmobjlock);
    451 		}
    452 		pg = uvm_pagealloc(obj, offset, NULL, UVM_PGA_USERESERVE);
    453 		if (__predict_true(pg != NULL)) {
    454 			pg->flags &= ~PG_BUSY;	/* new page */
    455 			UVM_PAGE_OWN(pg, NULL);
    456 		}
    457 		if (obj) {
    458 			simple_unlock(&obj->vmobjlock);
    459 		}
    460 
    461 		/*
    462 		 * out of memory?
    463 		 */
    464 
    465 		if (__predict_false(pg == NULL)) {
    466 			if ((flags & UVM_KMF_NOWAIT) ||
    467 			    ((flags & UVM_KMF_CANFAIL) && uvm_swapisfull())) {
    468 				/* free everything! */
    469 				uvm_unmap(map, kva, kva + size);
    470 				return (0);
    471 			} else {
    472 				uvm_wait("km_getwait2");	/* sleep here */
    473 				continue;
    474 			}
    475 		}
    476 
    477 		/*
    478 		 * map it in
    479 		 */
    480 
    481 		if (obj == NULL) {
    482 			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    483 			    VM_PROT_READ | VM_PROT_WRITE);
    484 		} else {
    485 			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    486 			    UVM_PROT_ALL,
    487 			    PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
    488 		}
    489 		loopva += PAGE_SIZE;
    490 		offset += PAGE_SIZE;
    491 		loopsize -= PAGE_SIZE;
    492 	}
    493 
    494        	pmap_update(pmap_kernel());
    495 
    496 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    497 	return(kva);
    498 }
    499 
    500 /*
    501  * uvm_km_free: free an area of kernel memory
    502  */
    503 
    504 void
    505 uvm_km_free(map, addr, size)
    506 	struct vm_map *map;
    507 	vaddr_t addr;
    508 	vsize_t size;
    509 {
    510 	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
    511 }
    512 
    513 /*
    514  * uvm_km_free_wakeup: free an area of kernel memory and wake up
    515  * anyone waiting for vm space.
    516  *
    517  * => XXX: "wanted" bit + unlock&wait on other end?
    518  */
    519 
    520 void
    521 uvm_km_free_wakeup(map, addr, size)
    522 	struct vm_map *map;
    523 	vaddr_t addr;
    524 	vsize_t size;
    525 {
    526 	struct vm_map_entry *dead_entries;
    527 
    528 	vm_map_lock(map);
    529 	uvm_unmap_remove(map, trunc_page(addr), round_page(addr + size),
    530 	    &dead_entries, NULL);
    531 	wakeup(map);
    532 	vm_map_unlock(map);
    533 	if (dead_entries != NULL)
    534 		uvm_unmap_detach(dead_entries, 0);
    535 }
    536 
    537 /*
    538  * uvm_km_alloc1: allocate wired down memory in the kernel map.
    539  *
    540  * => we can sleep if needed
    541  */
    542 
    543 vaddr_t
    544 uvm_km_alloc1(map, size, zeroit)
    545 	struct vm_map *map;
    546 	vsize_t size;
    547 	boolean_t zeroit;
    548 {
    549 	vaddr_t kva, loopva, offset;
    550 	struct vm_page *pg;
    551 	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
    552 
    553 	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
    554 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    555 
    556 	size = round_page(size);
    557 	kva = vm_map_min(map);		/* hint */
    558 
    559 	/*
    560 	 * allocate some virtual space
    561 	 */
    562 
    563 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
    564 	      UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    565 					      UVM_INH_NONE, UVM_ADV_RANDOM,
    566 					      UVM_FLAG_QUANTUM)) != 0)) {
    567 		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
    568 		return(0);
    569 	}
    570 
    571 	/*
    572 	 * recover object offset from virtual address
    573 	 */
    574 
    575 	offset = kva - vm_map_min(kernel_map);
    576 	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
    577 
    578 	/*
    579 	 * now allocate the memory.
    580 	 */
    581 
    582 	loopva = kva;
    583 	while (size) {
    584 		simple_lock(&uvm.kernel_object->vmobjlock);
    585 		KASSERT(uvm_pagelookup(uvm.kernel_object, offset) == NULL);
    586 		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
    587 		if (pg) {
    588 			pg->flags &= ~PG_BUSY;
    589 			UVM_PAGE_OWN(pg, NULL);
    590 		}
    591 		simple_unlock(&uvm.kernel_object->vmobjlock);
    592 		if (pg == NULL) {
    593 			uvm_wait("km_alloc1w");
    594 			continue;
    595 		}
    596 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    597 		    UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
    598 		loopva += PAGE_SIZE;
    599 		offset += PAGE_SIZE;
    600 		size -= PAGE_SIZE;
    601 	}
    602 	pmap_update(map->pmap);
    603 
    604 	/*
    605 	 * zero on request (note that "size" is now zero due to the above loop
    606 	 * so we need to subtract kva from loopva to reconstruct the size).
    607 	 */
    608 
    609 	if (zeroit)
    610 		memset((caddr_t)kva, 0, loopva - kva);
    611 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    612 	return(kva);
    613 }
    614 
    615 /*
    616  * uvm_km_valloc1: allocate zero-fill memory in the kernel's address space
    617  *
    618  * => memory is not allocated until fault time
    619  * => the align, prefer and flags parameters are passed on to uvm_map().
    620  *
    621  * Note: this function is also the backend for these macros:
    622  *	uvm_km_valloc
    623  *	uvm_km_valloc_wait
    624  *	uvm_km_valloc_prefer
    625  *	uvm_km_valloc_prefer_wait
    626  *	uvm_km_valloc_align
    627  */
    628 
    629 vaddr_t
    630 uvm_km_valloc1(map, size, align, prefer, flags)
    631 	struct vm_map *map;
    632 	vsize_t size;
    633 	vsize_t align;
    634 	voff_t prefer;
    635 	uvm_flag_t flags;
    636 {
    637 	vaddr_t kva;
    638 	UVMHIST_FUNC("uvm_km_valloc1"); UVMHIST_CALLED(maphist);
    639 
    640 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x, align=0x%x, prefer=0x%x)",
    641 		    map, size, align, prefer);
    642 
    643 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    644 
    645 	size = round_page(size);
    646 	/*
    647 	 * Check if requested size is larger than the map, in which
    648 	 * case we can't succeed.
    649 	 */
    650 	if (size > vm_map_max(map) - vm_map_min(map))
    651 		return (0);
    652 
    653 	flags |= UVM_FLAG_QUANTUM;
    654 	for (;;) {
    655 		kva = vm_map_min(map);		/* hint */
    656 
    657 		/*
    658 		 * allocate some virtual space.   will be demand filled
    659 		 * by kernel_object.
    660 		 */
    661 
    662 		if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
    663 		    prefer, align, UVM_MAPFLAG(UVM_PROT_ALL,
    664 		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, flags))
    665 		    == 0)) {
    666 			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    667 			return (kva);
    668 		}
    669 
    670 		/*
    671 		 * failed.  sleep for a while (on map)
    672 		 */
    673 		if ((flags & UVM_KMF_NOWAIT) != 0)
    674 			return (0);
    675 
    676 		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
    677 		tsleep((caddr_t)map, PVM, "vallocwait", 0);
    678 	}
    679 	/*NOTREACHED*/
    680 }
    681 
    682 /* Function definitions for binary compatibility */
    683 vaddr_t
    684 uvm_km_kmemalloc(struct vm_map *map, struct uvm_object *obj,
    685 		 vsize_t sz, int flags)
    686 {
    687 	return uvm_km_kmemalloc1(map, obj, sz, 0, UVM_UNKNOWN_OFFSET, flags);
    688 }
    689 
    690 vaddr_t uvm_km_valloc(struct vm_map *map, vsize_t sz)
    691 {
    692 	return uvm_km_valloc1(map, sz, 0, UVM_UNKNOWN_OFFSET, UVM_KMF_NOWAIT);
    693 }
    694 
    695 vaddr_t uvm_km_valloc_align(struct vm_map *map, vsize_t sz, vsize_t align)
    696 {
    697 	return uvm_km_valloc1(map, sz, align, UVM_UNKNOWN_OFFSET, UVM_KMF_NOWAIT);
    698 }
    699 
    700 vaddr_t uvm_km_valloc_prefer_wait(struct vm_map *map, vsize_t sz, voff_t prefer)
    701 {
    702 	return uvm_km_valloc1(map, sz, 0, prefer, 0);
    703 }
    704 
    705 vaddr_t uvm_km_valloc_wait(struct vm_map *map, vsize_t sz)
    706 {
    707 	return uvm_km_valloc1(map, sz, 0, UVM_UNKNOWN_OFFSET, 0);
    708 }
    709 
    710 /* Sanity; must specify both or none. */
    711 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    712     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    713 #error Must specify MAP and UNMAP together.
    714 #endif
    715 
    716 /*
    717  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
    718  *
    719  * => if the pmap specifies an alternate mapping method, we use it.
    720  */
    721 
    722 /* ARGSUSED */
    723 vaddr_t
    724 uvm_km_alloc_poolpage1(map, obj, waitok)
    725 	struct vm_map *map;
    726 	struct uvm_object *obj;
    727 	boolean_t waitok;
    728 {
    729 #if defined(PMAP_MAP_POOLPAGE)
    730 	struct vm_page *pg;
    731 	vaddr_t va;
    732 
    733  again:
    734 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    735 	if (__predict_false(pg == NULL)) {
    736 		if (waitok) {
    737 			uvm_wait("plpg");
    738 			goto again;
    739 		} else
    740 			return (0);
    741 	}
    742 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    743 	if (__predict_false(va == 0))
    744 		uvm_pagefree(pg);
    745 	return (va);
    746 #else
    747 	vaddr_t va;
    748 	int s;
    749 
    750 	/*
    751 	 * NOTE: We may be called with a map that doens't require splvm
    752 	 * protection (e.g. kernel_map).  However, it does not hurt to
    753 	 * go to splvm in this case (since unprocted maps will never be
    754 	 * accessed in interrupt context).
    755 	 *
    756 	 * XXX We may want to consider changing the interface to this
    757 	 * XXX function.
    758 	 */
    759 
    760 	s = splvm();
    761 	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE,
    762 	    waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK);
    763 	splx(s);
    764 	return (va);
    765 #endif /* PMAP_MAP_POOLPAGE */
    766 }
    767 
    768 /*
    769  * uvm_km_free_poolpage: free a previously allocated pool page
    770  *
    771  * => if the pmap specifies an alternate unmapping method, we use it.
    772  */
    773 
    774 /* ARGSUSED */
    775 void
    776 uvm_km_free_poolpage1(map, addr)
    777 	struct vm_map *map;
    778 	vaddr_t addr;
    779 {
    780 #if defined(PMAP_UNMAP_POOLPAGE)
    781 	paddr_t pa;
    782 
    783 	pa = PMAP_UNMAP_POOLPAGE(addr);
    784 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    785 #else
    786 	int s;
    787 
    788 	/*
    789 	 * NOTE: We may be called with a map that doens't require splvm
    790 	 * protection (e.g. kernel_map).  However, it does not hurt to
    791 	 * go to splvm in this case (since unprocted maps will never be
    792 	 * accessed in interrupt context).
    793 	 *
    794 	 * XXX We may want to consider changing the interface to this
    795 	 * XXX function.
    796 	 */
    797 
    798 	s = splvm();
    799 	uvm_km_free(map, addr, PAGE_SIZE);
    800 	splx(s);
    801 #endif /* PMAP_UNMAP_POOLPAGE */
    802 }
    803