uvm_km.c revision 1.72 1 /* $NetBSD: uvm_km.c,v 1.72 2005/01/01 21:08:02 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
42 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_km.c: handle kernel memory allocation and management
71 */
72
73 /*
74 * overview of kernel memory management:
75 *
76 * the kernel virtual address space is mapped by "kernel_map." kernel_map
77 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
78 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
79 *
80 * the kernel_map has several "submaps." submaps can only appear in
81 * the kernel_map (user processes can't use them). submaps "take over"
82 * the management of a sub-range of the kernel's address space. submaps
83 * are typically allocated at boot time and are never released. kernel
84 * virtual address space that is mapped by a submap is locked by the
85 * submap's lock -- not the kernel_map's lock.
86 *
87 * thus, the useful feature of submaps is that they allow us to break
88 * up the locking and protection of the kernel address space into smaller
89 * chunks.
90 *
91 * the vm system has several standard kernel submaps, including:
92 * kmem_map => contains only wired kernel memory for the kernel
93 * malloc. *** access to kmem_map must be protected
94 * by splvm() because we are allowed to call malloc()
95 * at interrupt time ***
96 * mb_map => memory for large mbufs, *** protected by splvm ***
97 * pager_map => used to map "buf" structures into kernel space
98 * exec_map => used during exec to handle exec args
99 * etc...
100 *
101 * the kernel allocates its private memory out of special uvm_objects whose
102 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
103 * are "special" and never die). all kernel objects should be thought of
104 * as large, fixed-sized, sparsely populated uvm_objects. each kernel
105 * object is equal to the size of kernel virtual address space (i.e. the
106 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
107 *
108 * most kernel private memory lives in kernel_object. the only exception
109 * to this is for memory that belongs to submaps that must be protected
110 * by splvm(). pages in these submaps are not assigned to an object.
111 *
112 * note that just because a kernel object spans the entire kernel virutal
113 * address space doesn't mean that it has to be mapped into the entire space.
114 * large chunks of a kernel object's space go unused either because
115 * that area of kernel VM is unmapped, or there is some other type of
116 * object mapped into that range (e.g. a vnode). for submap's kernel
117 * objects, the only part of the object that can ever be populated is the
118 * offsets that are managed by the submap.
119 *
120 * note that the "offset" in a kernel object is always the kernel virtual
121 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
122 * example:
123 * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
124 * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
125 * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
126 * then that means that the page at offset 0x235000 in kernel_object is
127 * mapped at 0xf8235000.
128 *
129 * kernel object have one other special property: when the kernel virtual
130 * memory mapping them is unmapped, the backing memory in the object is
131 * freed right away. this is done with the uvm_km_pgremove() function.
132 * this has to be done because there is no backing store for kernel pages
133 * and no need to save them after they are no longer referenced.
134 */
135
136 #include <sys/cdefs.h>
137 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.72 2005/01/01 21:08:02 yamt Exp $");
138
139 #include "opt_uvmhist.h"
140
141 #include <sys/param.h>
142 #include <sys/malloc.h>
143 #include <sys/systm.h>
144 #include <sys/proc.h>
145 #include <sys/pool.h>
146
147 #include <uvm/uvm.h>
148
149 /*
150 * global data structures
151 */
152
153 struct vm_map *kernel_map = NULL;
154
155 /*
156 * local data structues
157 */
158
159 static struct vm_map_kernel kernel_map_store;
160 static struct vm_map_entry kernel_first_mapent_store;
161
162 #if !defined(PMAP_MAP_POOLPAGE)
163
164 /*
165 * kva cache
166 *
167 * XXX maybe it's better to do this at the uvm_map layer.
168 */
169
170 #define KM_VACACHE_SIZE (32 * PAGE_SIZE) /* XXX tune */
171
172 static void *km_vacache_alloc(struct pool *, int);
173 static void km_vacache_free(struct pool *, void *);
174 static void km_vacache_init(struct vm_map *, const char *, size_t);
175
176 /* XXX */
177 #define KM_VACACHE_POOL_TO_MAP(pp) \
178 ((struct vm_map *)((char *)(pp) - \
179 offsetof(struct vm_map_kernel, vmk_vacache)))
180
181 static void *
182 km_vacache_alloc(struct pool *pp, int flags)
183 {
184 vaddr_t va;
185 size_t size;
186 struct vm_map *map;
187 #if defined(DEBUG)
188 vaddr_t loopva;
189 #endif
190 size = pp->pr_alloc->pa_pagesz;
191
192 map = KM_VACACHE_POOL_TO_MAP(pp);
193
194 if (uvm_map(map, &va, size, NULL, UVM_UNKNOWN_OFFSET, size,
195 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
196 UVM_ADV_RANDOM, UVM_FLAG_QUANTUM |
197 ((flags & PR_WAITOK) ? 0 : UVM_FLAG_TRYLOCK | UVM_FLAG_NOWAIT))))
198 return NULL;
199
200 #if defined(DEBUG)
201 for (loopva = va; loopva < va + size; loopva += PAGE_SIZE) {
202 if (pmap_extract(pmap_kernel(), loopva, NULL))
203 panic("km_vacache_free: has mapping");
204 }
205 #endif
206
207 return (void *)va;
208 }
209
210 static void
211 km_vacache_free(struct pool *pp, void *v)
212 {
213 vaddr_t va = (vaddr_t)v;
214 size_t size = pp->pr_alloc->pa_pagesz;
215 struct vm_map *map;
216 #if defined(DEBUG)
217 vaddr_t loopva;
218
219 for (loopva = va; loopva < va + size; loopva += PAGE_SIZE) {
220 if (pmap_extract(pmap_kernel(), loopva, NULL))
221 panic("km_vacache_free: has mapping");
222 }
223 #endif
224 map = KM_VACACHE_POOL_TO_MAP(pp);
225 uvm_unmap(map, va, va + size);
226 }
227
228 /*
229 * km_vacache_init: initialize kva cache.
230 */
231
232 static void
233 km_vacache_init(struct vm_map *map, const char *name, size_t size)
234 {
235 struct vm_map_kernel *vmk;
236 struct pool *pp;
237 struct pool_allocator *pa;
238
239 KASSERT(VM_MAP_IS_KERNEL(map));
240 KASSERT(size < (vm_map_max(map) - vm_map_min(map)) / 2); /* sanity */
241
242 vmk = vm_map_to_kernel(map);
243 pp = &vmk->vmk_vacache;
244 pa = &vmk->vmk_vacache_allocator;
245 memset(pa, 0, sizeof(*pa));
246 pa->pa_alloc = km_vacache_alloc;
247 pa->pa_free = km_vacache_free;
248 pa->pa_pagesz = (unsigned int)size;
249 pool_init(pp, PAGE_SIZE, 0, 0, PR_NOTOUCH | PR_RECURSIVE, name, pa);
250
251 /* XXX for now.. */
252 pool_sethiwat(pp, 0);
253 }
254
255 void
256 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
257 {
258
259 map->flags |= VM_MAP_VACACHE;
260 if (size == 0)
261 size = KM_VACACHE_SIZE;
262 km_vacache_init(map, name, size);
263 }
264
265 #else /* !defined(PMAP_MAP_POOLPAGE) */
266
267 void
268 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
269 {
270
271 /* nothing */
272 }
273
274 #endif /* !defined(PMAP_MAP_POOLPAGE) */
275
276 /*
277 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
278 * KVM already allocated for text, data, bss, and static data structures).
279 *
280 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
281 * we assume that [min -> start] has already been allocated and that
282 * "end" is the end.
283 */
284
285 void
286 uvm_km_init(start, end)
287 vaddr_t start, end;
288 {
289 vaddr_t base = VM_MIN_KERNEL_ADDRESS;
290
291 /*
292 * next, init kernel memory objects.
293 */
294
295 /* kernel_object: for pageable anonymous kernel memory */
296 uao_init();
297 uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
298 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
299
300 /*
301 * init the map and reserve any space that might already
302 * have been allocated kernel space before installing.
303 */
304
305 uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
306 kernel_map_store.vmk_map.pmap = pmap_kernel();
307 if (start != base) {
308 int error;
309 struct uvm_map_args args;
310
311 error = uvm_map_prepare(&kernel_map_store.vmk_map,
312 base, start - base,
313 NULL, UVM_UNKNOWN_OFFSET, 0,
314 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
315 UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
316 if (!error) {
317 kernel_first_mapent_store.flags =
318 UVM_MAP_KERNEL | UVM_MAP_FIRST;
319 error = uvm_map_enter(&kernel_map_store.vmk_map, &args,
320 &kernel_first_mapent_store);
321 }
322
323 if (error)
324 panic(
325 "uvm_km_init: could not reserve space for kernel");
326 }
327
328 /*
329 * install!
330 */
331
332 kernel_map = &kernel_map_store.vmk_map;
333 uvm_km_vacache_init(kernel_map, "kvakernel", 0);
334 }
335
336 /*
337 * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
338 * is allocated all references to that area of VM must go through it. this
339 * allows the locking of VAs in kernel_map to be broken up into regions.
340 *
341 * => if `fixed' is true, *min specifies where the region described
342 * by the submap must start
343 * => if submap is non NULL we use that as the submap, otherwise we
344 * alloc a new map
345 */
346 struct vm_map *
347 uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
348 struct vm_map *map;
349 vaddr_t *min, *max; /* IN/OUT, OUT */
350 vsize_t size;
351 int flags;
352 boolean_t fixed;
353 struct vm_map_kernel *submap;
354 {
355 int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
356
357 KASSERT(vm_map_pmap(map) == pmap_kernel());
358
359 size = round_page(size); /* round up to pagesize */
360
361 /*
362 * first allocate a blank spot in the parent map
363 */
364
365 if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
366 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
367 UVM_ADV_RANDOM, mapflags)) != 0) {
368 panic("uvm_km_suballoc: unable to allocate space in parent map");
369 }
370
371 /*
372 * set VM bounds (min is filled in by uvm_map)
373 */
374
375 *max = *min + size;
376
377 /*
378 * add references to pmap and create or init the submap
379 */
380
381 pmap_reference(vm_map_pmap(map));
382 if (submap == NULL) {
383 submap = malloc(sizeof(*submap), M_VMMAP, M_WAITOK);
384 if (submap == NULL)
385 panic("uvm_km_suballoc: unable to create submap");
386 }
387 uvm_map_setup_kernel(submap, *min, *max, flags);
388 submap->vmk_map.pmap = vm_map_pmap(map);
389
390 /*
391 * now let uvm_map_submap plug in it...
392 */
393
394 if (uvm_map_submap(map, *min, *max, &submap->vmk_map) != 0)
395 panic("uvm_km_suballoc: submap allocation failed");
396
397 return(&submap->vmk_map);
398 }
399
400 /*
401 * uvm_km_pgremove: remove pages from a kernel uvm_object.
402 *
403 * => when you unmap a part of anonymous kernel memory you want to toss
404 * the pages right away. (this gets called from uvm_unmap_...).
405 */
406
407 void
408 uvm_km_pgremove(uobj, start, end)
409 struct uvm_object *uobj;
410 vaddr_t start, end;
411 {
412 struct vm_page *pg;
413 voff_t curoff, nextoff;
414 int swpgonlydelta = 0;
415 UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
416
417 KASSERT(uobj->pgops == &aobj_pager);
418 simple_lock(&uobj->vmobjlock);
419
420 for (curoff = start; curoff < end; curoff = nextoff) {
421 nextoff = curoff + PAGE_SIZE;
422 pg = uvm_pagelookup(uobj, curoff);
423 if (pg != NULL && pg->flags & PG_BUSY) {
424 pg->flags |= PG_WANTED;
425 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
426 "km_pgrm", 0);
427 simple_lock(&uobj->vmobjlock);
428 nextoff = curoff;
429 continue;
430 }
431
432 /*
433 * free the swap slot, then the page.
434 */
435
436 if (pg == NULL &&
437 uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
438 swpgonlydelta++;
439 }
440 uao_dropswap(uobj, curoff >> PAGE_SHIFT);
441 if (pg != NULL) {
442 uvm_lock_pageq();
443 uvm_pagefree(pg);
444 uvm_unlock_pageq();
445 }
446 }
447 simple_unlock(&uobj->vmobjlock);
448
449 if (swpgonlydelta > 0) {
450 simple_lock(&uvm.swap_data_lock);
451 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
452 uvmexp.swpgonly -= swpgonlydelta;
453 simple_unlock(&uvm.swap_data_lock);
454 }
455 }
456
457
458 /*
459 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
460 * maps
461 *
462 * => when you unmap a part of anonymous kernel memory you want to toss
463 * the pages right away. (this is called from uvm_unmap_...).
464 * => none of the pages will ever be busy, and none of them will ever
465 * be on the active or inactive queues (because they have no object).
466 */
467
468 void
469 uvm_km_pgremove_intrsafe(start, end)
470 vaddr_t start, end;
471 {
472 struct vm_page *pg;
473 paddr_t pa;
474 UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
475
476 for (; start < end; start += PAGE_SIZE) {
477 if (!pmap_extract(pmap_kernel(), start, &pa)) {
478 continue;
479 }
480 pg = PHYS_TO_VM_PAGE(pa);
481 KASSERT(pg);
482 KASSERT(pg->uobject == NULL && pg->uanon == NULL);
483 uvm_pagefree(pg);
484 }
485 }
486
487
488 /*
489 * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
490 *
491 * => we map wired memory into the specified map using the obj passed in
492 * => NOTE: we can return NULL even if we can wait if there is not enough
493 * free VM space in the map... caller should be prepared to handle
494 * this case.
495 * => we return KVA of memory allocated
496 * => align,prefer - passed on to uvm_map()
497 * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
498 * lock the map
499 */
500
501 vaddr_t
502 uvm_km_kmemalloc1(map, obj, size, align, prefer, flags)
503 struct vm_map *map;
504 struct uvm_object *obj;
505 vsize_t size;
506 vsize_t align;
507 voff_t prefer;
508 int flags;
509 {
510 vaddr_t kva, loopva;
511 vaddr_t offset;
512 vsize_t loopsize;
513 struct vm_page *pg;
514 UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
515
516 UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
517 map, obj, size, flags);
518 KASSERT(vm_map_pmap(map) == pmap_kernel());
519
520 /*
521 * setup for call
522 */
523
524 size = round_page(size);
525 kva = vm_map_min(map); /* hint */
526
527 /*
528 * allocate some virtual space
529 */
530
531 if (__predict_false(uvm_map(map, &kva, size, obj, prefer, align,
532 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
533 UVM_ADV_RANDOM,
534 (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT))
535 | UVM_FLAG_QUANTUM))
536 != 0)) {
537 UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
538 return(0);
539 }
540
541 /*
542 * if all we wanted was VA, return now
543 */
544
545 if (flags & UVM_KMF_VALLOC) {
546 UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
547 return(kva);
548 }
549
550 /*
551 * recover object offset from virtual address
552 */
553
554 offset = kva - vm_map_min(kernel_map);
555 UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
556
557 /*
558 * now allocate and map in the memory... note that we are the only ones
559 * whom should ever get a handle on this area of VM.
560 */
561
562 loopva = kva;
563 loopsize = size;
564 while (loopsize) {
565 if (obj) {
566 simple_lock(&obj->vmobjlock);
567 }
568 pg = uvm_pagealloc(obj, offset, NULL, UVM_PGA_USERESERVE);
569 if (__predict_true(pg != NULL)) {
570 pg->flags &= ~PG_BUSY; /* new page */
571 UVM_PAGE_OWN(pg, NULL);
572 }
573 if (obj) {
574 simple_unlock(&obj->vmobjlock);
575 }
576
577 /*
578 * out of memory?
579 */
580
581 if (__predict_false(pg == NULL)) {
582 if ((flags & UVM_KMF_NOWAIT) ||
583 ((flags & UVM_KMF_CANFAIL) && uvm_swapisfull())) {
584 /* free everything! */
585 uvm_unmap(map, kva, kva + size);
586 return (0);
587 } else {
588 uvm_wait("km_getwait2"); /* sleep here */
589 continue;
590 }
591 }
592
593 /*
594 * map it in
595 */
596
597 if (obj == NULL) {
598 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
599 VM_PROT_READ | VM_PROT_WRITE);
600 } else {
601 pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
602 UVM_PROT_ALL,
603 PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
604 }
605 loopva += PAGE_SIZE;
606 offset += PAGE_SIZE;
607 loopsize -= PAGE_SIZE;
608 }
609
610 pmap_update(pmap_kernel());
611
612 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
613 return(kva);
614 }
615
616 /*
617 * uvm_km_free: free an area of kernel memory
618 */
619
620 void
621 uvm_km_free(map, addr, size)
622 struct vm_map *map;
623 vaddr_t addr;
624 vsize_t size;
625 {
626 uvm_unmap(map, trunc_page(addr), round_page(addr+size));
627 }
628
629 /*
630 * uvm_km_free_wakeup: free an area of kernel memory and wake up
631 * anyone waiting for vm space.
632 *
633 * => XXX: "wanted" bit + unlock&wait on other end?
634 */
635
636 void
637 uvm_km_free_wakeup(map, addr, size)
638 struct vm_map *map;
639 vaddr_t addr;
640 vsize_t size;
641 {
642 struct vm_map_entry *dead_entries;
643
644 vm_map_lock(map);
645 uvm_unmap_remove(map, trunc_page(addr), round_page(addr + size),
646 &dead_entries, NULL);
647 wakeup(map);
648 vm_map_unlock(map);
649 if (dead_entries != NULL)
650 uvm_unmap_detach(dead_entries, 0);
651 }
652
653 /*
654 * uvm_km_alloc1: allocate wired down memory in the kernel map.
655 *
656 * => we can sleep if needed
657 */
658
659 vaddr_t
660 uvm_km_alloc1(map, size, zeroit)
661 struct vm_map *map;
662 vsize_t size;
663 boolean_t zeroit;
664 {
665 vaddr_t kva, loopva, offset;
666 struct vm_page *pg;
667 UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
668
669 UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
670 KASSERT(vm_map_pmap(map) == pmap_kernel());
671
672 size = round_page(size);
673 kva = vm_map_min(map); /* hint */
674
675 /*
676 * allocate some virtual space
677 */
678
679 if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
680 UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
681 UVM_INH_NONE, UVM_ADV_RANDOM,
682 UVM_FLAG_QUANTUM)) != 0)) {
683 UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
684 return(0);
685 }
686
687 /*
688 * recover object offset from virtual address
689 */
690
691 offset = kva - vm_map_min(kernel_map);
692 UVMHIST_LOG(maphist," kva=0x%x, offset=0x%x", kva, offset,0,0);
693
694 /*
695 * now allocate the memory.
696 */
697
698 loopva = kva;
699 while (size) {
700 simple_lock(&uvm.kernel_object->vmobjlock);
701 KASSERT(uvm_pagelookup(uvm.kernel_object, offset) == NULL);
702 pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
703 if (pg) {
704 pg->flags &= ~PG_BUSY;
705 UVM_PAGE_OWN(pg, NULL);
706 }
707 simple_unlock(&uvm.kernel_object->vmobjlock);
708 if (pg == NULL) {
709 uvm_wait("km_alloc1w");
710 continue;
711 }
712 pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
713 UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
714 loopva += PAGE_SIZE;
715 offset += PAGE_SIZE;
716 size -= PAGE_SIZE;
717 }
718 pmap_update(map->pmap);
719
720 /*
721 * zero on request (note that "size" is now zero due to the above loop
722 * so we need to subtract kva from loopva to reconstruct the size).
723 */
724
725 if (zeroit)
726 memset((caddr_t)kva, 0, loopva - kva);
727 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
728 return(kva);
729 }
730
731 /*
732 * uvm_km_valloc1: allocate zero-fill memory in the kernel's address space
733 *
734 * => memory is not allocated until fault time
735 * => the align, prefer and flags parameters are passed on to uvm_map().
736 *
737 * Note: this function is also the backend for these macros:
738 * uvm_km_valloc
739 * uvm_km_valloc_wait
740 * uvm_km_valloc_prefer
741 * uvm_km_valloc_prefer_wait
742 * uvm_km_valloc_align
743 */
744
745 vaddr_t
746 uvm_km_valloc1(map, size, align, prefer, flags)
747 struct vm_map *map;
748 vsize_t size;
749 vsize_t align;
750 voff_t prefer;
751 uvm_flag_t flags;
752 {
753 vaddr_t kva;
754 UVMHIST_FUNC("uvm_km_valloc1"); UVMHIST_CALLED(maphist);
755
756 UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x, align=0x%x, prefer=0x%x)",
757 map, size, align, prefer);
758
759 KASSERT(vm_map_pmap(map) == pmap_kernel());
760
761 size = round_page(size);
762 /*
763 * Check if requested size is larger than the map, in which
764 * case we can't succeed.
765 */
766 if (size > vm_map_max(map) - vm_map_min(map))
767 return (0);
768
769 flags |= UVM_FLAG_QUANTUM;
770 for (;;) {
771 kva = vm_map_min(map); /* hint */
772
773 /*
774 * allocate some virtual space. will be demand filled
775 * by kernel_object.
776 */
777
778 if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
779 prefer, align, UVM_MAPFLAG(UVM_PROT_ALL,
780 UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, flags))
781 == 0)) {
782 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
783 return (kva);
784 }
785
786 /*
787 * failed. sleep for a while (on map)
788 */
789 if ((flags & UVM_KMF_NOWAIT) != 0)
790 return (0);
791
792 UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
793 tsleep((caddr_t)map, PVM, "vallocwait", 0);
794 }
795 /*NOTREACHED*/
796 }
797
798 /* Function definitions for binary compatibility */
799 vaddr_t
800 uvm_km_kmemalloc(struct vm_map *map, struct uvm_object *obj,
801 vsize_t sz, int flags)
802 {
803 return uvm_km_kmemalloc1(map, obj, sz, 0, UVM_UNKNOWN_OFFSET, flags);
804 }
805
806 vaddr_t uvm_km_valloc(struct vm_map *map, vsize_t sz)
807 {
808 return uvm_km_valloc1(map, sz, 0, UVM_UNKNOWN_OFFSET, UVM_KMF_NOWAIT);
809 }
810
811 vaddr_t uvm_km_valloc_align(struct vm_map *map, vsize_t sz, vsize_t align)
812 {
813 return uvm_km_valloc1(map, sz, align, UVM_UNKNOWN_OFFSET, UVM_KMF_NOWAIT);
814 }
815
816 vaddr_t uvm_km_valloc_prefer_wait(struct vm_map *map, vsize_t sz, voff_t prefer)
817 {
818 return uvm_km_valloc1(map, sz, 0, prefer, 0);
819 }
820
821 vaddr_t uvm_km_valloc_wait(struct vm_map *map, vsize_t sz)
822 {
823 return uvm_km_valloc1(map, sz, 0, UVM_UNKNOWN_OFFSET, 0);
824 }
825
826 /* Sanity; must specify both or none. */
827 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
828 (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
829 #error Must specify MAP and UNMAP together.
830 #endif
831
832 /*
833 * uvm_km_alloc_poolpage: allocate a page for the pool allocator
834 *
835 * => if the pmap specifies an alternate mapping method, we use it.
836 */
837
838 /* ARGSUSED */
839 vaddr_t
840 uvm_km_alloc_poolpage_cache(map, obj, waitok)
841 struct vm_map *map;
842 struct uvm_object *obj;
843 boolean_t waitok;
844 {
845 #if defined(PMAP_MAP_POOLPAGE)
846 return uvm_km_alloc_poolpage1(map, obj, waitok);
847 #else
848 struct vm_page *pg;
849 struct pool *pp = &vm_map_to_kernel(map)->vmk_vacache;
850 vaddr_t va;
851 int s = 0xdeadbeaf; /* XXX: gcc */
852 const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
853
854 if ((map->flags & VM_MAP_VACACHE) == 0)
855 return uvm_km_alloc_poolpage1(map, obj, waitok);
856
857 if (intrsafe)
858 s = splvm();
859 va = (vaddr_t)pool_get(pp, waitok ? PR_WAITOK : PR_NOWAIT);
860 if (intrsafe)
861 splx(s);
862 if (va == 0)
863 return 0;
864 KASSERT(!pmap_extract(pmap_kernel(), va, NULL));
865 again:
866 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
867 if (__predict_false(pg == NULL)) {
868 if (waitok) {
869 uvm_wait("plpg");
870 goto again;
871 } else {
872 if (intrsafe)
873 s = splvm();
874 pool_put(pp, (void *)va);
875 if (intrsafe)
876 splx(s);
877 return 0;
878 }
879 }
880 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg),
881 VM_PROT_READ|VM_PROT_WRITE);
882 pmap_update(pmap_kernel());
883
884 return va;
885 #endif /* PMAP_MAP_POOLPAGE */
886 }
887
888 vaddr_t
889 uvm_km_alloc_poolpage1(map, obj, waitok)
890 struct vm_map *map;
891 struct uvm_object *obj;
892 boolean_t waitok;
893 {
894 #if defined(PMAP_MAP_POOLPAGE)
895 struct vm_page *pg;
896 vaddr_t va;
897
898 again:
899 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
900 if (__predict_false(pg == NULL)) {
901 if (waitok) {
902 uvm_wait("plpg");
903 goto again;
904 } else
905 return (0);
906 }
907 va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
908 if (__predict_false(va == 0))
909 uvm_pagefree(pg);
910 return (va);
911 #else
912 vaddr_t va;
913 int s = 0xdeadbeaf; /* XXX: gcc */
914 const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
915
916 if (intrsafe)
917 s = splvm();
918 va = uvm_km_kmemalloc(map, obj, PAGE_SIZE,
919 waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK);
920 if (intrsafe)
921 splx(s);
922 return (va);
923 #endif /* PMAP_MAP_POOLPAGE */
924 }
925
926 /*
927 * uvm_km_free_poolpage: free a previously allocated pool page
928 *
929 * => if the pmap specifies an alternate unmapping method, we use it.
930 */
931
932 /* ARGSUSED */
933 void
934 uvm_km_free_poolpage_cache(map, addr)
935 struct vm_map *map;
936 vaddr_t addr;
937 {
938 #if defined(PMAP_UNMAP_POOLPAGE)
939 uvm_km_free_poolpage1(map, addr);
940 #else
941 struct pool *pp;
942 int s = 0xdeadbeaf; /* XXX: gcc */
943 const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
944
945 if ((map->flags & VM_MAP_VACACHE) == 0) {
946 uvm_km_free_poolpage1(map, addr);
947 return;
948 }
949
950 KASSERT(pmap_extract(pmap_kernel(), addr, NULL));
951 uvm_km_pgremove_intrsafe(addr, addr + PAGE_SIZE);
952 pmap_kremove(addr, PAGE_SIZE);
953 #if defined(DEBUG)
954 pmap_update(pmap_kernel());
955 #endif
956 KASSERT(!pmap_extract(pmap_kernel(), addr, NULL));
957 pp = &vm_map_to_kernel(map)->vmk_vacache;
958 if (intrsafe)
959 s = splvm();
960 pool_put(pp, (void *)addr);
961 if (intrsafe)
962 splx(s);
963 #endif
964 }
965
966 /* ARGSUSED */
967 void
968 uvm_km_free_poolpage1(map, addr)
969 struct vm_map *map;
970 vaddr_t addr;
971 {
972 #if defined(PMAP_UNMAP_POOLPAGE)
973 paddr_t pa;
974
975 pa = PMAP_UNMAP_POOLPAGE(addr);
976 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
977 #else
978 int s = 0xdeadbeaf; /* XXX: gcc */
979 const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
980
981 if (intrsafe)
982 s = splvm();
983 uvm_km_free(map, addr, PAGE_SIZE);
984 if (intrsafe)
985 splx(s);
986 #endif /* PMAP_UNMAP_POOLPAGE */
987 }
988