Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.72
      1 /*	$NetBSD: uvm_km.c,v 1.72 2005/01/01 21:08:02 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     42  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_km.c: handle kernel memory allocation and management
     71  */
     72 
     73 /*
     74  * overview of kernel memory management:
     75  *
     76  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     77  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     78  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     79  *
     80  * the kernel_map has several "submaps."   submaps can only appear in
     81  * the kernel_map (user processes can't use them).   submaps "take over"
     82  * the management of a sub-range of the kernel's address space.  submaps
     83  * are typically allocated at boot time and are never released.   kernel
     84  * virtual address space that is mapped by a submap is locked by the
     85  * submap's lock -- not the kernel_map's lock.
     86  *
     87  * thus, the useful feature of submaps is that they allow us to break
     88  * up the locking and protection of the kernel address space into smaller
     89  * chunks.
     90  *
     91  * the vm system has several standard kernel submaps, including:
     92  *   kmem_map => contains only wired kernel memory for the kernel
     93  *		malloc.   *** access to kmem_map must be protected
     94  *		by splvm() because we are allowed to call malloc()
     95  *		at interrupt time ***
     96  *   mb_map => memory for large mbufs,  *** protected by splvm ***
     97  *   pager_map => used to map "buf" structures into kernel space
     98  *   exec_map => used during exec to handle exec args
     99  *   etc...
    100  *
    101  * the kernel allocates its private memory out of special uvm_objects whose
    102  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
    103  * are "special" and never die).   all kernel objects should be thought of
    104  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
    105  * object is equal to the size of kernel virtual address space (i.e. the
    106  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    107  *
    108  * most kernel private memory lives in kernel_object.   the only exception
    109  * to this is for memory that belongs to submaps that must be protected
    110  * by splvm().  pages in these submaps are not assigned to an object.
    111  *
    112  * note that just because a kernel object spans the entire kernel virutal
    113  * address space doesn't mean that it has to be mapped into the entire space.
    114  * large chunks of a kernel object's space go unused either because
    115  * that area of kernel VM is unmapped, or there is some other type of
    116  * object mapped into that range (e.g. a vnode).    for submap's kernel
    117  * objects, the only part of the object that can ever be populated is the
    118  * offsets that are managed by the submap.
    119  *
    120  * note that the "offset" in a kernel object is always the kernel virtual
    121  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    122  * example:
    123  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    124  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    125  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    126  *   then that means that the page at offset 0x235000 in kernel_object is
    127  *   mapped at 0xf8235000.
    128  *
    129  * kernel object have one other special property: when the kernel virtual
    130  * memory mapping them is unmapped, the backing memory in the object is
    131  * freed right away.   this is done with the uvm_km_pgremove() function.
    132  * this has to be done because there is no backing store for kernel pages
    133  * and no need to save them after they are no longer referenced.
    134  */
    135 
    136 #include <sys/cdefs.h>
    137 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.72 2005/01/01 21:08:02 yamt Exp $");
    138 
    139 #include "opt_uvmhist.h"
    140 
    141 #include <sys/param.h>
    142 #include <sys/malloc.h>
    143 #include <sys/systm.h>
    144 #include <sys/proc.h>
    145 #include <sys/pool.h>
    146 
    147 #include <uvm/uvm.h>
    148 
    149 /*
    150  * global data structures
    151  */
    152 
    153 struct vm_map *kernel_map = NULL;
    154 
    155 /*
    156  * local data structues
    157  */
    158 
    159 static struct vm_map_kernel	kernel_map_store;
    160 static struct vm_map_entry	kernel_first_mapent_store;
    161 
    162 #if !defined(PMAP_MAP_POOLPAGE)
    163 
    164 /*
    165  * kva cache
    166  *
    167  * XXX maybe it's better to do this at the uvm_map layer.
    168  */
    169 
    170 #define	KM_VACACHE_SIZE	(32 * PAGE_SIZE) /* XXX tune */
    171 
    172 static void *km_vacache_alloc(struct pool *, int);
    173 static void km_vacache_free(struct pool *, void *);
    174 static void km_vacache_init(struct vm_map *, const char *, size_t);
    175 
    176 /* XXX */
    177 #define	KM_VACACHE_POOL_TO_MAP(pp) \
    178 	((struct vm_map *)((char *)(pp) - \
    179 	    offsetof(struct vm_map_kernel, vmk_vacache)))
    180 
    181 static void *
    182 km_vacache_alloc(struct pool *pp, int flags)
    183 {
    184 	vaddr_t va;
    185 	size_t size;
    186 	struct vm_map *map;
    187 #if defined(DEBUG)
    188 	vaddr_t loopva;
    189 #endif
    190 	size = pp->pr_alloc->pa_pagesz;
    191 
    192 	map = KM_VACACHE_POOL_TO_MAP(pp);
    193 
    194 	if (uvm_map(map, &va, size, NULL, UVM_UNKNOWN_OFFSET, size,
    195 	    UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
    196 	    UVM_ADV_RANDOM, UVM_FLAG_QUANTUM |
    197 	    ((flags & PR_WAITOK) ? 0 : UVM_FLAG_TRYLOCK | UVM_FLAG_NOWAIT))))
    198 		return NULL;
    199 
    200 #if defined(DEBUG)
    201 	for (loopva = va; loopva < va + size; loopva += PAGE_SIZE) {
    202 		if (pmap_extract(pmap_kernel(), loopva, NULL))
    203 			panic("km_vacache_free: has mapping");
    204 	}
    205 #endif
    206 
    207 	return (void *)va;
    208 }
    209 
    210 static void
    211 km_vacache_free(struct pool *pp, void *v)
    212 {
    213 	vaddr_t va = (vaddr_t)v;
    214 	size_t size = pp->pr_alloc->pa_pagesz;
    215 	struct vm_map *map;
    216 #if defined(DEBUG)
    217 	vaddr_t loopva;
    218 
    219 	for (loopva = va; loopva < va + size; loopva += PAGE_SIZE) {
    220 		if (pmap_extract(pmap_kernel(), loopva, NULL))
    221 			panic("km_vacache_free: has mapping");
    222 	}
    223 #endif
    224 	map = KM_VACACHE_POOL_TO_MAP(pp);
    225 	uvm_unmap(map, va, va + size);
    226 }
    227 
    228 /*
    229  * km_vacache_init: initialize kva cache.
    230  */
    231 
    232 static void
    233 km_vacache_init(struct vm_map *map, const char *name, size_t size)
    234 {
    235 	struct vm_map_kernel *vmk;
    236 	struct pool *pp;
    237 	struct pool_allocator *pa;
    238 
    239 	KASSERT(VM_MAP_IS_KERNEL(map));
    240 	KASSERT(size < (vm_map_max(map) - vm_map_min(map)) / 2); /* sanity */
    241 
    242 	vmk = vm_map_to_kernel(map);
    243 	pp = &vmk->vmk_vacache;
    244 	pa = &vmk->vmk_vacache_allocator;
    245 	memset(pa, 0, sizeof(*pa));
    246 	pa->pa_alloc = km_vacache_alloc;
    247 	pa->pa_free = km_vacache_free;
    248 	pa->pa_pagesz = (unsigned int)size;
    249 	pool_init(pp, PAGE_SIZE, 0, 0, PR_NOTOUCH | PR_RECURSIVE, name, pa);
    250 
    251 	/* XXX for now.. */
    252 	pool_sethiwat(pp, 0);
    253 }
    254 
    255 void
    256 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
    257 {
    258 
    259 	map->flags |= VM_MAP_VACACHE;
    260 	if (size == 0)
    261 		size = KM_VACACHE_SIZE;
    262 	km_vacache_init(map, name, size);
    263 }
    264 
    265 #else /* !defined(PMAP_MAP_POOLPAGE) */
    266 
    267 void
    268 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
    269 {
    270 
    271 	/* nothing */
    272 }
    273 
    274 #endif /* !defined(PMAP_MAP_POOLPAGE) */
    275 
    276 /*
    277  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
    278  * KVM already allocated for text, data, bss, and static data structures).
    279  *
    280  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    281  *    we assume that [min -> start] has already been allocated and that
    282  *    "end" is the end.
    283  */
    284 
    285 void
    286 uvm_km_init(start, end)
    287 	vaddr_t start, end;
    288 {
    289 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    290 
    291 	/*
    292 	 * next, init kernel memory objects.
    293 	 */
    294 
    295 	/* kernel_object: for pageable anonymous kernel memory */
    296 	uao_init();
    297 	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    298 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    299 
    300 	/*
    301 	 * init the map and reserve any space that might already
    302 	 * have been allocated kernel space before installing.
    303 	 */
    304 
    305 	uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
    306 	kernel_map_store.vmk_map.pmap = pmap_kernel();
    307 	if (start != base) {
    308 		int error;
    309 		struct uvm_map_args args;
    310 
    311 		error = uvm_map_prepare(&kernel_map_store.vmk_map,
    312 		    base, start - base,
    313 		    NULL, UVM_UNKNOWN_OFFSET, 0,
    314 		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    315 		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
    316 		if (!error) {
    317 			kernel_first_mapent_store.flags =
    318 			    UVM_MAP_KERNEL | UVM_MAP_FIRST;
    319 			error = uvm_map_enter(&kernel_map_store.vmk_map, &args,
    320 			    &kernel_first_mapent_store);
    321 		}
    322 
    323 		if (error)
    324 			panic(
    325 			    "uvm_km_init: could not reserve space for kernel");
    326 	}
    327 
    328 	/*
    329 	 * install!
    330 	 */
    331 
    332 	kernel_map = &kernel_map_store.vmk_map;
    333 	uvm_km_vacache_init(kernel_map, "kvakernel", 0);
    334 }
    335 
    336 /*
    337  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    338  * is allocated all references to that area of VM must go through it.  this
    339  * allows the locking of VAs in kernel_map to be broken up into regions.
    340  *
    341  * => if `fixed' is true, *min specifies where the region described
    342  *      by the submap must start
    343  * => if submap is non NULL we use that as the submap, otherwise we
    344  *	alloc a new map
    345  */
    346 struct vm_map *
    347 uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
    348 	struct vm_map *map;
    349 	vaddr_t *min, *max;		/* IN/OUT, OUT */
    350 	vsize_t size;
    351 	int flags;
    352 	boolean_t fixed;
    353 	struct vm_map_kernel *submap;
    354 {
    355 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    356 
    357 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    358 
    359 	size = round_page(size);	/* round up to pagesize */
    360 
    361 	/*
    362 	 * first allocate a blank spot in the parent map
    363 	 */
    364 
    365 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
    366 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    367 	    UVM_ADV_RANDOM, mapflags)) != 0) {
    368 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
    369 	}
    370 
    371 	/*
    372 	 * set VM bounds (min is filled in by uvm_map)
    373 	 */
    374 
    375 	*max = *min + size;
    376 
    377 	/*
    378 	 * add references to pmap and create or init the submap
    379 	 */
    380 
    381 	pmap_reference(vm_map_pmap(map));
    382 	if (submap == NULL) {
    383 		submap = malloc(sizeof(*submap), M_VMMAP, M_WAITOK);
    384 		if (submap == NULL)
    385 			panic("uvm_km_suballoc: unable to create submap");
    386 	}
    387 	uvm_map_setup_kernel(submap, *min, *max, flags);
    388 	submap->vmk_map.pmap = vm_map_pmap(map);
    389 
    390 	/*
    391 	 * now let uvm_map_submap plug in it...
    392 	 */
    393 
    394 	if (uvm_map_submap(map, *min, *max, &submap->vmk_map) != 0)
    395 		panic("uvm_km_suballoc: submap allocation failed");
    396 
    397 	return(&submap->vmk_map);
    398 }
    399 
    400 /*
    401  * uvm_km_pgremove: remove pages from a kernel uvm_object.
    402  *
    403  * => when you unmap a part of anonymous kernel memory you want to toss
    404  *    the pages right away.    (this gets called from uvm_unmap_...).
    405  */
    406 
    407 void
    408 uvm_km_pgremove(uobj, start, end)
    409 	struct uvm_object *uobj;
    410 	vaddr_t start, end;
    411 {
    412 	struct vm_page *pg;
    413 	voff_t curoff, nextoff;
    414 	int swpgonlydelta = 0;
    415 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
    416 
    417 	KASSERT(uobj->pgops == &aobj_pager);
    418 	simple_lock(&uobj->vmobjlock);
    419 
    420 	for (curoff = start; curoff < end; curoff = nextoff) {
    421 		nextoff = curoff + PAGE_SIZE;
    422 		pg = uvm_pagelookup(uobj, curoff);
    423 		if (pg != NULL && pg->flags & PG_BUSY) {
    424 			pg->flags |= PG_WANTED;
    425 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
    426 				    "km_pgrm", 0);
    427 			simple_lock(&uobj->vmobjlock);
    428 			nextoff = curoff;
    429 			continue;
    430 		}
    431 
    432 		/*
    433 		 * free the swap slot, then the page.
    434 		 */
    435 
    436 		if (pg == NULL &&
    437 		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
    438 			swpgonlydelta++;
    439 		}
    440 		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
    441 		if (pg != NULL) {
    442 			uvm_lock_pageq();
    443 			uvm_pagefree(pg);
    444 			uvm_unlock_pageq();
    445 		}
    446 	}
    447 	simple_unlock(&uobj->vmobjlock);
    448 
    449 	if (swpgonlydelta > 0) {
    450 		simple_lock(&uvm.swap_data_lock);
    451 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
    452 		uvmexp.swpgonly -= swpgonlydelta;
    453 		simple_unlock(&uvm.swap_data_lock);
    454 	}
    455 }
    456 
    457 
    458 /*
    459  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
    460  *    maps
    461  *
    462  * => when you unmap a part of anonymous kernel memory you want to toss
    463  *    the pages right away.    (this is called from uvm_unmap_...).
    464  * => none of the pages will ever be busy, and none of them will ever
    465  *    be on the active or inactive queues (because they have no object).
    466  */
    467 
    468 void
    469 uvm_km_pgremove_intrsafe(start, end)
    470 	vaddr_t start, end;
    471 {
    472 	struct vm_page *pg;
    473 	paddr_t pa;
    474 	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
    475 
    476 	for (; start < end; start += PAGE_SIZE) {
    477 		if (!pmap_extract(pmap_kernel(), start, &pa)) {
    478 			continue;
    479 		}
    480 		pg = PHYS_TO_VM_PAGE(pa);
    481 		KASSERT(pg);
    482 		KASSERT(pg->uobject == NULL && pg->uanon == NULL);
    483 		uvm_pagefree(pg);
    484 	}
    485 }
    486 
    487 
    488 /*
    489  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
    490  *
    491  * => we map wired memory into the specified map using the obj passed in
    492  * => NOTE: we can return NULL even if we can wait if there is not enough
    493  *	free VM space in the map... caller should be prepared to handle
    494  *	this case.
    495  * => we return KVA of memory allocated
    496  * => align,prefer - passed on to uvm_map()
    497  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
    498  *	lock the map
    499  */
    500 
    501 vaddr_t
    502 uvm_km_kmemalloc1(map, obj, size, align, prefer, flags)
    503 	struct vm_map *map;
    504 	struct uvm_object *obj;
    505 	vsize_t size;
    506 	vsize_t align;
    507 	voff_t prefer;
    508 	int flags;
    509 {
    510 	vaddr_t kva, loopva;
    511 	vaddr_t offset;
    512 	vsize_t loopsize;
    513 	struct vm_page *pg;
    514 	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
    515 
    516 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
    517 		    map, obj, size, flags);
    518 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    519 
    520 	/*
    521 	 * setup for call
    522 	 */
    523 
    524 	size = round_page(size);
    525 	kva = vm_map_min(map);	/* hint */
    526 
    527 	/*
    528 	 * allocate some virtual space
    529 	 */
    530 
    531 	if (__predict_false(uvm_map(map, &kva, size, obj, prefer, align,
    532 		UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    533 			    UVM_ADV_RANDOM,
    534 			    (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT))
    535 			    | UVM_FLAG_QUANTUM))
    536 			!= 0)) {
    537 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    538 		return(0);
    539 	}
    540 
    541 	/*
    542 	 * if all we wanted was VA, return now
    543 	 */
    544 
    545 	if (flags & UVM_KMF_VALLOC) {
    546 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
    547 		return(kva);
    548 	}
    549 
    550 	/*
    551 	 * recover object offset from virtual address
    552 	 */
    553 
    554 	offset = kva - vm_map_min(kernel_map);
    555 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
    556 
    557 	/*
    558 	 * now allocate and map in the memory... note that we are the only ones
    559 	 * whom should ever get a handle on this area of VM.
    560 	 */
    561 
    562 	loopva = kva;
    563 	loopsize = size;
    564 	while (loopsize) {
    565 		if (obj) {
    566 			simple_lock(&obj->vmobjlock);
    567 		}
    568 		pg = uvm_pagealloc(obj, offset, NULL, UVM_PGA_USERESERVE);
    569 		if (__predict_true(pg != NULL)) {
    570 			pg->flags &= ~PG_BUSY;	/* new page */
    571 			UVM_PAGE_OWN(pg, NULL);
    572 		}
    573 		if (obj) {
    574 			simple_unlock(&obj->vmobjlock);
    575 		}
    576 
    577 		/*
    578 		 * out of memory?
    579 		 */
    580 
    581 		if (__predict_false(pg == NULL)) {
    582 			if ((flags & UVM_KMF_NOWAIT) ||
    583 			    ((flags & UVM_KMF_CANFAIL) && uvm_swapisfull())) {
    584 				/* free everything! */
    585 				uvm_unmap(map, kva, kva + size);
    586 				return (0);
    587 			} else {
    588 				uvm_wait("km_getwait2");	/* sleep here */
    589 				continue;
    590 			}
    591 		}
    592 
    593 		/*
    594 		 * map it in
    595 		 */
    596 
    597 		if (obj == NULL) {
    598 			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    599 			    VM_PROT_READ | VM_PROT_WRITE);
    600 		} else {
    601 			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    602 			    UVM_PROT_ALL,
    603 			    PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
    604 		}
    605 		loopva += PAGE_SIZE;
    606 		offset += PAGE_SIZE;
    607 		loopsize -= PAGE_SIZE;
    608 	}
    609 
    610        	pmap_update(pmap_kernel());
    611 
    612 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    613 	return(kva);
    614 }
    615 
    616 /*
    617  * uvm_km_free: free an area of kernel memory
    618  */
    619 
    620 void
    621 uvm_km_free(map, addr, size)
    622 	struct vm_map *map;
    623 	vaddr_t addr;
    624 	vsize_t size;
    625 {
    626 	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
    627 }
    628 
    629 /*
    630  * uvm_km_free_wakeup: free an area of kernel memory and wake up
    631  * anyone waiting for vm space.
    632  *
    633  * => XXX: "wanted" bit + unlock&wait on other end?
    634  */
    635 
    636 void
    637 uvm_km_free_wakeup(map, addr, size)
    638 	struct vm_map *map;
    639 	vaddr_t addr;
    640 	vsize_t size;
    641 {
    642 	struct vm_map_entry *dead_entries;
    643 
    644 	vm_map_lock(map);
    645 	uvm_unmap_remove(map, trunc_page(addr), round_page(addr + size),
    646 	    &dead_entries, NULL);
    647 	wakeup(map);
    648 	vm_map_unlock(map);
    649 	if (dead_entries != NULL)
    650 		uvm_unmap_detach(dead_entries, 0);
    651 }
    652 
    653 /*
    654  * uvm_km_alloc1: allocate wired down memory in the kernel map.
    655  *
    656  * => we can sleep if needed
    657  */
    658 
    659 vaddr_t
    660 uvm_km_alloc1(map, size, zeroit)
    661 	struct vm_map *map;
    662 	vsize_t size;
    663 	boolean_t zeroit;
    664 {
    665 	vaddr_t kva, loopva, offset;
    666 	struct vm_page *pg;
    667 	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
    668 
    669 	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
    670 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    671 
    672 	size = round_page(size);
    673 	kva = vm_map_min(map);		/* hint */
    674 
    675 	/*
    676 	 * allocate some virtual space
    677 	 */
    678 
    679 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
    680 	      UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    681 					      UVM_INH_NONE, UVM_ADV_RANDOM,
    682 					      UVM_FLAG_QUANTUM)) != 0)) {
    683 		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
    684 		return(0);
    685 	}
    686 
    687 	/*
    688 	 * recover object offset from virtual address
    689 	 */
    690 
    691 	offset = kva - vm_map_min(kernel_map);
    692 	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
    693 
    694 	/*
    695 	 * now allocate the memory.
    696 	 */
    697 
    698 	loopva = kva;
    699 	while (size) {
    700 		simple_lock(&uvm.kernel_object->vmobjlock);
    701 		KASSERT(uvm_pagelookup(uvm.kernel_object, offset) == NULL);
    702 		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
    703 		if (pg) {
    704 			pg->flags &= ~PG_BUSY;
    705 			UVM_PAGE_OWN(pg, NULL);
    706 		}
    707 		simple_unlock(&uvm.kernel_object->vmobjlock);
    708 		if (pg == NULL) {
    709 			uvm_wait("km_alloc1w");
    710 			continue;
    711 		}
    712 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    713 		    UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
    714 		loopva += PAGE_SIZE;
    715 		offset += PAGE_SIZE;
    716 		size -= PAGE_SIZE;
    717 	}
    718 	pmap_update(map->pmap);
    719 
    720 	/*
    721 	 * zero on request (note that "size" is now zero due to the above loop
    722 	 * so we need to subtract kva from loopva to reconstruct the size).
    723 	 */
    724 
    725 	if (zeroit)
    726 		memset((caddr_t)kva, 0, loopva - kva);
    727 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    728 	return(kva);
    729 }
    730 
    731 /*
    732  * uvm_km_valloc1: allocate zero-fill memory in the kernel's address space
    733  *
    734  * => memory is not allocated until fault time
    735  * => the align, prefer and flags parameters are passed on to uvm_map().
    736  *
    737  * Note: this function is also the backend for these macros:
    738  *	uvm_km_valloc
    739  *	uvm_km_valloc_wait
    740  *	uvm_km_valloc_prefer
    741  *	uvm_km_valloc_prefer_wait
    742  *	uvm_km_valloc_align
    743  */
    744 
    745 vaddr_t
    746 uvm_km_valloc1(map, size, align, prefer, flags)
    747 	struct vm_map *map;
    748 	vsize_t size;
    749 	vsize_t align;
    750 	voff_t prefer;
    751 	uvm_flag_t flags;
    752 {
    753 	vaddr_t kva;
    754 	UVMHIST_FUNC("uvm_km_valloc1"); UVMHIST_CALLED(maphist);
    755 
    756 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x, align=0x%x, prefer=0x%x)",
    757 		    map, size, align, prefer);
    758 
    759 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    760 
    761 	size = round_page(size);
    762 	/*
    763 	 * Check if requested size is larger than the map, in which
    764 	 * case we can't succeed.
    765 	 */
    766 	if (size > vm_map_max(map) - vm_map_min(map))
    767 		return (0);
    768 
    769 	flags |= UVM_FLAG_QUANTUM;
    770 	for (;;) {
    771 		kva = vm_map_min(map);		/* hint */
    772 
    773 		/*
    774 		 * allocate some virtual space.   will be demand filled
    775 		 * by kernel_object.
    776 		 */
    777 
    778 		if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
    779 		    prefer, align, UVM_MAPFLAG(UVM_PROT_ALL,
    780 		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, flags))
    781 		    == 0)) {
    782 			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    783 			return (kva);
    784 		}
    785 
    786 		/*
    787 		 * failed.  sleep for a while (on map)
    788 		 */
    789 		if ((flags & UVM_KMF_NOWAIT) != 0)
    790 			return (0);
    791 
    792 		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
    793 		tsleep((caddr_t)map, PVM, "vallocwait", 0);
    794 	}
    795 	/*NOTREACHED*/
    796 }
    797 
    798 /* Function definitions for binary compatibility */
    799 vaddr_t
    800 uvm_km_kmemalloc(struct vm_map *map, struct uvm_object *obj,
    801 		 vsize_t sz, int flags)
    802 {
    803 	return uvm_km_kmemalloc1(map, obj, sz, 0, UVM_UNKNOWN_OFFSET, flags);
    804 }
    805 
    806 vaddr_t uvm_km_valloc(struct vm_map *map, vsize_t sz)
    807 {
    808 	return uvm_km_valloc1(map, sz, 0, UVM_UNKNOWN_OFFSET, UVM_KMF_NOWAIT);
    809 }
    810 
    811 vaddr_t uvm_km_valloc_align(struct vm_map *map, vsize_t sz, vsize_t align)
    812 {
    813 	return uvm_km_valloc1(map, sz, align, UVM_UNKNOWN_OFFSET, UVM_KMF_NOWAIT);
    814 }
    815 
    816 vaddr_t uvm_km_valloc_prefer_wait(struct vm_map *map, vsize_t sz, voff_t prefer)
    817 {
    818 	return uvm_km_valloc1(map, sz, 0, prefer, 0);
    819 }
    820 
    821 vaddr_t uvm_km_valloc_wait(struct vm_map *map, vsize_t sz)
    822 {
    823 	return uvm_km_valloc1(map, sz, 0, UVM_UNKNOWN_OFFSET, 0);
    824 }
    825 
    826 /* Sanity; must specify both or none. */
    827 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    828     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    829 #error Must specify MAP and UNMAP together.
    830 #endif
    831 
    832 /*
    833  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
    834  *
    835  * => if the pmap specifies an alternate mapping method, we use it.
    836  */
    837 
    838 /* ARGSUSED */
    839 vaddr_t
    840 uvm_km_alloc_poolpage_cache(map, obj, waitok)
    841 	struct vm_map *map;
    842 	struct uvm_object *obj;
    843 	boolean_t waitok;
    844 {
    845 #if defined(PMAP_MAP_POOLPAGE)
    846 	return uvm_km_alloc_poolpage1(map, obj, waitok);
    847 #else
    848 	struct vm_page *pg;
    849 	struct pool *pp = &vm_map_to_kernel(map)->vmk_vacache;
    850 	vaddr_t va;
    851 	int s = 0xdeadbeaf; /* XXX: gcc */
    852 	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
    853 
    854 	if ((map->flags & VM_MAP_VACACHE) == 0)
    855 		return uvm_km_alloc_poolpage1(map, obj, waitok);
    856 
    857 	if (intrsafe)
    858 		s = splvm();
    859 	va = (vaddr_t)pool_get(pp, waitok ? PR_WAITOK : PR_NOWAIT);
    860 	if (intrsafe)
    861 		splx(s);
    862 	if (va == 0)
    863 		return 0;
    864 	KASSERT(!pmap_extract(pmap_kernel(), va, NULL));
    865 again:
    866 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    867 	if (__predict_false(pg == NULL)) {
    868 		if (waitok) {
    869 			uvm_wait("plpg");
    870 			goto again;
    871 		} else {
    872 			if (intrsafe)
    873 				s = splvm();
    874 			pool_put(pp, (void *)va);
    875 			if (intrsafe)
    876 				splx(s);
    877 			return 0;
    878 		}
    879 	}
    880 	pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg),
    881 	    VM_PROT_READ|VM_PROT_WRITE);
    882 	pmap_update(pmap_kernel());
    883 
    884 	return va;
    885 #endif /* PMAP_MAP_POOLPAGE */
    886 }
    887 
    888 vaddr_t
    889 uvm_km_alloc_poolpage1(map, obj, waitok)
    890 	struct vm_map *map;
    891 	struct uvm_object *obj;
    892 	boolean_t waitok;
    893 {
    894 #if defined(PMAP_MAP_POOLPAGE)
    895 	struct vm_page *pg;
    896 	vaddr_t va;
    897 
    898  again:
    899 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    900 	if (__predict_false(pg == NULL)) {
    901 		if (waitok) {
    902 			uvm_wait("plpg");
    903 			goto again;
    904 		} else
    905 			return (0);
    906 	}
    907 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    908 	if (__predict_false(va == 0))
    909 		uvm_pagefree(pg);
    910 	return (va);
    911 #else
    912 	vaddr_t va;
    913 	int s = 0xdeadbeaf; /* XXX: gcc */
    914 	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
    915 
    916 	if (intrsafe)
    917 		s = splvm();
    918 	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE,
    919 	    waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK);
    920 	if (intrsafe)
    921 		splx(s);
    922 	return (va);
    923 #endif /* PMAP_MAP_POOLPAGE */
    924 }
    925 
    926 /*
    927  * uvm_km_free_poolpage: free a previously allocated pool page
    928  *
    929  * => if the pmap specifies an alternate unmapping method, we use it.
    930  */
    931 
    932 /* ARGSUSED */
    933 void
    934 uvm_km_free_poolpage_cache(map, addr)
    935 	struct vm_map *map;
    936 	vaddr_t addr;
    937 {
    938 #if defined(PMAP_UNMAP_POOLPAGE)
    939 	uvm_km_free_poolpage1(map, addr);
    940 #else
    941 	struct pool *pp;
    942 	int s = 0xdeadbeaf; /* XXX: gcc */
    943 	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
    944 
    945 	if ((map->flags & VM_MAP_VACACHE) == 0) {
    946 		uvm_km_free_poolpage1(map, addr);
    947 		return;
    948 	}
    949 
    950 	KASSERT(pmap_extract(pmap_kernel(), addr, NULL));
    951 	uvm_km_pgremove_intrsafe(addr, addr + PAGE_SIZE);
    952 	pmap_kremove(addr, PAGE_SIZE);
    953 #if defined(DEBUG)
    954 	pmap_update(pmap_kernel());
    955 #endif
    956 	KASSERT(!pmap_extract(pmap_kernel(), addr, NULL));
    957 	pp = &vm_map_to_kernel(map)->vmk_vacache;
    958 	if (intrsafe)
    959 		s = splvm();
    960 	pool_put(pp, (void *)addr);
    961 	if (intrsafe)
    962 		splx(s);
    963 #endif
    964 }
    965 
    966 /* ARGSUSED */
    967 void
    968 uvm_km_free_poolpage1(map, addr)
    969 	struct vm_map *map;
    970 	vaddr_t addr;
    971 {
    972 #if defined(PMAP_UNMAP_POOLPAGE)
    973 	paddr_t pa;
    974 
    975 	pa = PMAP_UNMAP_POOLPAGE(addr);
    976 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    977 #else
    978 	int s = 0xdeadbeaf; /* XXX: gcc */
    979 	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
    980 
    981 	if (intrsafe)
    982 		s = splvm();
    983 	uvm_km_free(map, addr, PAGE_SIZE);
    984 	if (intrsafe)
    985 		splx(s);
    986 #endif /* PMAP_UNMAP_POOLPAGE */
    987 }
    988