uvm_km.c revision 1.76.4.4 1 /* $NetBSD: uvm_km.c,v 1.76.4.4 2005/02/16 23:13:58 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
42 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_km.c: handle kernel memory allocation and management
71 */
72
73 /*
74 * overview of kernel memory management:
75 *
76 * the kernel virtual address space is mapped by "kernel_map." kernel_map
77 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
78 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
79 *
80 * the kernel_map has several "submaps." submaps can only appear in
81 * the kernel_map (user processes can't use them). submaps "take over"
82 * the management of a sub-range of the kernel's address space. submaps
83 * are typically allocated at boot time and are never released. kernel
84 * virtual address space that is mapped by a submap is locked by the
85 * submap's lock -- not the kernel_map's lock.
86 *
87 * thus, the useful feature of submaps is that they allow us to break
88 * up the locking and protection of the kernel address space into smaller
89 * chunks.
90 *
91 * the vm system has several standard kernel submaps, including:
92 * kmem_map => contains only wired kernel memory for the kernel
93 * malloc. *** access to kmem_map must be protected
94 * by splvm() because we are allowed to call malloc()
95 * at interrupt time ***
96 * mb_map => memory for large mbufs, *** protected by splvm ***
97 * pager_map => used to map "buf" structures into kernel space
98 * exec_map => used during exec to handle exec args
99 * etc...
100 *
101 * the kernel allocates its private memory out of special uvm_objects whose
102 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
103 * are "special" and never die). all kernel objects should be thought of
104 * as large, fixed-sized, sparsely populated uvm_objects. each kernel
105 * object is equal to the size of kernel virtual address space (i.e. the
106 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
107 *
108 * most kernel private memory lives in kernel_object. the only exception
109 * to this is for memory that belongs to submaps that must be protected
110 * by splvm(). pages in these submaps are not assigned to an object.
111 *
112 * note that just because a kernel object spans the entire kernel virutal
113 * address space doesn't mean that it has to be mapped into the entire space.
114 * large chunks of a kernel object's space go unused either because
115 * that area of kernel VM is unmapped, or there is some other type of
116 * object mapped into that range (e.g. a vnode). for submap's kernel
117 * objects, the only part of the object that can ever be populated is the
118 * offsets that are managed by the submap.
119 *
120 * note that the "offset" in a kernel object is always the kernel virtual
121 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
122 * example:
123 * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
124 * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
125 * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
126 * then that means that the page at offset 0x235000 in kernel_object is
127 * mapped at 0xf8235000.
128 *
129 * kernel object have one other special property: when the kernel virtual
130 * memory mapping them is unmapped, the backing memory in the object is
131 * freed right away. this is done with the uvm_km_pgremove() function.
132 * this has to be done because there is no backing store for kernel pages
133 * and no need to save them after they are no longer referenced.
134 */
135
136 #include <sys/cdefs.h>
137 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.76.4.4 2005/02/16 23:13:58 yamt Exp $");
138
139 #include "opt_uvmhist.h"
140
141 #include <sys/param.h>
142 #include <sys/malloc.h>
143 #include <sys/systm.h>
144 #include <sys/proc.h>
145 #include <sys/pool.h>
146
147 #include <uvm/uvm.h>
148
149 /*
150 * global data structures
151 */
152
153 struct vm_map *kernel_map = NULL;
154
155 /*
156 * local data structues
157 */
158
159 static struct vm_map_kernel kernel_map_store;
160 static struct vm_map_entry kernel_first_mapent_store;
161
162 #if !defined(PMAP_MAP_POOLPAGE)
163
164 /*
165 * kva cache
166 *
167 * XXX maybe it's better to do this at the uvm_map layer.
168 */
169
170 #define KM_VACACHE_SIZE (32 * PAGE_SIZE) /* XXX tune */
171
172 static void *km_vacache_alloc(struct pool *, int);
173 static void km_vacache_free(struct pool *, void *);
174 static void km_vacache_init(struct vm_map *, const char *, size_t);
175
176 /* XXX */
177 #define KM_VACACHE_POOL_TO_MAP(pp) \
178 ((struct vm_map *)((char *)(pp) - \
179 offsetof(struct vm_map_kernel, vmk_vacache)))
180
181 static void *
182 km_vacache_alloc(struct pool *pp, int flags)
183 {
184 vaddr_t va;
185 size_t size;
186 struct vm_map *map;
187 size = pp->pr_alloc->pa_pagesz;
188
189 map = KM_VACACHE_POOL_TO_MAP(pp);
190
191 va = vm_map_min(map); /* hint */
192 if (uvm_map(map, &va, size, NULL, UVM_UNKNOWN_OFFSET, size,
193 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
194 UVM_ADV_RANDOM, UVM_FLAG_QUANTUM |
195 ((flags & PR_WAITOK) ? 0 : UVM_FLAG_TRYLOCK | UVM_FLAG_NOWAIT))))
196 return NULL;
197
198 return (void *)va;
199 }
200
201 static void
202 km_vacache_free(struct pool *pp, void *v)
203 {
204 vaddr_t va = (vaddr_t)v;
205 size_t size = pp->pr_alloc->pa_pagesz;
206 struct vm_map *map;
207
208 map = KM_VACACHE_POOL_TO_MAP(pp);
209 uvm_unmap1(map, va, va + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
210 }
211
212 /*
213 * km_vacache_init: initialize kva cache.
214 */
215
216 static void
217 km_vacache_init(struct vm_map *map, const char *name, size_t size)
218 {
219 struct vm_map_kernel *vmk;
220 struct pool *pp;
221 struct pool_allocator *pa;
222
223 KASSERT(VM_MAP_IS_KERNEL(map));
224 KASSERT(size < (vm_map_max(map) - vm_map_min(map)) / 2); /* sanity */
225
226 vmk = vm_map_to_kernel(map);
227 pp = &vmk->vmk_vacache;
228 pa = &vmk->vmk_vacache_allocator;
229 memset(pa, 0, sizeof(*pa));
230 pa->pa_alloc = km_vacache_alloc;
231 pa->pa_free = km_vacache_free;
232 pa->pa_pagesz = (unsigned int)size;
233 pool_init(pp, PAGE_SIZE, 0, 0, PR_NOTOUCH | PR_RECURSIVE, name, pa);
234
235 /* XXX for now.. */
236 pool_sethiwat(pp, 0);
237 }
238
239 void
240 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
241 {
242
243 map->flags |= VM_MAP_VACACHE;
244 if (size == 0)
245 size = KM_VACACHE_SIZE;
246 km_vacache_init(map, name, size);
247 }
248
249 #else /* !defined(PMAP_MAP_POOLPAGE) */
250
251 void
252 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
253 {
254
255 /* nothing */
256 }
257
258 #endif /* !defined(PMAP_MAP_POOLPAGE) */
259
260 /*
261 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
262 * KVM already allocated for text, data, bss, and static data structures).
263 *
264 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
265 * we assume that [min -> start] has already been allocated and that
266 * "end" is the end.
267 */
268
269 void
270 uvm_km_init(start, end)
271 vaddr_t start, end;
272 {
273 vaddr_t base = VM_MIN_KERNEL_ADDRESS;
274
275 /*
276 * next, init kernel memory objects.
277 */
278
279 /* kernel_object: for pageable anonymous kernel memory */
280 uao_init();
281 uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
282 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
283
284 /*
285 * init the map and reserve any space that might already
286 * have been allocated kernel space before installing.
287 */
288
289 uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
290 kernel_map_store.vmk_map.pmap = pmap_kernel();
291 if (start != base) {
292 int error;
293 struct uvm_map_args args;
294
295 error = uvm_map_prepare(&kernel_map_store.vmk_map,
296 base, start - base,
297 NULL, UVM_UNKNOWN_OFFSET, 0,
298 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
299 UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
300 if (!error) {
301 kernel_first_mapent_store.flags =
302 UVM_MAP_KERNEL | UVM_MAP_FIRST;
303 error = uvm_map_enter(&kernel_map_store.vmk_map, &args,
304 &kernel_first_mapent_store);
305 }
306
307 if (error)
308 panic(
309 "uvm_km_init: could not reserve space for kernel");
310 }
311
312 /*
313 * install!
314 */
315
316 kernel_map = &kernel_map_store.vmk_map;
317 uvm_km_vacache_init(kernel_map, "kvakernel", 0);
318 }
319
320 /*
321 * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
322 * is allocated all references to that area of VM must go through it. this
323 * allows the locking of VAs in kernel_map to be broken up into regions.
324 *
325 * => if `fixed' is true, *min specifies where the region described
326 * by the submap must start
327 * => if submap is non NULL we use that as the submap, otherwise we
328 * alloc a new map
329 */
330 struct vm_map *
331 uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
332 struct vm_map *map;
333 vaddr_t *min, *max; /* IN/OUT, OUT */
334 vsize_t size;
335 int flags;
336 boolean_t fixed;
337 struct vm_map_kernel *submap;
338 {
339 int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
340
341 KASSERT(vm_map_pmap(map) == pmap_kernel());
342
343 size = round_page(size); /* round up to pagesize */
344
345 /*
346 * first allocate a blank spot in the parent map
347 */
348
349 if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
350 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
351 UVM_ADV_RANDOM, mapflags)) != 0) {
352 panic("uvm_km_suballoc: unable to allocate space in parent map");
353 }
354
355 /*
356 * set VM bounds (min is filled in by uvm_map)
357 */
358
359 *max = *min + size;
360
361 /*
362 * add references to pmap and create or init the submap
363 */
364
365 pmap_reference(vm_map_pmap(map));
366 if (submap == NULL) {
367 submap = malloc(sizeof(*submap), M_VMMAP, M_WAITOK);
368 if (submap == NULL)
369 panic("uvm_km_suballoc: unable to create submap");
370 }
371 uvm_map_setup_kernel(submap, *min, *max, flags);
372 submap->vmk_map.pmap = vm_map_pmap(map);
373
374 /*
375 * now let uvm_map_submap plug in it...
376 */
377
378 if (uvm_map_submap(map, *min, *max, &submap->vmk_map) != 0)
379 panic("uvm_km_suballoc: submap allocation failed");
380
381 return(&submap->vmk_map);
382 }
383
384 /*
385 * uvm_km_pgremove: remove pages from a kernel uvm_object.
386 *
387 * => when you unmap a part of anonymous kernel memory you want to toss
388 * the pages right away. (this gets called from uvm_unmap_...).
389 */
390
391 void
392 uvm_km_pgremove(startva, endva)
393 vaddr_t startva, endva;
394 {
395 struct uvm_object * const uobj = uvm.kernel_object;
396 const voff_t start = startva - vm_map_min(kernel_map);
397 const voff_t end = endva - vm_map_min(kernel_map);
398 struct vm_page *pg;
399 voff_t curoff, nextoff;
400 int swpgonlydelta = 0;
401 UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
402
403 KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
404 KASSERT(startva < endva);
405 KASSERT(endva < VM_MAX_KERNEL_ADDRESS);
406
407 simple_lock(&uobj->vmobjlock);
408
409 for (curoff = start; curoff < end; curoff = nextoff) {
410 nextoff = curoff + PAGE_SIZE;
411 pg = uvm_pagelookup(uobj, curoff);
412 if (pg != NULL && pg->flags & PG_BUSY) {
413 pg->flags |= PG_WANTED;
414 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
415 "km_pgrm", 0);
416 simple_lock(&uobj->vmobjlock);
417 nextoff = curoff;
418 continue;
419 }
420
421 /*
422 * free the swap slot, then the page.
423 */
424
425 if (pg == NULL &&
426 uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
427 swpgonlydelta++;
428 }
429 uao_dropswap(uobj, curoff >> PAGE_SHIFT);
430 if (pg != NULL) {
431 uvm_lock_pageq();
432 uvm_pagefree(pg);
433 uvm_unlock_pageq();
434 }
435 }
436 simple_unlock(&uobj->vmobjlock);
437
438 if (swpgonlydelta > 0) {
439 simple_lock(&uvm.swap_data_lock);
440 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
441 uvmexp.swpgonly -= swpgonlydelta;
442 simple_unlock(&uvm.swap_data_lock);
443 }
444 }
445
446
447 /*
448 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
449 * maps
450 *
451 * => when you unmap a part of anonymous kernel memory you want to toss
452 * the pages right away. (this is called from uvm_unmap_...).
453 * => none of the pages will ever be busy, and none of them will ever
454 * be on the active or inactive queues (because they have no object).
455 */
456
457 void
458 uvm_km_pgremove_intrsafe(start, end)
459 vaddr_t start, end;
460 {
461 struct vm_page *pg;
462 paddr_t pa;
463 UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
464
465 KASSERT(VM_MIN_KERNEL_ADDRESS <= start);
466 KASSERT(start < end);
467 KASSERT(end < VM_MAX_KERNEL_ADDRESS);
468
469 for (; start < end; start += PAGE_SIZE) {
470 if (!pmap_extract(pmap_kernel(), start, &pa)) {
471 continue;
472 }
473 pg = PHYS_TO_VM_PAGE(pa);
474 KASSERT(pg);
475 KASSERT(pg->uobject == NULL && pg->uanon == NULL);
476 uvm_pagefree(pg);
477 }
478 }
479
480 #if defined(DEBUG)
481 void
482 uvm_km_check_empty(vaddr_t start, vaddr_t end, boolean_t intrsafe)
483 {
484 vaddr_t va;
485
486 KDASSERT(VM_MIN_KERNEL_ADDRESS <= start);
487 KDASSERT(start < end);
488 KDASSERT(end < VM_MAX_KERNEL_ADDRESS);
489
490 for (va = start; va < end; va += PAGE_SIZE) {
491 if (pmap_extract(pmap_kernel(), va, NULL)) {
492 panic("uvm_map_km_check_empty: has page mapped at %p",
493 (const void *)va);
494 }
495 if (!intrsafe) {
496 const struct vm_page *pg;
497
498 simple_lock(&uvm.kernel_object->vmobjlock);
499 pg = uvm_pagelookup(uvm.kernel_object,
500 va - vm_map_min(kernel_map));
501 simple_unlock(&uvm.kernel_object->vmobjlock);
502 if (pg) {
503 panic("uvm_map_km_check_empty: "
504 "has page hashed at %p", (const void *)va);
505 }
506 }
507 }
508 }
509 #endif /* defined(DEBUG) */
510
511 /*
512 * uvm_km_alloc: allocate an area of kernel memory.
513 *
514 * => NOTE: we can return NULL even if we can wait if there is not enough
515 * free VM space in the map... caller should be prepared to handle
516 * this case.
517 * => we return KVA of memory allocated
518 */
519
520 vaddr_t
521 uvm_km_alloc(map, size, align, flags)
522 struct vm_map *map;
523 vsize_t size;
524 vsize_t align;
525 uvm_flag_t flags;
526 {
527 vaddr_t kva, loopva;
528 vaddr_t offset;
529 vsize_t loopsize;
530 struct vm_page *pg;
531 struct uvm_object *obj;
532 int pgaflags;
533 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
534
535 UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
536 map, obj, size, flags);
537 KASSERT(vm_map_pmap(map) == pmap_kernel());
538
539 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
540 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
541 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
542
543 /*
544 * setup for call
545 */
546
547 kva = vm_map_min(map); /* hint */
548 size = round_page(size);
549
550 if (flags & UVM_KMF_PAGEABLE)
551 obj = uvm.kernel_object;
552 else
553 obj = NULL;
554
555 /*
556 * allocate some virtual space
557 */
558
559 if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
560 align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
561 UVM_ADV_RANDOM,
562 (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA))
563 | UVM_FLAG_QUANTUM)) != 0)) {
564 UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
565 return(0);
566 }
567
568 /*
569 * if all we wanted was VA, return now
570 */
571
572 if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
573 UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
574 return(kva);
575 }
576
577 /*
578 * recover object offset from virtual address
579 */
580
581 offset = kva - vm_map_min(kernel_map);
582 UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
583
584 /*
585 * now allocate and map in the memory... note that we are the only ones
586 * whom should ever get a handle on this area of VM.
587 */
588
589 loopva = kva;
590 loopsize = size;
591
592 pgaflags = UVM_PGA_USERESERVE;
593 if (flags & UVM_KMF_ZERO)
594 pgaflags |= UVM_PGA_ZERO;
595 while (loopsize) {
596 KASSERT(!pmap_extract(pmap_kernel(), loopva, NULL));
597
598 pg = uvm_pagealloc(NULL, offset, NULL, pgaflags);
599
600 /*
601 * out of memory?
602 */
603
604 if (__predict_false(pg == NULL)) {
605 if ((flags & UVM_KMF_NOWAIT) ||
606 ((flags & UVM_KMF_CANFAIL) && uvm_swapisfull())) {
607 /* free everything! */
608 uvm_km_free(map, kva, size,
609 flags & UVM_KMF_TYPEMASK);
610 return (0);
611 } else {
612 uvm_wait("km_getwait2"); /* sleep here */
613 continue;
614 }
615 }
616
617 pg->flags &= ~PG_BUSY; /* new page */
618 UVM_PAGE_OWN(pg, NULL);
619
620 /*
621 * map it in
622 */
623
624 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
625 VM_PROT_READ | VM_PROT_WRITE);
626 loopva += PAGE_SIZE;
627 offset += PAGE_SIZE;
628 loopsize -= PAGE_SIZE;
629 }
630
631 pmap_update(pmap_kernel());
632
633 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
634 return(kva);
635 }
636
637 /*
638 * uvm_km_free: free an area of kernel memory
639 */
640
641 void
642 uvm_km_free(map, addr, size, flags)
643 struct vm_map *map;
644 vaddr_t addr;
645 vsize_t size;
646 uvm_flag_t flags;
647 {
648
649 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
650 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
651 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
652 KASSERT((addr & PAGE_MASK) == 0);
653 KASSERT(vm_map_pmap(map) == pmap_kernel());
654
655 size = round_page(size);
656
657 if (flags & UVM_KMF_PAGEABLE) {
658 uvm_km_pgremove(addr, addr + size);
659 pmap_remove(pmap_kernel(), addr, addr + size);
660 } else if (flags & UVM_KMF_WIRED) {
661 uvm_km_pgremove_intrsafe(addr, addr + size);
662 pmap_kremove(addr, size);
663 }
664
665 uvm_unmap1(map, addr, addr + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
666 }
667
668 /* Sanity; must specify both or none. */
669 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
670 (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
671 #error Must specify MAP and UNMAP together.
672 #endif
673
674 /*
675 * uvm_km_alloc_poolpage: allocate a page for the pool allocator
676 *
677 * => if the pmap specifies an alternate mapping method, we use it.
678 */
679
680 /* ARGSUSED */
681 vaddr_t
682 uvm_km_alloc_poolpage_cache(map, waitok)
683 struct vm_map *map;
684 boolean_t waitok;
685 {
686 #if defined(PMAP_MAP_POOLPAGE)
687 return uvm_km_alloc_poolpage(map, waitok);
688 #else
689 struct vm_page *pg;
690 struct pool *pp = &vm_map_to_kernel(map)->vmk_vacache;
691 vaddr_t va;
692 int s = 0xdeadbeaf; /* XXX: gcc */
693 const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
694
695 if ((map->flags & VM_MAP_VACACHE) == 0)
696 return uvm_km_alloc_poolpage(map, waitok);
697
698 if (intrsafe)
699 s = splvm();
700 va = (vaddr_t)pool_get(pp, waitok ? PR_WAITOK : PR_NOWAIT);
701 if (intrsafe)
702 splx(s);
703 if (va == 0)
704 return 0;
705 KASSERT(!pmap_extract(pmap_kernel(), va, NULL));
706 again:
707 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
708 if (__predict_false(pg == NULL)) {
709 if (waitok) {
710 uvm_wait("plpg");
711 goto again;
712 } else {
713 if (intrsafe)
714 s = splvm();
715 pool_put(pp, (void *)va);
716 if (intrsafe)
717 splx(s);
718 return 0;
719 }
720 }
721 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg),
722 VM_PROT_READ|VM_PROT_WRITE);
723 pmap_update(pmap_kernel());
724
725 return va;
726 #endif /* PMAP_MAP_POOLPAGE */
727 }
728
729 vaddr_t
730 uvm_km_alloc_poolpage(map, waitok)
731 struct vm_map *map;
732 boolean_t waitok;
733 {
734 #if defined(PMAP_MAP_POOLPAGE)
735 struct vm_page *pg;
736 vaddr_t va;
737
738 again:
739 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
740 if (__predict_false(pg == NULL)) {
741 if (waitok) {
742 uvm_wait("plpg");
743 goto again;
744 } else
745 return (0);
746 }
747 va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
748 if (__predict_false(va == 0))
749 uvm_pagefree(pg);
750 return (va);
751 #else
752 vaddr_t va;
753 int s = 0xdeadbeaf; /* XXX: gcc */
754 const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
755
756 if (intrsafe)
757 s = splvm();
758 va = uvm_km_alloc(map, PAGE_SIZE, 0,
759 (waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) | UVM_KMF_WIRED);
760 if (intrsafe)
761 splx(s);
762 return (va);
763 #endif /* PMAP_MAP_POOLPAGE */
764 }
765
766 /*
767 * uvm_km_free_poolpage: free a previously allocated pool page
768 *
769 * => if the pmap specifies an alternate unmapping method, we use it.
770 */
771
772 /* ARGSUSED */
773 void
774 uvm_km_free_poolpage_cache(map, addr)
775 struct vm_map *map;
776 vaddr_t addr;
777 {
778 #if defined(PMAP_UNMAP_POOLPAGE)
779 uvm_km_free_poolpage(map, addr);
780 #else
781 struct pool *pp;
782 int s = 0xdeadbeaf; /* XXX: gcc */
783 const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
784
785 if ((map->flags & VM_MAP_VACACHE) == 0) {
786 uvm_km_free_poolpage(map, addr);
787 return;
788 }
789
790 KASSERT(pmap_extract(pmap_kernel(), addr, NULL));
791 uvm_km_pgremove_intrsafe(addr, addr + PAGE_SIZE);
792 pmap_kremove(addr, PAGE_SIZE);
793 #if defined(DEBUG)
794 pmap_update(pmap_kernel());
795 #endif
796 KASSERT(!pmap_extract(pmap_kernel(), addr, NULL));
797 pp = &vm_map_to_kernel(map)->vmk_vacache;
798 if (intrsafe)
799 s = splvm();
800 pool_put(pp, (void *)addr);
801 if (intrsafe)
802 splx(s);
803 #endif
804 }
805
806 /* ARGSUSED */
807 void
808 uvm_km_free_poolpage(map, addr)
809 struct vm_map *map;
810 vaddr_t addr;
811 {
812 #if defined(PMAP_UNMAP_POOLPAGE)
813 paddr_t pa;
814
815 pa = PMAP_UNMAP_POOLPAGE(addr);
816 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
817 #else
818 int s = 0xdeadbeaf; /* XXX: gcc */
819 const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
820
821 if (intrsafe)
822 s = splvm();
823 uvm_km_free(map, addr, PAGE_SIZE, UVM_KMF_WIRED);
824 if (intrsafe)
825 splx(s);
826 #endif /* PMAP_UNMAP_POOLPAGE */
827 }
828