Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.77.2.1
      1 /*	$NetBSD: uvm_km.c,v 1.77.2.1 2005/12/06 20:00:12 riz Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     42  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_km.c: handle kernel memory allocation and management
     71  */
     72 
     73 /*
     74  * overview of kernel memory management:
     75  *
     76  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     77  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     78  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     79  *
     80  * the kernel_map has several "submaps."   submaps can only appear in
     81  * the kernel_map (user processes can't use them).   submaps "take over"
     82  * the management of a sub-range of the kernel's address space.  submaps
     83  * are typically allocated at boot time and are never released.   kernel
     84  * virtual address space that is mapped by a submap is locked by the
     85  * submap's lock -- not the kernel_map's lock.
     86  *
     87  * thus, the useful feature of submaps is that they allow us to break
     88  * up the locking and protection of the kernel address space into smaller
     89  * chunks.
     90  *
     91  * the vm system has several standard kernel submaps, including:
     92  *   kmem_map => contains only wired kernel memory for the kernel
     93  *		malloc.   *** access to kmem_map must be protected
     94  *		by splvm() because we are allowed to call malloc()
     95  *		at interrupt time ***
     96  *   mb_map => memory for large mbufs,  *** protected by splvm ***
     97  *   pager_map => used to map "buf" structures into kernel space
     98  *   exec_map => used during exec to handle exec args
     99  *   etc...
    100  *
    101  * the kernel allocates its private memory out of special uvm_objects whose
    102  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
    103  * are "special" and never die).   all kernel objects should be thought of
    104  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
    105  * object is equal to the size of kernel virtual address space (i.e. the
    106  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    107  *
    108  * most kernel private memory lives in kernel_object.   the only exception
    109  * to this is for memory that belongs to submaps that must be protected
    110  * by splvm().  pages in these submaps are not assigned to an object.
    111  *
    112  * note that just because a kernel object spans the entire kernel virutal
    113  * address space doesn't mean that it has to be mapped into the entire space.
    114  * large chunks of a kernel object's space go unused either because
    115  * that area of kernel VM is unmapped, or there is some other type of
    116  * object mapped into that range (e.g. a vnode).    for submap's kernel
    117  * objects, the only part of the object that can ever be populated is the
    118  * offsets that are managed by the submap.
    119  *
    120  * note that the "offset" in a kernel object is always the kernel virtual
    121  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    122  * example:
    123  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    124  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    125  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    126  *   then that means that the page at offset 0x235000 in kernel_object is
    127  *   mapped at 0xf8235000.
    128  *
    129  * kernel object have one other special property: when the kernel virtual
    130  * memory mapping them is unmapped, the backing memory in the object is
    131  * freed right away.   this is done with the uvm_km_pgremove() function.
    132  * this has to be done because there is no backing store for kernel pages
    133  * and no need to save them after they are no longer referenced.
    134  */
    135 
    136 #include <sys/cdefs.h>
    137 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.77.2.1 2005/12/06 20:00:12 riz Exp $");
    138 
    139 #include "opt_uvmhist.h"
    140 
    141 #include <sys/param.h>
    142 #include <sys/malloc.h>
    143 #include <sys/systm.h>
    144 #include <sys/proc.h>
    145 #include <sys/pool.h>
    146 
    147 #include <uvm/uvm.h>
    148 
    149 /*
    150  * global data structures
    151  */
    152 
    153 struct vm_map *kernel_map = NULL;
    154 
    155 /*
    156  * local data structues
    157  */
    158 
    159 static struct vm_map_kernel	kernel_map_store;
    160 static struct vm_map_entry	kernel_first_mapent_store;
    161 
    162 #if !defined(PMAP_MAP_POOLPAGE)
    163 
    164 /*
    165  * kva cache
    166  *
    167  * XXX maybe it's better to do this at the uvm_map layer.
    168  */
    169 
    170 #define	KM_VACACHE_SIZE	(32 * PAGE_SIZE) /* XXX tune */
    171 
    172 static void *km_vacache_alloc(struct pool *, int);
    173 static void km_vacache_free(struct pool *, void *);
    174 static void km_vacache_init(struct vm_map *, const char *, size_t);
    175 
    176 /* XXX */
    177 #define	KM_VACACHE_POOL_TO_MAP(pp) \
    178 	((struct vm_map *)((char *)(pp) - \
    179 	    offsetof(struct vm_map_kernel, vmk_vacache)))
    180 
    181 static void *
    182 km_vacache_alloc(struct pool *pp, int flags)
    183 {
    184 	vaddr_t va;
    185 	size_t size;
    186 	struct vm_map *map;
    187 #if defined(DEBUG)
    188 	vaddr_t loopva;
    189 #endif
    190 	size = pp->pr_alloc->pa_pagesz;
    191 
    192 	map = KM_VACACHE_POOL_TO_MAP(pp);
    193 
    194 	va = vm_map_min(map); /* hint */
    195 	if (uvm_map(map, &va, size, NULL, UVM_UNKNOWN_OFFSET, size,
    196 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    197 	    UVM_ADV_RANDOM, UVM_FLAG_QUANTUM |
    198 	    ((flags & PR_WAITOK) ? 0 : UVM_FLAG_TRYLOCK | UVM_FLAG_NOWAIT))))
    199 		return NULL;
    200 
    201 #if defined(DEBUG)
    202 	for (loopva = va; loopva < va + size; loopva += PAGE_SIZE) {
    203 		if (pmap_extract(pmap_kernel(), loopva, NULL))
    204 			panic("km_vacache_free: has mapping");
    205 	}
    206 #endif
    207 
    208 	return (void *)va;
    209 }
    210 
    211 static void
    212 km_vacache_free(struct pool *pp, void *v)
    213 {
    214 	vaddr_t va = (vaddr_t)v;
    215 	size_t size = pp->pr_alloc->pa_pagesz;
    216 	struct vm_map *map;
    217 #if defined(DEBUG)
    218 	vaddr_t loopva;
    219 
    220 	for (loopva = va; loopva < va + size; loopva += PAGE_SIZE) {
    221 		if (pmap_extract(pmap_kernel(), loopva, NULL))
    222 			panic("km_vacache_free: has mapping");
    223 	}
    224 #endif
    225 	map = KM_VACACHE_POOL_TO_MAP(pp);
    226 	uvm_unmap1(map, va, va + size, UVM_FLAG_QUANTUM);
    227 }
    228 
    229 /*
    230  * km_vacache_init: initialize kva cache.
    231  */
    232 
    233 static void
    234 km_vacache_init(struct vm_map *map, const char *name, size_t size)
    235 {
    236 	struct vm_map_kernel *vmk;
    237 	struct pool *pp;
    238 	struct pool_allocator *pa;
    239 
    240 	KASSERT(VM_MAP_IS_KERNEL(map));
    241 	KASSERT(size < (vm_map_max(map) - vm_map_min(map)) / 2); /* sanity */
    242 
    243 	vmk = vm_map_to_kernel(map);
    244 	pp = &vmk->vmk_vacache;
    245 	pa = &vmk->vmk_vacache_allocator;
    246 	memset(pa, 0, sizeof(*pa));
    247 	pa->pa_alloc = km_vacache_alloc;
    248 	pa->pa_free = km_vacache_free;
    249 	pa->pa_pagesz = (unsigned int)size;
    250 	pool_init(pp, PAGE_SIZE, 0, 0, PR_NOTOUCH | PR_RECURSIVE, name, pa);
    251 
    252 	/* XXX for now.. */
    253 	pool_sethiwat(pp, 0);
    254 }
    255 
    256 void
    257 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
    258 {
    259 
    260 	map->flags |= VM_MAP_VACACHE;
    261 	if (size == 0)
    262 		size = KM_VACACHE_SIZE;
    263 	km_vacache_init(map, name, size);
    264 }
    265 
    266 #else /* !defined(PMAP_MAP_POOLPAGE) */
    267 
    268 void
    269 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
    270 {
    271 
    272 	/* nothing */
    273 }
    274 
    275 #endif /* !defined(PMAP_MAP_POOLPAGE) */
    276 
    277 /*
    278  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
    279  * KVM already allocated for text, data, bss, and static data structures).
    280  *
    281  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    282  *    we assume that [min -> start] has already been allocated and that
    283  *    "end" is the end.
    284  */
    285 
    286 void
    287 uvm_km_init(start, end)
    288 	vaddr_t start, end;
    289 {
    290 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    291 
    292 	/*
    293 	 * next, init kernel memory objects.
    294 	 */
    295 
    296 	/* kernel_object: for pageable anonymous kernel memory */
    297 	uao_init();
    298 	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    299 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    300 
    301 	/*
    302 	 * init the map and reserve any space that might already
    303 	 * have been allocated kernel space before installing.
    304 	 */
    305 
    306 	uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
    307 	kernel_map_store.vmk_map.pmap = pmap_kernel();
    308 	if (start != base) {
    309 		int error;
    310 		struct uvm_map_args args;
    311 
    312 		error = uvm_map_prepare(&kernel_map_store.vmk_map,
    313 		    base, start - base,
    314 		    NULL, UVM_UNKNOWN_OFFSET, 0,
    315 		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    316 		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
    317 		if (!error) {
    318 			kernel_first_mapent_store.flags =
    319 			    UVM_MAP_KERNEL | UVM_MAP_FIRST;
    320 			error = uvm_map_enter(&kernel_map_store.vmk_map, &args,
    321 			    &kernel_first_mapent_store);
    322 		}
    323 
    324 		if (error)
    325 			panic(
    326 			    "uvm_km_init: could not reserve space for kernel");
    327 	}
    328 
    329 	/*
    330 	 * install!
    331 	 */
    332 
    333 	kernel_map = &kernel_map_store.vmk_map;
    334 	uvm_km_vacache_init(kernel_map, "kvakernel", 0);
    335 }
    336 
    337 /*
    338  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    339  * is allocated all references to that area of VM must go through it.  this
    340  * allows the locking of VAs in kernel_map to be broken up into regions.
    341  *
    342  * => if `fixed' is true, *min specifies where the region described
    343  *      by the submap must start
    344  * => if submap is non NULL we use that as the submap, otherwise we
    345  *	alloc a new map
    346  */
    347 struct vm_map *
    348 uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
    349 	struct vm_map *map;
    350 	vaddr_t *min, *max;		/* IN/OUT, OUT */
    351 	vsize_t size;
    352 	int flags;
    353 	boolean_t fixed;
    354 	struct vm_map_kernel *submap;
    355 {
    356 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    357 
    358 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    359 
    360 	size = round_page(size);	/* round up to pagesize */
    361 
    362 	/*
    363 	 * first allocate a blank spot in the parent map
    364 	 */
    365 
    366 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
    367 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    368 	    UVM_ADV_RANDOM, mapflags)) != 0) {
    369 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
    370 	}
    371 
    372 	/*
    373 	 * set VM bounds (min is filled in by uvm_map)
    374 	 */
    375 
    376 	*max = *min + size;
    377 
    378 	/*
    379 	 * add references to pmap and create or init the submap
    380 	 */
    381 
    382 	pmap_reference(vm_map_pmap(map));
    383 	if (submap == NULL) {
    384 		submap = malloc(sizeof(*submap), M_VMMAP, M_WAITOK);
    385 		if (submap == NULL)
    386 			panic("uvm_km_suballoc: unable to create submap");
    387 	}
    388 	uvm_map_setup_kernel(submap, *min, *max, flags);
    389 	submap->vmk_map.pmap = vm_map_pmap(map);
    390 
    391 	/*
    392 	 * now let uvm_map_submap plug in it...
    393 	 */
    394 
    395 	if (uvm_map_submap(map, *min, *max, &submap->vmk_map) != 0)
    396 		panic("uvm_km_suballoc: submap allocation failed");
    397 
    398 	return(&submap->vmk_map);
    399 }
    400 
    401 /*
    402  * uvm_km_pgremove: remove pages from a kernel uvm_object.
    403  *
    404  * => when you unmap a part of anonymous kernel memory you want to toss
    405  *    the pages right away.    (this gets called from uvm_unmap_...).
    406  */
    407 
    408 void
    409 uvm_km_pgremove(uobj, start, end)
    410 	struct uvm_object *uobj;
    411 	vaddr_t start, end;
    412 {
    413 	struct vm_page *pg;
    414 	voff_t curoff, nextoff;
    415 	int swpgonlydelta = 0;
    416 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
    417 
    418 	KASSERT(uobj->pgops == &aobj_pager);
    419 	simple_lock(&uobj->vmobjlock);
    420 
    421 	for (curoff = start; curoff < end; curoff = nextoff) {
    422 		nextoff = curoff + PAGE_SIZE;
    423 		pg = uvm_pagelookup(uobj, curoff);
    424 		if (pg != NULL && pg->flags & PG_BUSY) {
    425 			pg->flags |= PG_WANTED;
    426 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
    427 				    "km_pgrm", 0);
    428 			simple_lock(&uobj->vmobjlock);
    429 			nextoff = curoff;
    430 			continue;
    431 		}
    432 
    433 		/*
    434 		 * free the swap slot, then the page.
    435 		 */
    436 
    437 		if (pg == NULL &&
    438 		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
    439 			swpgonlydelta++;
    440 		}
    441 		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
    442 		if (pg != NULL) {
    443 			uvm_lock_pageq();
    444 			uvm_pagefree(pg);
    445 			uvm_unlock_pageq();
    446 		}
    447 	}
    448 	simple_unlock(&uobj->vmobjlock);
    449 
    450 	if (swpgonlydelta > 0) {
    451 		simple_lock(&uvm.swap_data_lock);
    452 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
    453 		uvmexp.swpgonly -= swpgonlydelta;
    454 		simple_unlock(&uvm.swap_data_lock);
    455 	}
    456 }
    457 
    458 
    459 /*
    460  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
    461  *    maps
    462  *
    463  * => when you unmap a part of anonymous kernel memory you want to toss
    464  *    the pages right away.    (this is called from uvm_unmap_...).
    465  * => none of the pages will ever be busy, and none of them will ever
    466  *    be on the active or inactive queues (because they have no object).
    467  */
    468 
    469 void
    470 uvm_km_pgremove_intrsafe(start, end)
    471 	vaddr_t start, end;
    472 {
    473 	struct vm_page *pg;
    474 	paddr_t pa;
    475 	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
    476 
    477 	for (; start < end; start += PAGE_SIZE) {
    478 		if (!pmap_extract(pmap_kernel(), start, &pa)) {
    479 			continue;
    480 		}
    481 		pg = PHYS_TO_VM_PAGE(pa);
    482 		KASSERT(pg);
    483 		KASSERT(pg->uobject == NULL && pg->uanon == NULL);
    484 		uvm_pagefree(pg);
    485 	}
    486 }
    487 
    488 
    489 /*
    490  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
    491  *
    492  * => we map wired memory into the specified map using the obj passed in
    493  * => NOTE: we can return NULL even if we can wait if there is not enough
    494  *	free VM space in the map... caller should be prepared to handle
    495  *	this case.
    496  * => we return KVA of memory allocated
    497  * => align,prefer - passed on to uvm_map()
    498  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
    499  *	lock the map
    500  */
    501 
    502 vaddr_t
    503 uvm_km_kmemalloc1(map, obj, size, align, prefer, flags)
    504 	struct vm_map *map;
    505 	struct uvm_object *obj;
    506 	vsize_t size;
    507 	vsize_t align;
    508 	voff_t prefer;
    509 	int flags;
    510 {
    511 	vaddr_t kva, loopva;
    512 	vaddr_t offset;
    513 	vsize_t loopsize;
    514 	struct vm_page *pg;
    515 	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
    516 
    517 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
    518 		    map, obj, size, flags);
    519 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    520 
    521 	/*
    522 	 * setup for call
    523 	 */
    524 
    525 	size = round_page(size);
    526 	kva = vm_map_min(map);	/* hint */
    527 
    528 	/*
    529 	 * allocate some virtual space
    530 	 */
    531 
    532 	if (__predict_false(uvm_map(map, &kva, size, obj, prefer, align,
    533 		UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    534 			    UVM_ADV_RANDOM,
    535 			    (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT))
    536 			    | UVM_FLAG_QUANTUM))
    537 			!= 0)) {
    538 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    539 		return(0);
    540 	}
    541 
    542 	/*
    543 	 * if all we wanted was VA, return now
    544 	 */
    545 
    546 	if (flags & UVM_KMF_VALLOC) {
    547 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
    548 		return(kva);
    549 	}
    550 
    551 	/*
    552 	 * recover object offset from virtual address
    553 	 */
    554 
    555 	offset = kva - vm_map_min(kernel_map);
    556 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
    557 
    558 	/*
    559 	 * now allocate and map in the memory... note that we are the only ones
    560 	 * whom should ever get a handle on this area of VM.
    561 	 */
    562 
    563 	loopva = kva;
    564 	loopsize = size;
    565 	while (loopsize) {
    566 		if (obj) {
    567 			simple_lock(&obj->vmobjlock);
    568 		}
    569 		pg = uvm_pagealloc(obj, offset, NULL, UVM_PGA_USERESERVE);
    570 		if (__predict_true(pg != NULL)) {
    571 			pg->flags &= ~PG_BUSY;	/* new page */
    572 			UVM_PAGE_OWN(pg, NULL);
    573 		}
    574 		if (obj) {
    575 			simple_unlock(&obj->vmobjlock);
    576 		}
    577 
    578 		/*
    579 		 * out of memory?
    580 		 */
    581 
    582 		if (__predict_false(pg == NULL)) {
    583 			if ((flags & UVM_KMF_NOWAIT) ||
    584 			    ((flags & UVM_KMF_CANFAIL) && uvm_swapisfull())) {
    585 				/* free everything! */
    586 				uvm_unmap1(map, kva, kva + size,
    587 				    UVM_FLAG_QUANTUM);
    588 				return (0);
    589 			} else {
    590 				uvm_wait("km_getwait2");	/* sleep here */
    591 				continue;
    592 			}
    593 		}
    594 
    595 		/*
    596 		 * map it in
    597 		 */
    598 
    599 		if (obj == NULL) {
    600 			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    601 			    VM_PROT_READ | VM_PROT_WRITE);
    602 		} else {
    603 			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    604 			    UVM_PROT_ALL,
    605 			    PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
    606 		}
    607 		loopva += PAGE_SIZE;
    608 		offset += PAGE_SIZE;
    609 		loopsize -= PAGE_SIZE;
    610 	}
    611 
    612        	pmap_update(pmap_kernel());
    613 
    614 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    615 	return(kva);
    616 }
    617 
    618 /*
    619  * uvm_km_free: free an area of kernel memory
    620  */
    621 
    622 void
    623 uvm_km_free(map, addr, size)
    624 	struct vm_map *map;
    625 	vaddr_t addr;
    626 	vsize_t size;
    627 {
    628 	uvm_unmap1(map, trunc_page(addr), round_page(addr+size),
    629 	    UVM_FLAG_QUANTUM);
    630 }
    631 
    632 /*
    633  * uvm_km_alloc1: allocate wired down memory in the kernel map.
    634  *
    635  * => we can sleep if needed
    636  */
    637 
    638 vaddr_t
    639 uvm_km_alloc1(map, size, zeroit)
    640 	struct vm_map *map;
    641 	vsize_t size;
    642 	boolean_t zeroit;
    643 {
    644 	vaddr_t kva, loopva, offset;
    645 	struct vm_page *pg;
    646 	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
    647 
    648 	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
    649 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    650 
    651 	size = round_page(size);
    652 	kva = vm_map_min(map);		/* hint */
    653 
    654 	/*
    655 	 * allocate some virtual space
    656 	 */
    657 
    658 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
    659 	      UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    660 					      UVM_INH_NONE, UVM_ADV_RANDOM,
    661 					      UVM_FLAG_QUANTUM)) != 0)) {
    662 		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
    663 		return(0);
    664 	}
    665 
    666 	/*
    667 	 * recover object offset from virtual address
    668 	 */
    669 
    670 	offset = kva - vm_map_min(kernel_map);
    671 	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
    672 
    673 	/*
    674 	 * now allocate the memory.
    675 	 */
    676 
    677 	loopva = kva;
    678 	while (size) {
    679 		simple_lock(&uvm.kernel_object->vmobjlock);
    680 		KASSERT(uvm_pagelookup(uvm.kernel_object, offset) == NULL);
    681 		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
    682 		if (pg) {
    683 			pg->flags &= ~PG_BUSY;
    684 			UVM_PAGE_OWN(pg, NULL);
    685 		}
    686 		simple_unlock(&uvm.kernel_object->vmobjlock);
    687 		if (pg == NULL) {
    688 			uvm_wait("km_alloc1w");
    689 			continue;
    690 		}
    691 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    692 		    UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
    693 		loopva += PAGE_SIZE;
    694 		offset += PAGE_SIZE;
    695 		size -= PAGE_SIZE;
    696 	}
    697 	pmap_update(map->pmap);
    698 
    699 	/*
    700 	 * zero on request (note that "size" is now zero due to the above loop
    701 	 * so we need to subtract kva from loopva to reconstruct the size).
    702 	 */
    703 
    704 	if (zeroit)
    705 		memset((caddr_t)kva, 0, loopva - kva);
    706 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    707 	return(kva);
    708 }
    709 
    710 /*
    711  * uvm_km_valloc1: allocate zero-fill memory in the kernel's address space
    712  *
    713  * => memory is not allocated until fault time
    714  * => the align, prefer and flags parameters are passed on to uvm_map().
    715  *
    716  * Note: this function is also the backend for these macros:
    717  *	uvm_km_valloc
    718  *	uvm_km_valloc_wait
    719  *	uvm_km_valloc_prefer
    720  *	uvm_km_valloc_prefer_wait
    721  *	uvm_km_valloc_align
    722  */
    723 
    724 vaddr_t
    725 uvm_km_valloc1(map, size, align, prefer, flags)
    726 	struct vm_map *map;
    727 	vsize_t size;
    728 	vsize_t align;
    729 	voff_t prefer;
    730 	uvm_flag_t flags;
    731 {
    732 	vaddr_t kva;
    733 	int error;
    734 	UVMHIST_FUNC("uvm_km_valloc1"); UVMHIST_CALLED(maphist);
    735 
    736 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x, align=0x%x, prefer=0x%x)",
    737 		    map, size, align, prefer);
    738 
    739 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    740 
    741 	size = round_page(size);
    742 	/*
    743 	 * Check if requested size is larger than the map, in which
    744 	 * case we can't succeed.
    745 	 */
    746 	if (size > vm_map_max(map) - vm_map_min(map))
    747 		return (0);
    748 
    749 	flags |= UVM_FLAG_QUANTUM;
    750 	if ((flags & UVM_KMF_NOWAIT) == 0) /* XXX */
    751 		flags |= UVM_FLAG_WAITVA;  /* XXX */
    752 
    753 	kva = vm_map_min(map);		/* hint */
    754 
    755 	/*
    756 	 * allocate some virtual space.   will be demand filled
    757 	 * by kernel_object.
    758 	 */
    759 
    760 	error = uvm_map(map, &kva, size, uvm.kernel_object,
    761 	    prefer, align, UVM_MAPFLAG(UVM_PROT_ALL,
    762 	    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, flags));
    763 
    764 	KASSERT(error == 0 || (flags & UVM_KMF_NOWAIT) != 0);
    765 
    766 	if (error) {
    767 		return 0;
    768 	}
    769 
    770 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    771 
    772 	return (kva);
    773 }
    774 
    775 /* Function definitions for binary compatibility */
    776 vaddr_t
    777 uvm_km_kmemalloc(struct vm_map *map, struct uvm_object *obj,
    778 		 vsize_t sz, int flags)
    779 {
    780 	return uvm_km_kmemalloc1(map, obj, sz, 0, UVM_UNKNOWN_OFFSET, flags);
    781 }
    782 
    783 vaddr_t uvm_km_valloc(struct vm_map *map, vsize_t sz)
    784 {
    785 	return uvm_km_valloc1(map, sz, 0, UVM_UNKNOWN_OFFSET, UVM_KMF_NOWAIT);
    786 }
    787 
    788 vaddr_t uvm_km_valloc_align(struct vm_map *map, vsize_t sz, vsize_t align)
    789 {
    790 	return uvm_km_valloc1(map, sz, align, UVM_UNKNOWN_OFFSET, UVM_KMF_NOWAIT);
    791 }
    792 
    793 vaddr_t uvm_km_valloc_prefer_wait(struct vm_map *map, vsize_t sz, voff_t prefer)
    794 {
    795 	return uvm_km_valloc1(map, sz, 0, prefer, 0);
    796 }
    797 
    798 vaddr_t uvm_km_valloc_wait(struct vm_map *map, vsize_t sz)
    799 {
    800 	return uvm_km_valloc1(map, sz, 0, UVM_UNKNOWN_OFFSET, 0);
    801 }
    802 
    803 /* Sanity; must specify both or none. */
    804 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    805     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    806 #error Must specify MAP and UNMAP together.
    807 #endif
    808 
    809 /*
    810  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
    811  *
    812  * => if the pmap specifies an alternate mapping method, we use it.
    813  */
    814 
    815 /* ARGSUSED */
    816 vaddr_t
    817 uvm_km_alloc_poolpage_cache(map, obj, waitok)
    818 	struct vm_map *map;
    819 	struct uvm_object *obj;
    820 	boolean_t waitok;
    821 {
    822 #if defined(PMAP_MAP_POOLPAGE)
    823 	return uvm_km_alloc_poolpage1(map, obj, waitok);
    824 #else
    825 	struct vm_page *pg;
    826 	struct pool *pp = &vm_map_to_kernel(map)->vmk_vacache;
    827 	vaddr_t va;
    828 	int s = 0xdeadbeaf; /* XXX: gcc */
    829 	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
    830 
    831 	if ((map->flags & VM_MAP_VACACHE) == 0)
    832 		return uvm_km_alloc_poolpage1(map, obj, waitok);
    833 
    834 	if (intrsafe)
    835 		s = splvm();
    836 	va = (vaddr_t)pool_get(pp, waitok ? PR_WAITOK : PR_NOWAIT);
    837 	if (intrsafe)
    838 		splx(s);
    839 	if (va == 0)
    840 		return 0;
    841 	KASSERT(!pmap_extract(pmap_kernel(), va, NULL));
    842 again:
    843 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    844 	if (__predict_false(pg == NULL)) {
    845 		if (waitok) {
    846 			uvm_wait("plpg");
    847 			goto again;
    848 		} else {
    849 			if (intrsafe)
    850 				s = splvm();
    851 			pool_put(pp, (void *)va);
    852 			if (intrsafe)
    853 				splx(s);
    854 			return 0;
    855 		}
    856 	}
    857 	pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg),
    858 	    VM_PROT_READ|VM_PROT_WRITE);
    859 	pmap_update(pmap_kernel());
    860 
    861 	return va;
    862 #endif /* PMAP_MAP_POOLPAGE */
    863 }
    864 
    865 vaddr_t
    866 uvm_km_alloc_poolpage1(map, obj, waitok)
    867 	struct vm_map *map;
    868 	struct uvm_object *obj;
    869 	boolean_t waitok;
    870 {
    871 #if defined(PMAP_MAP_POOLPAGE)
    872 	struct vm_page *pg;
    873 	vaddr_t va;
    874 
    875  again:
    876 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    877 	if (__predict_false(pg == NULL)) {
    878 		if (waitok) {
    879 			uvm_wait("plpg");
    880 			goto again;
    881 		} else
    882 			return (0);
    883 	}
    884 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    885 	if (__predict_false(va == 0))
    886 		uvm_pagefree(pg);
    887 	return (va);
    888 #else
    889 	vaddr_t va;
    890 	int s = 0xdeadbeaf; /* XXX: gcc */
    891 	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
    892 
    893 	if (intrsafe)
    894 		s = splvm();
    895 	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE,
    896 	    waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK);
    897 	if (intrsafe)
    898 		splx(s);
    899 	return (va);
    900 #endif /* PMAP_MAP_POOLPAGE */
    901 }
    902 
    903 /*
    904  * uvm_km_free_poolpage: free a previously allocated pool page
    905  *
    906  * => if the pmap specifies an alternate unmapping method, we use it.
    907  */
    908 
    909 /* ARGSUSED */
    910 void
    911 uvm_km_free_poolpage_cache(map, addr)
    912 	struct vm_map *map;
    913 	vaddr_t addr;
    914 {
    915 #if defined(PMAP_UNMAP_POOLPAGE)
    916 	uvm_km_free_poolpage1(map, addr);
    917 #else
    918 	struct pool *pp;
    919 	int s = 0xdeadbeaf; /* XXX: gcc */
    920 	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
    921 
    922 	if ((map->flags & VM_MAP_VACACHE) == 0) {
    923 		uvm_km_free_poolpage1(map, addr);
    924 		return;
    925 	}
    926 
    927 	KASSERT(pmap_extract(pmap_kernel(), addr, NULL));
    928 	uvm_km_pgremove_intrsafe(addr, addr + PAGE_SIZE);
    929 	pmap_kremove(addr, PAGE_SIZE);
    930 #if defined(DEBUG)
    931 	pmap_update(pmap_kernel());
    932 #endif
    933 	KASSERT(!pmap_extract(pmap_kernel(), addr, NULL));
    934 	pp = &vm_map_to_kernel(map)->vmk_vacache;
    935 	if (intrsafe)
    936 		s = splvm();
    937 	pool_put(pp, (void *)addr);
    938 	if (intrsafe)
    939 		splx(s);
    940 #endif
    941 }
    942 
    943 /* ARGSUSED */
    944 void
    945 uvm_km_free_poolpage1(map, addr)
    946 	struct vm_map *map;
    947 	vaddr_t addr;
    948 {
    949 #if defined(PMAP_UNMAP_POOLPAGE)
    950 	paddr_t pa;
    951 
    952 	pa = PMAP_UNMAP_POOLPAGE(addr);
    953 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    954 #else
    955 	int s = 0xdeadbeaf; /* XXX: gcc */
    956 	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
    957 
    958 	if (intrsafe)
    959 		s = splvm();
    960 	uvm_km_free(map, addr, PAGE_SIZE);
    961 	if (intrsafe)
    962 		splx(s);
    963 #endif /* PMAP_UNMAP_POOLPAGE */
    964 }
    965