uvm_km.c revision 1.78 1 /* $NetBSD: uvm_km.c,v 1.78 2005/04/01 11:59:38 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
42 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_km.c: handle kernel memory allocation and management
71 */
72
73 /*
74 * overview of kernel memory management:
75 *
76 * the kernel virtual address space is mapped by "kernel_map." kernel_map
77 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
78 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
79 *
80 * the kernel_map has several "submaps." submaps can only appear in
81 * the kernel_map (user processes can't use them). submaps "take over"
82 * the management of a sub-range of the kernel's address space. submaps
83 * are typically allocated at boot time and are never released. kernel
84 * virtual address space that is mapped by a submap is locked by the
85 * submap's lock -- not the kernel_map's lock.
86 *
87 * thus, the useful feature of submaps is that they allow us to break
88 * up the locking and protection of the kernel address space into smaller
89 * chunks.
90 *
91 * the vm system has several standard kernel submaps, including:
92 * kmem_map => contains only wired kernel memory for the kernel
93 * malloc. *** access to kmem_map must be protected
94 * by splvm() because we are allowed to call malloc()
95 * at interrupt time ***
96 * mb_map => memory for large mbufs, *** protected by splvm ***
97 * pager_map => used to map "buf" structures into kernel space
98 * exec_map => used during exec to handle exec args
99 * etc...
100 *
101 * the kernel allocates its private memory out of special uvm_objects whose
102 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
103 * are "special" and never die). all kernel objects should be thought of
104 * as large, fixed-sized, sparsely populated uvm_objects. each kernel
105 * object is equal to the size of kernel virtual address space (i.e. the
106 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
107 *
108 * note that just because a kernel object spans the entire kernel virutal
109 * address space doesn't mean that it has to be mapped into the entire space.
110 * large chunks of a kernel object's space go unused either because
111 * that area of kernel VM is unmapped, or there is some other type of
112 * object mapped into that range (e.g. a vnode). for submap's kernel
113 * objects, the only part of the object that can ever be populated is the
114 * offsets that are managed by the submap.
115 *
116 * note that the "offset" in a kernel object is always the kernel virtual
117 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
118 * example:
119 * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
120 * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
121 * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
122 * then that means that the page at offset 0x235000 in kernel_object is
123 * mapped at 0xf8235000.
124 *
125 * kernel object have one other special property: when the kernel virtual
126 * memory mapping them is unmapped, the backing memory in the object is
127 * freed right away. this is done with the uvm_km_pgremove() function.
128 * this has to be done because there is no backing store for kernel pages
129 * and no need to save them after they are no longer referenced.
130 */
131
132 #include <sys/cdefs.h>
133 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.78 2005/04/01 11:59:38 yamt Exp $");
134
135 #include "opt_uvmhist.h"
136
137 #include <sys/param.h>
138 #include <sys/malloc.h>
139 #include <sys/systm.h>
140 #include <sys/proc.h>
141 #include <sys/pool.h>
142
143 #include <uvm/uvm.h>
144
145 /*
146 * global data structures
147 */
148
149 struct vm_map *kernel_map = NULL;
150
151 /*
152 * local data structues
153 */
154
155 static struct vm_map_kernel kernel_map_store;
156 static struct vm_map_entry kernel_first_mapent_store;
157
158 #if !defined(PMAP_MAP_POOLPAGE)
159
160 /*
161 * kva cache
162 *
163 * XXX maybe it's better to do this at the uvm_map layer.
164 */
165
166 #define KM_VACACHE_SIZE (32 * PAGE_SIZE) /* XXX tune */
167
168 static void *km_vacache_alloc(struct pool *, int);
169 static void km_vacache_free(struct pool *, void *);
170 static void km_vacache_init(struct vm_map *, const char *, size_t);
171
172 /* XXX */
173 #define KM_VACACHE_POOL_TO_MAP(pp) \
174 ((struct vm_map *)((char *)(pp) - \
175 offsetof(struct vm_map_kernel, vmk_vacache)))
176
177 static void *
178 km_vacache_alloc(struct pool *pp, int flags)
179 {
180 vaddr_t va;
181 size_t size;
182 struct vm_map *map;
183 size = pp->pr_alloc->pa_pagesz;
184
185 map = KM_VACACHE_POOL_TO_MAP(pp);
186
187 va = vm_map_min(map); /* hint */
188 if (uvm_map(map, &va, size, NULL, UVM_UNKNOWN_OFFSET, size,
189 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
190 UVM_ADV_RANDOM, UVM_FLAG_QUANTUM |
191 ((flags & PR_WAITOK) ? 0 : UVM_FLAG_TRYLOCK | UVM_FLAG_NOWAIT))))
192 return NULL;
193
194 return (void *)va;
195 }
196
197 static void
198 km_vacache_free(struct pool *pp, void *v)
199 {
200 vaddr_t va = (vaddr_t)v;
201 size_t size = pp->pr_alloc->pa_pagesz;
202 struct vm_map *map;
203
204 map = KM_VACACHE_POOL_TO_MAP(pp);
205 uvm_unmap1(map, va, va + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
206 }
207
208 /*
209 * km_vacache_init: initialize kva cache.
210 */
211
212 static void
213 km_vacache_init(struct vm_map *map, const char *name, size_t size)
214 {
215 struct vm_map_kernel *vmk;
216 struct pool *pp;
217 struct pool_allocator *pa;
218
219 KASSERT(VM_MAP_IS_KERNEL(map));
220 KASSERT(size < (vm_map_max(map) - vm_map_min(map)) / 2); /* sanity */
221
222 vmk = vm_map_to_kernel(map);
223 pp = &vmk->vmk_vacache;
224 pa = &vmk->vmk_vacache_allocator;
225 memset(pa, 0, sizeof(*pa));
226 pa->pa_alloc = km_vacache_alloc;
227 pa->pa_free = km_vacache_free;
228 pa->pa_pagesz = (unsigned int)size;
229 pool_init(pp, PAGE_SIZE, 0, 0, PR_NOTOUCH | PR_RECURSIVE, name, pa);
230
231 /* XXX for now.. */
232 pool_sethiwat(pp, 0);
233 }
234
235 void
236 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
237 {
238
239 map->flags |= VM_MAP_VACACHE;
240 if (size == 0)
241 size = KM_VACACHE_SIZE;
242 km_vacache_init(map, name, size);
243 }
244
245 #else /* !defined(PMAP_MAP_POOLPAGE) */
246
247 void
248 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
249 {
250
251 /* nothing */
252 }
253
254 #endif /* !defined(PMAP_MAP_POOLPAGE) */
255
256 /*
257 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
258 * KVM already allocated for text, data, bss, and static data structures).
259 *
260 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
261 * we assume that [min -> start] has already been allocated and that
262 * "end" is the end.
263 */
264
265 void
266 uvm_km_init(start, end)
267 vaddr_t start, end;
268 {
269 vaddr_t base = VM_MIN_KERNEL_ADDRESS;
270
271 /*
272 * next, init kernel memory objects.
273 */
274
275 /* kernel_object: for pageable anonymous kernel memory */
276 uao_init();
277 uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
278 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
279
280 /*
281 * init the map and reserve any space that might already
282 * have been allocated kernel space before installing.
283 */
284
285 uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
286 kernel_map_store.vmk_map.pmap = pmap_kernel();
287 if (start != base) {
288 int error;
289 struct uvm_map_args args;
290
291 error = uvm_map_prepare(&kernel_map_store.vmk_map,
292 base, start - base,
293 NULL, UVM_UNKNOWN_OFFSET, 0,
294 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
295 UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
296 if (!error) {
297 kernel_first_mapent_store.flags =
298 UVM_MAP_KERNEL | UVM_MAP_FIRST;
299 error = uvm_map_enter(&kernel_map_store.vmk_map, &args,
300 &kernel_first_mapent_store);
301 }
302
303 if (error)
304 panic(
305 "uvm_km_init: could not reserve space for kernel");
306 }
307
308 /*
309 * install!
310 */
311
312 kernel_map = &kernel_map_store.vmk_map;
313 uvm_km_vacache_init(kernel_map, "kvakernel", 0);
314 }
315
316 /*
317 * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
318 * is allocated all references to that area of VM must go through it. this
319 * allows the locking of VAs in kernel_map to be broken up into regions.
320 *
321 * => if `fixed' is true, *min specifies where the region described
322 * by the submap must start
323 * => if submap is non NULL we use that as the submap, otherwise we
324 * alloc a new map
325 */
326
327 struct vm_map *
328 uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
329 struct vm_map *map;
330 vaddr_t *min, *max; /* IN/OUT, OUT */
331 vsize_t size;
332 int flags;
333 boolean_t fixed;
334 struct vm_map_kernel *submap;
335 {
336 int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
337
338 KASSERT(vm_map_pmap(map) == pmap_kernel());
339
340 size = round_page(size); /* round up to pagesize */
341
342 /*
343 * first allocate a blank spot in the parent map
344 */
345
346 if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
347 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
348 UVM_ADV_RANDOM, mapflags)) != 0) {
349 panic("uvm_km_suballoc: unable to allocate space in parent map");
350 }
351
352 /*
353 * set VM bounds (min is filled in by uvm_map)
354 */
355
356 *max = *min + size;
357
358 /*
359 * add references to pmap and create or init the submap
360 */
361
362 pmap_reference(vm_map_pmap(map));
363 if (submap == NULL) {
364 submap = malloc(sizeof(*submap), M_VMMAP, M_WAITOK);
365 if (submap == NULL)
366 panic("uvm_km_suballoc: unable to create submap");
367 }
368 uvm_map_setup_kernel(submap, *min, *max, flags);
369 submap->vmk_map.pmap = vm_map_pmap(map);
370
371 /*
372 * now let uvm_map_submap plug in it...
373 */
374
375 if (uvm_map_submap(map, *min, *max, &submap->vmk_map) != 0)
376 panic("uvm_km_suballoc: submap allocation failed");
377
378 return(&submap->vmk_map);
379 }
380
381 /*
382 * uvm_km_pgremove: remove pages from a kernel uvm_object.
383 *
384 * => when you unmap a part of anonymous kernel memory you want to toss
385 * the pages right away. (this gets called from uvm_unmap_...).
386 */
387
388 void
389 uvm_km_pgremove(startva, endva)
390 vaddr_t startva, endva;
391 {
392 struct uvm_object * const uobj = uvm.kernel_object;
393 const voff_t start = startva - vm_map_min(kernel_map);
394 const voff_t end = endva - vm_map_min(kernel_map);
395 struct vm_page *pg;
396 voff_t curoff, nextoff;
397 int swpgonlydelta = 0;
398 UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
399
400 KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
401 KASSERT(startva < endva);
402 KASSERT(endva < VM_MAX_KERNEL_ADDRESS);
403
404 simple_lock(&uobj->vmobjlock);
405
406 for (curoff = start; curoff < end; curoff = nextoff) {
407 nextoff = curoff + PAGE_SIZE;
408 pg = uvm_pagelookup(uobj, curoff);
409 if (pg != NULL && pg->flags & PG_BUSY) {
410 pg->flags |= PG_WANTED;
411 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
412 "km_pgrm", 0);
413 simple_lock(&uobj->vmobjlock);
414 nextoff = curoff;
415 continue;
416 }
417
418 /*
419 * free the swap slot, then the page.
420 */
421
422 if (pg == NULL &&
423 uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
424 swpgonlydelta++;
425 }
426 uao_dropswap(uobj, curoff >> PAGE_SHIFT);
427 if (pg != NULL) {
428 uvm_lock_pageq();
429 uvm_pagefree(pg);
430 uvm_unlock_pageq();
431 }
432 }
433 simple_unlock(&uobj->vmobjlock);
434
435 if (swpgonlydelta > 0) {
436 simple_lock(&uvm.swap_data_lock);
437 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
438 uvmexp.swpgonly -= swpgonlydelta;
439 simple_unlock(&uvm.swap_data_lock);
440 }
441 }
442
443
444 /*
445 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
446 * regions.
447 *
448 * => when you unmap a part of anonymous kernel memory you want to toss
449 * the pages right away. (this is called from uvm_unmap_...).
450 * => none of the pages will ever be busy, and none of them will ever
451 * be on the active or inactive queues (because they have no object).
452 */
453
454 void
455 uvm_km_pgremove_intrsafe(start, end)
456 vaddr_t start, end;
457 {
458 struct vm_page *pg;
459 paddr_t pa;
460 UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
461
462 KASSERT(VM_MIN_KERNEL_ADDRESS <= start);
463 KASSERT(start < end);
464 KASSERT(end < VM_MAX_KERNEL_ADDRESS);
465
466 for (; start < end; start += PAGE_SIZE) {
467 if (!pmap_extract(pmap_kernel(), start, &pa)) {
468 continue;
469 }
470 pg = PHYS_TO_VM_PAGE(pa);
471 KASSERT(pg);
472 KASSERT(pg->uobject == NULL && pg->uanon == NULL);
473 uvm_pagefree(pg);
474 }
475 }
476
477 #if defined(DEBUG)
478 void
479 uvm_km_check_empty(vaddr_t start, vaddr_t end, boolean_t intrsafe)
480 {
481 vaddr_t va;
482 paddr_t pa;
483
484 KDASSERT(VM_MIN_KERNEL_ADDRESS <= start);
485 KDASSERT(start < end);
486 KDASSERT(end < VM_MAX_KERNEL_ADDRESS);
487
488 for (va = start; va < end; va += PAGE_SIZE) {
489 if (pmap_extract(pmap_kernel(), va, &pa)) {
490 panic("uvm_km_check_empty: va %p has pa %p",
491 (void *)va, (void *)pa);
492 }
493 if (!intrsafe) {
494 const struct vm_page *pg;
495
496 simple_lock(&uvm.kernel_object->vmobjlock);
497 pg = uvm_pagelookup(uvm.kernel_object,
498 va - vm_map_min(kernel_map));
499 simple_unlock(&uvm.kernel_object->vmobjlock);
500 if (pg) {
501 panic("uvm_km_check_empty: "
502 "has page hashed at %p", (const void *)va);
503 }
504 }
505 }
506 }
507 #endif /* defined(DEBUG) */
508
509 /*
510 * uvm_km_alloc: allocate an area of kernel memory.
511 *
512 * => NOTE: we can return 0 even if we can wait if there is not enough
513 * free VM space in the map... caller should be prepared to handle
514 * this case.
515 * => we return KVA of memory allocated
516 */
517
518 vaddr_t
519 uvm_km_alloc(map, size, align, flags)
520 struct vm_map *map;
521 vsize_t size;
522 vsize_t align;
523 uvm_flag_t flags;
524 {
525 vaddr_t kva, loopva;
526 vaddr_t offset;
527 vsize_t loopsize;
528 struct vm_page *pg;
529 struct uvm_object *obj;
530 int pgaflags;
531 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
532
533 KASSERT(vm_map_pmap(map) == pmap_kernel());
534 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
535 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
536 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
537
538 /*
539 * setup for call
540 */
541
542 kva = vm_map_min(map); /* hint */
543 size = round_page(size);
544 obj = (flags & UVM_KMF_PAGEABLE) ? uvm.kernel_object : NULL;
545 UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
546 map, obj, size, flags);
547
548 /*
549 * allocate some virtual space
550 */
551
552 if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
553 align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
554 UVM_ADV_RANDOM,
555 (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA))
556 | UVM_FLAG_QUANTUM)) != 0)) {
557 UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
558 return(0);
559 }
560
561 /*
562 * if all we wanted was VA, return now
563 */
564
565 if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
566 UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
567 return(kva);
568 }
569
570 /*
571 * recover object offset from virtual address
572 */
573
574 offset = kva - vm_map_min(kernel_map);
575 UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
576
577 /*
578 * now allocate and map in the memory... note that we are the only ones
579 * whom should ever get a handle on this area of VM.
580 */
581
582 loopva = kva;
583 loopsize = size;
584
585 pgaflags = UVM_PGA_USERESERVE;
586 if (flags & UVM_KMF_ZERO)
587 pgaflags |= UVM_PGA_ZERO;
588 while (loopsize) {
589 KASSERT(!pmap_extract(pmap_kernel(), loopva, NULL));
590
591 pg = uvm_pagealloc(NULL, offset, NULL, pgaflags);
592
593 /*
594 * out of memory?
595 */
596
597 if (__predict_false(pg == NULL)) {
598 if ((flags & UVM_KMF_NOWAIT) ||
599 ((flags & UVM_KMF_CANFAIL) && uvm_swapisfull())) {
600 /* free everything! */
601 uvm_km_free(map, kva, size,
602 flags & UVM_KMF_TYPEMASK);
603 return (0);
604 } else {
605 uvm_wait("km_getwait2"); /* sleep here */
606 continue;
607 }
608 }
609
610 pg->flags &= ~PG_BUSY; /* new page */
611 UVM_PAGE_OWN(pg, NULL);
612
613 /*
614 * map it in
615 */
616
617 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
618 VM_PROT_READ | VM_PROT_WRITE);
619 loopva += PAGE_SIZE;
620 offset += PAGE_SIZE;
621 loopsize -= PAGE_SIZE;
622 }
623
624 pmap_update(pmap_kernel());
625
626 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
627 return(kva);
628 }
629
630 /*
631 * uvm_km_free: free an area of kernel memory
632 */
633
634 void
635 uvm_km_free(map, addr, size, flags)
636 struct vm_map *map;
637 vaddr_t addr;
638 vsize_t size;
639 uvm_flag_t flags;
640 {
641
642 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
643 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
644 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
645 KASSERT((addr & PAGE_MASK) == 0);
646 KASSERT(vm_map_pmap(map) == pmap_kernel());
647
648 size = round_page(size);
649
650 if (flags & UVM_KMF_PAGEABLE) {
651 uvm_km_pgremove(addr, addr + size);
652 pmap_remove(pmap_kernel(), addr, addr + size);
653 } else if (flags & UVM_KMF_WIRED) {
654 uvm_km_pgremove_intrsafe(addr, addr + size);
655 pmap_kremove(addr, size);
656 }
657
658 uvm_unmap1(map, addr, addr + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
659 }
660
661 /* Sanity; must specify both or none. */
662 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
663 (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
664 #error Must specify MAP and UNMAP together.
665 #endif
666
667 /*
668 * uvm_km_alloc_poolpage: allocate a page for the pool allocator
669 *
670 * => if the pmap specifies an alternate mapping method, we use it.
671 */
672
673 /* ARGSUSED */
674 vaddr_t
675 uvm_km_alloc_poolpage_cache(map, waitok)
676 struct vm_map *map;
677 boolean_t waitok;
678 {
679 #if defined(PMAP_MAP_POOLPAGE)
680 return uvm_km_alloc_poolpage(map, waitok);
681 #else
682 struct vm_page *pg;
683 struct pool *pp = &vm_map_to_kernel(map)->vmk_vacache;
684 vaddr_t va;
685 int s = 0xdeadbeaf; /* XXX: gcc */
686 const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
687
688 if ((map->flags & VM_MAP_VACACHE) == 0)
689 return uvm_km_alloc_poolpage(map, waitok);
690
691 if (intrsafe)
692 s = splvm();
693 va = (vaddr_t)pool_get(pp, waitok ? PR_WAITOK : PR_NOWAIT);
694 if (intrsafe)
695 splx(s);
696 if (va == 0)
697 return 0;
698 KASSERT(!pmap_extract(pmap_kernel(), va, NULL));
699 again:
700 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
701 if (__predict_false(pg == NULL)) {
702 if (waitok) {
703 uvm_wait("plpg");
704 goto again;
705 } else {
706 if (intrsafe)
707 s = splvm();
708 pool_put(pp, (void *)va);
709 if (intrsafe)
710 splx(s);
711 return 0;
712 }
713 }
714 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg),
715 VM_PROT_READ|VM_PROT_WRITE);
716 pmap_update(pmap_kernel());
717
718 return va;
719 #endif /* PMAP_MAP_POOLPAGE */
720 }
721
722 vaddr_t
723 uvm_km_alloc_poolpage(map, waitok)
724 struct vm_map *map;
725 boolean_t waitok;
726 {
727 #if defined(PMAP_MAP_POOLPAGE)
728 struct vm_page *pg;
729 vaddr_t va;
730
731 again:
732 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
733 if (__predict_false(pg == NULL)) {
734 if (waitok) {
735 uvm_wait("plpg");
736 goto again;
737 } else
738 return (0);
739 }
740 va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
741 if (__predict_false(va == 0))
742 uvm_pagefree(pg);
743 return (va);
744 #else
745 vaddr_t va;
746 int s = 0xdeadbeaf; /* XXX: gcc */
747 const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
748
749 if (intrsafe)
750 s = splvm();
751 va = uvm_km_alloc(map, PAGE_SIZE, 0,
752 (waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) | UVM_KMF_WIRED);
753 if (intrsafe)
754 splx(s);
755 return (va);
756 #endif /* PMAP_MAP_POOLPAGE */
757 }
758
759 /*
760 * uvm_km_free_poolpage: free a previously allocated pool page
761 *
762 * => if the pmap specifies an alternate unmapping method, we use it.
763 */
764
765 /* ARGSUSED */
766 void
767 uvm_km_free_poolpage_cache(map, addr)
768 struct vm_map *map;
769 vaddr_t addr;
770 {
771 #if defined(PMAP_UNMAP_POOLPAGE)
772 uvm_km_free_poolpage(map, addr);
773 #else
774 struct pool *pp;
775 int s = 0xdeadbeaf; /* XXX: gcc */
776 const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
777
778 if ((map->flags & VM_MAP_VACACHE) == 0) {
779 uvm_km_free_poolpage(map, addr);
780 return;
781 }
782
783 KASSERT(pmap_extract(pmap_kernel(), addr, NULL));
784 uvm_km_pgremove_intrsafe(addr, addr + PAGE_SIZE);
785 pmap_kremove(addr, PAGE_SIZE);
786 #if defined(DEBUG)
787 pmap_update(pmap_kernel());
788 #endif
789 KASSERT(!pmap_extract(pmap_kernel(), addr, NULL));
790 pp = &vm_map_to_kernel(map)->vmk_vacache;
791 if (intrsafe)
792 s = splvm();
793 pool_put(pp, (void *)addr);
794 if (intrsafe)
795 splx(s);
796 #endif
797 }
798
799 /* ARGSUSED */
800 void
801 uvm_km_free_poolpage(map, addr)
802 struct vm_map *map;
803 vaddr_t addr;
804 {
805 #if defined(PMAP_UNMAP_POOLPAGE)
806 paddr_t pa;
807
808 pa = PMAP_UNMAP_POOLPAGE(addr);
809 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
810 #else
811 int s = 0xdeadbeaf; /* XXX: gcc */
812 const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
813
814 if (intrsafe)
815 s = splvm();
816 uvm_km_free(map, addr, PAGE_SIZE, UVM_KMF_WIRED);
817 if (intrsafe)
818 splx(s);
819 #endif /* PMAP_UNMAP_POOLPAGE */
820 }
821