uvm_km.c revision 1.8 1 /* $NetBSD: uvm_km.c,v 1.8 1998/03/09 00:58:57 mrg Exp $ */
2
3 /*
4 * XXXCDC: "ROUGH DRAFT" QUALITY UVM PRE-RELEASE FILE!
5 * >>>USE AT YOUR OWN RISK, WORK IS NOT FINISHED<<<
6 */
7 /*
8 * Copyright (c) 1997 Charles D. Cranor and Washington University.
9 * Copyright (c) 1991, 1993, The Regents of the University of California.
10 *
11 * All rights reserved.
12 *
13 * This code is derived from software contributed to Berkeley by
14 * The Mach Operating System project at Carnegie-Mellon University.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by Charles D. Cranor,
27 * Washington University, the University of California, Berkeley and
28 * its contributors.
29 * 4. Neither the name of the University nor the names of its contributors
30 * may be used to endorse or promote products derived from this software
31 * without specific prior written permission.
32 *
33 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43 * SUCH DAMAGE.
44 *
45 * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
46 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
47 *
48 *
49 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
50 * All rights reserved.
51 *
52 * Permission to use, copy, modify and distribute this software and
53 * its documentation is hereby granted, provided that both the copyright
54 * notice and this permission notice appear in all copies of the
55 * software, derivative works or modified versions, and any portions
56 * thereof, and that both notices appear in supporting documentation.
57 *
58 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
59 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
60 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
61 *
62 * Carnegie Mellon requests users of this software to return to
63 *
64 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
65 * School of Computer Science
66 * Carnegie Mellon University
67 * Pittsburgh PA 15213-3890
68 *
69 * any improvements or extensions that they make and grant Carnegie the
70 * rights to redistribute these changes.
71 */
72
73 #include "opt_uvmhist.h"
74 #include "opt_pmap_new.h"
75
76 /*
77 * uvm_km.c: handle kernel memory allocation and management
78 */
79
80 /*
81 * overview of kernel memory management:
82 *
83 * the kernel virtual address space is mapped by "kernel_map." kernel_map
84 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
85 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
86 *
87 * the kernel_map has several "submaps." submaps can only appear in
88 * the kernel_map (user processes can't use them). submaps "take over"
89 * the management of a sub-range of the kernel's address space. submaps
90 * are typically allocated at boot time and are never released. kernel
91 * virtual address space that is mapped by a submap is locked by the
92 * submap's lock -- not the kernel_map's lock.
93 *
94 * thus, the useful feature of submaps is that they allow us to break
95 * up the locking and protection of the kernel address space into smaller
96 * chunks.
97 *
98 * the vm system has several standard kernel submaps, including:
99 * kmem_map => contains only wired kernel memory for the kernel
100 * malloc. *** access to kmem_map must be protected
101 * by splimp() because we are allowed to call malloc()
102 * at interrupt time ***
103 * mb_map => memory for large mbufs, *** protected by splimp ***
104 * pager_map => used to map "buf" structures into kernel space
105 * exec_map => used during exec to handle exec args
106 * etc...
107 *
108 * the kernel allocates its private memory out of special uvm_objects whose
109 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
110 * are "special" and never die). all kernel objects should be thought of
111 * as large, fixed-sized, sparsely populated uvm_objects. each kernel
112 * object is equal to the size of kernel virtual address space (i.e. the
113 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
114 *
115 * most kernel private memory lives in kernel_object. the only exception
116 * to this is for memory that belongs to submaps that must be protected
117 * by splimp(). each of these submaps has their own private kernel
118 * object (e.g. kmem_object, mb_object).
119 *
120 * note that just because a kernel object spans the entire kernel virutal
121 * address space doesn't mean that it has to be mapped into the entire space.
122 * large chunks of a kernel object's space go unused either because
123 * that area of kernel VM is unmapped, or there is some other type of
124 * object mapped into that range (e.g. a vnode). for submap's kernel
125 * objects, the only part of the object that can ever be populated is the
126 * offsets that are managed by the submap.
127 *
128 * note that the "offset" in a kernel object is always the kernel virtual
129 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
130 * example:
131 * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
132 * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
133 * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
134 * then that means that the page at offset 0x235000 in kernel_object is
135 * mapped at 0xf8235000.
136 *
137 * note that the offsets in kmem_object and mb_object also follow this
138 * rule. this means that the offsets for kmem_object must fall in the
139 * range of [vm_map_min(kmem_object) - vm_map_min(kernel_map)] to
140 * [vm_map_max(kmem_object) - vm_map_min(kernel_map)], so the offsets
141 * in those objects will typically not start at zero.
142 *
143 * kernel object have one other special property: when the kernel virtual
144 * memory mapping them is unmapped, the backing memory in the object is
145 * freed right away. this is done with the uvm_km_pgremove() function.
146 * this has to be done because there is no backing store for kernel pages
147 * and no need to save them after they are no longer referenced.
148 */
149
150 #include <sys/param.h>
151 #include <sys/systm.h>
152 #include <sys/proc.h>
153
154 #include <vm/vm.h>
155 #include <vm/vm_page.h>
156 #include <vm/vm_kern.h>
157
158 #include <uvm/uvm.h>
159
160 /*
161 * global data structures
162 */
163
164 vm_map_t kernel_map = NULL;
165
166 /*
167 * local functions
168 */
169
170 static int uvm_km_get __P((struct uvm_object *, vm_offset_t,
171 vm_page_t *, int *, int, vm_prot_t, int, int));
172 /*
173 * local data structues
174 */
175
176 static struct vm_map kernel_map_store;
177 static struct uvm_object kmem_object_store;
178 static struct uvm_object mb_object_store;
179
180 static struct uvm_pagerops km_pager = {
181 NULL, /* init */
182 NULL, /* attach */
183 NULL, /* reference */
184 NULL, /* detach */
185 NULL, /* fault */
186 NULL, /* flush */
187 uvm_km_get, /* get */
188 /* ... rest are NULL */
189 };
190
191 /*
192 * uvm_km_get: pager get function for kernel objects
193 *
194 * => currently we do not support pageout to the swap area, so this
195 * pager is very simple. eventually we may want an anonymous
196 * object pager which will do paging.
197 * => XXXCDC: this pager should be phased out in favor of the aobj pager
198 */
199
200
201 static int
202 uvm_km_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
203 struct uvm_object *uobj;
204 vm_offset_t offset;
205 struct vm_page **pps;
206 int *npagesp;
207 int centeridx, advice, flags;
208 vm_prot_t access_type;
209 {
210 vm_offset_t current_offset;
211 vm_page_t ptmp;
212 int lcv, gotpages, maxpages;
213 boolean_t done;
214 UVMHIST_FUNC("uvm_km_get"); UVMHIST_CALLED(maphist);
215
216 UVMHIST_LOG(maphist, "flags=%d", flags,0,0,0);
217
218 /*
219 * get number of pages
220 */
221
222 maxpages = *npagesp;
223
224 /*
225 * step 1: handled the case where fault data structures are locked.
226 */
227
228 if (flags & PGO_LOCKED) {
229
230 /*
231 * step 1a: get pages that are already resident. only do
232 * this if the data structures are locked (i.e. the first time
233 * through).
234 */
235
236 done = TRUE; /* be optimistic */
237 gotpages = 0; /* # of pages we got so far */
238
239 for (lcv = 0, current_offset = offset ;
240 lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
241
242 /* do we care about this page? if not, skip it */
243 if (pps[lcv] == PGO_DONTCARE)
244 continue;
245
246 /* lookup page */
247 ptmp = uvm_pagelookup(uobj, current_offset);
248
249 /* null? attempt to allocate the page */
250 if (ptmp == NULL) {
251 ptmp = uvm_pagealloc(uobj, current_offset,
252 NULL);
253 if (ptmp) {
254 /* new page */
255 ptmp->flags &= ~(PG_BUSY|PG_FAKE);
256 UVM_PAGE_OWN(ptmp, NULL);
257 /* XXX: prevents pageout attempts */
258 ptmp->wire_count = 1;
259 uvm_pagezero(ptmp);
260 }
261 }
262
263 /*
264 * to be useful must get a non-busy, non-released page
265 */
266 if (ptmp == NULL ||
267 (ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
268 if (lcv == centeridx ||
269 (flags & PGO_ALLPAGES) != 0)
270 /* need to do a wait or I/O! */
271 done = FALSE;
272 continue;
273 }
274
275 /*
276 * useful page: busy/lock it and plug it in our
277 * result array
278 */
279
280 /* caller must un-busy this page */
281 ptmp->flags |= PG_BUSY;
282 UVM_PAGE_OWN(ptmp, "uvm_km_get1");
283 pps[lcv] = ptmp;
284 gotpages++;
285
286 } /* "for" lcv loop */
287
288 /*
289 * step 1b: now we've either done everything needed or we
290 * to unlock and do some waiting or I/O.
291 */
292
293 UVMHIST_LOG(maphist, "<- done (done=%d)", done, 0,0,0);
294
295 *npagesp = gotpages;
296 if (done)
297 return(VM_PAGER_OK); /* bingo! */
298 else
299 return(VM_PAGER_UNLOCK); /* EEK! Need to
300 * unlock and I/O */
301 }
302
303 /*
304 * step 2: get non-resident or busy pages.
305 * object is locked. data structures are unlocked.
306 */
307
308 for (lcv = 0, current_offset = offset ;
309 lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
310
311 /* skip over pages we've already gotten or don't want */
312 /* skip over pages we don't _have_ to get */
313 if (pps[lcv] != NULL ||
314 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
315 continue;
316
317 /*
318 * we have yet to locate the current page (pps[lcv]). we
319 * first look for a page that is already at the current offset.
320 * if we find a page, we check to see if it is busy or
321 * released. if that is the case, then we sleep on the page
322 * until it is no longer busy or released and repeat the
323 * lookup. if the page we found is neither busy nor
324 * released, then we busy it (so we own it) and plug it into
325 * pps[lcv]. this 'break's the following while loop and
326 * indicates we are ready to move on to the next page in the
327 * "lcv" loop above.
328 *
329 * if we exit the while loop with pps[lcv] still set to NULL,
330 * then it means that we allocated a new busy/fake/clean page
331 * ptmp in the object and we need to do I/O to fill in the
332 * data.
333 */
334
335 while (pps[lcv] == NULL) { /* top of "pps" while loop */
336
337 /* look for a current page */
338 ptmp = uvm_pagelookup(uobj, current_offset);
339
340 /* nope? allocate one now (if we can) */
341 if (ptmp == NULL) {
342
343 ptmp = uvm_pagealloc(uobj, current_offset,
344 NULL); /* alloc */
345
346 /* out of RAM? */
347 if (ptmp == NULL) {
348 simple_unlock(&uobj->vmobjlock);
349 uvm_wait("kmgetwait1");
350 simple_lock(&uobj->vmobjlock);
351 /* goto top of pps while loop */
352 continue;
353 }
354
355 /*
356 * got new page ready for I/O. break pps
357 * while loop. pps[lcv] is still NULL.
358 */
359 break;
360 }
361
362 /* page is there, see if we need to wait on it */
363 if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
364 ptmp->flags |= PG_WANTED;
365 UVM_UNLOCK_AND_WAIT(ptmp,&uobj->vmobjlock, 0,
366 "uvn_get",0);
367 simple_lock(&uobj->vmobjlock);
368 continue; /* goto top of pps while loop */
369 }
370
371 /*
372 * if we get here then the page has become resident
373 * and unbusy between steps 1 and 2. we busy it now
374 * (so we own it) and set pps[lcv] (so that we exit
375 * the while loop). caller must un-busy.
376 */
377 ptmp->flags |= PG_BUSY;
378 UVM_PAGE_OWN(ptmp, "uvm_km_get2");
379 pps[lcv] = ptmp;
380 }
381
382 /*
383 * if we own the a valid page at the correct offset, pps[lcv]
384 * will point to it. nothing more to do except go to the
385 * next page.
386 */
387
388 if (pps[lcv])
389 continue; /* next lcv */
390
391 /*
392 * we have a "fake/busy/clean" page that we just allocated.
393 * do the needed "i/o" (in this case that means zero it).
394 */
395
396 uvm_pagezero(ptmp);
397 ptmp->flags &= ~(PG_FAKE);
398 ptmp->wire_count = 1; /* XXX: prevents pageout attempts */
399 pps[lcv] = ptmp;
400
401 } /* lcv loop */
402
403 /*
404 * finally, unlock object and return.
405 */
406
407 simple_unlock(&uobj->vmobjlock);
408 UVMHIST_LOG(maphist, "<- done (OK)",0,0,0,0);
409 return(VM_PAGER_OK);
410 }
411
412 /*
413 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
414 * KVM already allocated for text, data, bss, and static data structures).
415 *
416 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
417 * we assume that [min -> start] has already been allocated and that
418 * "end" is the end.
419 */
420
421 void
422 uvm_km_init(start, end)
423 vm_offset_t start, end;
424 {
425 vm_offset_t base = VM_MIN_KERNEL_ADDRESS;
426
427 /*
428 * first, init kernel memory objects.
429 */
430
431 /* kernel_object: for pageable anonymous kernel memory */
432 uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
433 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
434
435 /* kmem_object: for malloc'd memory (wired, protected by splimp) */
436 simple_lock_init(&kmem_object_store.vmobjlock);
437 kmem_object_store.pgops = &km_pager;
438 TAILQ_INIT(&kmem_object_store.memq);
439 kmem_object_store.uo_npages = 0;
440 /* we are special. we never die */
441 kmem_object_store.uo_refs = UVM_OBJ_KERN;
442 uvmexp.kmem_object = &kmem_object_store;
443
444 /* mb_object: for mbuf memory (always wired, protected by splimp) */
445 simple_lock_init(&mb_object_store.vmobjlock);
446 mb_object_store.pgops = &km_pager;
447 TAILQ_INIT(&mb_object_store.memq);
448 mb_object_store.uo_npages = 0;
449 /* we are special. we never die */
450 mb_object_store.uo_refs = UVM_OBJ_KERN;
451 uvmexp.mb_object = &mb_object_store;
452
453 /*
454 * init the map and reserve allready allocated kernel space
455 * before installing.
456 */
457
458 uvm_map_setup(&kernel_map_store, base, end, FALSE);
459 kernel_map_store.pmap = pmap_kernel();
460 if (uvm_map(&kernel_map_store, &base, start - base, NULL,
461 UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
462 UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != KERN_SUCCESS)
463 panic("uvm_km_init: could not reserve space for kernel");
464
465 /*
466 * install!
467 */
468
469 kernel_map = &kernel_map_store;
470 }
471
472 /*
473 * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
474 * is allocated all references to that area of VM must go through it. this
475 * allows the locking of VAs in kernel_map to be broken up into regions.
476 *
477 * => if `fixed' is true, *min specifies where the region described
478 * by the submap must start
479 * => if submap is non NULL we use that as the submap, otherwise we
480 * alloc a new map
481 */
482 struct vm_map *
483 uvm_km_suballoc(map, min, max, size, pageable, fixed, submap)
484 struct vm_map *map;
485 vm_offset_t *min, *max; /* OUT, OUT */
486 vm_size_t size;
487 boolean_t pageable;
488 boolean_t fixed;
489 struct vm_map *submap;
490 {
491 int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
492
493 size = round_page(size); /* round up to pagesize */
494
495 /*
496 * first allocate a blank spot in the parent map
497 */
498
499 if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET,
500 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
501 UVM_ADV_RANDOM, mapflags)) != KERN_SUCCESS) {
502 panic("uvm_km_suballoc: unable to allocate space in parent map");
503 }
504
505 /*
506 * set VM bounds (min is filled in by uvm_map)
507 */
508
509 *max = *min + size;
510
511 /*
512 * add references to pmap and create or init the submap
513 */
514
515 pmap_reference(vm_map_pmap(map));
516 if (submap == NULL) {
517 submap = uvm_map_create(vm_map_pmap(map), *min, *max, pageable);
518 if (submap == NULL)
519 panic("uvm_km_suballoc: unable to create submap");
520 } else {
521 uvm_map_setup(submap, *min, *max, pageable);
522 submap->pmap = vm_map_pmap(map);
523 }
524
525 /*
526 * now let uvm_map_submap plug in it...
527 */
528
529 if (uvm_map_submap(map, *min, *max, submap) != KERN_SUCCESS)
530 panic("uvm_km_suballoc: submap allocation failed");
531
532 return(submap);
533 }
534
535 /*
536 * uvm_km_pgremove: remove pages from a kernel uvm_object.
537 *
538 * => when you unmap a part of anonymous kernel memory you want to toss
539 * the pages right away. (this gets called from uvm_unmap_...).
540 */
541
542 #define UKM_HASH_PENALTY 4 /* a guess */
543
544 void
545 uvm_km_pgremove(uobj, start, end)
546 struct uvm_object *uobj;
547 vm_offset_t start, end;
548 {
549 boolean_t by_list, is_aobj;
550 struct vm_page *pp, *ppnext;
551 vm_offset_t curoff;
552 UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
553
554 simple_lock(&uobj->vmobjlock); /* lock object */
555
556 /* is uobj an aobj? */
557 is_aobj = uobj->pgops == &aobj_pager;
558
559 /* choose cheapest traversal */
560 by_list = (uobj->uo_npages <=
561 ((end - start) / PAGE_SIZE) * UKM_HASH_PENALTY);
562
563 if (by_list)
564 goto loop_by_list;
565
566 /* by hash */
567
568 for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
569 pp = uvm_pagelookup(uobj, curoff);
570 if (pp == NULL)
571 continue;
572
573 UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,
574 pp->flags & PG_BUSY, 0, 0);
575 /* now do the actual work */
576 if (pp->flags & PG_BUSY)
577 /* owner must check for this when done */
578 pp->flags |= PG_RELEASED;
579 else {
580 pmap_page_protect(PMAP_PGARG(pp), VM_PROT_NONE);
581
582 /*
583 * if this kernel object is an aobj, free the swap slot.
584 */
585 if (is_aobj) {
586 int slot = uao_set_swslot(uobj,
587 curoff / PAGE_SIZE, 0);
588
589 if (slot)
590 uvm_swap_free(slot, 1);
591 }
592
593 uvm_lock_pageq();
594 uvm_pagefree(pp);
595 uvm_unlock_pageq();
596 }
597 /* done */
598
599 }
600 simple_unlock(&uobj->vmobjlock);
601 return;
602
603 loop_by_list:
604
605 for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
606
607 ppnext = pp->listq.tqe_next;
608 if (pp->offset < start || pp->offset >= end) {
609 continue;
610 }
611
612 UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,
613 pp->flags & PG_BUSY, 0, 0);
614 /* now do the actual work */
615 if (pp->flags & PG_BUSY)
616 /* owner must check for this when done */
617 pp->flags |= PG_RELEASED;
618 else {
619 pmap_page_protect(PMAP_PGARG(pp), VM_PROT_NONE);
620
621 /*
622 * if this kernel object is an aobj, free the swap slot.
623 */
624 if (is_aobj) {
625 int slot = uao_set_swslot(uobj,
626 pp->offset / PAGE_SIZE, 0);
627
628 if (slot)
629 uvm_swap_free(slot, 1);
630 }
631
632 uvm_lock_pageq();
633 uvm_pagefree(pp);
634 uvm_unlock_pageq();
635 }
636 /* done */
637
638 }
639 simple_unlock(&uobj->vmobjlock);
640 return;
641 }
642
643
644 /*
645 * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
646 *
647 * => we map wired memory into the specified map using the obj passed in
648 * => NOTE: we can return NULL even if we can wait if there is not enough
649 * free VM space in the map... caller should be prepared to handle
650 * this case.
651 * => we return KVA of memory allocated
652 * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
653 * lock the map
654 */
655
656 vm_offset_t
657 uvm_km_kmemalloc(map, obj, size, flags)
658 vm_map_t map;
659 struct uvm_object *obj;
660 vm_size_t size;
661 int flags;
662 {
663 vm_offset_t kva, loopva;
664 vm_offset_t offset;
665 struct vm_page *pg;
666 UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
667
668
669 UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
670 map, obj, size, flags);
671 #ifdef DIAGNOSTIC
672 /* sanity check */
673 if (vm_map_pmap(map) != pmap_kernel())
674 panic("uvm_km_kmemalloc: invalid map");
675 #endif
676
677 /*
678 * setup for call
679 */
680
681 size = round_page(size);
682 kva = vm_map_min(map); /* hint */
683
684 /*
685 * allocate some virtual space
686 */
687
688 if (uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
689 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
690 UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
691 != KERN_SUCCESS) {
692 UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
693 return(0);
694 }
695
696 /*
697 * if all we wanted was VA, return now
698 */
699
700 if (flags & UVM_KMF_VALLOC) {
701 UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
702 return(kva);
703 }
704 /*
705 * recover object offset from virtual address
706 */
707
708 offset = kva - vm_map_min(kernel_map);
709 UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
710
711 /*
712 * now allocate and map in the memory... note that we are the only ones
713 * whom should ever get a handle on this area of VM.
714 */
715
716 loopva = kva;
717 while (size) {
718 simple_lock(&obj->vmobjlock);
719 pg = uvm_pagealloc(obj, offset, NULL);
720 if (pg) {
721 pg->flags &= ~PG_BUSY; /* new page */
722 UVM_PAGE_OWN(pg, NULL);
723
724 pg->wire_count = 1;
725 uvmexp.wired++;
726 }
727 simple_unlock(&obj->vmobjlock);
728
729 /*
730 * out of memory?
731 */
732
733 if (pg == NULL) {
734 if (flags & UVM_KMF_NOWAIT) {
735 /* free everything! */
736 uvm_unmap(map, kva, kva + size, 0);
737 return(0);
738 } else {
739 uvm_wait("km_getwait2"); /* sleep here */
740 continue;
741 }
742 }
743
744 /*
745 * map it in: note that we call pmap_enter with the map and
746 * object unlocked in case we are kmem_map/kmem_object
747 * (because if pmap_enter wants to allocate out of kmem_object
748 * it will need to lock it itself!)
749 */
750 #if defined(PMAP_NEW)
751 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), VM_PROT_ALL);
752 #else
753 pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
754 UVM_PROT_ALL, TRUE);
755 #endif
756 loopva += PAGE_SIZE;
757 offset += PAGE_SIZE;
758 size -= PAGE_SIZE;
759 }
760
761 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
762 return(kva);
763 }
764
765 /*
766 * uvm_km_free: free an area of kernel memory
767 */
768
769 void
770 uvm_km_free(map, addr, size)
771 vm_map_t map;
772 vm_offset_t addr;
773 vm_size_t size;
774 {
775
776 uvm_unmap(map, trunc_page(addr), round_page(addr+size), 1);
777 }
778
779 /*
780 * uvm_km_free_wakeup: free an area of kernel memory and wake up
781 * anyone waiting for vm space.
782 *
783 * => XXX: "wanted" bit + unlock&wait on other end?
784 */
785
786 void
787 uvm_km_free_wakeup(map, addr, size)
788 vm_map_t map;
789 vm_offset_t addr;
790 vm_size_t size;
791 {
792 vm_map_entry_t dead_entries;
793
794 vm_map_lock(map);
795 (void)uvm_unmap_remove(map, trunc_page(addr), round_page(addr+size), 1,
796 &dead_entries);
797 thread_wakeup(map);
798 vm_map_unlock(map);
799
800 if (dead_entries != NULL)
801 uvm_unmap_detach(dead_entries, 0);
802 }
803
804 /*
805 * uvm_km_alloc1: allocate wired down memory in the kernel map.
806 *
807 * => we can sleep if needed
808 */
809
810 vm_offset_t
811 uvm_km_alloc1(map, size, zeroit)
812 vm_map_t map;
813 vm_size_t size;
814 boolean_t zeroit;
815 {
816 vm_offset_t kva, loopva, offset;
817 struct vm_page *pg;
818 UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
819
820 UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
821
822 #ifdef DIAGNOSTIC
823 if (vm_map_pmap(map) != pmap_kernel())
824 panic("uvm_km_alloc1");
825 #endif
826
827 size = round_page(size);
828 kva = vm_map_min(map); /* hint */
829
830 /*
831 * allocate some virtual space
832 */
833
834 if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
835 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
836 UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
837 UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
838 return(0);
839 }
840
841 /*
842 * recover object offset from virtual address
843 */
844
845 offset = kva - vm_map_min(kernel_map);
846 UVMHIST_LOG(maphist," kva=0x%x, offset=0x%x", kva, offset,0,0);
847
848 /*
849 * now allocate the memory. we must be careful about released pages.
850 */
851
852 loopva = kva;
853 while (size) {
854 simple_lock(&uvm.kernel_object->vmobjlock);
855 pg = uvm_pagelookup(uvm.kernel_object, offset);
856
857 /*
858 * if we found a page in an unallocated region, it must be
859 * released
860 */
861 if (pg) {
862 if ((pg->flags & PG_RELEASED) == 0)
863 panic("uvm_km_alloc1: non-released page");
864 pg->flags |= PG_WANTED;
865 UVM_UNLOCK_AND_WAIT(pg, &uvm.kernel_object->vmobjlock,
866 0, "km_alloc", 0);
867 continue; /* retry */
868 }
869
870 /* allocate ram */
871 pg = uvm_pagealloc(uvm.kernel_object, offset, NULL);
872 if (pg) {
873 pg->flags &= ~PG_BUSY; /* new page */
874 UVM_PAGE_OWN(pg, NULL);
875 }
876 simple_unlock(&uvm.kernel_object->vmobjlock);
877 if (pg == NULL) {
878 uvm_wait("km_alloc1w"); /* wait for memory */
879 continue;
880 }
881
882 /* map it in */
883 #if defined(PMAP_NEW)
884 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), UVM_PROT_ALL);
885 #else
886 pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
887 UVM_PROT_ALL, TRUE);
888 #endif
889 loopva += PAGE_SIZE;
890 offset += PAGE_SIZE;
891 size -= PAGE_SIZE;
892 }
893
894 /*
895 * zero on request (note that "size" is now zero due to the above loop
896 * so we need to subtract kva from loopva to reconstruct the size).
897 */
898
899 if (zeroit)
900 bzero((caddr_t)kva, loopva - kva);
901
902 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
903 return(kva);
904 }
905
906 /*
907 * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
908 *
909 * => memory is not allocated until fault time
910 */
911
912 vm_offset_t
913 uvm_km_valloc(map, size)
914 vm_map_t map;
915 vm_size_t size;
916 {
917 vm_offset_t kva;
918 UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
919
920 UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
921
922 #ifdef DIAGNOSTIC
923 if (vm_map_pmap(map) != pmap_kernel())
924 panic("uvm_km_valloc");
925 #endif
926
927 size = round_page(size);
928 kva = vm_map_min(map); /* hint */
929
930 /*
931 * allocate some virtual space. will be demand filled by kernel_object.
932 */
933
934 if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
935 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
936 UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
937 UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
938 return(0);
939 }
940
941 UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
942 return(kva);
943 }
944
945 /*
946 * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
947 *
948 * => memory is not allocated until fault time
949 * => if no room in map, wait for space to free, unless requested size
950 * is larger than map (in which case we return 0)
951 */
952
953 vm_offset_t
954 uvm_km_valloc_wait(map, size)
955 vm_map_t map;
956 vm_size_t size;
957 {
958 vm_offset_t kva;
959 UVMHIST_FUNC("uvm_km_valloc_wait"); UVMHIST_CALLED(maphist);
960
961 UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
962
963 #ifdef DIAGNOSTIC
964 if (vm_map_pmap(map) != pmap_kernel())
965 panic("uvm_km_valloc_wait");
966 #endif
967
968 size = round_page(size);
969 if (size > vm_map_max(map) - vm_map_min(map))
970 return(0);
971
972 while (1) {
973 kva = vm_map_min(map); /* hint */
974
975 /*
976 * allocate some virtual space. will be demand filled
977 * by kernel_object.
978 */
979
980 if (uvm_map(map, &kva, size, uvm.kernel_object,
981 UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL,
982 UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
983 == KERN_SUCCESS) {
984 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
985 return(kva);
986 }
987
988 /*
989 * failed. sleep for a while (on map)
990 */
991
992 UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
993 tsleep((caddr_t)map, PVM, "vallocwait", 0);
994 }
995 /*NOTREACHED*/
996 }
997