Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.86
      1 /*	$NetBSD: uvm_km.c,v 1.86 2006/04/05 21:56:24 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     42  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_km.c: handle kernel memory allocation and management
     71  */
     72 
     73 /*
     74  * overview of kernel memory management:
     75  *
     76  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     77  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     78  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     79  *
     80  * the kernel_map has several "submaps."   submaps can only appear in
     81  * the kernel_map (user processes can't use them).   submaps "take over"
     82  * the management of a sub-range of the kernel's address space.  submaps
     83  * are typically allocated at boot time and are never released.   kernel
     84  * virtual address space that is mapped by a submap is locked by the
     85  * submap's lock -- not the kernel_map's lock.
     86  *
     87  * thus, the useful feature of submaps is that they allow us to break
     88  * up the locking and protection of the kernel address space into smaller
     89  * chunks.
     90  *
     91  * the vm system has several standard kernel submaps, including:
     92  *   kmem_map => contains only wired kernel memory for the kernel
     93  *		malloc.   *** access to kmem_map must be protected
     94  *		by splvm() because we are allowed to call malloc()
     95  *		at interrupt time ***
     96  *   mb_map => memory for large mbufs,  *** protected by splvm ***
     97  *   pager_map => used to map "buf" structures into kernel space
     98  *   exec_map => used during exec to handle exec args
     99  *   etc...
    100  *
    101  * the kernel allocates its private memory out of special uvm_objects whose
    102  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
    103  * are "special" and never die).   all kernel objects should be thought of
    104  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
    105  * object is equal to the size of kernel virtual address space (i.e. the
    106  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    107  *
    108  * note that just because a kernel object spans the entire kernel virutal
    109  * address space doesn't mean that it has to be mapped into the entire space.
    110  * large chunks of a kernel object's space go unused either because
    111  * that area of kernel VM is unmapped, or there is some other type of
    112  * object mapped into that range (e.g. a vnode).    for submap's kernel
    113  * objects, the only part of the object that can ever be populated is the
    114  * offsets that are managed by the submap.
    115  *
    116  * note that the "offset" in a kernel object is always the kernel virtual
    117  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    118  * example:
    119  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    120  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    121  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    122  *   then that means that the page at offset 0x235000 in kernel_object is
    123  *   mapped at 0xf8235000.
    124  *
    125  * kernel object have one other special property: when the kernel virtual
    126  * memory mapping them is unmapped, the backing memory in the object is
    127  * freed right away.   this is done with the uvm_km_pgremove() function.
    128  * this has to be done because there is no backing store for kernel pages
    129  * and no need to save them after they are no longer referenced.
    130  */
    131 
    132 #include <sys/cdefs.h>
    133 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.86 2006/04/05 21:56:24 yamt Exp $");
    134 
    135 #include "opt_uvmhist.h"
    136 
    137 #include <sys/param.h>
    138 #include <sys/malloc.h>
    139 #include <sys/systm.h>
    140 #include <sys/proc.h>
    141 #include <sys/pool.h>
    142 
    143 #include <uvm/uvm.h>
    144 
    145 /*
    146  * global data structures
    147  */
    148 
    149 struct vm_map *kernel_map = NULL;
    150 
    151 /*
    152  * local data structues
    153  */
    154 
    155 static struct vm_map_kernel	kernel_map_store;
    156 static struct vm_map_entry	kernel_first_mapent_store;
    157 
    158 #if !defined(PMAP_MAP_POOLPAGE)
    159 
    160 /*
    161  * kva cache
    162  *
    163  * XXX maybe it's better to do this at the uvm_map layer.
    164  */
    165 
    166 #define	KM_VACACHE_SIZE	(32 * PAGE_SIZE) /* XXX tune */
    167 
    168 static void *km_vacache_alloc(struct pool *, int);
    169 static void km_vacache_free(struct pool *, void *);
    170 static void km_vacache_init(struct vm_map *, const char *, size_t);
    171 
    172 /* XXX */
    173 #define	KM_VACACHE_POOL_TO_MAP(pp) \
    174 	((struct vm_map *)((char *)(pp) - \
    175 	    offsetof(struct vm_map_kernel, vmk_vacache)))
    176 
    177 static void *
    178 km_vacache_alloc(struct pool *pp, int flags)
    179 {
    180 	vaddr_t va;
    181 	size_t size;
    182 	struct vm_map *map;
    183 	size = pp->pr_alloc->pa_pagesz;
    184 
    185 	map = KM_VACACHE_POOL_TO_MAP(pp);
    186 
    187 	va = vm_map_min(map); /* hint */
    188 	if (uvm_map(map, &va, size, NULL, UVM_UNKNOWN_OFFSET, size,
    189 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    190 	    UVM_ADV_RANDOM, UVM_FLAG_QUANTUM |
    191 	    ((flags & PR_WAITOK) ? 0 : UVM_FLAG_TRYLOCK | UVM_FLAG_NOWAIT))))
    192 		return NULL;
    193 
    194 	return (void *)va;
    195 }
    196 
    197 static void
    198 km_vacache_free(struct pool *pp, void *v)
    199 {
    200 	vaddr_t va = (vaddr_t)v;
    201 	size_t size = pp->pr_alloc->pa_pagesz;
    202 	struct vm_map *map;
    203 
    204 	map = KM_VACACHE_POOL_TO_MAP(pp);
    205 	uvm_unmap1(map, va, va + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
    206 }
    207 
    208 /*
    209  * km_vacache_init: initialize kva cache.
    210  */
    211 
    212 static void
    213 km_vacache_init(struct vm_map *map, const char *name, size_t size)
    214 {
    215 	struct vm_map_kernel *vmk;
    216 	struct pool *pp;
    217 	struct pool_allocator *pa;
    218 
    219 	KASSERT(VM_MAP_IS_KERNEL(map));
    220 	KASSERT(size < (vm_map_max(map) - vm_map_min(map)) / 2); /* sanity */
    221 
    222 	vmk = vm_map_to_kernel(map);
    223 	pp = &vmk->vmk_vacache;
    224 	pa = &vmk->vmk_vacache_allocator;
    225 	memset(pa, 0, sizeof(*pa));
    226 	pa->pa_alloc = km_vacache_alloc;
    227 	pa->pa_free = km_vacache_free;
    228 	pa->pa_pagesz = (unsigned int)size;
    229 	pool_init(pp, PAGE_SIZE, 0, 0, PR_NOTOUCH | PR_RECURSIVE, name, pa);
    230 
    231 	/* XXX for now.. */
    232 	pool_sethiwat(pp, 0);
    233 }
    234 
    235 void
    236 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
    237 {
    238 
    239 	map->flags |= VM_MAP_VACACHE;
    240 	if (size == 0)
    241 		size = KM_VACACHE_SIZE;
    242 	km_vacache_init(map, name, size);
    243 }
    244 
    245 #else /* !defined(PMAP_MAP_POOLPAGE) */
    246 
    247 void
    248 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
    249 {
    250 
    251 	/* nothing */
    252 }
    253 
    254 #endif /* !defined(PMAP_MAP_POOLPAGE) */
    255 
    256 /*
    257  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
    258  * KVM already allocated for text, data, bss, and static data structures).
    259  *
    260  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    261  *    we assume that [vmin -> start] has already been allocated and that
    262  *    "end" is the end.
    263  */
    264 
    265 void
    266 uvm_km_init(vaddr_t start, vaddr_t end)
    267 {
    268 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    269 
    270 	/*
    271 	 * next, init kernel memory objects.
    272 	 */
    273 
    274 	/* kernel_object: for pageable anonymous kernel memory */
    275 	uao_init();
    276 	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    277 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    278 
    279 	/*
    280 	 * init the map and reserve any space that might already
    281 	 * have been allocated kernel space before installing.
    282 	 */
    283 
    284 	uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
    285 	kernel_map_store.vmk_map.pmap = pmap_kernel();
    286 	if (start != base) {
    287 		int error;
    288 		struct uvm_map_args args;
    289 
    290 		error = uvm_map_prepare(&kernel_map_store.vmk_map,
    291 		    base, start - base,
    292 		    NULL, UVM_UNKNOWN_OFFSET, 0,
    293 		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    294 		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
    295 		if (!error) {
    296 			kernel_first_mapent_store.flags =
    297 			    UVM_MAP_KERNEL | UVM_MAP_FIRST;
    298 			error = uvm_map_enter(&kernel_map_store.vmk_map, &args,
    299 			    &kernel_first_mapent_store);
    300 		}
    301 
    302 		if (error)
    303 			panic(
    304 			    "uvm_km_init: could not reserve space for kernel");
    305 	}
    306 
    307 	/*
    308 	 * install!
    309 	 */
    310 
    311 	kernel_map = &kernel_map_store.vmk_map;
    312 	uvm_km_vacache_init(kernel_map, "kvakernel", 0);
    313 }
    314 
    315 /*
    316  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    317  * is allocated all references to that area of VM must go through it.  this
    318  * allows the locking of VAs in kernel_map to be broken up into regions.
    319  *
    320  * => if `fixed' is true, *vmin specifies where the region described
    321  *      by the submap must start
    322  * => if submap is non NULL we use that as the submap, otherwise we
    323  *	alloc a new map
    324  */
    325 
    326 struct vm_map *
    327 uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
    328     vaddr_t *vmax /* OUT */, vsize_t size, int flags, boolean_t fixed,
    329     struct vm_map_kernel *submap)
    330 {
    331 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    332 
    333 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    334 
    335 	size = round_page(size);	/* round up to pagesize */
    336 
    337 	/*
    338 	 * first allocate a blank spot in the parent map
    339 	 */
    340 
    341 	if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
    342 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    343 	    UVM_ADV_RANDOM, mapflags)) != 0) {
    344 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
    345 	}
    346 
    347 	/*
    348 	 * set VM bounds (vmin is filled in by uvm_map)
    349 	 */
    350 
    351 	*vmax = *vmin + size;
    352 
    353 	/*
    354 	 * add references to pmap and create or init the submap
    355 	 */
    356 
    357 	pmap_reference(vm_map_pmap(map));
    358 	if (submap == NULL) {
    359 		submap = malloc(sizeof(*submap), M_VMMAP, M_WAITOK);
    360 		if (submap == NULL)
    361 			panic("uvm_km_suballoc: unable to create submap");
    362 	}
    363 	uvm_map_setup_kernel(submap, *vmin, *vmax, flags);
    364 	submap->vmk_map.pmap = vm_map_pmap(map);
    365 
    366 	/*
    367 	 * now let uvm_map_submap plug in it...
    368 	 */
    369 
    370 	if (uvm_map_submap(map, *vmin, *vmax, &submap->vmk_map) != 0)
    371 		panic("uvm_km_suballoc: submap allocation failed");
    372 
    373 	return(&submap->vmk_map);
    374 }
    375 
    376 /*
    377  * uvm_km_pgremove: remove pages from a kernel uvm_object.
    378  *
    379  * => when you unmap a part of anonymous kernel memory you want to toss
    380  *    the pages right away.    (this gets called from uvm_unmap_...).
    381  */
    382 
    383 void
    384 uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
    385 {
    386 	struct uvm_object * const uobj = uvm.kernel_object;
    387 	const voff_t start = startva - vm_map_min(kernel_map);
    388 	const voff_t end = endva - vm_map_min(kernel_map);
    389 	struct vm_page *pg;
    390 	voff_t curoff, nextoff;
    391 	int swpgonlydelta = 0;
    392 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
    393 
    394 	KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
    395 	KASSERT(startva < endva);
    396 	KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
    397 
    398 	simple_lock(&uobj->vmobjlock);
    399 
    400 	for (curoff = start; curoff < end; curoff = nextoff) {
    401 		nextoff = curoff + PAGE_SIZE;
    402 		pg = uvm_pagelookup(uobj, curoff);
    403 		if (pg != NULL && pg->flags & PG_BUSY) {
    404 			pg->flags |= PG_WANTED;
    405 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
    406 				    "km_pgrm", 0);
    407 			simple_lock(&uobj->vmobjlock);
    408 			nextoff = curoff;
    409 			continue;
    410 		}
    411 
    412 		/*
    413 		 * free the swap slot, then the page.
    414 		 */
    415 
    416 		if (pg == NULL &&
    417 		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
    418 			swpgonlydelta++;
    419 		}
    420 		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
    421 		if (pg != NULL) {
    422 			uvm_lock_pageq();
    423 			uvm_pagefree(pg);
    424 			uvm_unlock_pageq();
    425 		}
    426 	}
    427 	simple_unlock(&uobj->vmobjlock);
    428 
    429 	if (swpgonlydelta > 0) {
    430 		simple_lock(&uvm.swap_data_lock);
    431 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
    432 		uvmexp.swpgonly -= swpgonlydelta;
    433 		simple_unlock(&uvm.swap_data_lock);
    434 	}
    435 }
    436 
    437 
    438 /*
    439  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
    440  *    regions.
    441  *
    442  * => when you unmap a part of anonymous kernel memory you want to toss
    443  *    the pages right away.    (this is called from uvm_unmap_...).
    444  * => none of the pages will ever be busy, and none of them will ever
    445  *    be on the active or inactive queues (because they have no object).
    446  */
    447 
    448 void
    449 uvm_km_pgremove_intrsafe(vaddr_t start, vaddr_t end)
    450 {
    451 	struct vm_page *pg;
    452 	paddr_t pa;
    453 	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
    454 
    455 	KASSERT(VM_MIN_KERNEL_ADDRESS <= start);
    456 	KASSERT(start < end);
    457 	KASSERT(end <= VM_MAX_KERNEL_ADDRESS);
    458 
    459 	for (; start < end; start += PAGE_SIZE) {
    460 		if (!pmap_extract(pmap_kernel(), start, &pa)) {
    461 			continue;
    462 		}
    463 		pg = PHYS_TO_VM_PAGE(pa);
    464 		KASSERT(pg);
    465 		KASSERT(pg->uobject == NULL && pg->uanon == NULL);
    466 		uvm_pagefree(pg);
    467 	}
    468 }
    469 
    470 #if defined(DEBUG)
    471 void
    472 uvm_km_check_empty(vaddr_t start, vaddr_t end, boolean_t intrsafe)
    473 {
    474 	vaddr_t va;
    475 	paddr_t pa;
    476 
    477 	KDASSERT(VM_MIN_KERNEL_ADDRESS <= start);
    478 	KDASSERT(start < end);
    479 	KDASSERT(end <= VM_MAX_KERNEL_ADDRESS);
    480 
    481 	for (va = start; va < end; va += PAGE_SIZE) {
    482 		if (pmap_extract(pmap_kernel(), va, &pa)) {
    483 			panic("uvm_km_check_empty: va %p has pa 0x%llx",
    484 			    (void *)va, (long long)pa);
    485 		}
    486 		if (!intrsafe) {
    487 			const struct vm_page *pg;
    488 
    489 			simple_lock(&uvm.kernel_object->vmobjlock);
    490 			pg = uvm_pagelookup(uvm.kernel_object,
    491 			    va - vm_map_min(kernel_map));
    492 			simple_unlock(&uvm.kernel_object->vmobjlock);
    493 			if (pg) {
    494 				panic("uvm_km_check_empty: "
    495 				    "has page hashed at %p", (const void *)va);
    496 			}
    497 		}
    498 	}
    499 }
    500 #endif /* defined(DEBUG) */
    501 
    502 /*
    503  * uvm_km_alloc: allocate an area of kernel memory.
    504  *
    505  * => NOTE: we can return 0 even if we can wait if there is not enough
    506  *	free VM space in the map... caller should be prepared to handle
    507  *	this case.
    508  * => we return KVA of memory allocated
    509  */
    510 
    511 vaddr_t
    512 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    513 {
    514 	vaddr_t kva, loopva;
    515 	vaddr_t offset;
    516 	vsize_t loopsize;
    517 	struct vm_page *pg;
    518 	struct uvm_object *obj;
    519 	int pgaflags;
    520 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    521 
    522 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    523 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
    524 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
    525 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
    526 
    527 	/*
    528 	 * setup for call
    529 	 */
    530 
    531 	kva = vm_map_min(map);	/* hint */
    532 	size = round_page(size);
    533 	obj = (flags & UVM_KMF_PAGEABLE) ? uvm.kernel_object : NULL;
    534 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
    535 		    map, obj, size, flags);
    536 
    537 	/*
    538 	 * allocate some virtual space
    539 	 */
    540 
    541 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    542 	    align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    543 	    UVM_ADV_RANDOM,
    544 	    (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA))
    545 	    | UVM_FLAG_QUANTUM)) != 0)) {
    546 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    547 		return(0);
    548 	}
    549 
    550 	/*
    551 	 * if all we wanted was VA, return now
    552 	 */
    553 
    554 	if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
    555 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
    556 		return(kva);
    557 	}
    558 
    559 	/*
    560 	 * recover object offset from virtual address
    561 	 */
    562 
    563 	offset = kva - vm_map_min(kernel_map);
    564 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
    565 
    566 	/*
    567 	 * now allocate and map in the memory... note that we are the only ones
    568 	 * whom should ever get a handle on this area of VM.
    569 	 */
    570 
    571 	loopva = kva;
    572 	loopsize = size;
    573 
    574 	pgaflags = UVM_PGA_USERESERVE;
    575 	if (flags & UVM_KMF_ZERO)
    576 		pgaflags |= UVM_PGA_ZERO;
    577 	while (loopsize) {
    578 		KASSERT(!pmap_extract(pmap_kernel(), loopva, NULL));
    579 
    580 		pg = uvm_pagealloc(NULL, offset, NULL, pgaflags);
    581 
    582 		/*
    583 		 * out of memory?
    584 		 */
    585 
    586 		if (__predict_false(pg == NULL)) {
    587 			if ((flags & UVM_KMF_NOWAIT) ||
    588 			    ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
    589 				/* free everything! */
    590 				uvm_km_free(map, kva, size,
    591 				    flags & UVM_KMF_TYPEMASK);
    592 				return (0);
    593 			} else {
    594 				uvm_wait("km_getwait2");	/* sleep here */
    595 				continue;
    596 			}
    597 		}
    598 
    599 		pg->flags &= ~PG_BUSY;	/* new page */
    600 		UVM_PAGE_OWN(pg, NULL);
    601 
    602 		/*
    603 		 * map it in
    604 		 */
    605 
    606 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    607 		    VM_PROT_READ | VM_PROT_WRITE);
    608 		loopva += PAGE_SIZE;
    609 		offset += PAGE_SIZE;
    610 		loopsize -= PAGE_SIZE;
    611 	}
    612 
    613        	pmap_update(pmap_kernel());
    614 
    615 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    616 	return(kva);
    617 }
    618 
    619 /*
    620  * uvm_km_free: free an area of kernel memory
    621  */
    622 
    623 void
    624 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
    625 {
    626 
    627 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
    628 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
    629 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
    630 	KASSERT((addr & PAGE_MASK) == 0);
    631 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    632 
    633 	size = round_page(size);
    634 
    635 	if (flags & UVM_KMF_PAGEABLE) {
    636 		uvm_km_pgremove(addr, addr + size);
    637 		pmap_remove(pmap_kernel(), addr, addr + size);
    638 	} else if (flags & UVM_KMF_WIRED) {
    639 		uvm_km_pgremove_intrsafe(addr, addr + size);
    640 		pmap_kremove(addr, size);
    641 	}
    642 
    643 	uvm_unmap1(map, addr, addr + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
    644 }
    645 
    646 /* Sanity; must specify both or none. */
    647 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    648     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    649 #error Must specify MAP and UNMAP together.
    650 #endif
    651 
    652 /*
    653  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
    654  *
    655  * => if the pmap specifies an alternate mapping method, we use it.
    656  */
    657 
    658 /* ARGSUSED */
    659 vaddr_t
    660 uvm_km_alloc_poolpage_cache(struct vm_map *map, boolean_t waitok)
    661 {
    662 #if defined(PMAP_MAP_POOLPAGE)
    663 	return uvm_km_alloc_poolpage(map, waitok);
    664 #else
    665 	struct vm_page *pg;
    666 	struct pool *pp = &vm_map_to_kernel(map)->vmk_vacache;
    667 	vaddr_t va;
    668 	int s = 0xdeadbeaf; /* XXX: gcc */
    669 	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
    670 
    671 	if ((map->flags & VM_MAP_VACACHE) == 0)
    672 		return uvm_km_alloc_poolpage(map, waitok);
    673 
    674 	if (intrsafe)
    675 		s = splvm();
    676 	va = (vaddr_t)pool_get(pp, waitok ? PR_WAITOK : PR_NOWAIT);
    677 	if (intrsafe)
    678 		splx(s);
    679 	if (va == 0)
    680 		return 0;
    681 	KASSERT(!pmap_extract(pmap_kernel(), va, NULL));
    682 again:
    683 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    684 	if (__predict_false(pg == NULL)) {
    685 		if (waitok) {
    686 			uvm_wait("plpg");
    687 			goto again;
    688 		} else {
    689 			if (intrsafe)
    690 				s = splvm();
    691 			pool_put(pp, (void *)va);
    692 			if (intrsafe)
    693 				splx(s);
    694 			return 0;
    695 		}
    696 	}
    697 	pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg), VM_PROT_READ|VM_PROT_WRITE);
    698 	pmap_update(pmap_kernel());
    699 
    700 	return va;
    701 #endif /* PMAP_MAP_POOLPAGE */
    702 }
    703 
    704 vaddr_t
    705 uvm_km_alloc_poolpage(struct vm_map *map, boolean_t waitok)
    706 {
    707 #if defined(PMAP_MAP_POOLPAGE)
    708 	struct vm_page *pg;
    709 	vaddr_t va;
    710 
    711  again:
    712 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    713 	if (__predict_false(pg == NULL)) {
    714 		if (waitok) {
    715 			uvm_wait("plpg");
    716 			goto again;
    717 		} else
    718 			return (0);
    719 	}
    720 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    721 	if (__predict_false(va == 0))
    722 		uvm_pagefree(pg);
    723 	return (va);
    724 #else
    725 	vaddr_t va;
    726 	int s = 0xdeadbeaf; /* XXX: gcc */
    727 	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
    728 
    729 	if (intrsafe)
    730 		s = splvm();
    731 	va = uvm_km_alloc(map, PAGE_SIZE, 0,
    732 	    (waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) | UVM_KMF_WIRED);
    733 	if (intrsafe)
    734 		splx(s);
    735 	return (va);
    736 #endif /* PMAP_MAP_POOLPAGE */
    737 }
    738 
    739 /*
    740  * uvm_km_free_poolpage: free a previously allocated pool page
    741  *
    742  * => if the pmap specifies an alternate unmapping method, we use it.
    743  */
    744 
    745 /* ARGSUSED */
    746 void
    747 uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t addr)
    748 {
    749 #if defined(PMAP_UNMAP_POOLPAGE)
    750 	uvm_km_free_poolpage(map, addr);
    751 #else
    752 	struct pool *pp;
    753 	int s = 0xdeadbeaf; /* XXX: gcc */
    754 	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
    755 
    756 	if ((map->flags & VM_MAP_VACACHE) == 0) {
    757 		uvm_km_free_poolpage(map, addr);
    758 		return;
    759 	}
    760 
    761 	KASSERT(pmap_extract(pmap_kernel(), addr, NULL));
    762 	uvm_km_pgremove_intrsafe(addr, addr + PAGE_SIZE);
    763 	pmap_kremove(addr, PAGE_SIZE);
    764 #if defined(DEBUG)
    765 	pmap_update(pmap_kernel());
    766 #endif
    767 	KASSERT(!pmap_extract(pmap_kernel(), addr, NULL));
    768 	pp = &vm_map_to_kernel(map)->vmk_vacache;
    769 	if (intrsafe)
    770 		s = splvm();
    771 	pool_put(pp, (void *)addr);
    772 	if (intrsafe)
    773 		splx(s);
    774 #endif
    775 }
    776 
    777 /* ARGSUSED */
    778 void
    779 uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
    780 {
    781 #if defined(PMAP_UNMAP_POOLPAGE)
    782 	paddr_t pa;
    783 
    784 	pa = PMAP_UNMAP_POOLPAGE(addr);
    785 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    786 #else
    787 	int s = 0xdeadbeaf; /* XXX: gcc */
    788 	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
    789 
    790 	if (intrsafe)
    791 		s = splvm();
    792 	uvm_km_free(map, addr, PAGE_SIZE, UVM_KMF_WIRED);
    793 	if (intrsafe)
    794 		splx(s);
    795 #endif /* PMAP_UNMAP_POOLPAGE */
    796 }
    797