uvm_km.c revision 1.86 1 /* $NetBSD: uvm_km.c,v 1.86 2006/04/05 21:56:24 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
42 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_km.c: handle kernel memory allocation and management
71 */
72
73 /*
74 * overview of kernel memory management:
75 *
76 * the kernel virtual address space is mapped by "kernel_map." kernel_map
77 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
78 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
79 *
80 * the kernel_map has several "submaps." submaps can only appear in
81 * the kernel_map (user processes can't use them). submaps "take over"
82 * the management of a sub-range of the kernel's address space. submaps
83 * are typically allocated at boot time and are never released. kernel
84 * virtual address space that is mapped by a submap is locked by the
85 * submap's lock -- not the kernel_map's lock.
86 *
87 * thus, the useful feature of submaps is that they allow us to break
88 * up the locking and protection of the kernel address space into smaller
89 * chunks.
90 *
91 * the vm system has several standard kernel submaps, including:
92 * kmem_map => contains only wired kernel memory for the kernel
93 * malloc. *** access to kmem_map must be protected
94 * by splvm() because we are allowed to call malloc()
95 * at interrupt time ***
96 * mb_map => memory for large mbufs, *** protected by splvm ***
97 * pager_map => used to map "buf" structures into kernel space
98 * exec_map => used during exec to handle exec args
99 * etc...
100 *
101 * the kernel allocates its private memory out of special uvm_objects whose
102 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
103 * are "special" and never die). all kernel objects should be thought of
104 * as large, fixed-sized, sparsely populated uvm_objects. each kernel
105 * object is equal to the size of kernel virtual address space (i.e. the
106 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
107 *
108 * note that just because a kernel object spans the entire kernel virutal
109 * address space doesn't mean that it has to be mapped into the entire space.
110 * large chunks of a kernel object's space go unused either because
111 * that area of kernel VM is unmapped, or there is some other type of
112 * object mapped into that range (e.g. a vnode). for submap's kernel
113 * objects, the only part of the object that can ever be populated is the
114 * offsets that are managed by the submap.
115 *
116 * note that the "offset" in a kernel object is always the kernel virtual
117 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
118 * example:
119 * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
120 * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
121 * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
122 * then that means that the page at offset 0x235000 in kernel_object is
123 * mapped at 0xf8235000.
124 *
125 * kernel object have one other special property: when the kernel virtual
126 * memory mapping them is unmapped, the backing memory in the object is
127 * freed right away. this is done with the uvm_km_pgremove() function.
128 * this has to be done because there is no backing store for kernel pages
129 * and no need to save them after they are no longer referenced.
130 */
131
132 #include <sys/cdefs.h>
133 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.86 2006/04/05 21:56:24 yamt Exp $");
134
135 #include "opt_uvmhist.h"
136
137 #include <sys/param.h>
138 #include <sys/malloc.h>
139 #include <sys/systm.h>
140 #include <sys/proc.h>
141 #include <sys/pool.h>
142
143 #include <uvm/uvm.h>
144
145 /*
146 * global data structures
147 */
148
149 struct vm_map *kernel_map = NULL;
150
151 /*
152 * local data structues
153 */
154
155 static struct vm_map_kernel kernel_map_store;
156 static struct vm_map_entry kernel_first_mapent_store;
157
158 #if !defined(PMAP_MAP_POOLPAGE)
159
160 /*
161 * kva cache
162 *
163 * XXX maybe it's better to do this at the uvm_map layer.
164 */
165
166 #define KM_VACACHE_SIZE (32 * PAGE_SIZE) /* XXX tune */
167
168 static void *km_vacache_alloc(struct pool *, int);
169 static void km_vacache_free(struct pool *, void *);
170 static void km_vacache_init(struct vm_map *, const char *, size_t);
171
172 /* XXX */
173 #define KM_VACACHE_POOL_TO_MAP(pp) \
174 ((struct vm_map *)((char *)(pp) - \
175 offsetof(struct vm_map_kernel, vmk_vacache)))
176
177 static void *
178 km_vacache_alloc(struct pool *pp, int flags)
179 {
180 vaddr_t va;
181 size_t size;
182 struct vm_map *map;
183 size = pp->pr_alloc->pa_pagesz;
184
185 map = KM_VACACHE_POOL_TO_MAP(pp);
186
187 va = vm_map_min(map); /* hint */
188 if (uvm_map(map, &va, size, NULL, UVM_UNKNOWN_OFFSET, size,
189 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
190 UVM_ADV_RANDOM, UVM_FLAG_QUANTUM |
191 ((flags & PR_WAITOK) ? 0 : UVM_FLAG_TRYLOCK | UVM_FLAG_NOWAIT))))
192 return NULL;
193
194 return (void *)va;
195 }
196
197 static void
198 km_vacache_free(struct pool *pp, void *v)
199 {
200 vaddr_t va = (vaddr_t)v;
201 size_t size = pp->pr_alloc->pa_pagesz;
202 struct vm_map *map;
203
204 map = KM_VACACHE_POOL_TO_MAP(pp);
205 uvm_unmap1(map, va, va + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
206 }
207
208 /*
209 * km_vacache_init: initialize kva cache.
210 */
211
212 static void
213 km_vacache_init(struct vm_map *map, const char *name, size_t size)
214 {
215 struct vm_map_kernel *vmk;
216 struct pool *pp;
217 struct pool_allocator *pa;
218
219 KASSERT(VM_MAP_IS_KERNEL(map));
220 KASSERT(size < (vm_map_max(map) - vm_map_min(map)) / 2); /* sanity */
221
222 vmk = vm_map_to_kernel(map);
223 pp = &vmk->vmk_vacache;
224 pa = &vmk->vmk_vacache_allocator;
225 memset(pa, 0, sizeof(*pa));
226 pa->pa_alloc = km_vacache_alloc;
227 pa->pa_free = km_vacache_free;
228 pa->pa_pagesz = (unsigned int)size;
229 pool_init(pp, PAGE_SIZE, 0, 0, PR_NOTOUCH | PR_RECURSIVE, name, pa);
230
231 /* XXX for now.. */
232 pool_sethiwat(pp, 0);
233 }
234
235 void
236 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
237 {
238
239 map->flags |= VM_MAP_VACACHE;
240 if (size == 0)
241 size = KM_VACACHE_SIZE;
242 km_vacache_init(map, name, size);
243 }
244
245 #else /* !defined(PMAP_MAP_POOLPAGE) */
246
247 void
248 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
249 {
250
251 /* nothing */
252 }
253
254 #endif /* !defined(PMAP_MAP_POOLPAGE) */
255
256 /*
257 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
258 * KVM already allocated for text, data, bss, and static data structures).
259 *
260 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
261 * we assume that [vmin -> start] has already been allocated and that
262 * "end" is the end.
263 */
264
265 void
266 uvm_km_init(vaddr_t start, vaddr_t end)
267 {
268 vaddr_t base = VM_MIN_KERNEL_ADDRESS;
269
270 /*
271 * next, init kernel memory objects.
272 */
273
274 /* kernel_object: for pageable anonymous kernel memory */
275 uao_init();
276 uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
277 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
278
279 /*
280 * init the map and reserve any space that might already
281 * have been allocated kernel space before installing.
282 */
283
284 uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
285 kernel_map_store.vmk_map.pmap = pmap_kernel();
286 if (start != base) {
287 int error;
288 struct uvm_map_args args;
289
290 error = uvm_map_prepare(&kernel_map_store.vmk_map,
291 base, start - base,
292 NULL, UVM_UNKNOWN_OFFSET, 0,
293 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
294 UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
295 if (!error) {
296 kernel_first_mapent_store.flags =
297 UVM_MAP_KERNEL | UVM_MAP_FIRST;
298 error = uvm_map_enter(&kernel_map_store.vmk_map, &args,
299 &kernel_first_mapent_store);
300 }
301
302 if (error)
303 panic(
304 "uvm_km_init: could not reserve space for kernel");
305 }
306
307 /*
308 * install!
309 */
310
311 kernel_map = &kernel_map_store.vmk_map;
312 uvm_km_vacache_init(kernel_map, "kvakernel", 0);
313 }
314
315 /*
316 * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
317 * is allocated all references to that area of VM must go through it. this
318 * allows the locking of VAs in kernel_map to be broken up into regions.
319 *
320 * => if `fixed' is true, *vmin specifies where the region described
321 * by the submap must start
322 * => if submap is non NULL we use that as the submap, otherwise we
323 * alloc a new map
324 */
325
326 struct vm_map *
327 uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
328 vaddr_t *vmax /* OUT */, vsize_t size, int flags, boolean_t fixed,
329 struct vm_map_kernel *submap)
330 {
331 int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
332
333 KASSERT(vm_map_pmap(map) == pmap_kernel());
334
335 size = round_page(size); /* round up to pagesize */
336
337 /*
338 * first allocate a blank spot in the parent map
339 */
340
341 if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
342 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
343 UVM_ADV_RANDOM, mapflags)) != 0) {
344 panic("uvm_km_suballoc: unable to allocate space in parent map");
345 }
346
347 /*
348 * set VM bounds (vmin is filled in by uvm_map)
349 */
350
351 *vmax = *vmin + size;
352
353 /*
354 * add references to pmap and create or init the submap
355 */
356
357 pmap_reference(vm_map_pmap(map));
358 if (submap == NULL) {
359 submap = malloc(sizeof(*submap), M_VMMAP, M_WAITOK);
360 if (submap == NULL)
361 panic("uvm_km_suballoc: unable to create submap");
362 }
363 uvm_map_setup_kernel(submap, *vmin, *vmax, flags);
364 submap->vmk_map.pmap = vm_map_pmap(map);
365
366 /*
367 * now let uvm_map_submap plug in it...
368 */
369
370 if (uvm_map_submap(map, *vmin, *vmax, &submap->vmk_map) != 0)
371 panic("uvm_km_suballoc: submap allocation failed");
372
373 return(&submap->vmk_map);
374 }
375
376 /*
377 * uvm_km_pgremove: remove pages from a kernel uvm_object.
378 *
379 * => when you unmap a part of anonymous kernel memory you want to toss
380 * the pages right away. (this gets called from uvm_unmap_...).
381 */
382
383 void
384 uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
385 {
386 struct uvm_object * const uobj = uvm.kernel_object;
387 const voff_t start = startva - vm_map_min(kernel_map);
388 const voff_t end = endva - vm_map_min(kernel_map);
389 struct vm_page *pg;
390 voff_t curoff, nextoff;
391 int swpgonlydelta = 0;
392 UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
393
394 KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
395 KASSERT(startva < endva);
396 KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
397
398 simple_lock(&uobj->vmobjlock);
399
400 for (curoff = start; curoff < end; curoff = nextoff) {
401 nextoff = curoff + PAGE_SIZE;
402 pg = uvm_pagelookup(uobj, curoff);
403 if (pg != NULL && pg->flags & PG_BUSY) {
404 pg->flags |= PG_WANTED;
405 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
406 "km_pgrm", 0);
407 simple_lock(&uobj->vmobjlock);
408 nextoff = curoff;
409 continue;
410 }
411
412 /*
413 * free the swap slot, then the page.
414 */
415
416 if (pg == NULL &&
417 uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
418 swpgonlydelta++;
419 }
420 uao_dropswap(uobj, curoff >> PAGE_SHIFT);
421 if (pg != NULL) {
422 uvm_lock_pageq();
423 uvm_pagefree(pg);
424 uvm_unlock_pageq();
425 }
426 }
427 simple_unlock(&uobj->vmobjlock);
428
429 if (swpgonlydelta > 0) {
430 simple_lock(&uvm.swap_data_lock);
431 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
432 uvmexp.swpgonly -= swpgonlydelta;
433 simple_unlock(&uvm.swap_data_lock);
434 }
435 }
436
437
438 /*
439 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
440 * regions.
441 *
442 * => when you unmap a part of anonymous kernel memory you want to toss
443 * the pages right away. (this is called from uvm_unmap_...).
444 * => none of the pages will ever be busy, and none of them will ever
445 * be on the active or inactive queues (because they have no object).
446 */
447
448 void
449 uvm_km_pgremove_intrsafe(vaddr_t start, vaddr_t end)
450 {
451 struct vm_page *pg;
452 paddr_t pa;
453 UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
454
455 KASSERT(VM_MIN_KERNEL_ADDRESS <= start);
456 KASSERT(start < end);
457 KASSERT(end <= VM_MAX_KERNEL_ADDRESS);
458
459 for (; start < end; start += PAGE_SIZE) {
460 if (!pmap_extract(pmap_kernel(), start, &pa)) {
461 continue;
462 }
463 pg = PHYS_TO_VM_PAGE(pa);
464 KASSERT(pg);
465 KASSERT(pg->uobject == NULL && pg->uanon == NULL);
466 uvm_pagefree(pg);
467 }
468 }
469
470 #if defined(DEBUG)
471 void
472 uvm_km_check_empty(vaddr_t start, vaddr_t end, boolean_t intrsafe)
473 {
474 vaddr_t va;
475 paddr_t pa;
476
477 KDASSERT(VM_MIN_KERNEL_ADDRESS <= start);
478 KDASSERT(start < end);
479 KDASSERT(end <= VM_MAX_KERNEL_ADDRESS);
480
481 for (va = start; va < end; va += PAGE_SIZE) {
482 if (pmap_extract(pmap_kernel(), va, &pa)) {
483 panic("uvm_km_check_empty: va %p has pa 0x%llx",
484 (void *)va, (long long)pa);
485 }
486 if (!intrsafe) {
487 const struct vm_page *pg;
488
489 simple_lock(&uvm.kernel_object->vmobjlock);
490 pg = uvm_pagelookup(uvm.kernel_object,
491 va - vm_map_min(kernel_map));
492 simple_unlock(&uvm.kernel_object->vmobjlock);
493 if (pg) {
494 panic("uvm_km_check_empty: "
495 "has page hashed at %p", (const void *)va);
496 }
497 }
498 }
499 }
500 #endif /* defined(DEBUG) */
501
502 /*
503 * uvm_km_alloc: allocate an area of kernel memory.
504 *
505 * => NOTE: we can return 0 even if we can wait if there is not enough
506 * free VM space in the map... caller should be prepared to handle
507 * this case.
508 * => we return KVA of memory allocated
509 */
510
511 vaddr_t
512 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
513 {
514 vaddr_t kva, loopva;
515 vaddr_t offset;
516 vsize_t loopsize;
517 struct vm_page *pg;
518 struct uvm_object *obj;
519 int pgaflags;
520 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
521
522 KASSERT(vm_map_pmap(map) == pmap_kernel());
523 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
524 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
525 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
526
527 /*
528 * setup for call
529 */
530
531 kva = vm_map_min(map); /* hint */
532 size = round_page(size);
533 obj = (flags & UVM_KMF_PAGEABLE) ? uvm.kernel_object : NULL;
534 UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
535 map, obj, size, flags);
536
537 /*
538 * allocate some virtual space
539 */
540
541 if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
542 align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
543 UVM_ADV_RANDOM,
544 (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA))
545 | UVM_FLAG_QUANTUM)) != 0)) {
546 UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
547 return(0);
548 }
549
550 /*
551 * if all we wanted was VA, return now
552 */
553
554 if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
555 UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
556 return(kva);
557 }
558
559 /*
560 * recover object offset from virtual address
561 */
562
563 offset = kva - vm_map_min(kernel_map);
564 UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
565
566 /*
567 * now allocate and map in the memory... note that we are the only ones
568 * whom should ever get a handle on this area of VM.
569 */
570
571 loopva = kva;
572 loopsize = size;
573
574 pgaflags = UVM_PGA_USERESERVE;
575 if (flags & UVM_KMF_ZERO)
576 pgaflags |= UVM_PGA_ZERO;
577 while (loopsize) {
578 KASSERT(!pmap_extract(pmap_kernel(), loopva, NULL));
579
580 pg = uvm_pagealloc(NULL, offset, NULL, pgaflags);
581
582 /*
583 * out of memory?
584 */
585
586 if (__predict_false(pg == NULL)) {
587 if ((flags & UVM_KMF_NOWAIT) ||
588 ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
589 /* free everything! */
590 uvm_km_free(map, kva, size,
591 flags & UVM_KMF_TYPEMASK);
592 return (0);
593 } else {
594 uvm_wait("km_getwait2"); /* sleep here */
595 continue;
596 }
597 }
598
599 pg->flags &= ~PG_BUSY; /* new page */
600 UVM_PAGE_OWN(pg, NULL);
601
602 /*
603 * map it in
604 */
605
606 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
607 VM_PROT_READ | VM_PROT_WRITE);
608 loopva += PAGE_SIZE;
609 offset += PAGE_SIZE;
610 loopsize -= PAGE_SIZE;
611 }
612
613 pmap_update(pmap_kernel());
614
615 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
616 return(kva);
617 }
618
619 /*
620 * uvm_km_free: free an area of kernel memory
621 */
622
623 void
624 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
625 {
626
627 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
628 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
629 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
630 KASSERT((addr & PAGE_MASK) == 0);
631 KASSERT(vm_map_pmap(map) == pmap_kernel());
632
633 size = round_page(size);
634
635 if (flags & UVM_KMF_PAGEABLE) {
636 uvm_km_pgremove(addr, addr + size);
637 pmap_remove(pmap_kernel(), addr, addr + size);
638 } else if (flags & UVM_KMF_WIRED) {
639 uvm_km_pgremove_intrsafe(addr, addr + size);
640 pmap_kremove(addr, size);
641 }
642
643 uvm_unmap1(map, addr, addr + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
644 }
645
646 /* Sanity; must specify both or none. */
647 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
648 (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
649 #error Must specify MAP and UNMAP together.
650 #endif
651
652 /*
653 * uvm_km_alloc_poolpage: allocate a page for the pool allocator
654 *
655 * => if the pmap specifies an alternate mapping method, we use it.
656 */
657
658 /* ARGSUSED */
659 vaddr_t
660 uvm_km_alloc_poolpage_cache(struct vm_map *map, boolean_t waitok)
661 {
662 #if defined(PMAP_MAP_POOLPAGE)
663 return uvm_km_alloc_poolpage(map, waitok);
664 #else
665 struct vm_page *pg;
666 struct pool *pp = &vm_map_to_kernel(map)->vmk_vacache;
667 vaddr_t va;
668 int s = 0xdeadbeaf; /* XXX: gcc */
669 const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
670
671 if ((map->flags & VM_MAP_VACACHE) == 0)
672 return uvm_km_alloc_poolpage(map, waitok);
673
674 if (intrsafe)
675 s = splvm();
676 va = (vaddr_t)pool_get(pp, waitok ? PR_WAITOK : PR_NOWAIT);
677 if (intrsafe)
678 splx(s);
679 if (va == 0)
680 return 0;
681 KASSERT(!pmap_extract(pmap_kernel(), va, NULL));
682 again:
683 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
684 if (__predict_false(pg == NULL)) {
685 if (waitok) {
686 uvm_wait("plpg");
687 goto again;
688 } else {
689 if (intrsafe)
690 s = splvm();
691 pool_put(pp, (void *)va);
692 if (intrsafe)
693 splx(s);
694 return 0;
695 }
696 }
697 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg), VM_PROT_READ|VM_PROT_WRITE);
698 pmap_update(pmap_kernel());
699
700 return va;
701 #endif /* PMAP_MAP_POOLPAGE */
702 }
703
704 vaddr_t
705 uvm_km_alloc_poolpage(struct vm_map *map, boolean_t waitok)
706 {
707 #if defined(PMAP_MAP_POOLPAGE)
708 struct vm_page *pg;
709 vaddr_t va;
710
711 again:
712 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
713 if (__predict_false(pg == NULL)) {
714 if (waitok) {
715 uvm_wait("plpg");
716 goto again;
717 } else
718 return (0);
719 }
720 va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
721 if (__predict_false(va == 0))
722 uvm_pagefree(pg);
723 return (va);
724 #else
725 vaddr_t va;
726 int s = 0xdeadbeaf; /* XXX: gcc */
727 const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
728
729 if (intrsafe)
730 s = splvm();
731 va = uvm_km_alloc(map, PAGE_SIZE, 0,
732 (waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) | UVM_KMF_WIRED);
733 if (intrsafe)
734 splx(s);
735 return (va);
736 #endif /* PMAP_MAP_POOLPAGE */
737 }
738
739 /*
740 * uvm_km_free_poolpage: free a previously allocated pool page
741 *
742 * => if the pmap specifies an alternate unmapping method, we use it.
743 */
744
745 /* ARGSUSED */
746 void
747 uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t addr)
748 {
749 #if defined(PMAP_UNMAP_POOLPAGE)
750 uvm_km_free_poolpage(map, addr);
751 #else
752 struct pool *pp;
753 int s = 0xdeadbeaf; /* XXX: gcc */
754 const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
755
756 if ((map->flags & VM_MAP_VACACHE) == 0) {
757 uvm_km_free_poolpage(map, addr);
758 return;
759 }
760
761 KASSERT(pmap_extract(pmap_kernel(), addr, NULL));
762 uvm_km_pgremove_intrsafe(addr, addr + PAGE_SIZE);
763 pmap_kremove(addr, PAGE_SIZE);
764 #if defined(DEBUG)
765 pmap_update(pmap_kernel());
766 #endif
767 KASSERT(!pmap_extract(pmap_kernel(), addr, NULL));
768 pp = &vm_map_to_kernel(map)->vmk_vacache;
769 if (intrsafe)
770 s = splvm();
771 pool_put(pp, (void *)addr);
772 if (intrsafe)
773 splx(s);
774 #endif
775 }
776
777 /* ARGSUSED */
778 void
779 uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
780 {
781 #if defined(PMAP_UNMAP_POOLPAGE)
782 paddr_t pa;
783
784 pa = PMAP_UNMAP_POOLPAGE(addr);
785 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
786 #else
787 int s = 0xdeadbeaf; /* XXX: gcc */
788 const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
789
790 if (intrsafe)
791 s = splvm();
792 uvm_km_free(map, addr, PAGE_SIZE, UVM_KMF_WIRED);
793 if (intrsafe)
794 splx(s);
795 #endif /* PMAP_UNMAP_POOLPAGE */
796 }
797