uvm_km.c revision 1.89.6.1 1 /* $NetBSD: uvm_km.c,v 1.89.6.1 2006/10/22 06:07:52 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
42 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_km.c: handle kernel memory allocation and management
71 */
72
73 /*
74 * overview of kernel memory management:
75 *
76 * the kernel virtual address space is mapped by "kernel_map." kernel_map
77 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
78 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
79 *
80 * the kernel_map has several "submaps." submaps can only appear in
81 * the kernel_map (user processes can't use them). submaps "take over"
82 * the management of a sub-range of the kernel's address space. submaps
83 * are typically allocated at boot time and are never released. kernel
84 * virtual address space that is mapped by a submap is locked by the
85 * submap's lock -- not the kernel_map's lock.
86 *
87 * thus, the useful feature of submaps is that they allow us to break
88 * up the locking and protection of the kernel address space into smaller
89 * chunks.
90 *
91 * the vm system has several standard kernel submaps, including:
92 * kmem_map => contains only wired kernel memory for the kernel
93 * malloc. *** access to kmem_map must be protected
94 * by splvm() because we are allowed to call malloc()
95 * at interrupt time ***
96 * mb_map => memory for large mbufs, *** protected by splvm ***
97 * pager_map => used to map "buf" structures into kernel space
98 * exec_map => used during exec to handle exec args
99 * etc...
100 *
101 * the kernel allocates its private memory out of special uvm_objects whose
102 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
103 * are "special" and never die). all kernel objects should be thought of
104 * as large, fixed-sized, sparsely populated uvm_objects. each kernel
105 * object is equal to the size of kernel virtual address space (i.e. the
106 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
107 *
108 * note that just because a kernel object spans the entire kernel virutal
109 * address space doesn't mean that it has to be mapped into the entire space.
110 * large chunks of a kernel object's space go unused either because
111 * that area of kernel VM is unmapped, or there is some other type of
112 * object mapped into that range (e.g. a vnode). for submap's kernel
113 * objects, the only part of the object that can ever be populated is the
114 * offsets that are managed by the submap.
115 *
116 * note that the "offset" in a kernel object is always the kernel virtual
117 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
118 * example:
119 * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
120 * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
121 * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
122 * then that means that the page at offset 0x235000 in kernel_object is
123 * mapped at 0xf8235000.
124 *
125 * kernel object have one other special property: when the kernel virtual
126 * memory mapping them is unmapped, the backing memory in the object is
127 * freed right away. this is done with the uvm_km_pgremove() function.
128 * this has to be done because there is no backing store for kernel pages
129 * and no need to save them after they are no longer referenced.
130 */
131
132 #include <sys/cdefs.h>
133 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.89.6.1 2006/10/22 06:07:52 yamt Exp $");
134
135 #include "opt_uvmhist.h"
136
137 #include <sys/param.h>
138 #include <sys/malloc.h>
139 #include <sys/systm.h>
140 #include <sys/proc.h>
141 #include <sys/pool.h>
142
143 #include <uvm/uvm.h>
144
145 /*
146 * global data structures
147 */
148
149 struct vm_map *kernel_map = NULL;
150
151 /*
152 * local data structues
153 */
154
155 static struct vm_map_kernel kernel_map_store;
156 static struct vm_map_entry kernel_first_mapent_store;
157
158 #if !defined(PMAP_MAP_POOLPAGE)
159
160 /*
161 * kva cache
162 *
163 * XXX maybe it's better to do this at the uvm_map layer.
164 */
165
166 #define KM_VACACHE_SIZE (32 * PAGE_SIZE) /* XXX tune */
167
168 static void *km_vacache_alloc(struct pool *, int);
169 static void km_vacache_free(struct pool *, void *);
170 static void km_vacache_init(struct vm_map *, const char *, size_t);
171
172 /* XXX */
173 #define KM_VACACHE_POOL_TO_MAP(pp) \
174 ((struct vm_map *)((char *)(pp) - \
175 offsetof(struct vm_map_kernel, vmk_vacache)))
176
177 static void *
178 km_vacache_alloc(struct pool *pp, int flags)
179 {
180 vaddr_t va;
181 size_t size;
182 struct vm_map *map;
183 size = pp->pr_alloc->pa_pagesz;
184
185 map = KM_VACACHE_POOL_TO_MAP(pp);
186
187 va = vm_map_min(map); /* hint */
188 if (uvm_map(map, &va, size, NULL, UVM_UNKNOWN_OFFSET, size,
189 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
190 UVM_ADV_RANDOM, UVM_FLAG_QUANTUM |
191 ((flags & PR_WAITOK) ? UVM_FLAG_WAITVA :
192 UVM_FLAG_TRYLOCK | UVM_FLAG_NOWAIT))))
193 return NULL;
194
195 return (void *)va;
196 }
197
198 static void
199 km_vacache_free(struct pool *pp, void *v)
200 {
201 vaddr_t va = (vaddr_t)v;
202 size_t size = pp->pr_alloc->pa_pagesz;
203 struct vm_map *map;
204
205 map = KM_VACACHE_POOL_TO_MAP(pp);
206 uvm_unmap1(map, va, va + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
207 }
208
209 /*
210 * km_vacache_init: initialize kva cache.
211 */
212
213 static void
214 km_vacache_init(struct vm_map *map, const char *name, size_t size)
215 {
216 struct vm_map_kernel *vmk;
217 struct pool *pp;
218 struct pool_allocator *pa;
219
220 KASSERT(VM_MAP_IS_KERNEL(map));
221 KASSERT(size < (vm_map_max(map) - vm_map_min(map)) / 2); /* sanity */
222
223 vmk = vm_map_to_kernel(map);
224 pp = &vmk->vmk_vacache;
225 pa = &vmk->vmk_vacache_allocator;
226 memset(pa, 0, sizeof(*pa));
227 pa->pa_alloc = km_vacache_alloc;
228 pa->pa_free = km_vacache_free;
229 pa->pa_pagesz = (unsigned int)size;
230 pa->pa_backingmap = map;
231 pa->pa_backingmapptr = NULL;
232 pool_init(pp, PAGE_SIZE, 0, 0, PR_NOTOUCH | PR_RECURSIVE, name, pa);
233 }
234
235 void
236 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
237 {
238
239 map->flags |= VM_MAP_VACACHE;
240 if (size == 0)
241 size = KM_VACACHE_SIZE;
242 km_vacache_init(map, name, size);
243 }
244
245 #else /* !defined(PMAP_MAP_POOLPAGE) */
246
247 void
248 uvm_km_vacache_init(struct vm_map *map __unused, const char *name __unused,
249 size_t size __unused)
250 {
251
252 /* nothing */
253 }
254
255 #endif /* !defined(PMAP_MAP_POOLPAGE) */
256
257 void
258 uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags __unused)
259 {
260 struct vm_map_kernel *vmk = vm_map_to_kernel(map);
261 const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
262 int s = 0xdeadbeaf; /* XXX: gcc */
263
264 if (intrsafe) {
265 s = splvm();
266 }
267 callback_run_roundrobin(&vmk->vmk_reclaim_callback, NULL);
268 if (intrsafe) {
269 splx(s);
270 }
271 }
272
273 /*
274 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
275 * KVM already allocated for text, data, bss, and static data structures).
276 *
277 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
278 * we assume that [vmin -> start] has already been allocated and that
279 * "end" is the end.
280 */
281
282 void
283 uvm_km_init(vaddr_t start, vaddr_t end)
284 {
285 vaddr_t base = VM_MIN_KERNEL_ADDRESS;
286
287 /*
288 * next, init kernel memory objects.
289 */
290
291 /* kernel_object: for pageable anonymous kernel memory */
292 uao_init();
293 uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
294 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
295
296 /*
297 * init the map and reserve any space that might already
298 * have been allocated kernel space before installing.
299 */
300
301 uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
302 kernel_map_store.vmk_map.pmap = pmap_kernel();
303 if (start != base) {
304 int error;
305 struct uvm_map_args args;
306
307 error = uvm_map_prepare(&kernel_map_store.vmk_map,
308 base, start - base,
309 NULL, UVM_UNKNOWN_OFFSET, 0,
310 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
311 UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
312 if (!error) {
313 kernel_first_mapent_store.flags =
314 UVM_MAP_KERNEL | UVM_MAP_FIRST;
315 error = uvm_map_enter(&kernel_map_store.vmk_map, &args,
316 &kernel_first_mapent_store);
317 }
318
319 if (error)
320 panic(
321 "uvm_km_init: could not reserve space for kernel");
322 }
323
324 /*
325 * install!
326 */
327
328 kernel_map = &kernel_map_store.vmk_map;
329 uvm_km_vacache_init(kernel_map, "kvakernel", 0);
330 }
331
332 /*
333 * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
334 * is allocated all references to that area of VM must go through it. this
335 * allows the locking of VAs in kernel_map to be broken up into regions.
336 *
337 * => if `fixed' is true, *vmin specifies where the region described
338 * by the submap must start
339 * => if submap is non NULL we use that as the submap, otherwise we
340 * alloc a new map
341 */
342
343 struct vm_map *
344 uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
345 vaddr_t *vmax /* OUT */, vsize_t size, int flags, boolean_t fixed,
346 struct vm_map_kernel *submap)
347 {
348 int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
349
350 KASSERT(vm_map_pmap(map) == pmap_kernel());
351
352 size = round_page(size); /* round up to pagesize */
353 size += uvm_mapent_overhead(size, flags);
354
355 /*
356 * first allocate a blank spot in the parent map
357 */
358
359 if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
360 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
361 UVM_ADV_RANDOM, mapflags)) != 0) {
362 panic("uvm_km_suballoc: unable to allocate space in parent map");
363 }
364
365 /*
366 * set VM bounds (vmin is filled in by uvm_map)
367 */
368
369 *vmax = *vmin + size;
370
371 /*
372 * add references to pmap and create or init the submap
373 */
374
375 pmap_reference(vm_map_pmap(map));
376 if (submap == NULL) {
377 submap = malloc(sizeof(*submap), M_VMMAP, M_WAITOK);
378 if (submap == NULL)
379 panic("uvm_km_suballoc: unable to create submap");
380 }
381 uvm_map_setup_kernel(submap, *vmin, *vmax, flags);
382 submap->vmk_map.pmap = vm_map_pmap(map);
383
384 /*
385 * now let uvm_map_submap plug in it...
386 */
387
388 if (uvm_map_submap(map, *vmin, *vmax, &submap->vmk_map) != 0)
389 panic("uvm_km_suballoc: submap allocation failed");
390
391 return(&submap->vmk_map);
392 }
393
394 /*
395 * uvm_km_pgremove: remove pages from a kernel uvm_object.
396 *
397 * => when you unmap a part of anonymous kernel memory you want to toss
398 * the pages right away. (this gets called from uvm_unmap_...).
399 */
400
401 void
402 uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
403 {
404 struct uvm_object * const uobj = uvm.kernel_object;
405 const voff_t start = startva - vm_map_min(kernel_map);
406 const voff_t end = endva - vm_map_min(kernel_map);
407 struct vm_page *pg;
408 voff_t curoff, nextoff;
409 int swpgonlydelta = 0;
410 UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
411
412 KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
413 KASSERT(startva < endva);
414 KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
415
416 simple_lock(&uobj->vmobjlock);
417
418 for (curoff = start; curoff < end; curoff = nextoff) {
419 nextoff = curoff + PAGE_SIZE;
420 pg = uvm_pagelookup(uobj, curoff);
421 if (pg != NULL && pg->flags & PG_BUSY) {
422 pg->flags |= PG_WANTED;
423 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
424 "km_pgrm", 0);
425 simple_lock(&uobj->vmobjlock);
426 nextoff = curoff;
427 continue;
428 }
429
430 /*
431 * free the swap slot, then the page.
432 */
433
434 if (pg == NULL &&
435 uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
436 swpgonlydelta++;
437 }
438 uao_dropswap(uobj, curoff >> PAGE_SHIFT);
439 if (pg != NULL) {
440 uvm_lock_pageq();
441 uvm_pagefree(pg);
442 uvm_unlock_pageq();
443 }
444 }
445 simple_unlock(&uobj->vmobjlock);
446
447 if (swpgonlydelta > 0) {
448 simple_lock(&uvm.swap_data_lock);
449 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
450 uvmexp.swpgonly -= swpgonlydelta;
451 simple_unlock(&uvm.swap_data_lock);
452 }
453 }
454
455
456 /*
457 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
458 * regions.
459 *
460 * => when you unmap a part of anonymous kernel memory you want to toss
461 * the pages right away. (this is called from uvm_unmap_...).
462 * => none of the pages will ever be busy, and none of them will ever
463 * be on the active or inactive queues (because they have no object).
464 */
465
466 void
467 uvm_km_pgremove_intrsafe(vaddr_t start, vaddr_t end)
468 {
469 struct vm_page *pg;
470 paddr_t pa;
471 UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
472
473 KASSERT(VM_MIN_KERNEL_ADDRESS <= start);
474 KASSERT(start < end);
475 KASSERT(end <= VM_MAX_KERNEL_ADDRESS);
476
477 for (; start < end; start += PAGE_SIZE) {
478 if (!pmap_extract(pmap_kernel(), start, &pa)) {
479 continue;
480 }
481 pg = PHYS_TO_VM_PAGE(pa);
482 KASSERT(pg);
483 KASSERT(pg->uobject == NULL && pg->uanon == NULL);
484 uvm_pagefree(pg);
485 }
486 }
487
488 #if defined(DEBUG)
489 void
490 uvm_km_check_empty(vaddr_t start, vaddr_t end, boolean_t intrsafe)
491 {
492 vaddr_t va;
493 paddr_t pa;
494
495 KDASSERT(VM_MIN_KERNEL_ADDRESS <= start);
496 KDASSERT(start < end);
497 KDASSERT(end <= VM_MAX_KERNEL_ADDRESS);
498
499 for (va = start; va < end; va += PAGE_SIZE) {
500 if (pmap_extract(pmap_kernel(), va, &pa)) {
501 panic("uvm_km_check_empty: va %p has pa 0x%llx",
502 (void *)va, (long long)pa);
503 }
504 if (!intrsafe) {
505 const struct vm_page *pg;
506
507 simple_lock(&uvm.kernel_object->vmobjlock);
508 pg = uvm_pagelookup(uvm.kernel_object,
509 va - vm_map_min(kernel_map));
510 simple_unlock(&uvm.kernel_object->vmobjlock);
511 if (pg) {
512 panic("uvm_km_check_empty: "
513 "has page hashed at %p", (const void *)va);
514 }
515 }
516 }
517 }
518 #endif /* defined(DEBUG) */
519
520 /*
521 * uvm_km_alloc: allocate an area of kernel memory.
522 *
523 * => NOTE: we can return 0 even if we can wait if there is not enough
524 * free VM space in the map... caller should be prepared to handle
525 * this case.
526 * => we return KVA of memory allocated
527 */
528
529 vaddr_t
530 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
531 {
532 vaddr_t kva, loopva;
533 vaddr_t offset;
534 vsize_t loopsize;
535 struct vm_page *pg;
536 struct uvm_object *obj;
537 int pgaflags;
538 vm_prot_t prot;
539 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
540
541 KASSERT(vm_map_pmap(map) == pmap_kernel());
542 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
543 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
544 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
545
546 /*
547 * setup for call
548 */
549
550 kva = vm_map_min(map); /* hint */
551 size = round_page(size);
552 obj = (flags & UVM_KMF_PAGEABLE) ? uvm.kernel_object : NULL;
553 UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
554 map, obj, size, flags);
555
556 /*
557 * allocate some virtual space
558 */
559
560 if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
561 align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
562 UVM_ADV_RANDOM,
563 (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA))
564 | UVM_FLAG_QUANTUM)) != 0)) {
565 UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
566 return(0);
567 }
568
569 /*
570 * if all we wanted was VA, return now
571 */
572
573 if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
574 UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
575 return(kva);
576 }
577
578 /*
579 * recover object offset from virtual address
580 */
581
582 offset = kva - vm_map_min(kernel_map);
583 UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
584
585 /*
586 * now allocate and map in the memory... note that we are the only ones
587 * whom should ever get a handle on this area of VM.
588 */
589
590 loopva = kva;
591 loopsize = size;
592
593 pgaflags = UVM_PGA_USERESERVE;
594 if (flags & UVM_KMF_ZERO)
595 pgaflags |= UVM_PGA_ZERO;
596 prot = VM_PROT_READ | VM_PROT_WRITE;
597 if (flags & UVM_KMF_EXEC)
598 prot |= VM_PROT_EXECUTE;
599 while (loopsize) {
600 KASSERT(!pmap_extract(pmap_kernel(), loopva, NULL));
601
602 pg = uvm_pagealloc(NULL, offset, NULL, pgaflags);
603
604 /*
605 * out of memory?
606 */
607
608 if (__predict_false(pg == NULL)) {
609 if ((flags & UVM_KMF_NOWAIT) ||
610 ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
611 /* free everything! */
612 uvm_km_free(map, kva, size,
613 flags & UVM_KMF_TYPEMASK);
614 return (0);
615 } else {
616 uvm_wait("km_getwait2"); /* sleep here */
617 continue;
618 }
619 }
620
621 pg->flags &= ~PG_BUSY; /* new page */
622 UVM_PAGE_OWN(pg, NULL);
623
624 /*
625 * map it in
626 */
627
628 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), prot);
629 loopva += PAGE_SIZE;
630 offset += PAGE_SIZE;
631 loopsize -= PAGE_SIZE;
632 }
633
634 pmap_update(pmap_kernel());
635
636 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
637 return(kva);
638 }
639
640 /*
641 * uvm_km_free: free an area of kernel memory
642 */
643
644 void
645 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
646 {
647
648 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
649 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
650 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
651 KASSERT((addr & PAGE_MASK) == 0);
652 KASSERT(vm_map_pmap(map) == pmap_kernel());
653
654 size = round_page(size);
655
656 if (flags & UVM_KMF_PAGEABLE) {
657 uvm_km_pgremove(addr, addr + size);
658 pmap_remove(pmap_kernel(), addr, addr + size);
659 } else if (flags & UVM_KMF_WIRED) {
660 uvm_km_pgremove_intrsafe(addr, addr + size);
661 pmap_kremove(addr, size);
662 }
663
664 uvm_unmap1(map, addr, addr + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
665 }
666
667 /* Sanity; must specify both or none. */
668 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
669 (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
670 #error Must specify MAP and UNMAP together.
671 #endif
672
673 /*
674 * uvm_km_alloc_poolpage: allocate a page for the pool allocator
675 *
676 * => if the pmap specifies an alternate mapping method, we use it.
677 */
678
679 /* ARGSUSED */
680 vaddr_t
681 uvm_km_alloc_poolpage_cache(struct vm_map *map, boolean_t waitok)
682 {
683 #if defined(PMAP_MAP_POOLPAGE)
684 return uvm_km_alloc_poolpage(map, waitok);
685 #else
686 struct vm_page *pg;
687 struct pool *pp = &vm_map_to_kernel(map)->vmk_vacache;
688 vaddr_t va;
689 int s = 0xdeadbeaf; /* XXX: gcc */
690 const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
691
692 if ((map->flags & VM_MAP_VACACHE) == 0)
693 return uvm_km_alloc_poolpage(map, waitok);
694
695 if (intrsafe)
696 s = splvm();
697 va = (vaddr_t)pool_get(pp, waitok ? PR_WAITOK : PR_NOWAIT);
698 if (intrsafe)
699 splx(s);
700 if (va == 0)
701 return 0;
702 KASSERT(!pmap_extract(pmap_kernel(), va, NULL));
703 again:
704 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
705 if (__predict_false(pg == NULL)) {
706 if (waitok) {
707 uvm_wait("plpg");
708 goto again;
709 } else {
710 if (intrsafe)
711 s = splvm();
712 pool_put(pp, (void *)va);
713 if (intrsafe)
714 splx(s);
715 return 0;
716 }
717 }
718 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg), VM_PROT_READ|VM_PROT_WRITE);
719 pmap_update(pmap_kernel());
720
721 return va;
722 #endif /* PMAP_MAP_POOLPAGE */
723 }
724
725 vaddr_t
726 uvm_km_alloc_poolpage(struct vm_map *map, boolean_t waitok)
727 {
728 #if defined(PMAP_MAP_POOLPAGE)
729 struct vm_page *pg;
730 vaddr_t va;
731
732 again:
733 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
734 if (__predict_false(pg == NULL)) {
735 if (waitok) {
736 uvm_wait("plpg");
737 goto again;
738 } else
739 return (0);
740 }
741 va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
742 if (__predict_false(va == 0))
743 uvm_pagefree(pg);
744 return (va);
745 #else
746 vaddr_t va;
747 int s = 0xdeadbeaf; /* XXX: gcc */
748 const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
749
750 if (intrsafe)
751 s = splvm();
752 va = uvm_km_alloc(map, PAGE_SIZE, 0,
753 (waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) | UVM_KMF_WIRED);
754 if (intrsafe)
755 splx(s);
756 return (va);
757 #endif /* PMAP_MAP_POOLPAGE */
758 }
759
760 /*
761 * uvm_km_free_poolpage: free a previously allocated pool page
762 *
763 * => if the pmap specifies an alternate unmapping method, we use it.
764 */
765
766 /* ARGSUSED */
767 void
768 uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t addr)
769 {
770 #if defined(PMAP_UNMAP_POOLPAGE)
771 uvm_km_free_poolpage(map, addr);
772 #else
773 struct pool *pp;
774 int s = 0xdeadbeaf; /* XXX: gcc */
775 const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
776
777 if ((map->flags & VM_MAP_VACACHE) == 0) {
778 uvm_km_free_poolpage(map, addr);
779 return;
780 }
781
782 KASSERT(pmap_extract(pmap_kernel(), addr, NULL));
783 uvm_km_pgremove_intrsafe(addr, addr + PAGE_SIZE);
784 pmap_kremove(addr, PAGE_SIZE);
785 #if defined(DEBUG)
786 pmap_update(pmap_kernel());
787 #endif
788 KASSERT(!pmap_extract(pmap_kernel(), addr, NULL));
789 pp = &vm_map_to_kernel(map)->vmk_vacache;
790 if (intrsafe)
791 s = splvm();
792 pool_put(pp, (void *)addr);
793 if (intrsafe)
794 splx(s);
795 #endif
796 }
797
798 /* ARGSUSED */
799 void
800 uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
801 {
802 #if defined(PMAP_UNMAP_POOLPAGE)
803 paddr_t pa;
804
805 pa = PMAP_UNMAP_POOLPAGE(addr);
806 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
807 #else
808 int s = 0xdeadbeaf; /* XXX: gcc */
809 const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
810
811 if (intrsafe)
812 s = splvm();
813 uvm_km_free(map, addr, PAGE_SIZE, UVM_KMF_WIRED);
814 if (intrsafe)
815 splx(s);
816 #endif /* PMAP_UNMAP_POOLPAGE */
817 }
818