uvm_km.c revision 1.93.4.2 1 /* $NetBSD: uvm_km.c,v 1.93.4.2 2007/03/13 17:51:55 ad Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
42 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_km.c: handle kernel memory allocation and management
71 */
72
73 /*
74 * overview of kernel memory management:
75 *
76 * the kernel virtual address space is mapped by "kernel_map." kernel_map
77 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
78 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
79 *
80 * the kernel_map has several "submaps." submaps can only appear in
81 * the kernel_map (user processes can't use them). submaps "take over"
82 * the management of a sub-range of the kernel's address space. submaps
83 * are typically allocated at boot time and are never released. kernel
84 * virtual address space that is mapped by a submap is locked by the
85 * submap's lock -- not the kernel_map's lock.
86 *
87 * thus, the useful feature of submaps is that they allow us to break
88 * up the locking and protection of the kernel address space into smaller
89 * chunks.
90 *
91 * the vm system has several standard kernel submaps, including:
92 * kmem_map => contains only wired kernel memory for the kernel
93 * malloc. *** access to kmem_map must be protected
94 * by splvm() because we are allowed to call malloc()
95 * at interrupt time ***
96 * mb_map => memory for large mbufs, *** protected by splvm ***
97 * pager_map => used to map "buf" structures into kernel space
98 * exec_map => used during exec to handle exec args
99 * etc...
100 *
101 * the kernel allocates its private memory out of special uvm_objects whose
102 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
103 * are "special" and never die). all kernel objects should be thought of
104 * as large, fixed-sized, sparsely populated uvm_objects. each kernel
105 * object is equal to the size of kernel virtual address space (i.e. the
106 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
107 *
108 * note that just because a kernel object spans the entire kernel virutal
109 * address space doesn't mean that it has to be mapped into the entire space.
110 * large chunks of a kernel object's space go unused either because
111 * that area of kernel VM is unmapped, or there is some other type of
112 * object mapped into that range (e.g. a vnode). for submap's kernel
113 * objects, the only part of the object that can ever be populated is the
114 * offsets that are managed by the submap.
115 *
116 * note that the "offset" in a kernel object is always the kernel virtual
117 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
118 * example:
119 * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
120 * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
121 * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
122 * then that means that the page at offset 0x235000 in kernel_object is
123 * mapped at 0xf8235000.
124 *
125 * kernel object have one other special property: when the kernel virtual
126 * memory mapping them is unmapped, the backing memory in the object is
127 * freed right away. this is done with the uvm_km_pgremove() function.
128 * this has to be done because there is no backing store for kernel pages
129 * and no need to save them after they are no longer referenced.
130 */
131
132 #include <sys/cdefs.h>
133 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.93.4.2 2007/03/13 17:51:55 ad Exp $");
134
135 #include "opt_uvmhist.h"
136
137 #include <sys/param.h>
138 #include <sys/malloc.h>
139 #include <sys/systm.h>
140 #include <sys/proc.h>
141 #include <sys/pool.h>
142
143 #include <uvm/uvm.h>
144
145 /*
146 * global data structures
147 */
148
149 struct vm_map *kernel_map = NULL;
150
151 /*
152 * local data structues
153 */
154
155 static struct vm_map_kernel kernel_map_store;
156 static struct vm_map_entry kernel_first_mapent_store;
157
158 #if !defined(PMAP_MAP_POOLPAGE)
159
160 /*
161 * kva cache
162 *
163 * XXX maybe it's better to do this at the uvm_map layer.
164 */
165
166 #define KM_VACACHE_SIZE (32 * PAGE_SIZE) /* XXX tune */
167
168 static void *km_vacache_alloc(struct pool *, int);
169 static void km_vacache_free(struct pool *, void *);
170 static void km_vacache_init(struct vm_map *, const char *, size_t);
171
172 /* XXX */
173 #define KM_VACACHE_POOL_TO_MAP(pp) \
174 ((struct vm_map *)((char *)(pp) - \
175 offsetof(struct vm_map_kernel, vmk_vacache)))
176
177 static void *
178 km_vacache_alloc(struct pool *pp, int flags)
179 {
180 vaddr_t va;
181 size_t size;
182 struct vm_map *map;
183 size = pp->pr_alloc->pa_pagesz;
184
185 map = KM_VACACHE_POOL_TO_MAP(pp);
186
187 va = vm_map_min(map); /* hint */
188 if (uvm_map(map, &va, size, NULL, UVM_UNKNOWN_OFFSET, size,
189 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
190 UVM_ADV_RANDOM, UVM_FLAG_QUANTUM |
191 ((flags & PR_WAITOK) ? UVM_FLAG_WAITVA :
192 UVM_FLAG_TRYLOCK | UVM_FLAG_NOWAIT))))
193 return NULL;
194
195 return (void *)va;
196 }
197
198 static void
199 km_vacache_free(struct pool *pp, void *v)
200 {
201 vaddr_t va = (vaddr_t)v;
202 size_t size = pp->pr_alloc->pa_pagesz;
203 struct vm_map *map;
204
205 map = KM_VACACHE_POOL_TO_MAP(pp);
206 uvm_unmap1(map, va, va + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
207 }
208
209 /*
210 * km_vacache_init: initialize kva cache.
211 */
212
213 static void
214 km_vacache_init(struct vm_map *map, const char *name, size_t size)
215 {
216 struct vm_map_kernel *vmk;
217 struct pool *pp;
218 struct pool_allocator *pa;
219 int ipl;
220
221 KASSERT(VM_MAP_IS_KERNEL(map));
222 KASSERT(size < (vm_map_max(map) - vm_map_min(map)) / 2); /* sanity */
223
224
225 vmk = vm_map_to_kernel(map);
226 pp = &vmk->vmk_vacache;
227 pa = &vmk->vmk_vacache_allocator;
228 memset(pa, 0, sizeof(*pa));
229 pa->pa_alloc = km_vacache_alloc;
230 pa->pa_free = km_vacache_free;
231 pa->pa_pagesz = (unsigned int)size;
232 pa->pa_backingmap = map;
233 pa->pa_backingmapptr = NULL;
234
235 if ((map->flags & VM_MAP_INTRSAFE) != 0)
236 ipl = IPL_VM;
237 else
238 ipl = IPL_NONE;
239
240 pool_init(pp, PAGE_SIZE, 0, 0, PR_NOTOUCH | PR_RECURSIVE, name, pa,
241 ipl);
242 }
243
244 void
245 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
246 {
247
248 map->flags |= VM_MAP_VACACHE;
249 if (size == 0)
250 size = KM_VACACHE_SIZE;
251 km_vacache_init(map, name, size);
252 }
253
254 #else /* !defined(PMAP_MAP_POOLPAGE) */
255
256 void
257 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
258 {
259
260 /* nothing */
261 }
262
263 #endif /* !defined(PMAP_MAP_POOLPAGE) */
264
265 void
266 uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
267 {
268 struct vm_map_kernel *vmk = vm_map_to_kernel(map);
269 const bool intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
270 int s = 0xdeadbeaf; /* XXX: gcc */
271
272 if (intrsafe) {
273 s = splvm();
274 }
275 callback_run_roundrobin(&vmk->vmk_reclaim_callback, NULL);
276 if (intrsafe) {
277 splx(s);
278 }
279 }
280
281 /*
282 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
283 * KVM already allocated for text, data, bss, and static data structures).
284 *
285 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
286 * we assume that [vmin -> start] has already been allocated and that
287 * "end" is the end.
288 */
289
290 void
291 uvm_km_init(vaddr_t start, vaddr_t end)
292 {
293 vaddr_t base = VM_MIN_KERNEL_ADDRESS;
294
295 /*
296 * next, init kernel memory objects.
297 */
298
299 /* kernel_object: for pageable anonymous kernel memory */
300 uao_init();
301 uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
302 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
303
304 /*
305 * init the map and reserve any space that might already
306 * have been allocated kernel space before installing.
307 */
308
309 uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
310 kernel_map_store.vmk_map.pmap = pmap_kernel();
311 if (start != base) {
312 int error;
313 struct uvm_map_args args;
314
315 error = uvm_map_prepare(&kernel_map_store.vmk_map,
316 base, start - base,
317 NULL, UVM_UNKNOWN_OFFSET, 0,
318 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
319 UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
320 if (!error) {
321 kernel_first_mapent_store.flags =
322 UVM_MAP_KERNEL | UVM_MAP_FIRST;
323 error = uvm_map_enter(&kernel_map_store.vmk_map, &args,
324 &kernel_first_mapent_store);
325 }
326
327 if (error)
328 panic(
329 "uvm_km_init: could not reserve space for kernel");
330 }
331
332 /*
333 * install!
334 */
335
336 kernel_map = &kernel_map_store.vmk_map;
337 uvm_km_vacache_init(kernel_map, "kvakernel", 0);
338 }
339
340 /*
341 * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
342 * is allocated all references to that area of VM must go through it. this
343 * allows the locking of VAs in kernel_map to be broken up into regions.
344 *
345 * => if `fixed' is true, *vmin specifies where the region described
346 * by the submap must start
347 * => if submap is non NULL we use that as the submap, otherwise we
348 * alloc a new map
349 */
350
351 struct vm_map *
352 uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
353 vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
354 struct vm_map_kernel *submap)
355 {
356 int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
357
358 KASSERT(vm_map_pmap(map) == pmap_kernel());
359
360 size = round_page(size); /* round up to pagesize */
361 size += uvm_mapent_overhead(size, flags);
362
363 /*
364 * first allocate a blank spot in the parent map
365 */
366
367 if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
368 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
369 UVM_ADV_RANDOM, mapflags)) != 0) {
370 panic("uvm_km_suballoc: unable to allocate space in parent map");
371 }
372
373 /*
374 * set VM bounds (vmin is filled in by uvm_map)
375 */
376
377 *vmax = *vmin + size;
378
379 /*
380 * add references to pmap and create or init the submap
381 */
382
383 pmap_reference(vm_map_pmap(map));
384 if (submap == NULL) {
385 submap = malloc(sizeof(*submap), M_VMMAP, M_WAITOK);
386 if (submap == NULL)
387 panic("uvm_km_suballoc: unable to create submap");
388 }
389 uvm_map_setup_kernel(submap, *vmin, *vmax, flags);
390 submap->vmk_map.pmap = vm_map_pmap(map);
391
392 /*
393 * now let uvm_map_submap plug in it...
394 */
395
396 if (uvm_map_submap(map, *vmin, *vmax, &submap->vmk_map) != 0)
397 panic("uvm_km_suballoc: submap allocation failed");
398
399 return(&submap->vmk_map);
400 }
401
402 /*
403 * uvm_km_pgremove: remove pages from a kernel uvm_object.
404 *
405 * => when you unmap a part of anonymous kernel memory you want to toss
406 * the pages right away. (this gets called from uvm_unmap_...).
407 */
408
409 void
410 uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
411 {
412 struct uvm_object * const uobj = uvm_kernel_object;
413 const voff_t start = startva - vm_map_min(kernel_map);
414 const voff_t end = endva - vm_map_min(kernel_map);
415 struct vm_page *pg;
416 voff_t curoff, nextoff;
417 int swpgonlydelta = 0;
418 UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
419
420 KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
421 KASSERT(startva < endva);
422 KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
423
424 mutex_enter(&uobj->vmobjlock);
425
426 for (curoff = start; curoff < end; curoff = nextoff) {
427 nextoff = curoff + PAGE_SIZE;
428 pg = uvm_pagelookup(uobj, curoff);
429 if (pg != NULL && pg->flags & PG_BUSY) {
430 pg->flags |= PG_WANTED;
431 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
432 "km_pgrm", 0);
433 mutex_enter(&uobj->vmobjlock);
434 nextoff = curoff;
435 continue;
436 }
437
438 /*
439 * free the swap slot, then the page.
440 */
441
442 if (pg == NULL &&
443 uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
444 swpgonlydelta++;
445 }
446 uao_dropswap(uobj, curoff >> PAGE_SHIFT);
447 if (pg != NULL) {
448 mutex_enter(&uvm_pageqlock);
449 uvm_pagefree(pg);
450 mutex_exit(&uvm_pageqlock);
451 }
452 }
453 mutex_exit(&uobj->vmobjlock);
454
455 if (swpgonlydelta > 0) {
456 mutex_enter(&uvm_swap_data_lock);
457 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
458 uvmexp.swpgonly -= swpgonlydelta;
459 mutex_exit(&uvm_swap_data_lock);
460 }
461 }
462
463
464 /*
465 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
466 * regions.
467 *
468 * => when you unmap a part of anonymous kernel memory you want to toss
469 * the pages right away. (this is called from uvm_unmap_...).
470 * => none of the pages will ever be busy, and none of them will ever
471 * be on the active or inactive queues (because they have no object).
472 */
473
474 void
475 uvm_km_pgremove_intrsafe(vaddr_t start, vaddr_t end)
476 {
477 struct vm_page *pg;
478 paddr_t pa;
479 UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
480
481 KASSERT(VM_MIN_KERNEL_ADDRESS <= start);
482 KASSERT(start < end);
483 KASSERT(end <= VM_MAX_KERNEL_ADDRESS);
484
485 for (; start < end; start += PAGE_SIZE) {
486 if (!pmap_extract(pmap_kernel(), start, &pa)) {
487 continue;
488 }
489 pg = PHYS_TO_VM_PAGE(pa);
490 KASSERT(pg);
491 KASSERT(pg->uobject == NULL && pg->uanon == NULL);
492 uvm_pagefree(pg);
493 }
494 }
495
496 #if defined(DEBUG)
497 void
498 uvm_km_check_empty(vaddr_t start, vaddr_t end, bool intrsafe)
499 {
500 vaddr_t va;
501 paddr_t pa;
502
503 KDASSERT(VM_MIN_KERNEL_ADDRESS <= start);
504 KDASSERT(start < end);
505 KDASSERT(end <= VM_MAX_KERNEL_ADDRESS);
506
507 for (va = start; va < end; va += PAGE_SIZE) {
508 if (pmap_extract(pmap_kernel(), va, &pa)) {
509 panic("uvm_km_check_empty: va %p has pa 0x%llx",
510 (void *)va, (long long)pa);
511 }
512 if (!intrsafe) {
513 const struct vm_page *pg;
514
515 mutex_enter(&uvm_kernel_object->vmobjlock);
516 pg = uvm_pagelookup(uvm_kernel_object,
517 va - vm_map_min(kernel_map));
518 mutex_exit(&uvm_kernel_object->vmobjlock);
519 if (pg) {
520 panic("uvm_km_check_empty: "
521 "has page hashed at %p", (const void *)va);
522 }
523 }
524 }
525 }
526 #endif /* defined(DEBUG) */
527
528 /*
529 * uvm_km_alloc: allocate an area of kernel memory.
530 *
531 * => NOTE: we can return 0 even if we can wait if there is not enough
532 * free VM space in the map... caller should be prepared to handle
533 * this case.
534 * => we return KVA of memory allocated
535 */
536
537 vaddr_t
538 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
539 {
540 vaddr_t kva, loopva;
541 vaddr_t offset;
542 vsize_t loopsize;
543 struct vm_page *pg;
544 struct uvm_object *obj;
545 int pgaflags;
546 vm_prot_t prot;
547 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
548
549 KASSERT(vm_map_pmap(map) == pmap_kernel());
550 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
551 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
552 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
553
554 /*
555 * setup for call
556 */
557
558 kva = vm_map_min(map); /* hint */
559 size = round_page(size);
560 obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
561 UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
562 map, obj, size, flags);
563
564 /*
565 * allocate some virtual space
566 */
567
568 if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
569 align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
570 UVM_ADV_RANDOM,
571 (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA))
572 | UVM_FLAG_QUANTUM)) != 0)) {
573 UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
574 return(0);
575 }
576
577 /*
578 * if all we wanted was VA, return now
579 */
580
581 if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
582 UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
583 return(kva);
584 }
585
586 /*
587 * recover object offset from virtual address
588 */
589
590 offset = kva - vm_map_min(kernel_map);
591 UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
592
593 /*
594 * now allocate and map in the memory... note that we are the only ones
595 * whom should ever get a handle on this area of VM.
596 */
597
598 loopva = kva;
599 loopsize = size;
600
601 pgaflags = UVM_PGA_USERESERVE;
602 if (flags & UVM_KMF_ZERO)
603 pgaflags |= UVM_PGA_ZERO;
604 prot = VM_PROT_READ | VM_PROT_WRITE;
605 if (flags & UVM_KMF_EXEC)
606 prot |= VM_PROT_EXECUTE;
607 while (loopsize) {
608 KASSERT(!pmap_extract(pmap_kernel(), loopva, NULL));
609
610 pg = uvm_pagealloc(NULL, offset, NULL, pgaflags);
611
612 /*
613 * out of memory?
614 */
615
616 if (__predict_false(pg == NULL)) {
617 if ((flags & UVM_KMF_NOWAIT) ||
618 ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
619 /* free everything! */
620 uvm_km_free(map, kva, size,
621 flags & UVM_KMF_TYPEMASK);
622 return (0);
623 } else {
624 uvm_wait("km_getwait2"); /* sleep here */
625 continue;
626 }
627 }
628
629 pg->flags &= ~PG_BUSY; /* new page */
630 UVM_PAGE_OWN(pg, NULL);
631
632 /*
633 * map it in
634 */
635
636 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), prot);
637 loopva += PAGE_SIZE;
638 offset += PAGE_SIZE;
639 loopsize -= PAGE_SIZE;
640 }
641
642 pmap_update(pmap_kernel());
643
644 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
645 return(kva);
646 }
647
648 /*
649 * uvm_km_free: free an area of kernel memory
650 */
651
652 void
653 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
654 {
655
656 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
657 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
658 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
659 KASSERT((addr & PAGE_MASK) == 0);
660 KASSERT(vm_map_pmap(map) == pmap_kernel());
661
662 size = round_page(size);
663
664 if (flags & UVM_KMF_PAGEABLE) {
665 uvm_km_pgremove(addr, addr + size);
666 pmap_remove(pmap_kernel(), addr, addr + size);
667 } else if (flags & UVM_KMF_WIRED) {
668 uvm_km_pgremove_intrsafe(addr, addr + size);
669 pmap_kremove(addr, size);
670 }
671
672 uvm_unmap1(map, addr, addr + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
673 }
674
675 /* Sanity; must specify both or none. */
676 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
677 (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
678 #error Must specify MAP and UNMAP together.
679 #endif
680
681 /*
682 * uvm_km_alloc_poolpage: allocate a page for the pool allocator
683 *
684 * => if the pmap specifies an alternate mapping method, we use it.
685 */
686
687 /* ARGSUSED */
688 vaddr_t
689 uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
690 {
691 #if defined(PMAP_MAP_POOLPAGE)
692 return uvm_km_alloc_poolpage(map, waitok);
693 #else
694 struct vm_page *pg;
695 struct pool *pp = &vm_map_to_kernel(map)->vmk_vacache;
696 vaddr_t va;
697
698 if ((map->flags & VM_MAP_VACACHE) == 0)
699 return uvm_km_alloc_poolpage(map, waitok);
700
701 va = (vaddr_t)pool_get(pp, waitok ? PR_WAITOK : PR_NOWAIT);
702 if (va == 0)
703 return 0;
704 KASSERT(!pmap_extract(pmap_kernel(), va, NULL));
705 again:
706 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
707 if (__predict_false(pg == NULL)) {
708 if (waitok) {
709 uvm_wait("plpg");
710 goto again;
711 } else {
712 pool_put(pp, (void *)va);
713 return 0;
714 }
715 }
716 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg), VM_PROT_READ|VM_PROT_WRITE);
717 pmap_update(pmap_kernel());
718
719 return va;
720 #endif /* PMAP_MAP_POOLPAGE */
721 }
722
723 vaddr_t
724 uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
725 {
726 #if defined(PMAP_MAP_POOLPAGE)
727 struct vm_page *pg;
728 vaddr_t va;
729
730 again:
731 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
732 if (__predict_false(pg == NULL)) {
733 if (waitok) {
734 uvm_wait("plpg");
735 goto again;
736 } else
737 return (0);
738 }
739 va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
740 if (__predict_false(va == 0))
741 uvm_pagefree(pg);
742 return (va);
743 #else
744 vaddr_t va;
745
746 va = uvm_km_alloc(map, PAGE_SIZE, 0,
747 (waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) | UVM_KMF_WIRED);
748 return (va);
749 #endif /* PMAP_MAP_POOLPAGE */
750 }
751
752 /*
753 * uvm_km_free_poolpage: free a previously allocated pool page
754 *
755 * => if the pmap specifies an alternate unmapping method, we use it.
756 */
757
758 /* ARGSUSED */
759 void
760 uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t addr)
761 {
762 #if defined(PMAP_UNMAP_POOLPAGE)
763 uvm_km_free_poolpage(map, addr);
764 #else
765 struct pool *pp;
766
767 if ((map->flags & VM_MAP_VACACHE) == 0) {
768 uvm_km_free_poolpage(map, addr);
769 return;
770 }
771
772 KASSERT(pmap_extract(pmap_kernel(), addr, NULL));
773 uvm_km_pgremove_intrsafe(addr, addr + PAGE_SIZE);
774 pmap_kremove(addr, PAGE_SIZE);
775 #if defined(DEBUG)
776 pmap_update(pmap_kernel());
777 #endif
778 KASSERT(!pmap_extract(pmap_kernel(), addr, NULL));
779 pp = &vm_map_to_kernel(map)->vmk_vacache;
780 pool_put(pp, (void *)addr);
781 #endif
782 }
783
784 /* ARGSUSED */
785 void
786 uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
787 {
788 #if defined(PMAP_UNMAP_POOLPAGE)
789 paddr_t pa;
790
791 pa = PMAP_UNMAP_POOLPAGE(addr);
792 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
793 #else
794 uvm_km_free(map, addr, PAGE_SIZE, UVM_KMF_WIRED);
795 #endif /* PMAP_UNMAP_POOLPAGE */
796 }
797