Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.93.4.4
      1 /*	$NetBSD: uvm_km.c,v 1.93.4.4 2007/09/18 15:28:13 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     42  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_km.c: handle kernel memory allocation and management
     71  */
     72 
     73 /*
     74  * overview of kernel memory management:
     75  *
     76  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     77  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     78  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     79  *
     80  * the kernel_map has several "submaps."   submaps can only appear in
     81  * the kernel_map (user processes can't use them).   submaps "take over"
     82  * the management of a sub-range of the kernel's address space.  submaps
     83  * are typically allocated at boot time and are never released.   kernel
     84  * virtual address space that is mapped by a submap is locked by the
     85  * submap's lock -- not the kernel_map's lock.
     86  *
     87  * thus, the useful feature of submaps is that they allow us to break
     88  * up the locking and protection of the kernel address space into smaller
     89  * chunks.
     90  *
     91  * the vm system has several standard kernel submaps, including:
     92  *   kmem_map => contains only wired kernel memory for the kernel
     93  *		malloc.
     94  *   mb_map => memory for large mbufs,
     95  *   pager_map => used to map "buf" structures into kernel space
     96  *   exec_map => used during exec to handle exec args
     97  *   etc...
     98  *
     99  * the kernel allocates its private memory out of special uvm_objects whose
    100  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
    101  * are "special" and never die).   all kernel objects should be thought of
    102  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
    103  * object is equal to the size of kernel virtual address space (i.e. the
    104  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    105  *
    106  * note that just because a kernel object spans the entire kernel virutal
    107  * address space doesn't mean that it has to be mapped into the entire space.
    108  * large chunks of a kernel object's space go unused either because
    109  * that area of kernel VM is unmapped, or there is some other type of
    110  * object mapped into that range (e.g. a vnode).    for submap's kernel
    111  * objects, the only part of the object that can ever be populated is the
    112  * offsets that are managed by the submap.
    113  *
    114  * note that the "offset" in a kernel object is always the kernel virtual
    115  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    116  * example:
    117  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    118  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    119  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    120  *   then that means that the page at offset 0x235000 in kernel_object is
    121  *   mapped at 0xf8235000.
    122  *
    123  * kernel object have one other special property: when the kernel virtual
    124  * memory mapping them is unmapped, the backing memory in the object is
    125  * freed right away.   this is done with the uvm_km_pgremove() function.
    126  * this has to be done because there is no backing store for kernel pages
    127  * and no need to save them after they are no longer referenced.
    128  */
    129 
    130 #include <sys/cdefs.h>
    131 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.93.4.4 2007/09/18 15:28:13 ad Exp $");
    132 
    133 #include "opt_uvmhist.h"
    134 
    135 #include <sys/param.h>
    136 #include <sys/malloc.h>
    137 #include <sys/systm.h>
    138 #include <sys/proc.h>
    139 #include <sys/pool.h>
    140 
    141 #include <uvm/uvm.h>
    142 
    143 /*
    144  * global data structures
    145  */
    146 
    147 struct vm_map *kernel_map = NULL;
    148 
    149 /*
    150  * local data structues
    151  */
    152 
    153 static struct vm_map_kernel	kernel_map_store;
    154 static struct vm_map_entry	kernel_first_mapent_store;
    155 
    156 #if !defined(PMAP_MAP_POOLPAGE)
    157 
    158 /*
    159  * kva cache
    160  *
    161  * XXX maybe it's better to do this at the uvm_map layer.
    162  */
    163 
    164 #define	KM_VACACHE_SIZE	(32 * PAGE_SIZE) /* XXX tune */
    165 
    166 static void *km_vacache_alloc(struct pool *, int);
    167 static void km_vacache_free(struct pool *, void *);
    168 static void km_vacache_init(struct vm_map *, const char *, size_t);
    169 
    170 /* XXX */
    171 #define	KM_VACACHE_POOL_TO_MAP(pp) \
    172 	((struct vm_map *)((char *)(pp) - \
    173 	    offsetof(struct vm_map_kernel, vmk_vacache)))
    174 
    175 static void *
    176 km_vacache_alloc(struct pool *pp, int flags)
    177 {
    178 	vaddr_t va;
    179 	size_t size;
    180 	struct vm_map *map;
    181 	size = pp->pr_alloc->pa_pagesz;
    182 
    183 	map = KM_VACACHE_POOL_TO_MAP(pp);
    184 
    185 	va = vm_map_min(map); /* hint */
    186 	if (uvm_map(map, &va, size, NULL, UVM_UNKNOWN_OFFSET, size,
    187 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    188 	    UVM_ADV_RANDOM, UVM_FLAG_QUANTUM |
    189 	    ((flags & PR_WAITOK) ? UVM_FLAG_WAITVA : UVM_FLAG_NOWAIT))))
    190 		return NULL;
    191 
    192 	return (void *)va;
    193 }
    194 
    195 static void
    196 km_vacache_free(struct pool *pp, void *v)
    197 {
    198 	vaddr_t va = (vaddr_t)v;
    199 	size_t size = pp->pr_alloc->pa_pagesz;
    200 	struct vm_map *map;
    201 
    202 	map = KM_VACACHE_POOL_TO_MAP(pp);
    203 	uvm_unmap1(map, va, va + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
    204 }
    205 
    206 /*
    207  * km_vacache_init: initialize kva cache.
    208  */
    209 
    210 static void
    211 km_vacache_init(struct vm_map *map, const char *name, size_t size)
    212 {
    213 	struct vm_map_kernel *vmk;
    214 	struct pool *pp;
    215 	struct pool_allocator *pa;
    216 	int ipl;
    217 
    218 	KASSERT(VM_MAP_IS_KERNEL(map));
    219 	KASSERT(size < (vm_map_max(map) - vm_map_min(map)) / 2); /* sanity */
    220 
    221 
    222 	vmk = vm_map_to_kernel(map);
    223 	pp = &vmk->vmk_vacache;
    224 	pa = &vmk->vmk_vacache_allocator;
    225 	memset(pa, 0, sizeof(*pa));
    226 	pa->pa_alloc = km_vacache_alloc;
    227 	pa->pa_free = km_vacache_free;
    228 	pa->pa_pagesz = (unsigned int)size;
    229 	pa->pa_backingmap = map;
    230 	pa->pa_backingmapptr = NULL;
    231 
    232 	if ((map->flags & VM_MAP_INTRSAFE) != 0)
    233 		ipl = IPL_VM;
    234 	else
    235 		ipl = IPL_NONE;
    236 
    237 	pool_init(pp, PAGE_SIZE, 0, 0, PR_NOTOUCH | PR_RECURSIVE, name, pa,
    238 	    ipl);
    239 }
    240 
    241 void
    242 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
    243 {
    244 
    245 	map->flags |= VM_MAP_VACACHE;
    246 	if (size == 0)
    247 		size = KM_VACACHE_SIZE;
    248 	km_vacache_init(map, name, size);
    249 }
    250 
    251 #else /* !defined(PMAP_MAP_POOLPAGE) */
    252 
    253 void
    254 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
    255 {
    256 
    257 	/* nothing */
    258 }
    259 
    260 #endif /* !defined(PMAP_MAP_POOLPAGE) */
    261 
    262 void
    263 uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
    264 {
    265 	struct vm_map_kernel *vmk = vm_map_to_kernel(map);
    266 
    267 	callback_run_roundrobin(&vmk->vmk_reclaim_callback, NULL);
    268 }
    269 
    270 /*
    271  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
    272  * KVM already allocated for text, data, bss, and static data structures).
    273  *
    274  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    275  *    we assume that [vmin -> start] has already been allocated and that
    276  *    "end" is the end.
    277  */
    278 
    279 void
    280 uvm_km_init(vaddr_t start, vaddr_t end)
    281 {
    282 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    283 
    284 	/*
    285 	 * next, init kernel memory objects.
    286 	 */
    287 
    288 	/* kernel_object: for pageable anonymous kernel memory */
    289 	uao_init();
    290 	uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    291 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    292 
    293 	/*
    294 	 * init the map and reserve any space that might already
    295 	 * have been allocated kernel space before installing.
    296 	 */
    297 
    298 	uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
    299 	kernel_map_store.vmk_map.pmap = pmap_kernel();
    300 	if (start != base) {
    301 		int error;
    302 		struct uvm_map_args args;
    303 
    304 		error = uvm_map_prepare(&kernel_map_store.vmk_map,
    305 		    base, start - base,
    306 		    NULL, UVM_UNKNOWN_OFFSET, 0,
    307 		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    308 		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
    309 		if (!error) {
    310 			kernel_first_mapent_store.flags =
    311 			    UVM_MAP_KERNEL | UVM_MAP_FIRST;
    312 			error = uvm_map_enter(&kernel_map_store.vmk_map, &args,
    313 			    &kernel_first_mapent_store);
    314 		}
    315 
    316 		if (error)
    317 			panic(
    318 			    "uvm_km_init: could not reserve space for kernel");
    319 	}
    320 
    321 	/*
    322 	 * install!
    323 	 */
    324 
    325 	kernel_map = &kernel_map_store.vmk_map;
    326 	uvm_km_vacache_init(kernel_map, "kvakernel", 0);
    327 }
    328 
    329 /*
    330  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    331  * is allocated all references to that area of VM must go through it.  this
    332  * allows the locking of VAs in kernel_map to be broken up into regions.
    333  *
    334  * => if `fixed' is true, *vmin specifies where the region described
    335  *      by the submap must start
    336  * => if submap is non NULL we use that as the submap, otherwise we
    337  *	alloc a new map
    338  */
    339 
    340 struct vm_map *
    341 uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
    342     vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
    343     struct vm_map_kernel *submap)
    344 {
    345 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    346 
    347 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    348 
    349 	size = round_page(size);	/* round up to pagesize */
    350 	size += uvm_mapent_overhead(size, flags);
    351 
    352 	/*
    353 	 * first allocate a blank spot in the parent map
    354 	 */
    355 
    356 	if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
    357 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    358 	    UVM_ADV_RANDOM, mapflags)) != 0) {
    359 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
    360 	}
    361 
    362 	/*
    363 	 * set VM bounds (vmin is filled in by uvm_map)
    364 	 */
    365 
    366 	*vmax = *vmin + size;
    367 
    368 	/*
    369 	 * add references to pmap and create or init the submap
    370 	 */
    371 
    372 	pmap_reference(vm_map_pmap(map));
    373 	if (submap == NULL) {
    374 		submap = malloc(sizeof(*submap), M_VMMAP, M_WAITOK);
    375 		if (submap == NULL)
    376 			panic("uvm_km_suballoc: unable to create submap");
    377 	}
    378 	uvm_map_setup_kernel(submap, *vmin, *vmax, flags);
    379 	submap->vmk_map.pmap = vm_map_pmap(map);
    380 
    381 	/*
    382 	 * now let uvm_map_submap plug in it...
    383 	 */
    384 
    385 	if (uvm_map_submap(map, *vmin, *vmax, &submap->vmk_map) != 0)
    386 		panic("uvm_km_suballoc: submap allocation failed");
    387 
    388 	return(&submap->vmk_map);
    389 }
    390 
    391 /*
    392  * uvm_km_pgremove: remove pages from a kernel uvm_object.
    393  *
    394  * => when you unmap a part of anonymous kernel memory you want to toss
    395  *    the pages right away.    (this gets called from uvm_unmap_...).
    396  */
    397 
    398 void
    399 uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
    400 {
    401 	struct uvm_object * const uobj = uvm_kernel_object;
    402 	const voff_t start = startva - vm_map_min(kernel_map);
    403 	const voff_t end = endva - vm_map_min(kernel_map);
    404 	struct vm_page *pg;
    405 	voff_t curoff, nextoff;
    406 	int swpgonlydelta = 0;
    407 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
    408 
    409 	KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
    410 	KASSERT(startva < endva);
    411 	KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
    412 
    413 	mutex_enter(&uobj->vmobjlock);
    414 
    415 	for (curoff = start; curoff < end; curoff = nextoff) {
    416 		nextoff = curoff + PAGE_SIZE;
    417 		pg = uvm_pagelookup(uobj, curoff);
    418 		if (pg != NULL && pg->flags & PG_BUSY) {
    419 			pg->flags |= PG_WANTED;
    420 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
    421 				    "km_pgrm", 0);
    422 			mutex_enter(&uobj->vmobjlock);
    423 			nextoff = curoff;
    424 			continue;
    425 		}
    426 
    427 		/*
    428 		 * free the swap slot, then the page.
    429 		 */
    430 
    431 		if (pg == NULL &&
    432 		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
    433 			swpgonlydelta++;
    434 		}
    435 		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
    436 		if (pg != NULL) {
    437 			mutex_enter(&uvm_pageqlock);
    438 			uvm_pagefree(pg);
    439 			mutex_exit(&uvm_pageqlock);
    440 		}
    441 	}
    442 	mutex_exit(&uobj->vmobjlock);
    443 
    444 	if (swpgonlydelta > 0) {
    445 		mutex_enter(&uvm_swap_data_lock);
    446 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
    447 		uvmexp.swpgonly -= swpgonlydelta;
    448 		mutex_exit(&uvm_swap_data_lock);
    449 	}
    450 }
    451 
    452 
    453 /*
    454  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
    455  *    regions.
    456  *
    457  * => when you unmap a part of anonymous kernel memory you want to toss
    458  *    the pages right away.    (this is called from uvm_unmap_...).
    459  * => none of the pages will ever be busy, and none of them will ever
    460  *    be on the active or inactive queues (because they have no object).
    461  */
    462 
    463 void
    464 uvm_km_pgremove_intrsafe(vaddr_t start, vaddr_t end)
    465 {
    466 	struct vm_page *pg;
    467 	paddr_t pa;
    468 	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
    469 
    470 	KASSERT(VM_MIN_KERNEL_ADDRESS <= start);
    471 	KASSERT(start < end);
    472 	KASSERT(end <= VM_MAX_KERNEL_ADDRESS);
    473 
    474 	for (; start < end; start += PAGE_SIZE) {
    475 		if (!pmap_extract(pmap_kernel(), start, &pa)) {
    476 			continue;
    477 		}
    478 		pg = PHYS_TO_VM_PAGE(pa);
    479 		KASSERT(pg);
    480 		KASSERT(pg->uobject == NULL && pg->uanon == NULL);
    481 		uvm_pagefree(pg);
    482 	}
    483 }
    484 
    485 #if defined(DEBUG)
    486 void
    487 uvm_km_check_empty(vaddr_t start, vaddr_t end, bool intrsafe)
    488 {
    489 	vaddr_t va;
    490 	paddr_t pa;
    491 
    492 	KDASSERT(VM_MIN_KERNEL_ADDRESS <= start);
    493 	KDASSERT(start < end);
    494 	KDASSERT(end <= VM_MAX_KERNEL_ADDRESS);
    495 
    496 	for (va = start; va < end; va += PAGE_SIZE) {
    497 		if (pmap_extract(pmap_kernel(), va, &pa)) {
    498 			panic("uvm_km_check_empty: va %p has pa 0x%llx",
    499 			    (void *)va, (long long)pa);
    500 		}
    501 		if (!intrsafe) {
    502 			const struct vm_page *pg;
    503 
    504 			mutex_enter(&uvm_kernel_object->vmobjlock);
    505 			pg = uvm_pagelookup(uvm_kernel_object,
    506 			    va - vm_map_min(kernel_map));
    507 			mutex_exit(&uvm_kernel_object->vmobjlock);
    508 			if (pg) {
    509 				panic("uvm_km_check_empty: "
    510 				    "has page hashed at %p", (const void *)va);
    511 			}
    512 		}
    513 	}
    514 }
    515 #endif /* defined(DEBUG) */
    516 
    517 /*
    518  * uvm_km_alloc: allocate an area of kernel memory.
    519  *
    520  * => NOTE: we can return 0 even if we can wait if there is not enough
    521  *	free VM space in the map... caller should be prepared to handle
    522  *	this case.
    523  * => we return KVA of memory allocated
    524  */
    525 
    526 vaddr_t
    527 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    528 {
    529 	vaddr_t kva, loopva;
    530 	vaddr_t offset;
    531 	vsize_t loopsize;
    532 	struct vm_page *pg;
    533 	struct uvm_object *obj;
    534 	int pgaflags;
    535 	vm_prot_t prot;
    536 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    537 
    538 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    539 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
    540 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
    541 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
    542 
    543 	/*
    544 	 * setup for call
    545 	 */
    546 
    547 	kva = vm_map_min(map);	/* hint */
    548 	size = round_page(size);
    549 	obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
    550 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
    551 		    map, obj, size, flags);
    552 
    553 	/*
    554 	 * allocate some virtual space
    555 	 */
    556 
    557 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    558 	    align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    559 	    UVM_ADV_RANDOM,
    560 	    (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA))
    561 	    | UVM_FLAG_QUANTUM)) != 0)) {
    562 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    563 		return(0);
    564 	}
    565 
    566 	/*
    567 	 * if all we wanted was VA, return now
    568 	 */
    569 
    570 	if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
    571 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
    572 		return(kva);
    573 	}
    574 
    575 	/*
    576 	 * recover object offset from virtual address
    577 	 */
    578 
    579 	offset = kva - vm_map_min(kernel_map);
    580 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
    581 
    582 	/*
    583 	 * now allocate and map in the memory... note that we are the only ones
    584 	 * whom should ever get a handle on this area of VM.
    585 	 */
    586 
    587 	loopva = kva;
    588 	loopsize = size;
    589 
    590 	pgaflags = UVM_PGA_USERESERVE;
    591 	if (flags & UVM_KMF_ZERO)
    592 		pgaflags |= UVM_PGA_ZERO;
    593 	prot = VM_PROT_READ | VM_PROT_WRITE;
    594 	if (flags & UVM_KMF_EXEC)
    595 		prot |= VM_PROT_EXECUTE;
    596 	while (loopsize) {
    597 		KASSERT(!pmap_extract(pmap_kernel(), loopva, NULL));
    598 
    599 		pg = uvm_pagealloc(NULL, offset, NULL, pgaflags);
    600 
    601 		/*
    602 		 * out of memory?
    603 		 */
    604 
    605 		if (__predict_false(pg == NULL)) {
    606 			if ((flags & UVM_KMF_NOWAIT) ||
    607 			    ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
    608 				/* free everything! */
    609 				uvm_km_free(map, kva, size,
    610 				    flags & UVM_KMF_TYPEMASK);
    611 				return (0);
    612 			} else {
    613 				uvm_wait("km_getwait2");	/* sleep here */
    614 				continue;
    615 			}
    616 		}
    617 
    618 		pg->flags &= ~PG_BUSY;	/* new page */
    619 		UVM_PAGE_OWN(pg, NULL);
    620 
    621 		/*
    622 		 * map it in
    623 		 */
    624 
    625 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), prot);
    626 		loopva += PAGE_SIZE;
    627 		offset += PAGE_SIZE;
    628 		loopsize -= PAGE_SIZE;
    629 	}
    630 
    631        	pmap_update(pmap_kernel());
    632 
    633 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    634 	return(kva);
    635 }
    636 
    637 /*
    638  * uvm_km_free: free an area of kernel memory
    639  */
    640 
    641 void
    642 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
    643 {
    644 
    645 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
    646 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
    647 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
    648 	KASSERT((addr & PAGE_MASK) == 0);
    649 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    650 
    651 	size = round_page(size);
    652 
    653 	if (flags & UVM_KMF_PAGEABLE) {
    654 		uvm_km_pgremove(addr, addr + size);
    655 		pmap_remove(pmap_kernel(), addr, addr + size);
    656 	} else if (flags & UVM_KMF_WIRED) {
    657 		uvm_km_pgremove_intrsafe(addr, addr + size);
    658 		pmap_kremove(addr, size);
    659 	}
    660 
    661 	uvm_unmap1(map, addr, addr + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
    662 }
    663 
    664 /* Sanity; must specify both or none. */
    665 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    666     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    667 #error Must specify MAP and UNMAP together.
    668 #endif
    669 
    670 /*
    671  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
    672  *
    673  * => if the pmap specifies an alternate mapping method, we use it.
    674  */
    675 
    676 /* ARGSUSED */
    677 vaddr_t
    678 uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
    679 {
    680 #if defined(PMAP_MAP_POOLPAGE)
    681 	return uvm_km_alloc_poolpage(map, waitok);
    682 #else
    683 	struct vm_page *pg;
    684 	struct pool *pp = &vm_map_to_kernel(map)->vmk_vacache;
    685 	vaddr_t va;
    686 
    687 	if ((map->flags & VM_MAP_VACACHE) == 0)
    688 		return uvm_km_alloc_poolpage(map, waitok);
    689 
    690 	va = (vaddr_t)pool_get(pp, waitok ? PR_WAITOK : PR_NOWAIT);
    691 	if (va == 0)
    692 		return 0;
    693 	KASSERT(!pmap_extract(pmap_kernel(), va, NULL));
    694 again:
    695 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    696 	if (__predict_false(pg == NULL)) {
    697 		if (waitok) {
    698 			uvm_wait("plpg");
    699 			goto again;
    700 		} else {
    701 			pool_put(pp, (void *)va);
    702 			return 0;
    703 		}
    704 	}
    705 	pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg), VM_PROT_READ|VM_PROT_WRITE);
    706 	pmap_update(pmap_kernel());
    707 
    708 	return va;
    709 #endif /* PMAP_MAP_POOLPAGE */
    710 }
    711 
    712 vaddr_t
    713 uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
    714 {
    715 #if defined(PMAP_MAP_POOLPAGE)
    716 	struct vm_page *pg;
    717 	vaddr_t va;
    718 
    719  again:
    720 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    721 	if (__predict_false(pg == NULL)) {
    722 		if (waitok) {
    723 			uvm_wait("plpg");
    724 			goto again;
    725 		} else
    726 			return (0);
    727 	}
    728 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    729 	if (__predict_false(va == 0))
    730 		uvm_pagefree(pg);
    731 	return (va);
    732 #else
    733 	vaddr_t va;
    734 
    735 	va = uvm_km_alloc(map, PAGE_SIZE, 0,
    736 	    (waitok ? 0 : UVM_KMF_NOWAIT) | UVM_KMF_WIRED);
    737 	return (va);
    738 #endif /* PMAP_MAP_POOLPAGE */
    739 }
    740 
    741 /*
    742  * uvm_km_free_poolpage: free a previously allocated pool page
    743  *
    744  * => if the pmap specifies an alternate unmapping method, we use it.
    745  */
    746 
    747 /* ARGSUSED */
    748 void
    749 uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t addr)
    750 {
    751 #if defined(PMAP_UNMAP_POOLPAGE)
    752 	uvm_km_free_poolpage(map, addr);
    753 #else
    754 	struct pool *pp;
    755 
    756 	if ((map->flags & VM_MAP_VACACHE) == 0) {
    757 		uvm_km_free_poolpage(map, addr);
    758 		return;
    759 	}
    760 
    761 	KASSERT(pmap_extract(pmap_kernel(), addr, NULL));
    762 	uvm_km_pgremove_intrsafe(addr, addr + PAGE_SIZE);
    763 	pmap_kremove(addr, PAGE_SIZE);
    764 #if defined(DEBUG)
    765 	pmap_update(pmap_kernel());
    766 #endif
    767 	KASSERT(!pmap_extract(pmap_kernel(), addr, NULL));
    768 	pp = &vm_map_to_kernel(map)->vmk_vacache;
    769 	pool_put(pp, (void *)addr);
    770 #endif
    771 }
    772 
    773 /* ARGSUSED */
    774 void
    775 uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
    776 {
    777 #if defined(PMAP_UNMAP_POOLPAGE)
    778 	paddr_t pa;
    779 
    780 	pa = PMAP_UNMAP_POOLPAGE(addr);
    781 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    782 #else
    783 	uvm_km_free(map, addr, PAGE_SIZE, UVM_KMF_WIRED);
    784 #endif /* PMAP_UNMAP_POOLPAGE */
    785 }
    786