uvm_km.c revision 1.96 1 /* $NetBSD: uvm_km.c,v 1.96 2007/07/21 20:52:59 ad Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
42 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_km.c: handle kernel memory allocation and management
71 */
72
73 /*
74 * overview of kernel memory management:
75 *
76 * the kernel virtual address space is mapped by "kernel_map." kernel_map
77 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
78 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
79 *
80 * the kernel_map has several "submaps." submaps can only appear in
81 * the kernel_map (user processes can't use them). submaps "take over"
82 * the management of a sub-range of the kernel's address space. submaps
83 * are typically allocated at boot time and are never released. kernel
84 * virtual address space that is mapped by a submap is locked by the
85 * submap's lock -- not the kernel_map's lock.
86 *
87 * thus, the useful feature of submaps is that they allow us to break
88 * up the locking and protection of the kernel address space into smaller
89 * chunks.
90 *
91 * the vm system has several standard kernel submaps, including:
92 * kmem_map => contains only wired kernel memory for the kernel
93 * malloc. *** access to kmem_map must be protected
94 * by splvm() because we are allowed to call malloc()
95 * at interrupt time ***
96 * mb_map => memory for large mbufs, *** protected by splvm ***
97 * pager_map => used to map "buf" structures into kernel space
98 * exec_map => used during exec to handle exec args
99 * etc...
100 *
101 * the kernel allocates its private memory out of special uvm_objects whose
102 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
103 * are "special" and never die). all kernel objects should be thought of
104 * as large, fixed-sized, sparsely populated uvm_objects. each kernel
105 * object is equal to the size of kernel virtual address space (i.e. the
106 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
107 *
108 * note that just because a kernel object spans the entire kernel virutal
109 * address space doesn't mean that it has to be mapped into the entire space.
110 * large chunks of a kernel object's space go unused either because
111 * that area of kernel VM is unmapped, or there is some other type of
112 * object mapped into that range (e.g. a vnode). for submap's kernel
113 * objects, the only part of the object that can ever be populated is the
114 * offsets that are managed by the submap.
115 *
116 * note that the "offset" in a kernel object is always the kernel virtual
117 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
118 * example:
119 * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
120 * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
121 * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
122 * then that means that the page at offset 0x235000 in kernel_object is
123 * mapped at 0xf8235000.
124 *
125 * kernel object have one other special property: when the kernel virtual
126 * memory mapping them is unmapped, the backing memory in the object is
127 * freed right away. this is done with the uvm_km_pgremove() function.
128 * this has to be done because there is no backing store for kernel pages
129 * and no need to save them after they are no longer referenced.
130 */
131
132 #include <sys/cdefs.h>
133 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.96 2007/07/21 20:52:59 ad Exp $");
134
135 #include "opt_uvmhist.h"
136
137 #include <sys/param.h>
138 #include <sys/malloc.h>
139 #include <sys/systm.h>
140 #include <sys/proc.h>
141 #include <sys/pool.h>
142
143 #include <uvm/uvm.h>
144
145 /*
146 * global data structures
147 */
148
149 struct vm_map *kernel_map = NULL;
150
151 /*
152 * local data structues
153 */
154
155 static struct vm_map_kernel kernel_map_store;
156 static struct vm_map_entry kernel_first_mapent_store;
157
158 #if !defined(PMAP_MAP_POOLPAGE)
159
160 /*
161 * kva cache
162 *
163 * XXX maybe it's better to do this at the uvm_map layer.
164 */
165
166 #define KM_VACACHE_SIZE (32 * PAGE_SIZE) /* XXX tune */
167
168 static void *km_vacache_alloc(struct pool *, int);
169 static void km_vacache_free(struct pool *, void *);
170 static void km_vacache_init(struct vm_map *, const char *, size_t);
171
172 /* XXX */
173 #define KM_VACACHE_POOL_TO_MAP(pp) \
174 ((struct vm_map *)((char *)(pp) - \
175 offsetof(struct vm_map_kernel, vmk_vacache)))
176
177 static void *
178 km_vacache_alloc(struct pool *pp, int flags)
179 {
180 vaddr_t va;
181 size_t size;
182 struct vm_map *map;
183 size = pp->pr_alloc->pa_pagesz;
184
185 map = KM_VACACHE_POOL_TO_MAP(pp);
186
187 va = vm_map_min(map); /* hint */
188 if (uvm_map(map, &va, size, NULL, UVM_UNKNOWN_OFFSET, size,
189 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
190 UVM_ADV_RANDOM, UVM_FLAG_QUANTUM |
191 ((flags & PR_WAITOK) ? UVM_FLAG_WAITVA :
192 UVM_FLAG_TRYLOCK | UVM_FLAG_NOWAIT))))
193 return NULL;
194
195 return (void *)va;
196 }
197
198 static void
199 km_vacache_free(struct pool *pp, void *v)
200 {
201 vaddr_t va = (vaddr_t)v;
202 size_t size = pp->pr_alloc->pa_pagesz;
203 struct vm_map *map;
204
205 map = KM_VACACHE_POOL_TO_MAP(pp);
206 uvm_unmap1(map, va, va + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
207 }
208
209 /*
210 * km_vacache_init: initialize kva cache.
211 */
212
213 static void
214 km_vacache_init(struct vm_map *map, const char *name, size_t size)
215 {
216 struct vm_map_kernel *vmk;
217 struct pool *pp;
218 struct pool_allocator *pa;
219 int ipl;
220
221 KASSERT(VM_MAP_IS_KERNEL(map));
222 KASSERT(size < (vm_map_max(map) - vm_map_min(map)) / 2); /* sanity */
223
224 vmk = vm_map_to_kernel(map);
225 pp = &vmk->vmk_vacache;
226 pa = &vmk->vmk_vacache_allocator;
227 memset(pa, 0, sizeof(*pa));
228 pa->pa_alloc = km_vacache_alloc;
229 pa->pa_free = km_vacache_free;
230 pa->pa_pagesz = (unsigned int)size;
231 pa->pa_backingmap = map;
232 pa->pa_backingmapptr = NULL;
233
234 if ((map->flags & VM_MAP_INTRSAFE) != 0)
235 ipl = IPL_VM;
236 else
237 ipl = IPL_NONE;
238
239 pool_init(pp, PAGE_SIZE, 0, 0, PR_NOTOUCH | PR_RECURSIVE, name, pa,
240 ipl);
241 }
242
243 void
244 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
245 {
246
247 map->flags |= VM_MAP_VACACHE;
248 if (size == 0)
249 size = KM_VACACHE_SIZE;
250 km_vacache_init(map, name, size);
251 }
252
253 #else /* !defined(PMAP_MAP_POOLPAGE) */
254
255 void
256 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
257 {
258
259 /* nothing */
260 }
261
262 #endif /* !defined(PMAP_MAP_POOLPAGE) */
263
264 void
265 uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
266 {
267 struct vm_map_kernel *vmk = vm_map_to_kernel(map);
268 const bool intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
269 int s = 0xdeadbeaf; /* XXX: gcc */
270
271 if (intrsafe) {
272 s = splvm();
273 }
274 callback_run_roundrobin(&vmk->vmk_reclaim_callback, NULL);
275 if (intrsafe) {
276 splx(s);
277 }
278 }
279
280 /*
281 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
282 * KVM already allocated for text, data, bss, and static data structures).
283 *
284 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
285 * we assume that [vmin -> start] has already been allocated and that
286 * "end" is the end.
287 */
288
289 void
290 uvm_km_init(vaddr_t start, vaddr_t end)
291 {
292 vaddr_t base = VM_MIN_KERNEL_ADDRESS;
293
294 /*
295 * next, init kernel memory objects.
296 */
297
298 /* kernel_object: for pageable anonymous kernel memory */
299 uao_init();
300 uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
301 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
302
303 /*
304 * init the map and reserve any space that might already
305 * have been allocated kernel space before installing.
306 */
307
308 uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
309 kernel_map_store.vmk_map.pmap = pmap_kernel();
310 if (start != base) {
311 int error;
312 struct uvm_map_args args;
313
314 error = uvm_map_prepare(&kernel_map_store.vmk_map,
315 base, start - base,
316 NULL, UVM_UNKNOWN_OFFSET, 0,
317 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
318 UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
319 if (!error) {
320 kernel_first_mapent_store.flags =
321 UVM_MAP_KERNEL | UVM_MAP_FIRST;
322 error = uvm_map_enter(&kernel_map_store.vmk_map, &args,
323 &kernel_first_mapent_store);
324 }
325
326 if (error)
327 panic(
328 "uvm_km_init: could not reserve space for kernel");
329 }
330
331 /*
332 * install!
333 */
334
335 kernel_map = &kernel_map_store.vmk_map;
336 uvm_km_vacache_init(kernel_map, "kvakernel", 0);
337 }
338
339 /*
340 * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
341 * is allocated all references to that area of VM must go through it. this
342 * allows the locking of VAs in kernel_map to be broken up into regions.
343 *
344 * => if `fixed' is true, *vmin specifies where the region described
345 * by the submap must start
346 * => if submap is non NULL we use that as the submap, otherwise we
347 * alloc a new map
348 */
349
350 struct vm_map *
351 uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
352 vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
353 struct vm_map_kernel *submap)
354 {
355 int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
356
357 KASSERT(vm_map_pmap(map) == pmap_kernel());
358
359 size = round_page(size); /* round up to pagesize */
360 size += uvm_mapent_overhead(size, flags);
361
362 /*
363 * first allocate a blank spot in the parent map
364 */
365
366 if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
367 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
368 UVM_ADV_RANDOM, mapflags)) != 0) {
369 panic("uvm_km_suballoc: unable to allocate space in parent map");
370 }
371
372 /*
373 * set VM bounds (vmin is filled in by uvm_map)
374 */
375
376 *vmax = *vmin + size;
377
378 /*
379 * add references to pmap and create or init the submap
380 */
381
382 pmap_reference(vm_map_pmap(map));
383 if (submap == NULL) {
384 submap = malloc(sizeof(*submap), M_VMMAP, M_WAITOK);
385 if (submap == NULL)
386 panic("uvm_km_suballoc: unable to create submap");
387 }
388 uvm_map_setup_kernel(submap, *vmin, *vmax, flags);
389 submap->vmk_map.pmap = vm_map_pmap(map);
390
391 /*
392 * now let uvm_map_submap plug in it...
393 */
394
395 if (uvm_map_submap(map, *vmin, *vmax, &submap->vmk_map) != 0)
396 panic("uvm_km_suballoc: submap allocation failed");
397
398 return(&submap->vmk_map);
399 }
400
401 /*
402 * uvm_km_pgremove: remove pages from a kernel uvm_object.
403 *
404 * => when you unmap a part of anonymous kernel memory you want to toss
405 * the pages right away. (this gets called from uvm_unmap_...).
406 */
407
408 void
409 uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
410 {
411 struct uvm_object * const uobj = uvm_kernel_object;
412 const voff_t start = startva - vm_map_min(kernel_map);
413 const voff_t end = endva - vm_map_min(kernel_map);
414 struct vm_page *pg;
415 voff_t curoff, nextoff;
416 int swpgonlydelta = 0;
417 UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
418
419 KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
420 KASSERT(startva < endva);
421 KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
422
423 simple_lock(&uobj->vmobjlock);
424
425 for (curoff = start; curoff < end; curoff = nextoff) {
426 nextoff = curoff + PAGE_SIZE;
427 pg = uvm_pagelookup(uobj, curoff);
428 if (pg != NULL && pg->flags & PG_BUSY) {
429 pg->flags |= PG_WANTED;
430 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
431 "km_pgrm", 0);
432 simple_lock(&uobj->vmobjlock);
433 nextoff = curoff;
434 continue;
435 }
436
437 /*
438 * free the swap slot, then the page.
439 */
440
441 if (pg == NULL &&
442 uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
443 swpgonlydelta++;
444 }
445 uao_dropswap(uobj, curoff >> PAGE_SHIFT);
446 if (pg != NULL) {
447 uvm_lock_pageq();
448 uvm_pagefree(pg);
449 uvm_unlock_pageq();
450 }
451 }
452 simple_unlock(&uobj->vmobjlock);
453
454 if (swpgonlydelta > 0) {
455 mutex_enter(&uvm_swap_data_lock);
456 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
457 uvmexp.swpgonly -= swpgonlydelta;
458 mutex_exit(&uvm_swap_data_lock);
459 }
460 }
461
462
463 /*
464 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
465 * regions.
466 *
467 * => when you unmap a part of anonymous kernel memory you want to toss
468 * the pages right away. (this is called from uvm_unmap_...).
469 * => none of the pages will ever be busy, and none of them will ever
470 * be on the active or inactive queues (because they have no object).
471 */
472
473 void
474 uvm_km_pgremove_intrsafe(vaddr_t start, vaddr_t end)
475 {
476 struct vm_page *pg;
477 paddr_t pa;
478 UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
479
480 KASSERT(VM_MIN_KERNEL_ADDRESS <= start);
481 KASSERT(start < end);
482 KASSERT(end <= VM_MAX_KERNEL_ADDRESS);
483
484 for (; start < end; start += PAGE_SIZE) {
485 if (!pmap_extract(pmap_kernel(), start, &pa)) {
486 continue;
487 }
488 pg = PHYS_TO_VM_PAGE(pa);
489 KASSERT(pg);
490 KASSERT(pg->uobject == NULL && pg->uanon == NULL);
491 uvm_pagefree(pg);
492 }
493 }
494
495 #if defined(DEBUG)
496 void
497 uvm_km_check_empty(vaddr_t start, vaddr_t end, bool intrsafe)
498 {
499 vaddr_t va;
500 paddr_t pa;
501
502 KDASSERT(VM_MIN_KERNEL_ADDRESS <= start);
503 KDASSERT(start < end);
504 KDASSERT(end <= VM_MAX_KERNEL_ADDRESS);
505
506 for (va = start; va < end; va += PAGE_SIZE) {
507 if (pmap_extract(pmap_kernel(), va, &pa)) {
508 panic("uvm_km_check_empty: va %p has pa 0x%llx",
509 (void *)va, (long long)pa);
510 }
511 if (!intrsafe) {
512 const struct vm_page *pg;
513
514 simple_lock(&uvm_kernel_object->vmobjlock);
515 pg = uvm_pagelookup(uvm_kernel_object,
516 va - vm_map_min(kernel_map));
517 simple_unlock(&uvm_kernel_object->vmobjlock);
518 if (pg) {
519 panic("uvm_km_check_empty: "
520 "has page hashed at %p", (const void *)va);
521 }
522 }
523 }
524 }
525 #endif /* defined(DEBUG) */
526
527 /*
528 * uvm_km_alloc: allocate an area of kernel memory.
529 *
530 * => NOTE: we can return 0 even if we can wait if there is not enough
531 * free VM space in the map... caller should be prepared to handle
532 * this case.
533 * => we return KVA of memory allocated
534 */
535
536 vaddr_t
537 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
538 {
539 vaddr_t kva, loopva;
540 vaddr_t offset;
541 vsize_t loopsize;
542 struct vm_page *pg;
543 struct uvm_object *obj;
544 int pgaflags;
545 vm_prot_t prot;
546 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
547
548 KASSERT(vm_map_pmap(map) == pmap_kernel());
549 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
550 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
551 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
552
553 /*
554 * setup for call
555 */
556
557 kva = vm_map_min(map); /* hint */
558 size = round_page(size);
559 obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
560 UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
561 map, obj, size, flags);
562
563 /*
564 * allocate some virtual space
565 */
566
567 if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
568 align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
569 UVM_ADV_RANDOM,
570 (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA))
571 | UVM_FLAG_QUANTUM)) != 0)) {
572 UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
573 return(0);
574 }
575
576 /*
577 * if all we wanted was VA, return now
578 */
579
580 if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
581 UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
582 return(kva);
583 }
584
585 /*
586 * recover object offset from virtual address
587 */
588
589 offset = kva - vm_map_min(kernel_map);
590 UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
591
592 /*
593 * now allocate and map in the memory... note that we are the only ones
594 * whom should ever get a handle on this area of VM.
595 */
596
597 loopva = kva;
598 loopsize = size;
599
600 pgaflags = UVM_PGA_USERESERVE;
601 if (flags & UVM_KMF_ZERO)
602 pgaflags |= UVM_PGA_ZERO;
603 prot = VM_PROT_READ | VM_PROT_WRITE;
604 if (flags & UVM_KMF_EXEC)
605 prot |= VM_PROT_EXECUTE;
606 while (loopsize) {
607 KASSERT(!pmap_extract(pmap_kernel(), loopva, NULL));
608
609 pg = uvm_pagealloc(NULL, offset, NULL, pgaflags);
610
611 /*
612 * out of memory?
613 */
614
615 if (__predict_false(pg == NULL)) {
616 if ((flags & UVM_KMF_NOWAIT) ||
617 ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
618 /* free everything! */
619 uvm_km_free(map, kva, size,
620 flags & UVM_KMF_TYPEMASK);
621 return (0);
622 } else {
623 uvm_wait("km_getwait2"); /* sleep here */
624 continue;
625 }
626 }
627
628 pg->flags &= ~PG_BUSY; /* new page */
629 UVM_PAGE_OWN(pg, NULL);
630
631 /*
632 * map it in
633 */
634
635 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), prot);
636 loopva += PAGE_SIZE;
637 offset += PAGE_SIZE;
638 loopsize -= PAGE_SIZE;
639 }
640
641 pmap_update(pmap_kernel());
642
643 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
644 return(kva);
645 }
646
647 /*
648 * uvm_km_free: free an area of kernel memory
649 */
650
651 void
652 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
653 {
654
655 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
656 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
657 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
658 KASSERT((addr & PAGE_MASK) == 0);
659 KASSERT(vm_map_pmap(map) == pmap_kernel());
660
661 size = round_page(size);
662
663 if (flags & UVM_KMF_PAGEABLE) {
664 uvm_km_pgremove(addr, addr + size);
665 pmap_remove(pmap_kernel(), addr, addr + size);
666 } else if (flags & UVM_KMF_WIRED) {
667 uvm_km_pgremove_intrsafe(addr, addr + size);
668 pmap_kremove(addr, size);
669 }
670
671 uvm_unmap1(map, addr, addr + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
672 }
673
674 /* Sanity; must specify both or none. */
675 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
676 (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
677 #error Must specify MAP and UNMAP together.
678 #endif
679
680 /*
681 * uvm_km_alloc_poolpage: allocate a page for the pool allocator
682 *
683 * => if the pmap specifies an alternate mapping method, we use it.
684 */
685
686 /* ARGSUSED */
687 vaddr_t
688 uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
689 {
690 #if defined(PMAP_MAP_POOLPAGE)
691 return uvm_km_alloc_poolpage(map, waitok);
692 #else
693 struct vm_page *pg;
694 struct pool *pp = &vm_map_to_kernel(map)->vmk_vacache;
695 vaddr_t va;
696 int s = 0xdeadbeaf; /* XXX: gcc */
697 const bool intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
698
699 if ((map->flags & VM_MAP_VACACHE) == 0)
700 return uvm_km_alloc_poolpage(map, waitok);
701
702 if (intrsafe)
703 s = splvm();
704 va = (vaddr_t)pool_get(pp, waitok ? PR_WAITOK : PR_NOWAIT);
705 if (intrsafe)
706 splx(s);
707 if (va == 0)
708 return 0;
709 KASSERT(!pmap_extract(pmap_kernel(), va, NULL));
710 again:
711 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
712 if (__predict_false(pg == NULL)) {
713 if (waitok) {
714 uvm_wait("plpg");
715 goto again;
716 } else {
717 if (intrsafe)
718 s = splvm();
719 pool_put(pp, (void *)va);
720 if (intrsafe)
721 splx(s);
722 return 0;
723 }
724 }
725 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg), VM_PROT_READ|VM_PROT_WRITE);
726 pmap_update(pmap_kernel());
727
728 return va;
729 #endif /* PMAP_MAP_POOLPAGE */
730 }
731
732 vaddr_t
733 uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
734 {
735 #if defined(PMAP_MAP_POOLPAGE)
736 struct vm_page *pg;
737 vaddr_t va;
738
739 again:
740 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
741 if (__predict_false(pg == NULL)) {
742 if (waitok) {
743 uvm_wait("plpg");
744 goto again;
745 } else
746 return (0);
747 }
748 va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
749 if (__predict_false(va == 0))
750 uvm_pagefree(pg);
751 return (va);
752 #else
753 vaddr_t va;
754 int s = 0xdeadbeaf; /* XXX: gcc */
755 const bool intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
756
757 if (intrsafe)
758 s = splvm();
759 va = uvm_km_alloc(map, PAGE_SIZE, 0,
760 (waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) | UVM_KMF_WIRED);
761 if (intrsafe)
762 splx(s);
763 return (va);
764 #endif /* PMAP_MAP_POOLPAGE */
765 }
766
767 /*
768 * uvm_km_free_poolpage: free a previously allocated pool page
769 *
770 * => if the pmap specifies an alternate unmapping method, we use it.
771 */
772
773 /* ARGSUSED */
774 void
775 uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t addr)
776 {
777 #if defined(PMAP_UNMAP_POOLPAGE)
778 uvm_km_free_poolpage(map, addr);
779 #else
780 struct pool *pp;
781 int s = 0xdeadbeaf; /* XXX: gcc */
782 const bool intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
783
784 if ((map->flags & VM_MAP_VACACHE) == 0) {
785 uvm_km_free_poolpage(map, addr);
786 return;
787 }
788
789 KASSERT(pmap_extract(pmap_kernel(), addr, NULL));
790 uvm_km_pgremove_intrsafe(addr, addr + PAGE_SIZE);
791 pmap_kremove(addr, PAGE_SIZE);
792 #if defined(DEBUG)
793 pmap_update(pmap_kernel());
794 #endif
795 KASSERT(!pmap_extract(pmap_kernel(), addr, NULL));
796 pp = &vm_map_to_kernel(map)->vmk_vacache;
797 if (intrsafe)
798 s = splvm();
799 pool_put(pp, (void *)addr);
800 if (intrsafe)
801 splx(s);
802 #endif
803 }
804
805 /* ARGSUSED */
806 void
807 uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
808 {
809 #if defined(PMAP_UNMAP_POOLPAGE)
810 paddr_t pa;
811
812 pa = PMAP_UNMAP_POOLPAGE(addr);
813 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
814 #else
815 int s = 0xdeadbeaf; /* XXX: gcc */
816 const bool intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
817
818 if (intrsafe)
819 s = splvm();
820 uvm_km_free(map, addr, PAGE_SIZE, UVM_KMF_WIRED);
821 if (intrsafe)
822 splx(s);
823 #endif /* PMAP_UNMAP_POOLPAGE */
824 }
825