uvm_km.c revision 1.96.16.1 1 /* $NetBSD: uvm_km.c,v 1.96.16.1 2007/12/10 12:56:13 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
42 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_km.c: handle kernel memory allocation and management
71 */
72
73 /*
74 * overview of kernel memory management:
75 *
76 * the kernel virtual address space is mapped by "kernel_map." kernel_map
77 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
78 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
79 *
80 * the kernel_map has several "submaps." submaps can only appear in
81 * the kernel_map (user processes can't use them). submaps "take over"
82 * the management of a sub-range of the kernel's address space. submaps
83 * are typically allocated at boot time and are never released. kernel
84 * virtual address space that is mapped by a submap is locked by the
85 * submap's lock -- not the kernel_map's lock.
86 *
87 * thus, the useful feature of submaps is that they allow us to break
88 * up the locking and protection of the kernel address space into smaller
89 * chunks.
90 *
91 * the vm system has several standard kernel submaps, including:
92 * kmem_map => contains only wired kernel memory for the kernel
93 * malloc. *** access to kmem_map must be protected
94 * by splvm() because we are allowed to call malloc()
95 * at interrupt time ***
96 * mb_map => memory for large mbufs, *** protected by splvm ***
97 * pager_map => used to map "buf" structures into kernel space
98 * exec_map => used during exec to handle exec args
99 * etc...
100 *
101 * the kernel allocates its private memory out of special uvm_objects whose
102 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
103 * are "special" and never die). all kernel objects should be thought of
104 * as large, fixed-sized, sparsely populated uvm_objects. each kernel
105 * object is equal to the size of kernel virtual address space (i.e. the
106 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
107 *
108 * note that just because a kernel object spans the entire kernel virutal
109 * address space doesn't mean that it has to be mapped into the entire space.
110 * large chunks of a kernel object's space go unused either because
111 * that area of kernel VM is unmapped, or there is some other type of
112 * object mapped into that range (e.g. a vnode). for submap's kernel
113 * objects, the only part of the object that can ever be populated is the
114 * offsets that are managed by the submap.
115 *
116 * note that the "offset" in a kernel object is always the kernel virtual
117 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
118 * example:
119 * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
120 * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
121 * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
122 * then that means that the page at offset 0x235000 in kernel_object is
123 * mapped at 0xf8235000.
124 *
125 * kernel object have one other special property: when the kernel virtual
126 * memory mapping them is unmapped, the backing memory in the object is
127 * freed right away. this is done with the uvm_km_pgremove() function.
128 * this has to be done because there is no backing store for kernel pages
129 * and no need to save them after they are no longer referenced.
130 */
131
132 #include <sys/cdefs.h>
133 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.96.16.1 2007/12/10 12:56:13 yamt Exp $");
134
135 #include "opt_uvmhist.h"
136
137 #include <sys/param.h>
138 #include <sys/malloc.h>
139 #include <sys/systm.h>
140 #include <sys/proc.h>
141 #include <sys/pool.h>
142 #include <sys/vmem.h>
143 #include <sys/kmem.h>
144
145 #include <uvm/uvm.h>
146
147 /*
148 * global data structures
149 */
150
151 vmem_t *kernel_va_arena;
152 struct vm_map *kernel_map = NULL;
153
154 /*
155 * local data structues
156 */
157
158 static struct vm_map_kernel kernel_map_store;
159 static struct vm_map_entry kernel_first_mapent_store;
160
161 #if !defined(PMAP_MAP_POOLPAGE)
162
163 /*
164 * kva cache
165 *
166 * XXX maybe it's better to do this at the uvm_map layer.
167 */
168
169 #define KM_VACACHE_SIZE (32 * PAGE_SIZE) /* XXX tune */
170
171 static void *km_vacache_alloc(struct pool *, int);
172 static void km_vacache_free(struct pool *, void *);
173 static void km_vacache_init(struct vm_map *, const char *, size_t);
174
175 /* XXX */
176 #define KM_VACACHE_POOL_TO_MAP(pp) \
177 ((struct vm_map *)((char *)(pp) - \
178 offsetof(struct vm_map_kernel, vmk_vacache)))
179
180 static void *
181 km_vacache_alloc(struct pool *pp, int flags)
182 {
183 vaddr_t va;
184 size_t size;
185 struct vm_map *map;
186 size = pp->pr_alloc->pa_pagesz;
187
188 map = KM_VACACHE_POOL_TO_MAP(pp);
189
190 va = vm_map_min(map); /* hint */
191 if (uvm_map(map, &va, size, NULL, UVM_UNKNOWN_OFFSET, size,
192 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
193 UVM_ADV_RANDOM, UVM_FLAG_QUANTUM |
194 ((flags & PR_WAITOK) ? UVM_FLAG_WAITVA :
195 UVM_FLAG_TRYLOCK | UVM_FLAG_NOWAIT))))
196 return NULL;
197
198 return (void *)va;
199 }
200
201 static void
202 km_vacache_free(struct pool *pp, void *v)
203 {
204 vaddr_t va = (vaddr_t)v;
205 size_t size = pp->pr_alloc->pa_pagesz;
206 struct vm_map *map;
207
208 map = KM_VACACHE_POOL_TO_MAP(pp);
209 uvm_unmap1(map, va, va + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
210 }
211
212 /*
213 * km_vacache_init: initialize kva cache.
214 */
215
216 static void
217 km_vacache_init(struct vm_map *map, const char *name, size_t size)
218 {
219 struct vm_map_kernel *vmk;
220 struct pool *pp;
221 struct pool_allocator *pa;
222 int ipl;
223
224 KASSERT(VM_MAP_IS_KERNEL(map));
225 KASSERT(size < (vm_map_max(map) - vm_map_min(map)) / 2); /* sanity */
226
227 vmk = vm_map_to_kernel(map);
228 pp = &vmk->vmk_vacache;
229 pa = &vmk->vmk_vacache_allocator;
230 memset(pa, 0, sizeof(*pa));
231 pa->pa_alloc = km_vacache_alloc;
232 pa->pa_free = km_vacache_free;
233 pa->pa_pagesz = (unsigned int)size;
234 pa->pa_backingmap = map;
235 pa->pa_backingmapptr = NULL;
236
237 if ((map->flags & VM_MAP_INTRSAFE) != 0)
238 ipl = IPL_VM;
239 else
240 ipl = IPL_NONE;
241
242 pool_init(pp, PAGE_SIZE, 0, 0, PR_NOTOUCH | PR_RECURSIVE, name, pa,
243 ipl);
244 }
245
246 void
247 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
248 {
249
250 map->flags |= VM_MAP_VACACHE;
251 if (size == 0)
252 size = KM_VACACHE_SIZE;
253 km_vacache_init(map, name, size);
254 }
255
256 #else /* !defined(PMAP_MAP_POOLPAGE) */
257
258 void
259 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
260 {
261
262 /* nothing */
263 }
264
265 #endif /* !defined(PMAP_MAP_POOLPAGE) */
266
267 void
268 uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
269 {
270 struct vm_map_kernel *vmk = vm_map_to_kernel(map);
271 const bool intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
272 int s = 0xdeadbeaf; /* XXX: gcc */
273
274 if (intrsafe) {
275 s = splvm();
276 }
277 callback_run_roundrobin(&vmk->vmk_reclaim_callback, NULL);
278 if (intrsafe) {
279 splx(s);
280 }
281 }
282
283 /*
284 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
285 * KVM already allocated for text, data, bss, and static data structures).
286 *
287 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
288 * we assume that [vmin -> start] has already been allocated and that
289 * "end" is the end.
290 */
291
292 void
293 uvm_km_init(vaddr_t start, vaddr_t end)
294 {
295 vaddr_t base = VM_MIN_KERNEL_ADDRESS;
296 kernel_va_arena = vmem_create("kernelva",
297 start, end - start, PAGE_SIZE,
298 NULL, NULL, NULL, 0, VM_NOSLEEP|VMC_KVA, IPL_VM);
299 if (kernel_va_arena == NULL) {
300 panic("failed to create kernel_va_arena");
301 }
302
303 /*
304 * next, init kernel memory objects.
305 */
306
307 /* kernel_object: for pageable anonymous kernel memory */
308 uao_init();
309 uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
310 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
311
312 /*
313 * init the map and reserve any space that might already
314 * have been allocated kernel space before installing.
315 */
316
317 uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
318 kernel_map_store.vmk_map.pmap = pmap_kernel();
319 if (start != base) {
320 int error;
321 struct uvm_map_args args;
322
323 error = uvm_map_prepare(&kernel_map_store.vmk_map,
324 base, start - base,
325 NULL, UVM_UNKNOWN_OFFSET, 0,
326 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
327 UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
328 if (!error) {
329 kernel_first_mapent_store.flags =
330 UVM_MAP_KERNEL | UVM_MAP_FIRST;
331 error = uvm_map_enter(&kernel_map_store.vmk_map, &args,
332 &kernel_first_mapent_store);
333 }
334
335 if (error)
336 panic(
337 "uvm_km_init: could not reserve space for kernel");
338 }
339
340 /*
341 * install!
342 */
343
344 kernel_map = &kernel_map_store.vmk_map;
345 uvm_km_vacache_init(kernel_map, "kvakernel", 0);
346
347 printf("%s aa\n", __func__);
348 kmem_init();
349 printf("%s bb\n", __func__);
350 }
351
352 /*
353 * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
354 * is allocated all references to that area of VM must go through it. this
355 * allows the locking of VAs in kernel_map to be broken up into regions.
356 *
357 * => if `fixed' is true, *vmin specifies where the region described
358 * by the submap must start
359 * => if submap is non NULL we use that as the submap, otherwise we
360 * alloc a new map
361 */
362
363 struct vm_map *
364 uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
365 vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
366 struct vm_map_kernel *submap)
367 {
368 int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
369
370 KASSERT(vm_map_pmap(map) == pmap_kernel());
371
372 size = round_page(size); /* round up to pagesize */
373 size += uvm_mapent_overhead(size, flags);
374
375 /*
376 * first allocate a blank spot in the parent map
377 */
378
379 if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
380 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
381 UVM_ADV_RANDOM, mapflags)) != 0) {
382 panic("uvm_km_suballoc: unable to allocate space in parent map");
383 }
384
385 /*
386 * set VM bounds (vmin is filled in by uvm_map)
387 */
388
389 *vmax = *vmin + size;
390
391 /*
392 * add references to pmap and create or init the submap
393 */
394
395 pmap_reference(vm_map_pmap(map));
396 if (submap == NULL) {
397 submap = kmem_alloc(sizeof(*submap), KM_SLEEP);
398 if (submap == NULL)
399 panic("uvm_km_suballoc: unable to create submap");
400 }
401 uvm_map_setup_kernel(submap, *vmin, *vmax, flags);
402 submap->vmk_map.pmap = vm_map_pmap(map);
403
404 /*
405 * now let uvm_map_submap plug in it...
406 */
407
408 if (uvm_map_submap(map, *vmin, *vmax, &submap->vmk_map) != 0)
409 panic("uvm_km_suballoc: submap allocation failed");
410
411 return(&submap->vmk_map);
412 }
413
414 /*
415 * uvm_km_pgremove: remove pages from a kernel uvm_object.
416 *
417 * => when you unmap a part of anonymous kernel memory you want to toss
418 * the pages right away. (this gets called from uvm_unmap_...).
419 */
420
421 void
422 uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
423 {
424 struct uvm_object * const uobj = uvm_kernel_object;
425 const voff_t start = startva - vm_map_min(kernel_map);
426 const voff_t end = endva - vm_map_min(kernel_map);
427 struct vm_page *pg;
428 voff_t curoff, nextoff;
429 int swpgonlydelta = 0;
430 UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
431
432 KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
433 KASSERT(startva < endva);
434 KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
435
436 simple_lock(&uobj->vmobjlock);
437
438 for (curoff = start; curoff < end; curoff = nextoff) {
439 nextoff = curoff + PAGE_SIZE;
440 pg = uvm_pagelookup(uobj, curoff);
441 if (pg != NULL && pg->flags & PG_BUSY) {
442 pg->flags |= PG_WANTED;
443 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
444 "km_pgrm", 0);
445 simple_lock(&uobj->vmobjlock);
446 nextoff = curoff;
447 continue;
448 }
449
450 /*
451 * free the swap slot, then the page.
452 */
453
454 if (pg == NULL &&
455 uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
456 swpgonlydelta++;
457 }
458 uao_dropswap(uobj, curoff >> PAGE_SHIFT);
459 if (pg != NULL) {
460 uvm_lock_pageq();
461 uvm_pagefree(pg);
462 uvm_unlock_pageq();
463 }
464 }
465 simple_unlock(&uobj->vmobjlock);
466
467 if (swpgonlydelta > 0) {
468 mutex_enter(&uvm_swap_data_lock);
469 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
470 uvmexp.swpgonly -= swpgonlydelta;
471 mutex_exit(&uvm_swap_data_lock);
472 }
473 }
474
475
476 /*
477 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
478 * regions.
479 *
480 * => when you unmap a part of anonymous kernel memory you want to toss
481 * the pages right away. (this is called from uvm_unmap_...).
482 * => none of the pages will ever be busy, and none of them will ever
483 * be on the active or inactive queues (because they have no object).
484 */
485
486 void
487 uvm_km_pgremove_intrsafe(vaddr_t start, vaddr_t end)
488 {
489 struct vm_page *pg;
490 paddr_t pa;
491 UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
492
493 KASSERT(VM_MIN_KERNEL_ADDRESS <= start);
494 KASSERT(start < end);
495 KASSERT(end <= VM_MAX_KERNEL_ADDRESS);
496
497 for (; start < end; start += PAGE_SIZE) {
498 if (!pmap_extract(pmap_kernel(), start, &pa)) {
499 continue;
500 }
501 pg = PHYS_TO_VM_PAGE(pa);
502 KASSERT(pg);
503 KASSERT(pg->uobject == NULL && pg->uanon == NULL);
504 uvm_pagefree(pg);
505 }
506 }
507
508 #if defined(DEBUG)
509 void
510 uvm_km_check_empty(vaddr_t start, vaddr_t end, bool intrsafe)
511 {
512 vaddr_t va;
513 paddr_t pa;
514
515 KDASSERT(VM_MIN_KERNEL_ADDRESS <= start);
516 KDASSERT(start < end);
517 KDASSERT(end <= VM_MAX_KERNEL_ADDRESS);
518
519 for (va = start; va < end; va += PAGE_SIZE) {
520 if (pmap_extract(pmap_kernel(), va, &pa)) {
521 panic("uvm_km_check_empty: va %p has pa 0x%llx",
522 (void *)va, (long long)pa);
523 }
524 if (!intrsafe) {
525 const struct vm_page *pg;
526
527 simple_lock(&uvm_kernel_object->vmobjlock);
528 pg = uvm_pagelookup(uvm_kernel_object,
529 va - vm_map_min(kernel_map));
530 simple_unlock(&uvm_kernel_object->vmobjlock);
531 if (pg) {
532 panic("uvm_km_check_empty: "
533 "has page hashed at %p", (const void *)va);
534 }
535 }
536 }
537 }
538 #endif /* defined(DEBUG) */
539
540 /*
541 * uvm_km_alloc: allocate an area of kernel memory.
542 *
543 * => NOTE: we can return 0 even if we can wait if there is not enough
544 * free VM space in the map... caller should be prepared to handle
545 * this case.
546 * => we return KVA of memory allocated
547 */
548
549 vaddr_t
550 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
551 {
552 vaddr_t kva, loopva;
553 vaddr_t offset;
554 vsize_t loopsize;
555 struct vm_page *pg;
556 struct uvm_object *obj;
557 int pgaflags;
558 vm_prot_t prot;
559 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
560
561 if (map == NULL) { /* XXX kmem_map */
562 map = kernel_map;
563 }
564 KASSERT(vm_map_pmap(map) == pmap_kernel());
565 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
566 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
567 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
568
569 /*
570 * setup for call
571 */
572
573 size = round_page(size);
574 obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
575 UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
576 map, obj, size, flags);
577
578 /*
579 * allocate some virtual space
580 */
581
582 if ((flags & UVM_KMF_PAGEABLE) != 0) {
583 kva = vm_map_min(map); /* hint */
584 if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
585 align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
586 UVM_ADV_RANDOM,
587 (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA))
588 | UVM_FLAG_QUANTUM)) != 0)) {
589 UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
590 return(0);
591 }
592 } else {
593 kva = (vaddr_t)vmem_xalloc(kernel_va_arena, size,
594 align, 0, 0, 0, 0,
595 ((flags & UVM_KMF_NOWAIT) ? VM_NOSLEEP : VM_SLEEP)
596 | VM_INSTANTFIT);
597 if (kva == 0) {
598 return 0;
599 }
600 }
601
602 /*
603 * if all we wanted was VA, return now
604 */
605
606 if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
607 UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
608 return(kva);
609 }
610
611 /*
612 * recover object offset from virtual address
613 */
614
615 offset = kva - vm_map_min(kernel_map);
616 UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
617
618 /*
619 * now allocate and map in the memory... note that we are the only ones
620 * whom should ever get a handle on this area of VM.
621 */
622
623 loopva = kva;
624 loopsize = size;
625
626 pgaflags = UVM_PGA_USERESERVE;
627 if (flags & UVM_KMF_ZERO)
628 pgaflags |= UVM_PGA_ZERO;
629 prot = VM_PROT_READ | VM_PROT_WRITE;
630 if (flags & UVM_KMF_EXEC)
631 prot |= VM_PROT_EXECUTE;
632 while (loopsize) {
633 KASSERT(!pmap_extract(pmap_kernel(), loopva, NULL));
634
635 pg = uvm_pagealloc(NULL, offset, NULL, pgaflags);
636
637 /*
638 * out of memory?
639 */
640
641 if (__predict_false(pg == NULL)) {
642 if ((flags & UVM_KMF_NOWAIT) ||
643 ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
644 /* free everything! */
645 uvm_km_free(map, kva, size,
646 flags & UVM_KMF_TYPEMASK);
647 return (0);
648 } else {
649 uvm_wait("km_getwait2"); /* sleep here */
650 continue;
651 }
652 }
653
654 pg->flags &= ~PG_BUSY; /* new page */
655 UVM_PAGE_OWN(pg, NULL);
656
657 /*
658 * map it in
659 */
660
661 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), prot);
662 loopva += PAGE_SIZE;
663 offset += PAGE_SIZE;
664 loopsize -= PAGE_SIZE;
665 }
666
667 pmap_update(pmap_kernel());
668
669 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
670 return(kva);
671 }
672
673 /*
674 * uvm_km_free: free an area of kernel memory
675 */
676
677 void
678 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
679 {
680
681 if (map == NULL) { /* XXX kmem_map */
682 map = kernel_map;
683 }
684 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
685 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
686 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
687 KASSERT((addr & PAGE_MASK) == 0);
688 KASSERT(vm_map_pmap(map) == pmap_kernel());
689
690 size = round_page(size);
691
692 if (flags & UVM_KMF_PAGEABLE) {
693 uvm_km_pgremove(addr, addr + size);
694 pmap_remove(pmap_kernel(), addr, addr + size);
695 uvm_unmap1(map, addr, addr + size,
696 UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
697 } else {
698 if (flags & UVM_KMF_WIRED) {
699 uvm_km_pgremove_intrsafe(addr, addr + size);
700 pmap_kremove(addr, size);
701 }
702 vmem_xfree(kernel_va_arena, addr, size);
703 }
704 }
705
706 /* Sanity; must specify both or none. */
707 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
708 (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
709 #error Must specify MAP and UNMAP together.
710 #endif
711
712 /*
713 * uvm_km_alloc_poolpage: allocate a page for the pool allocator
714 *
715 * => if the pmap specifies an alternate mapping method, we use it.
716 */
717
718 /* ARGSUSED */
719 vaddr_t
720 uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
721 {
722 #if defined(PMAP_MAP_POOLPAGE) || 1
723 return uvm_km_alloc_poolpage(map, waitok);
724 #else
725 struct vm_page *pg;
726 struct pool *pp = &vm_map_to_kernel(map)->vmk_vacache;
727 vaddr_t va;
728 int s = 0xdeadbeaf; /* XXX: gcc */
729 const bool intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
730
731 if ((map->flags & VM_MAP_VACACHE) == 0)
732 return uvm_km_alloc_poolpage(map, waitok);
733
734 if (intrsafe)
735 s = splvm();
736 va = (vaddr_t)pool_get(pp, waitok ? PR_WAITOK : PR_NOWAIT);
737 if (intrsafe)
738 splx(s);
739 if (va == 0)
740 return 0;
741 KASSERT(!pmap_extract(pmap_kernel(), va, NULL));
742 again:
743 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
744 if (__predict_false(pg == NULL)) {
745 if (waitok) {
746 uvm_wait("plpg");
747 goto again;
748 } else {
749 if (intrsafe)
750 s = splvm();
751 pool_put(pp, (void *)va);
752 if (intrsafe)
753 splx(s);
754 return 0;
755 }
756 }
757 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg), VM_PROT_READ|VM_PROT_WRITE);
758 pmap_update(pmap_kernel());
759
760 return va;
761 #endif /* PMAP_MAP_POOLPAGE */
762 }
763
764 vaddr_t
765 uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
766 {
767 #if defined(PMAP_MAP_POOLPAGE)
768 struct vm_page *pg;
769 vaddr_t va;
770
771 again:
772 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
773 if (__predict_false(pg == NULL)) {
774 if (waitok) {
775 uvm_wait("plpg");
776 goto again;
777 } else
778 return (0);
779 }
780 va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
781 if (__predict_false(va == 0))
782 uvm_pagefree(pg);
783 return (va);
784 #else
785 vaddr_t va;
786 int s;
787
788 s = splvm();
789 va = (vaddr_t)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
790 (waitok ? 0 : UVM_KMF_NOWAIT) | UVM_KMF_WIRED);
791 splx(s);
792 return va;
793 #endif /* PMAP_MAP_POOLPAGE */
794 }
795
796 /*
797 * uvm_km_free_poolpage: free a previously allocated pool page
798 *
799 * => if the pmap specifies an alternate unmapping method, we use it.
800 */
801
802 /* ARGSUSED */
803 void
804 uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t addr)
805 {
806 #if defined(PMAP_UNMAP_POOLPAGE) || 1
807 uvm_km_free_poolpage(map, addr);
808 #else
809 struct pool *pp;
810 int s = 0xdeadbeaf; /* XXX: gcc */
811 const bool intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
812
813 if ((map->flags & VM_MAP_VACACHE) == 0) {
814 uvm_km_free_poolpage(map, addr);
815 return;
816 }
817
818 KASSERT(pmap_extract(pmap_kernel(), addr, NULL));
819 uvm_km_pgremove_intrsafe(addr, addr + PAGE_SIZE);
820 pmap_kremove(addr, PAGE_SIZE);
821 #if defined(DEBUG)
822 pmap_update(pmap_kernel());
823 #endif
824 KASSERT(!pmap_extract(pmap_kernel(), addr, NULL));
825 pp = &vm_map_to_kernel(map)->vmk_vacache;
826 if (intrsafe)
827 s = splvm();
828 pool_put(pp, (void *)addr);
829 if (intrsafe)
830 splx(s);
831 #endif
832 }
833
834 /* ARGSUSED */
835 void
836 uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
837 {
838 #if defined(PMAP_UNMAP_POOLPAGE)
839 paddr_t pa;
840
841 pa = PMAP_UNMAP_POOLPAGE(addr);
842 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
843 #else
844 int s = 0xdeadbeaf; /* XXX: gcc */
845 const bool intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
846
847 if (intrsafe)
848 s = splvm();
849 uvm_km_free(map, addr, PAGE_SIZE, UVM_KMF_WIRED);
850 if (intrsafe)
851 splx(s);
852 #endif /* PMAP_UNMAP_POOLPAGE */
853 }
854