uvm_map.c revision 1.271 1 /* $NetBSD: uvm_map.c,v 1.271 2009/06/10 01:55:33 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_map.c 8.3 (Berkeley) 1/12/94
42 * from: Id: uvm_map.c,v 1.1.2.27 1998/02/07 01:16:54 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_map.c: uvm map operations
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uvm_map.c,v 1.271 2009/06/10 01:55:33 yamt Exp $");
75
76 #include "opt_ddb.h"
77 #include "opt_uvmhist.h"
78 #include "opt_uvm.h"
79 #include "opt_sysv.h"
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/mman.h>
84 #include <sys/proc.h>
85 #include <sys/malloc.h>
86 #include <sys/pool.h>
87 #include <sys/kernel.h>
88 #include <sys/mount.h>
89 #include <sys/vnode.h>
90 #include <sys/lockdebug.h>
91 #include <sys/atomic.h>
92
93 #ifdef SYSVSHM
94 #include <sys/shm.h>
95 #endif
96
97 #include <uvm/uvm.h>
98 #include <uvm/uvm_readahead.h>
99
100 #if defined(DDB) || defined(DEBUGPRINT)
101 #include <uvm/uvm_ddb.h>
102 #endif
103
104 #if !defined(UVMMAP_COUNTERS)
105
106 #define UVMMAP_EVCNT_DEFINE(name) /* nothing */
107 #define UVMMAP_EVCNT_INCR(ev) /* nothing */
108 #define UVMMAP_EVCNT_DECR(ev) /* nothing */
109
110 #else /* defined(UVMMAP_NOCOUNTERS) */
111
112 #include <sys/evcnt.h>
113 #define UVMMAP_EVCNT_DEFINE(name) \
114 struct evcnt uvmmap_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
115 "uvmmap", #name); \
116 EVCNT_ATTACH_STATIC(uvmmap_evcnt_##name);
117 #define UVMMAP_EVCNT_INCR(ev) uvmmap_evcnt_##ev.ev_count++
118 #define UVMMAP_EVCNT_DECR(ev) uvmmap_evcnt_##ev.ev_count--
119
120 #endif /* defined(UVMMAP_NOCOUNTERS) */
121
122 UVMMAP_EVCNT_DEFINE(ubackmerge)
123 UVMMAP_EVCNT_DEFINE(uforwmerge)
124 UVMMAP_EVCNT_DEFINE(ubimerge)
125 UVMMAP_EVCNT_DEFINE(unomerge)
126 UVMMAP_EVCNT_DEFINE(kbackmerge)
127 UVMMAP_EVCNT_DEFINE(kforwmerge)
128 UVMMAP_EVCNT_DEFINE(kbimerge)
129 UVMMAP_EVCNT_DEFINE(knomerge)
130 UVMMAP_EVCNT_DEFINE(map_call)
131 UVMMAP_EVCNT_DEFINE(mlk_call)
132 UVMMAP_EVCNT_DEFINE(mlk_hint)
133 UVMMAP_EVCNT_DEFINE(mlk_list)
134 UVMMAP_EVCNT_DEFINE(mlk_tree)
135 UVMMAP_EVCNT_DEFINE(mlk_treeloop)
136 UVMMAP_EVCNT_DEFINE(mlk_listloop)
137
138 UVMMAP_EVCNT_DEFINE(uke_alloc)
139 UVMMAP_EVCNT_DEFINE(uke_free)
140 UVMMAP_EVCNT_DEFINE(ukh_alloc)
141 UVMMAP_EVCNT_DEFINE(ukh_free)
142
143 const char vmmapbsy[] = "vmmapbsy";
144
145 /*
146 * cache for vmspace structures.
147 */
148
149 static struct pool_cache uvm_vmspace_cache;
150
151 /*
152 * cache for dynamically-allocated map entries.
153 */
154
155 static struct pool_cache uvm_map_entry_cache;
156
157 MALLOC_DEFINE(M_VMMAP, "VM map", "VM map structures");
158 MALLOC_DEFINE(M_VMPMAP, "VM pmap", "VM pmap");
159
160 #ifdef PMAP_GROWKERNEL
161 /*
162 * This global represents the end of the kernel virtual address
163 * space. If we want to exceed this, we must grow the kernel
164 * virtual address space dynamically.
165 *
166 * Note, this variable is locked by kernel_map's lock.
167 */
168 vaddr_t uvm_maxkaddr;
169 #endif
170
171 /*
172 * macros
173 */
174
175 /*
176 * VM_MAP_USE_KMAPENT: determine if uvm_kmapent_alloc/free is used
177 * for the vm_map.
178 */
179 extern struct vm_map *pager_map; /* XXX */
180 #define VM_MAP_USE_KMAPENT_FLAGS(flags) \
181 (((flags) & VM_MAP_INTRSAFE) != 0)
182 #define VM_MAP_USE_KMAPENT(map) \
183 (VM_MAP_USE_KMAPENT_FLAGS((map)->flags) || (map) == kernel_map)
184
185 /*
186 * UVM_ET_ISCOMPATIBLE: check some requirements for map entry merging
187 */
188
189 #define UVM_ET_ISCOMPATIBLE(ent, type, uobj, meflags, \
190 prot, maxprot, inh, adv, wire) \
191 ((ent)->etype == (type) && \
192 (((ent)->flags ^ (meflags)) & (UVM_MAP_NOMERGE | UVM_MAP_QUANTUM)) \
193 == 0 && \
194 (ent)->object.uvm_obj == (uobj) && \
195 (ent)->protection == (prot) && \
196 (ent)->max_protection == (maxprot) && \
197 (ent)->inheritance == (inh) && \
198 (ent)->advice == (adv) && \
199 (ent)->wired_count == (wire))
200
201 /*
202 * uvm_map_entry_link: insert entry into a map
203 *
204 * => map must be locked
205 */
206 #define uvm_map_entry_link(map, after_where, entry) do { \
207 uvm_mapent_check(entry); \
208 (map)->nentries++; \
209 (entry)->prev = (after_where); \
210 (entry)->next = (after_where)->next; \
211 (entry)->prev->next = (entry); \
212 (entry)->next->prev = (entry); \
213 uvm_rb_insert((map), (entry)); \
214 } while (/*CONSTCOND*/ 0)
215
216 /*
217 * uvm_map_entry_unlink: remove entry from a map
218 *
219 * => map must be locked
220 */
221 #define uvm_map_entry_unlink(map, entry) do { \
222 KASSERT((entry) != (map)->first_free); \
223 KASSERT((entry) != (map)->hint); \
224 uvm_mapent_check(entry); \
225 (map)->nentries--; \
226 (entry)->next->prev = (entry)->prev; \
227 (entry)->prev->next = (entry)->next; \
228 uvm_rb_remove((map), (entry)); \
229 } while (/*CONSTCOND*/ 0)
230
231 /*
232 * SAVE_HINT: saves the specified entry as the hint for future lookups.
233 *
234 * => map need not be locked.
235 */
236 #define SAVE_HINT(map, check, value) do { \
237 if ((map)->hint == (check)) \
238 (map)->hint = (value); \
239 } while (/*CONSTCOND*/ 0)
240
241 /*
242 * clear_hints: ensure that hints don't point to the entry.
243 *
244 * => map must be write-locked.
245 */
246 static void
247 clear_hints(struct vm_map *map, struct vm_map_entry *ent)
248 {
249
250 SAVE_HINT(map, ent, ent->prev);
251 if (map->first_free == ent) {
252 map->first_free = ent->prev;
253 }
254 }
255
256 /*
257 * VM_MAP_RANGE_CHECK: check and correct range
258 *
259 * => map must at least be read locked
260 */
261
262 #define VM_MAP_RANGE_CHECK(map, start, end) do { \
263 if (start < vm_map_min(map)) \
264 start = vm_map_min(map); \
265 if (end > vm_map_max(map)) \
266 end = vm_map_max(map); \
267 if (start > end) \
268 start = end; \
269 } while (/*CONSTCOND*/ 0)
270
271 /*
272 * local prototypes
273 */
274
275 static struct vm_map_entry *
276 uvm_mapent_alloc(struct vm_map *, int);
277 static struct vm_map_entry *
278 uvm_mapent_alloc_split(struct vm_map *,
279 const struct vm_map_entry *, int,
280 struct uvm_mapent_reservation *);
281 static void uvm_mapent_copy(struct vm_map_entry *, struct vm_map_entry *);
282 static void uvm_mapent_free(struct vm_map_entry *);
283 #if defined(DEBUG)
284 static void _uvm_mapent_check(const struct vm_map_entry *, const char *,
285 int);
286 #define uvm_mapent_check(map) _uvm_mapent_check(map, __FILE__, __LINE__)
287 #else /* defined(DEBUG) */
288 #define uvm_mapent_check(e) /* nothing */
289 #endif /* defined(DEBUG) */
290 static struct vm_map_entry *
291 uvm_kmapent_alloc(struct vm_map *, int);
292 static void uvm_kmapent_free(struct vm_map_entry *);
293 static vsize_t uvm_kmapent_overhead(vsize_t);
294
295 static void uvm_map_entry_unwire(struct vm_map *, struct vm_map_entry *);
296 static void uvm_map_reference_amap(struct vm_map_entry *, int);
297 static int uvm_map_space_avail(vaddr_t *, vsize_t, voff_t, vsize_t, int,
298 struct vm_map_entry *);
299 static void uvm_map_unreference_amap(struct vm_map_entry *, int);
300
301 int _uvm_map_sanity(struct vm_map *);
302 int _uvm_tree_sanity(struct vm_map *);
303 static vsize_t uvm_rb_maxgap(const struct vm_map_entry *);
304
305 CTASSERT(offsetof(struct vm_map_entry, rb_node) == 0);
306 #define ROOT_ENTRY(map) ((struct vm_map_entry *)(map)->rb_tree.rbt_root)
307 #define LEFT_ENTRY(entry) ((struct vm_map_entry *)(entry)->rb_node.rb_left)
308 #define RIGHT_ENTRY(entry) ((struct vm_map_entry *)(entry)->rb_node.rb_right)
309 #define PARENT_ENTRY(map, entry) \
310 (ROOT_ENTRY(map) == (entry) \
311 ? NULL \
312 : (struct vm_map_entry *)RB_FATHER(&(entry)->rb_node))
313
314 static int
315 uvm_map_compare_nodes(const struct rb_node *nparent,
316 const struct rb_node *nkey)
317 {
318 const struct vm_map_entry *eparent = (const void *) nparent;
319 const struct vm_map_entry *ekey = (const void *) nkey;
320
321 KASSERT(eparent->start < ekey->start || eparent->start >= ekey->end);
322 KASSERT(ekey->start < eparent->start || ekey->start >= eparent->end);
323
324 if (ekey->start < eparent->start)
325 return -1;
326 if (ekey->start >= eparent->end)
327 return 1;
328 return 0;
329 }
330
331 static int
332 uvm_map_compare_key(const struct rb_node *nparent, const void *vkey)
333 {
334 const struct vm_map_entry *eparent = (const void *) nparent;
335 const vaddr_t va = *(const vaddr_t *) vkey;
336
337 if (va < eparent->start)
338 return -1;
339 if (va >= eparent->end)
340 return 1;
341 return 0;
342 }
343
344 static const struct rb_tree_ops uvm_map_tree_ops = {
345 .rbto_compare_nodes = uvm_map_compare_nodes,
346 .rbto_compare_key = uvm_map_compare_key,
347 };
348
349 static inline vsize_t
350 uvm_rb_gap(const struct vm_map_entry *entry)
351 {
352 KASSERT(entry->next != NULL);
353 return entry->next->start - entry->end;
354 }
355
356 static vsize_t
357 uvm_rb_maxgap(const struct vm_map_entry *entry)
358 {
359 struct vm_map_entry *child;
360 vsize_t maxgap = entry->gap;
361
362 /*
363 * We need maxgap to be the largest gap of us or any of our
364 * descendents. Since each of our children's maxgap is the
365 * cached value of their largest gap of themselves or their
366 * descendents, we can just use that value and avoid recursing
367 * down the tree to calculate it.
368 */
369 if ((child = LEFT_ENTRY(entry)) != NULL && maxgap < child->maxgap)
370 maxgap = child->maxgap;
371
372 if ((child = RIGHT_ENTRY(entry)) != NULL && maxgap < child->maxgap)
373 maxgap = child->maxgap;
374
375 return maxgap;
376 }
377
378 static void
379 uvm_rb_fixup(struct vm_map *map, struct vm_map_entry *entry)
380 {
381 struct vm_map_entry *parent;
382
383 KASSERT(entry->gap == uvm_rb_gap(entry));
384 entry->maxgap = uvm_rb_maxgap(entry);
385
386 while ((parent = PARENT_ENTRY(map, entry)) != NULL) {
387 struct vm_map_entry *brother;
388 vsize_t maxgap = parent->gap;
389
390 KDASSERT(parent->gap == uvm_rb_gap(parent));
391 if (maxgap < entry->maxgap)
392 maxgap = entry->maxgap;
393 /*
394 * Since we work our towards the root, we know entry's maxgap
395 * value is ok but its brothers may now be out-of-date due
396 * rebalancing. So refresh it.
397 */
398 brother = (struct vm_map_entry *)parent->rb_node.rb_nodes[RB_POSITION(&entry->rb_node) ^ RB_DIR_OTHER];
399 if (brother != NULL) {
400 KDASSERT(brother->gap == uvm_rb_gap(brother));
401 brother->maxgap = uvm_rb_maxgap(brother);
402 if (maxgap < brother->maxgap)
403 maxgap = brother->maxgap;
404 }
405
406 parent->maxgap = maxgap;
407 entry = parent;
408 }
409 }
410
411 static void
412 uvm_rb_insert(struct vm_map *map, struct vm_map_entry *entry)
413 {
414 entry->gap = entry->maxgap = uvm_rb_gap(entry);
415 if (entry->prev != &map->header)
416 entry->prev->gap = uvm_rb_gap(entry->prev);
417
418 if (!rb_tree_insert_node(&map->rb_tree, &entry->rb_node))
419 panic("uvm_rb_insert: map %p: duplicate entry?", map);
420
421 /*
422 * If the previous entry is not our immediate left child, then it's an
423 * ancestor and will be fixed up on the way to the root. We don't
424 * have to check entry->prev against &map->header since &map->header
425 * will never be in the tree.
426 */
427 uvm_rb_fixup(map,
428 LEFT_ENTRY(entry) == entry->prev ? entry->prev : entry);
429 }
430
431 static void
432 uvm_rb_remove(struct vm_map *map, struct vm_map_entry *entry)
433 {
434 struct vm_map_entry *prev_parent = NULL, *next_parent = NULL;
435
436 /*
437 * If we are removing an interior node, then an adjacent node will
438 * be used to replace its position in the tree. Therefore we will
439 * need to fixup the tree starting at the parent of the replacement
440 * node. So record their parents for later use.
441 */
442 if (entry->prev != &map->header)
443 prev_parent = PARENT_ENTRY(map, entry->prev);
444 if (entry->next != &map->header)
445 next_parent = PARENT_ENTRY(map, entry->next);
446
447 rb_tree_remove_node(&map->rb_tree, &entry->rb_node);
448
449 /*
450 * If the previous node has a new parent, fixup the tree starting
451 * at the previous node's old parent.
452 */
453 if (entry->prev != &map->header) {
454 /*
455 * Update the previous entry's gap due to our absence.
456 */
457 entry->prev->gap = uvm_rb_gap(entry->prev);
458 uvm_rb_fixup(map, entry->prev);
459 if (prev_parent != NULL
460 && prev_parent != entry
461 && prev_parent != PARENT_ENTRY(map, entry->prev))
462 uvm_rb_fixup(map, prev_parent);
463 }
464
465 /*
466 * If the next node has a new parent, fixup the tree starting
467 * at the next node's old parent.
468 */
469 if (entry->next != &map->header) {
470 uvm_rb_fixup(map, entry->next);
471 if (next_parent != NULL
472 && next_parent != entry
473 && next_parent != PARENT_ENTRY(map, entry->next))
474 uvm_rb_fixup(map, next_parent);
475 }
476 }
477
478 #if defined(DEBUG)
479 int uvm_debug_check_map = 0;
480 int uvm_debug_check_rbtree = 0;
481 #define uvm_map_check(map, name) \
482 _uvm_map_check((map), (name), __FILE__, __LINE__)
483 static void
484 _uvm_map_check(struct vm_map *map, const char *name,
485 const char *file, int line)
486 {
487
488 if ((uvm_debug_check_map && _uvm_map_sanity(map)) ||
489 (uvm_debug_check_rbtree && _uvm_tree_sanity(map))) {
490 panic("uvm_map_check failed: \"%s\" map=%p (%s:%d)",
491 name, map, file, line);
492 }
493 }
494 #else /* defined(DEBUG) */
495 #define uvm_map_check(map, name) /* nothing */
496 #endif /* defined(DEBUG) */
497
498 #if defined(DEBUG) || defined(DDB)
499 int
500 _uvm_map_sanity(struct vm_map *map)
501 {
502 bool first_free_found = false;
503 bool hint_found = false;
504 const struct vm_map_entry *e;
505
506 e = &map->header;
507 for (;;) {
508 if (map->first_free == e) {
509 first_free_found = true;
510 } else if (!first_free_found && e->next->start > e->end) {
511 printf("first_free %p should be %p\n",
512 map->first_free, e);
513 return -1;
514 }
515 if (map->hint == e) {
516 hint_found = true;
517 }
518
519 e = e->next;
520 if (e == &map->header) {
521 break;
522 }
523 }
524 if (!first_free_found) {
525 printf("stale first_free\n");
526 return -1;
527 }
528 if (!hint_found) {
529 printf("stale hint\n");
530 return -1;
531 }
532 return 0;
533 }
534
535 int
536 _uvm_tree_sanity(struct vm_map *map)
537 {
538 struct vm_map_entry *tmp, *trtmp;
539 int n = 0, i = 1;
540
541 for (tmp = map->header.next; tmp != &map->header; tmp = tmp->next) {
542 if (tmp->gap != uvm_rb_gap(tmp)) {
543 printf("%d/%d gap %lx != %lx %s\n",
544 n + 1, map->nentries,
545 (ulong)tmp->gap, (ulong)uvm_rb_gap(tmp),
546 tmp->next == &map->header ? "(last)" : "");
547 goto error;
548 }
549 /*
550 * If any entries are out of order, tmp->gap will be unsigned
551 * and will likely exceed the size of the map.
552 */
553 KASSERT(tmp->gap < map->size);
554 n++;
555 }
556
557 if (n != map->nentries) {
558 printf("nentries: %d vs %d\n", n, map->nentries);
559 goto error;
560 }
561
562 trtmp = NULL;
563 for (tmp = map->header.next; tmp != &map->header; tmp = tmp->next) {
564 if (tmp->maxgap != uvm_rb_maxgap(tmp)) {
565 printf("maxgap %lx != %lx\n",
566 (ulong)tmp->maxgap,
567 (ulong)uvm_rb_maxgap(tmp));
568 goto error;
569 }
570 if (trtmp != NULL && trtmp->start >= tmp->start) {
571 printf("corrupt: 0x%lx >= 0x%lx\n",
572 trtmp->start, tmp->start);
573 goto error;
574 }
575
576 trtmp = tmp;
577 }
578
579 for (tmp = map->header.next; tmp != &map->header;
580 tmp = tmp->next, i++) {
581 trtmp = (void *) rb_tree_iterate(&map->rb_tree, &tmp->rb_node,
582 RB_DIR_LEFT);
583 if (trtmp == NULL)
584 trtmp = &map->header;
585 if (tmp->prev != trtmp) {
586 printf("lookup: %d: %p->prev=%p: %p\n",
587 i, tmp, tmp->prev, trtmp);
588 goto error;
589 }
590 trtmp = (void *) rb_tree_iterate(&map->rb_tree, &tmp->rb_node,
591 RB_DIR_RIGHT);
592 if (trtmp == NULL)
593 trtmp = &map->header;
594 if (tmp->next != trtmp) {
595 printf("lookup: %d: %p->next=%p: %p\n",
596 i, tmp, tmp->next, trtmp);
597 goto error;
598 }
599 trtmp = (void *)rb_tree_find_node(&map->rb_tree, &tmp->start);
600 if (trtmp != tmp) {
601 printf("lookup: %d: %p - %p: %p\n", i, tmp, trtmp,
602 PARENT_ENTRY(map, tmp));
603 goto error;
604 }
605 }
606
607 return (0);
608 error:
609 return (-1);
610 }
611 #endif /* defined(DEBUG) || defined(DDB) */
612
613 #ifdef DIAGNOSTIC
614 static struct vm_map *uvm_kmapent_map(struct vm_map_entry *);
615 #endif
616
617 /*
618 * vm_map_lock: acquire an exclusive (write) lock on a map.
619 *
620 * => Note that "intrsafe" maps use only exclusive, spin locks.
621 *
622 * => The locking protocol provides for guaranteed upgrade from shared ->
623 * exclusive by whichever thread currently has the map marked busy.
624 * See "LOCKING PROTOCOL NOTES" in uvm_map.h. This is horrible; among
625 * other problems, it defeats any fairness guarantees provided by RW
626 * locks.
627 */
628
629 void
630 vm_map_lock(struct vm_map *map)
631 {
632
633 if ((map->flags & VM_MAP_INTRSAFE) != 0) {
634 mutex_spin_enter(&map->mutex);
635 return;
636 }
637
638 for (;;) {
639 rw_enter(&map->lock, RW_WRITER);
640 if (map->busy == NULL)
641 break;
642 if (map->busy == curlwp)
643 break;
644 mutex_enter(&map->misc_lock);
645 rw_exit(&map->lock);
646 if (map->busy != NULL)
647 cv_wait(&map->cv, &map->misc_lock);
648 mutex_exit(&map->misc_lock);
649 }
650
651 map->timestamp++;
652 }
653
654 /*
655 * vm_map_lock_try: try to lock a map, failing if it is already locked.
656 */
657
658 bool
659 vm_map_lock_try(struct vm_map *map)
660 {
661
662 if ((map->flags & VM_MAP_INTRSAFE) != 0)
663 return mutex_tryenter(&map->mutex);
664 if (!rw_tryenter(&map->lock, RW_WRITER))
665 return false;
666 if (map->busy != NULL) {
667 rw_exit(&map->lock);
668 return false;
669 }
670
671 map->timestamp++;
672 return true;
673 }
674
675 /*
676 * vm_map_unlock: release an exclusive lock on a map.
677 */
678
679 void
680 vm_map_unlock(struct vm_map *map)
681 {
682
683 if ((map->flags & VM_MAP_INTRSAFE) != 0)
684 mutex_spin_exit(&map->mutex);
685 else {
686 KASSERT(rw_write_held(&map->lock));
687 KASSERT(map->busy == NULL || map->busy == curlwp);
688 rw_exit(&map->lock);
689 }
690 }
691
692 /*
693 * vm_map_unbusy: mark the map as unbusy, and wake any waiters that
694 * want an exclusive lock.
695 */
696
697 void
698 vm_map_unbusy(struct vm_map *map)
699 {
700
701 KASSERT(map->busy == curlwp);
702
703 /*
704 * Safe to clear 'busy' and 'waiters' with only a read lock held:
705 *
706 * o they can only be set with a write lock held
707 * o writers are blocked out with a read or write hold
708 * o at any time, only one thread owns the set of values
709 */
710 mutex_enter(&map->misc_lock);
711 map->busy = NULL;
712 cv_broadcast(&map->cv);
713 mutex_exit(&map->misc_lock);
714 }
715
716 /*
717 * vm_map_lock_read: acquire a shared (read) lock on a map.
718 */
719
720 void
721 vm_map_lock_read(struct vm_map *map)
722 {
723
724 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
725
726 rw_enter(&map->lock, RW_READER);
727 }
728
729 /*
730 * vm_map_unlock_read: release a shared lock on a map.
731 */
732
733 void
734 vm_map_unlock_read(struct vm_map *map)
735 {
736
737 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
738
739 rw_exit(&map->lock);
740 }
741
742 /*
743 * vm_map_busy: mark a map as busy.
744 *
745 * => the caller must hold the map write locked
746 */
747
748 void
749 vm_map_busy(struct vm_map *map)
750 {
751
752 KASSERT(rw_write_held(&map->lock));
753 KASSERT(map->busy == NULL);
754
755 map->busy = curlwp;
756 }
757
758 /*
759 * vm_map_locked_p: return true if the map is write locked.
760 *
761 * => only for debug purposes like KASSERTs.
762 * => should not be used to verify that a map is not locked.
763 */
764
765 bool
766 vm_map_locked_p(struct vm_map *map)
767 {
768
769 if ((map->flags & VM_MAP_INTRSAFE) != 0) {
770 return mutex_owned(&map->mutex);
771 } else {
772 return rw_write_held(&map->lock);
773 }
774 }
775
776 /*
777 * uvm_mapent_alloc: allocate a map entry
778 */
779
780 static struct vm_map_entry *
781 uvm_mapent_alloc(struct vm_map *map, int flags)
782 {
783 struct vm_map_entry *me;
784 int pflags = (flags & UVM_FLAG_NOWAIT) ? PR_NOWAIT : PR_WAITOK;
785 UVMHIST_FUNC("uvm_mapent_alloc"); UVMHIST_CALLED(maphist);
786
787 if (VM_MAP_USE_KMAPENT(map)) {
788 me = uvm_kmapent_alloc(map, flags);
789 } else {
790 me = pool_cache_get(&uvm_map_entry_cache, pflags);
791 if (__predict_false(me == NULL))
792 return NULL;
793 me->flags = 0;
794 }
795
796 UVMHIST_LOG(maphist, "<- new entry=0x%x [kentry=%d]", me,
797 ((map->flags & VM_MAP_INTRSAFE) != 0 || map == kernel_map), 0, 0);
798 return (me);
799 }
800
801 /*
802 * uvm_mapent_alloc_split: allocate a map entry for clipping.
803 *
804 * => map must be locked by caller if UVM_MAP_QUANTUM is set.
805 */
806
807 static struct vm_map_entry *
808 uvm_mapent_alloc_split(struct vm_map *map,
809 const struct vm_map_entry *old_entry, int flags,
810 struct uvm_mapent_reservation *umr)
811 {
812 struct vm_map_entry *me;
813
814 KASSERT(!VM_MAP_USE_KMAPENT(map) ||
815 (old_entry->flags & UVM_MAP_QUANTUM) || !UMR_EMPTY(umr));
816
817 if (old_entry->flags & UVM_MAP_QUANTUM) {
818 struct vm_map_kernel *vmk = vm_map_to_kernel(map);
819
820 KASSERT(vm_map_locked_p(map));
821 me = vmk->vmk_merged_entries;
822 KASSERT(me);
823 vmk->vmk_merged_entries = me->next;
824 KASSERT(me->flags & UVM_MAP_QUANTUM);
825 } else {
826 me = uvm_mapent_alloc(map, flags);
827 }
828
829 return me;
830 }
831
832 /*
833 * uvm_mapent_free: free map entry
834 */
835
836 static void
837 uvm_mapent_free(struct vm_map_entry *me)
838 {
839 UVMHIST_FUNC("uvm_mapent_free"); UVMHIST_CALLED(maphist);
840
841 UVMHIST_LOG(maphist,"<- freeing map entry=0x%x [flags=%d]",
842 me, me->flags, 0, 0);
843 if (me->flags & UVM_MAP_KERNEL) {
844 uvm_kmapent_free(me);
845 } else {
846 pool_cache_put(&uvm_map_entry_cache, me);
847 }
848 }
849
850 /*
851 * uvm_mapent_free_merged: free merged map entry
852 *
853 * => keep the entry if needed.
854 * => caller shouldn't hold map locked if VM_MAP_USE_KMAPENT(map) is true.
855 * => map should be locked if UVM_MAP_QUANTUM is set.
856 */
857
858 static void
859 uvm_mapent_free_merged(struct vm_map *map, struct vm_map_entry *me)
860 {
861
862 KASSERT(!(me->flags & UVM_MAP_KERNEL) || uvm_kmapent_map(me) == map);
863
864 if (me->flags & UVM_MAP_QUANTUM) {
865 /*
866 * keep this entry for later splitting.
867 */
868 struct vm_map_kernel *vmk;
869
870 KASSERT(vm_map_locked_p(map));
871 KASSERT(VM_MAP_IS_KERNEL(map));
872 KASSERT(!VM_MAP_USE_KMAPENT(map) ||
873 (me->flags & UVM_MAP_KERNEL));
874
875 vmk = vm_map_to_kernel(map);
876 me->next = vmk->vmk_merged_entries;
877 vmk->vmk_merged_entries = me;
878 } else {
879 uvm_mapent_free(me);
880 }
881 }
882
883 /*
884 * uvm_mapent_copy: copy a map entry, preserving flags
885 */
886
887 static inline void
888 uvm_mapent_copy(struct vm_map_entry *src, struct vm_map_entry *dst)
889 {
890
891 memcpy(dst, src, ((char *)&src->uvm_map_entry_stop_copy) -
892 ((char *)src));
893 }
894
895 /*
896 * uvm_mapent_overhead: calculate maximum kva overhead necessary for
897 * map entries.
898 *
899 * => size and flags are the same as uvm_km_suballoc's ones.
900 */
901
902 vsize_t
903 uvm_mapent_overhead(vsize_t size, int flags)
904 {
905
906 if (VM_MAP_USE_KMAPENT_FLAGS(flags)) {
907 return uvm_kmapent_overhead(size);
908 }
909 return 0;
910 }
911
912 #if defined(DEBUG)
913 static void
914 _uvm_mapent_check(const struct vm_map_entry *entry, const char *file, int line)
915 {
916
917 if (entry->start >= entry->end) {
918 goto bad;
919 }
920 if (UVM_ET_ISOBJ(entry)) {
921 if (entry->object.uvm_obj == NULL) {
922 goto bad;
923 }
924 } else if (UVM_ET_ISSUBMAP(entry)) {
925 if (entry->object.sub_map == NULL) {
926 goto bad;
927 }
928 } else {
929 if (entry->object.uvm_obj != NULL ||
930 entry->object.sub_map != NULL) {
931 goto bad;
932 }
933 }
934 if (!UVM_ET_ISOBJ(entry)) {
935 if (entry->offset != 0) {
936 goto bad;
937 }
938 }
939
940 return;
941
942 bad:
943 panic("%s: bad entry %p (%s:%d)", __func__, entry, file, line);
944 }
945 #endif /* defined(DEBUG) */
946
947 /*
948 * uvm_map_entry_unwire: unwire a map entry
949 *
950 * => map should be locked by caller
951 */
952
953 static inline void
954 uvm_map_entry_unwire(struct vm_map *map, struct vm_map_entry *entry)
955 {
956
957 entry->wired_count = 0;
958 uvm_fault_unwire_locked(map, entry->start, entry->end);
959 }
960
961
962 /*
963 * wrapper for calling amap_ref()
964 */
965 static inline void
966 uvm_map_reference_amap(struct vm_map_entry *entry, int flags)
967 {
968
969 amap_ref(entry->aref.ar_amap, entry->aref.ar_pageoff,
970 (entry->end - entry->start) >> PAGE_SHIFT, flags);
971 }
972
973
974 /*
975 * wrapper for calling amap_unref()
976 */
977 static inline void
978 uvm_map_unreference_amap(struct vm_map_entry *entry, int flags)
979 {
980
981 amap_unref(entry->aref.ar_amap, entry->aref.ar_pageoff,
982 (entry->end - entry->start) >> PAGE_SHIFT, flags);
983 }
984
985
986 /*
987 * uvm_map_init: init mapping system at boot time.
988 */
989
990 void
991 uvm_map_init(void)
992 {
993 #if defined(UVMHIST)
994 static struct uvm_history_ent maphistbuf[100];
995 static struct uvm_history_ent pdhistbuf[100];
996 #endif
997
998 /*
999 * first, init logging system.
1000 */
1001
1002 UVMHIST_FUNC("uvm_map_init");
1003 UVMHIST_INIT_STATIC(maphist, maphistbuf);
1004 UVMHIST_INIT_STATIC(pdhist, pdhistbuf);
1005 UVMHIST_CALLED(maphist);
1006 UVMHIST_LOG(maphist,"<starting uvm map system>", 0, 0, 0, 0);
1007
1008 /*
1009 * initialize the global lock for kernel map entry.
1010 */
1011
1012 mutex_init(&uvm_kentry_lock, MUTEX_DRIVER, IPL_VM);
1013
1014 /*
1015 * initialize caches.
1016 */
1017
1018 pool_cache_bootstrap(&uvm_map_entry_cache, sizeof(struct vm_map_entry),
1019 0, 0, 0, "vmmpepl", NULL, IPL_NONE, NULL, NULL, NULL);
1020 pool_cache_bootstrap(&uvm_vmspace_cache, sizeof(struct vmspace),
1021 0, 0, 0, "vmsppl", NULL, IPL_NONE, NULL, NULL, NULL);
1022 }
1023
1024 /*
1025 * clippers
1026 */
1027
1028 /*
1029 * uvm_mapent_splitadj: adjust map entries for splitting, after uvm_mapent_copy.
1030 */
1031
1032 static void
1033 uvm_mapent_splitadj(struct vm_map_entry *entry1, struct vm_map_entry *entry2,
1034 vaddr_t splitat)
1035 {
1036 vaddr_t adj;
1037
1038 KASSERT(entry1->start < splitat);
1039 KASSERT(splitat < entry1->end);
1040
1041 adj = splitat - entry1->start;
1042 entry1->end = entry2->start = splitat;
1043
1044 if (entry1->aref.ar_amap) {
1045 amap_splitref(&entry1->aref, &entry2->aref, adj);
1046 }
1047 if (UVM_ET_ISSUBMAP(entry1)) {
1048 /* ... unlikely to happen, but play it safe */
1049 uvm_map_reference(entry1->object.sub_map);
1050 } else if (UVM_ET_ISOBJ(entry1)) {
1051 KASSERT(entry1->object.uvm_obj != NULL); /* suppress coverity */
1052 entry2->offset += adj;
1053 if (entry1->object.uvm_obj->pgops &&
1054 entry1->object.uvm_obj->pgops->pgo_reference)
1055 entry1->object.uvm_obj->pgops->pgo_reference(
1056 entry1->object.uvm_obj);
1057 }
1058 }
1059
1060 /*
1061 * uvm_map_clip_start: ensure that the entry begins at or after
1062 * the starting address, if it doesn't we split the entry.
1063 *
1064 * => caller should use UVM_MAP_CLIP_START macro rather than calling
1065 * this directly
1066 * => map must be locked by caller
1067 */
1068
1069 void
1070 uvm_map_clip_start(struct vm_map *map, struct vm_map_entry *entry,
1071 vaddr_t start, struct uvm_mapent_reservation *umr)
1072 {
1073 struct vm_map_entry *new_entry;
1074
1075 /* uvm_map_simplify_entry(map, entry); */ /* XXX */
1076
1077 uvm_map_check(map, "clip_start entry");
1078 uvm_mapent_check(entry);
1079
1080 /*
1081 * Split off the front portion. note that we must insert the new
1082 * entry BEFORE this one, so that this entry has the specified
1083 * starting address.
1084 */
1085 new_entry = uvm_mapent_alloc_split(map, entry, 0, umr);
1086 uvm_mapent_copy(entry, new_entry); /* entry -> new_entry */
1087 uvm_mapent_splitadj(new_entry, entry, start);
1088 uvm_map_entry_link(map, entry->prev, new_entry);
1089
1090 uvm_map_check(map, "clip_start leave");
1091 }
1092
1093 /*
1094 * uvm_map_clip_end: ensure that the entry ends at or before
1095 * the ending address, if it does't we split the reference
1096 *
1097 * => caller should use UVM_MAP_CLIP_END macro rather than calling
1098 * this directly
1099 * => map must be locked by caller
1100 */
1101
1102 void
1103 uvm_map_clip_end(struct vm_map *map, struct vm_map_entry *entry, vaddr_t end,
1104 struct uvm_mapent_reservation *umr)
1105 {
1106 struct vm_map_entry *new_entry;
1107
1108 uvm_map_check(map, "clip_end entry");
1109 uvm_mapent_check(entry);
1110
1111 /*
1112 * Create a new entry and insert it
1113 * AFTER the specified entry
1114 */
1115 new_entry = uvm_mapent_alloc_split(map, entry, 0, umr);
1116 uvm_mapent_copy(entry, new_entry); /* entry -> new_entry */
1117 uvm_mapent_splitadj(entry, new_entry, end);
1118 uvm_map_entry_link(map, entry, new_entry);
1119
1120 uvm_map_check(map, "clip_end leave");
1121 }
1122
1123 static void
1124 vm_map_drain(struct vm_map *map, uvm_flag_t flags)
1125 {
1126
1127 if (!VM_MAP_IS_KERNEL(map)) {
1128 return;
1129 }
1130
1131 uvm_km_va_drain(map, flags);
1132 }
1133
1134 /*
1135 * M A P - m a i n e n t r y p o i n t
1136 */
1137 /*
1138 * uvm_map: establish a valid mapping in a map
1139 *
1140 * => assume startp is page aligned.
1141 * => assume size is a multiple of PAGE_SIZE.
1142 * => assume sys_mmap provides enough of a "hint" to have us skip
1143 * over text/data/bss area.
1144 * => map must be unlocked (we will lock it)
1145 * => <uobj,uoffset> value meanings (4 cases):
1146 * [1] <NULL,uoffset> == uoffset is a hint for PMAP_PREFER
1147 * [2] <NULL,UVM_UNKNOWN_OFFSET> == don't PMAP_PREFER
1148 * [3] <uobj,uoffset> == normal mapping
1149 * [4] <uobj,UVM_UNKNOWN_OFFSET> == uvm_map finds offset based on VA
1150 *
1151 * case [4] is for kernel mappings where we don't know the offset until
1152 * we've found a virtual address. note that kernel object offsets are
1153 * always relative to vm_map_min(kernel_map).
1154 *
1155 * => if `align' is non-zero, we align the virtual address to the specified
1156 * alignment.
1157 * this is provided as a mechanism for large pages.
1158 *
1159 * => XXXCDC: need way to map in external amap?
1160 */
1161
1162 int
1163 uvm_map(struct vm_map *map, vaddr_t *startp /* IN/OUT */, vsize_t size,
1164 struct uvm_object *uobj, voff_t uoffset, vsize_t align, uvm_flag_t flags)
1165 {
1166 struct uvm_map_args args;
1167 struct vm_map_entry *new_entry;
1168 int error;
1169
1170 KASSERT((flags & UVM_FLAG_QUANTUM) == 0 || VM_MAP_IS_KERNEL(map));
1171 KASSERT((size & PAGE_MASK) == 0);
1172
1173 /*
1174 * for pager_map, allocate the new entry first to avoid sleeping
1175 * for memory while we have the map locked.
1176 *
1177 * Also, because we allocate entries for in-kernel maps
1178 * a bit differently (cf. uvm_kmapent_alloc/free), we need to
1179 * allocate them before locking the map.
1180 */
1181
1182 new_entry = NULL;
1183 if (VM_MAP_USE_KMAPENT(map) || (flags & UVM_FLAG_QUANTUM) ||
1184 map == pager_map) {
1185 new_entry = uvm_mapent_alloc(map, (flags & UVM_FLAG_NOWAIT));
1186 if (__predict_false(new_entry == NULL))
1187 return ENOMEM;
1188 if (flags & UVM_FLAG_QUANTUM)
1189 new_entry->flags |= UVM_MAP_QUANTUM;
1190 }
1191 if (map == pager_map)
1192 flags |= UVM_FLAG_NOMERGE;
1193
1194 error = uvm_map_prepare(map, *startp, size, uobj, uoffset, align,
1195 flags, &args);
1196 if (!error) {
1197 error = uvm_map_enter(map, &args, new_entry);
1198 *startp = args.uma_start;
1199 } else if (new_entry) {
1200 uvm_mapent_free(new_entry);
1201 }
1202
1203 #if defined(DEBUG)
1204 if (!error && VM_MAP_IS_KERNEL(map)) {
1205 uvm_km_check_empty(map, *startp, *startp + size);
1206 }
1207 #endif /* defined(DEBUG) */
1208
1209 return error;
1210 }
1211
1212 int
1213 uvm_map_prepare(struct vm_map *map, vaddr_t start, vsize_t size,
1214 struct uvm_object *uobj, voff_t uoffset, vsize_t align, uvm_flag_t flags,
1215 struct uvm_map_args *args)
1216 {
1217 struct vm_map_entry *prev_entry;
1218 vm_prot_t prot = UVM_PROTECTION(flags);
1219 vm_prot_t maxprot = UVM_MAXPROTECTION(flags);
1220
1221 UVMHIST_FUNC("uvm_map_prepare");
1222 UVMHIST_CALLED(maphist);
1223
1224 UVMHIST_LOG(maphist, "(map=0x%x, start=0x%x, size=%d, flags=0x%x)",
1225 map, start, size, flags);
1226 UVMHIST_LOG(maphist, " uobj/offset 0x%x/%d", uobj, uoffset,0,0);
1227
1228 /*
1229 * detect a popular device driver bug.
1230 */
1231
1232 KASSERT(doing_shutdown || curlwp != NULL ||
1233 (map->flags & VM_MAP_INTRSAFE));
1234
1235 /*
1236 * zero-sized mapping doesn't make any sense.
1237 */
1238 KASSERT(size > 0);
1239
1240 KASSERT((~flags & (UVM_FLAG_NOWAIT | UVM_FLAG_WAITVA)) != 0);
1241
1242 uvm_map_check(map, "map entry");
1243
1244 /*
1245 * check sanity of protection code
1246 */
1247
1248 if ((prot & maxprot) != prot) {
1249 UVMHIST_LOG(maphist, "<- prot. failure: prot=0x%x, max=0x%x",
1250 prot, maxprot,0,0);
1251 return EACCES;
1252 }
1253
1254 /*
1255 * figure out where to put new VM range
1256 */
1257
1258 retry:
1259 if (vm_map_lock_try(map) == false) {
1260 if ((flags & UVM_FLAG_TRYLOCK) != 0 &&
1261 (map->flags & VM_MAP_INTRSAFE) == 0) {
1262 return EAGAIN;
1263 }
1264 vm_map_lock(map); /* could sleep here */
1265 }
1266 prev_entry = uvm_map_findspace(map, start, size, &start,
1267 uobj, uoffset, align, flags);
1268 if (prev_entry == NULL) {
1269 unsigned int timestamp;
1270
1271 timestamp = map->timestamp;
1272 UVMHIST_LOG(maphist,"waiting va timestamp=0x%x",
1273 timestamp,0,0,0);
1274 map->flags |= VM_MAP_WANTVA;
1275 vm_map_unlock(map);
1276
1277 /*
1278 * try to reclaim kva and wait until someone does unmap.
1279 * fragile locking here, so we awaken every second to
1280 * recheck the condition.
1281 */
1282
1283 vm_map_drain(map, flags);
1284
1285 mutex_enter(&map->misc_lock);
1286 while ((map->flags & VM_MAP_WANTVA) != 0 &&
1287 map->timestamp == timestamp) {
1288 if ((flags & UVM_FLAG_WAITVA) == 0) {
1289 mutex_exit(&map->misc_lock);
1290 UVMHIST_LOG(maphist,
1291 "<- uvm_map_findspace failed!", 0,0,0,0);
1292 return ENOMEM;
1293 } else {
1294 cv_timedwait(&map->cv, &map->misc_lock, hz);
1295 }
1296 }
1297 mutex_exit(&map->misc_lock);
1298 goto retry;
1299 }
1300
1301 #ifdef PMAP_GROWKERNEL
1302 /*
1303 * If the kernel pmap can't map the requested space,
1304 * then allocate more resources for it.
1305 */
1306 if (map == kernel_map && uvm_maxkaddr < (start + size))
1307 uvm_maxkaddr = pmap_growkernel(start + size);
1308 #endif
1309
1310 UVMMAP_EVCNT_INCR(map_call);
1311
1312 /*
1313 * if uobj is null, then uoffset is either a VAC hint for PMAP_PREFER
1314 * [typically from uvm_map_reserve] or it is UVM_UNKNOWN_OFFSET. in
1315 * either case we want to zero it before storing it in the map entry
1316 * (because it looks strange and confusing when debugging...)
1317 *
1318 * if uobj is not null
1319 * if uoffset is not UVM_UNKNOWN_OFFSET then we have a normal mapping
1320 * and we do not need to change uoffset.
1321 * if uoffset is UVM_UNKNOWN_OFFSET then we need to find the offset
1322 * now (based on the starting address of the map). this case is
1323 * for kernel object mappings where we don't know the offset until
1324 * the virtual address is found (with uvm_map_findspace). the
1325 * offset is the distance we are from the start of the map.
1326 */
1327
1328 if (uobj == NULL) {
1329 uoffset = 0;
1330 } else {
1331 if (uoffset == UVM_UNKNOWN_OFFSET) {
1332 KASSERT(UVM_OBJ_IS_KERN_OBJECT(uobj));
1333 uoffset = start - vm_map_min(kernel_map);
1334 }
1335 }
1336
1337 args->uma_flags = flags;
1338 args->uma_prev = prev_entry;
1339 args->uma_start = start;
1340 args->uma_size = size;
1341 args->uma_uobj = uobj;
1342 args->uma_uoffset = uoffset;
1343
1344 return 0;
1345 }
1346
1347 int
1348 uvm_map_enter(struct vm_map *map, const struct uvm_map_args *args,
1349 struct vm_map_entry *new_entry)
1350 {
1351 struct vm_map_entry *prev_entry = args->uma_prev;
1352 struct vm_map_entry *dead = NULL;
1353
1354 const uvm_flag_t flags = args->uma_flags;
1355 const vm_prot_t prot = UVM_PROTECTION(flags);
1356 const vm_prot_t maxprot = UVM_MAXPROTECTION(flags);
1357 const vm_inherit_t inherit = UVM_INHERIT(flags);
1358 const int amapwaitflag = (flags & UVM_FLAG_NOWAIT) ?
1359 AMAP_EXTEND_NOWAIT : 0;
1360 const int advice = UVM_ADVICE(flags);
1361 const int meflagval = (flags & UVM_FLAG_QUANTUM) ?
1362 UVM_MAP_QUANTUM : 0;
1363
1364 vaddr_t start = args->uma_start;
1365 vsize_t size = args->uma_size;
1366 struct uvm_object *uobj = args->uma_uobj;
1367 voff_t uoffset = args->uma_uoffset;
1368
1369 const int kmap = (vm_map_pmap(map) == pmap_kernel());
1370 int merged = 0;
1371 int error;
1372 int newetype;
1373
1374 UVMHIST_FUNC("uvm_map_enter");
1375 UVMHIST_CALLED(maphist);
1376
1377 UVMHIST_LOG(maphist, "(map=0x%x, start=0x%x, size=%d, flags=0x%x)",
1378 map, start, size, flags);
1379 UVMHIST_LOG(maphist, " uobj/offset 0x%x/%d", uobj, uoffset,0,0);
1380
1381 KASSERT(map->hint == prev_entry); /* bimerge case assumes this */
1382
1383 if (flags & UVM_FLAG_QUANTUM) {
1384 KASSERT(new_entry);
1385 KASSERT(new_entry->flags & UVM_MAP_QUANTUM);
1386 }
1387
1388 if (uobj)
1389 newetype = UVM_ET_OBJ;
1390 else
1391 newetype = 0;
1392
1393 if (flags & UVM_FLAG_COPYONW) {
1394 newetype |= UVM_ET_COPYONWRITE;
1395 if ((flags & UVM_FLAG_OVERLAY) == 0)
1396 newetype |= UVM_ET_NEEDSCOPY;
1397 }
1398
1399 /*
1400 * try and insert in map by extending previous entry, if possible.
1401 * XXX: we don't try and pull back the next entry. might be useful
1402 * for a stack, but we are currently allocating our stack in advance.
1403 */
1404
1405 if (flags & UVM_FLAG_NOMERGE)
1406 goto nomerge;
1407
1408 if (prev_entry->end == start &&
1409 prev_entry != &map->header &&
1410 UVM_ET_ISCOMPATIBLE(prev_entry, newetype, uobj, meflagval,
1411 prot, maxprot, inherit, advice, 0)) {
1412
1413 if (uobj && prev_entry->offset +
1414 (prev_entry->end - prev_entry->start) != uoffset)
1415 goto forwardmerge;
1416
1417 /*
1418 * can't extend a shared amap. note: no need to lock amap to
1419 * look at refs since we don't care about its exact value.
1420 * if it is one (i.e. we have only reference) it will stay there
1421 */
1422
1423 if (prev_entry->aref.ar_amap &&
1424 amap_refs(prev_entry->aref.ar_amap) != 1) {
1425 goto forwardmerge;
1426 }
1427
1428 if (prev_entry->aref.ar_amap) {
1429 error = amap_extend(prev_entry, size,
1430 amapwaitflag | AMAP_EXTEND_FORWARDS);
1431 if (error)
1432 goto nomerge;
1433 }
1434
1435 if (kmap) {
1436 UVMMAP_EVCNT_INCR(kbackmerge);
1437 } else {
1438 UVMMAP_EVCNT_INCR(ubackmerge);
1439 }
1440 UVMHIST_LOG(maphist," starting back merge", 0, 0, 0, 0);
1441
1442 /*
1443 * drop our reference to uobj since we are extending a reference
1444 * that we already have (the ref count can not drop to zero).
1445 */
1446
1447 if (uobj && uobj->pgops->pgo_detach)
1448 uobj->pgops->pgo_detach(uobj);
1449
1450 /*
1451 * Now that we've merged the entries, note that we've grown
1452 * and our gap has shrunk. Then fix the tree.
1453 */
1454 prev_entry->end += size;
1455 prev_entry->gap -= size;
1456 uvm_rb_fixup(map, prev_entry);
1457
1458 uvm_map_check(map, "map backmerged");
1459
1460 UVMHIST_LOG(maphist,"<- done (via backmerge)!", 0, 0, 0, 0);
1461 merged++;
1462 }
1463
1464 forwardmerge:
1465 if (prev_entry->next->start == (start + size) &&
1466 prev_entry->next != &map->header &&
1467 UVM_ET_ISCOMPATIBLE(prev_entry->next, newetype, uobj, meflagval,
1468 prot, maxprot, inherit, advice, 0)) {
1469
1470 if (uobj && prev_entry->next->offset != uoffset + size)
1471 goto nomerge;
1472
1473 /*
1474 * can't extend a shared amap. note: no need to lock amap to
1475 * look at refs since we don't care about its exact value.
1476 * if it is one (i.e. we have only reference) it will stay there.
1477 *
1478 * note that we also can't merge two amaps, so if we
1479 * merged with the previous entry which has an amap,
1480 * and the next entry also has an amap, we give up.
1481 *
1482 * Interesting cases:
1483 * amap, new, amap -> give up second merge (single fwd extend)
1484 * amap, new, none -> double forward extend (extend again here)
1485 * none, new, amap -> double backward extend (done here)
1486 * uobj, new, amap -> single backward extend (done here)
1487 *
1488 * XXX should we attempt to deal with someone refilling
1489 * the deallocated region between two entries that are
1490 * backed by the same amap (ie, arefs is 2, "prev" and
1491 * "next" refer to it, and adding this allocation will
1492 * close the hole, thus restoring arefs to 1 and
1493 * deallocating the "next" vm_map_entry)? -- @@@
1494 */
1495
1496 if (prev_entry->next->aref.ar_amap &&
1497 (amap_refs(prev_entry->next->aref.ar_amap) != 1 ||
1498 (merged && prev_entry->aref.ar_amap))) {
1499 goto nomerge;
1500 }
1501
1502 if (merged) {
1503 /*
1504 * Try to extend the amap of the previous entry to
1505 * cover the next entry as well. If it doesn't work
1506 * just skip on, don't actually give up, since we've
1507 * already completed the back merge.
1508 */
1509 if (prev_entry->aref.ar_amap) {
1510 if (amap_extend(prev_entry,
1511 prev_entry->next->end -
1512 prev_entry->next->start,
1513 amapwaitflag | AMAP_EXTEND_FORWARDS))
1514 goto nomerge;
1515 }
1516
1517 /*
1518 * Try to extend the amap of the *next* entry
1519 * back to cover the new allocation *and* the
1520 * previous entry as well (the previous merge
1521 * didn't have an amap already otherwise we
1522 * wouldn't be checking here for an amap). If
1523 * it doesn't work just skip on, again, don't
1524 * actually give up, since we've already
1525 * completed the back merge.
1526 */
1527 else if (prev_entry->next->aref.ar_amap) {
1528 if (amap_extend(prev_entry->next,
1529 prev_entry->end -
1530 prev_entry->start,
1531 amapwaitflag | AMAP_EXTEND_BACKWARDS))
1532 goto nomerge;
1533 }
1534 } else {
1535 /*
1536 * Pull the next entry's amap backwards to cover this
1537 * new allocation.
1538 */
1539 if (prev_entry->next->aref.ar_amap) {
1540 error = amap_extend(prev_entry->next, size,
1541 amapwaitflag | AMAP_EXTEND_BACKWARDS);
1542 if (error)
1543 goto nomerge;
1544 }
1545 }
1546
1547 if (merged) {
1548 if (kmap) {
1549 UVMMAP_EVCNT_DECR(kbackmerge);
1550 UVMMAP_EVCNT_INCR(kbimerge);
1551 } else {
1552 UVMMAP_EVCNT_DECR(ubackmerge);
1553 UVMMAP_EVCNT_INCR(ubimerge);
1554 }
1555 } else {
1556 if (kmap) {
1557 UVMMAP_EVCNT_INCR(kforwmerge);
1558 } else {
1559 UVMMAP_EVCNT_INCR(uforwmerge);
1560 }
1561 }
1562 UVMHIST_LOG(maphist," starting forward merge", 0, 0, 0, 0);
1563
1564 /*
1565 * drop our reference to uobj since we are extending a reference
1566 * that we already have (the ref count can not drop to zero).
1567 * (if merged, we've already detached)
1568 */
1569 if (uobj && uobj->pgops->pgo_detach && !merged)
1570 uobj->pgops->pgo_detach(uobj);
1571
1572 if (merged) {
1573 dead = prev_entry->next;
1574 prev_entry->end = dead->end;
1575 uvm_map_entry_unlink(map, dead);
1576 if (dead->aref.ar_amap != NULL) {
1577 prev_entry->aref = dead->aref;
1578 dead->aref.ar_amap = NULL;
1579 }
1580 } else {
1581 prev_entry->next->start -= size;
1582 if (prev_entry != &map->header) {
1583 prev_entry->gap -= size;
1584 KASSERT(prev_entry->gap == uvm_rb_gap(prev_entry));
1585 uvm_rb_fixup(map, prev_entry);
1586 }
1587 if (uobj)
1588 prev_entry->next->offset = uoffset;
1589 }
1590
1591 uvm_map_check(map, "map forwardmerged");
1592
1593 UVMHIST_LOG(maphist,"<- done forwardmerge", 0, 0, 0, 0);
1594 merged++;
1595 }
1596
1597 nomerge:
1598 if (!merged) {
1599 UVMHIST_LOG(maphist," allocating new map entry", 0, 0, 0, 0);
1600 if (kmap) {
1601 UVMMAP_EVCNT_INCR(knomerge);
1602 } else {
1603 UVMMAP_EVCNT_INCR(unomerge);
1604 }
1605
1606 /*
1607 * allocate new entry and link it in.
1608 */
1609
1610 if (new_entry == NULL) {
1611 new_entry = uvm_mapent_alloc(map,
1612 (flags & UVM_FLAG_NOWAIT));
1613 if (__predict_false(new_entry == NULL)) {
1614 error = ENOMEM;
1615 goto done;
1616 }
1617 }
1618 new_entry->start = start;
1619 new_entry->end = new_entry->start + size;
1620 new_entry->object.uvm_obj = uobj;
1621 new_entry->offset = uoffset;
1622
1623 new_entry->etype = newetype;
1624
1625 if (flags & UVM_FLAG_NOMERGE) {
1626 new_entry->flags |= UVM_MAP_NOMERGE;
1627 }
1628
1629 new_entry->protection = prot;
1630 new_entry->max_protection = maxprot;
1631 new_entry->inheritance = inherit;
1632 new_entry->wired_count = 0;
1633 new_entry->advice = advice;
1634 if (flags & UVM_FLAG_OVERLAY) {
1635
1636 /*
1637 * to_add: for BSS we overallocate a little since we
1638 * are likely to extend
1639 */
1640
1641 vaddr_t to_add = (flags & UVM_FLAG_AMAPPAD) ?
1642 UVM_AMAP_CHUNK << PAGE_SHIFT : 0;
1643 struct vm_amap *amap = amap_alloc(size, to_add,
1644 (flags & UVM_FLAG_NOWAIT));
1645 if (__predict_false(amap == NULL)) {
1646 error = ENOMEM;
1647 goto done;
1648 }
1649 new_entry->aref.ar_pageoff = 0;
1650 new_entry->aref.ar_amap = amap;
1651 } else {
1652 new_entry->aref.ar_pageoff = 0;
1653 new_entry->aref.ar_amap = NULL;
1654 }
1655 uvm_map_entry_link(map, prev_entry, new_entry);
1656
1657 /*
1658 * Update the free space hint
1659 */
1660
1661 if ((map->first_free == prev_entry) &&
1662 (prev_entry->end >= new_entry->start))
1663 map->first_free = new_entry;
1664
1665 new_entry = NULL;
1666 }
1667
1668 map->size += size;
1669
1670 UVMHIST_LOG(maphist,"<- done!", 0, 0, 0, 0);
1671
1672 error = 0;
1673 done:
1674 if ((flags & UVM_FLAG_QUANTUM) == 0) {
1675 /*
1676 * vmk_merged_entries is locked by the map's lock.
1677 */
1678 vm_map_unlock(map);
1679 }
1680 if (new_entry && error == 0) {
1681 KDASSERT(merged);
1682 uvm_mapent_free_merged(map, new_entry);
1683 new_entry = NULL;
1684 }
1685 if (dead) {
1686 KDASSERT(merged);
1687 uvm_mapent_free_merged(map, dead);
1688 }
1689 if ((flags & UVM_FLAG_QUANTUM) != 0) {
1690 vm_map_unlock(map);
1691 }
1692 if (new_entry != NULL) {
1693 uvm_mapent_free(new_entry);
1694 }
1695 return error;
1696 }
1697
1698 /*
1699 * uvm_map_lookup_entry_bytree: lookup an entry in tree
1700 */
1701
1702 static inline bool
1703 uvm_map_lookup_entry_bytree(struct vm_map *map, vaddr_t address,
1704 struct vm_map_entry **entry /* OUT */)
1705 {
1706 struct vm_map_entry *prev = &map->header;
1707 struct vm_map_entry *cur = ROOT_ENTRY(map);
1708
1709 while (cur) {
1710 UVMMAP_EVCNT_INCR(mlk_treeloop);
1711 if (address >= cur->start) {
1712 if (address < cur->end) {
1713 *entry = cur;
1714 return true;
1715 }
1716 prev = cur;
1717 cur = RIGHT_ENTRY(cur);
1718 } else
1719 cur = LEFT_ENTRY(cur);
1720 }
1721 *entry = prev;
1722 return false;
1723 }
1724
1725 /*
1726 * uvm_map_lookup_entry: find map entry at or before an address
1727 *
1728 * => map must at least be read-locked by caller
1729 * => entry is returned in "entry"
1730 * => return value is true if address is in the returned entry
1731 */
1732
1733 bool
1734 uvm_map_lookup_entry(struct vm_map *map, vaddr_t address,
1735 struct vm_map_entry **entry /* OUT */)
1736 {
1737 struct vm_map_entry *cur;
1738 bool use_tree = false;
1739 UVMHIST_FUNC("uvm_map_lookup_entry");
1740 UVMHIST_CALLED(maphist);
1741
1742 UVMHIST_LOG(maphist,"(map=0x%x,addr=0x%x,ent=0x%x)",
1743 map, address, entry, 0);
1744
1745 /*
1746 * start looking either from the head of the
1747 * list, or from the hint.
1748 */
1749
1750 cur = map->hint;
1751
1752 if (cur == &map->header)
1753 cur = cur->next;
1754
1755 UVMMAP_EVCNT_INCR(mlk_call);
1756 if (address >= cur->start) {
1757
1758 /*
1759 * go from hint to end of list.
1760 *
1761 * but first, make a quick check to see if
1762 * we are already looking at the entry we
1763 * want (which is usually the case).
1764 * note also that we don't need to save the hint
1765 * here... it is the same hint (unless we are
1766 * at the header, in which case the hint didn't
1767 * buy us anything anyway).
1768 */
1769
1770 if (cur != &map->header && cur->end > address) {
1771 UVMMAP_EVCNT_INCR(mlk_hint);
1772 *entry = cur;
1773 UVMHIST_LOG(maphist,"<- got it via hint (0x%x)",
1774 cur, 0, 0, 0);
1775 uvm_mapent_check(*entry);
1776 return (true);
1777 }
1778
1779 if (map->nentries > 15)
1780 use_tree = true;
1781 } else {
1782
1783 /*
1784 * invalid hint. use tree.
1785 */
1786 use_tree = true;
1787 }
1788
1789 uvm_map_check(map, __func__);
1790
1791 if (use_tree) {
1792 /*
1793 * Simple lookup in the tree. Happens when the hint is
1794 * invalid, or nentries reach a threshold.
1795 */
1796 UVMMAP_EVCNT_INCR(mlk_tree);
1797 if (uvm_map_lookup_entry_bytree(map, address, entry)) {
1798 goto got;
1799 } else {
1800 goto failed;
1801 }
1802 }
1803
1804 /*
1805 * search linearly
1806 */
1807
1808 UVMMAP_EVCNT_INCR(mlk_list);
1809 while (cur != &map->header) {
1810 UVMMAP_EVCNT_INCR(mlk_listloop);
1811 if (cur->end > address) {
1812 if (address >= cur->start) {
1813 /*
1814 * save this lookup for future
1815 * hints, and return
1816 */
1817
1818 *entry = cur;
1819 got:
1820 SAVE_HINT(map, map->hint, *entry);
1821 UVMHIST_LOG(maphist,"<- search got it (0x%x)",
1822 cur, 0, 0, 0);
1823 KDASSERT((*entry)->start <= address);
1824 KDASSERT(address < (*entry)->end);
1825 uvm_mapent_check(*entry);
1826 return (true);
1827 }
1828 break;
1829 }
1830 cur = cur->next;
1831 }
1832 *entry = cur->prev;
1833 failed:
1834 SAVE_HINT(map, map->hint, *entry);
1835 UVMHIST_LOG(maphist,"<- failed!",0,0,0,0);
1836 KDASSERT((*entry) == &map->header || (*entry)->end <= address);
1837 KDASSERT((*entry)->next == &map->header ||
1838 address < (*entry)->next->start);
1839 return (false);
1840 }
1841
1842 /*
1843 * See if the range between start and start + length fits in the gap
1844 * entry->next->start and entry->end. Returns 1 if fits, 0 if doesn't
1845 * fit, and -1 address wraps around.
1846 */
1847 static int
1848 uvm_map_space_avail(vaddr_t *start, vsize_t length, voff_t uoffset,
1849 vsize_t align, int topdown, struct vm_map_entry *entry)
1850 {
1851 vaddr_t end;
1852
1853 #ifdef PMAP_PREFER
1854 /*
1855 * push start address forward as needed to avoid VAC alias problems.
1856 * we only do this if a valid offset is specified.
1857 */
1858
1859 if (uoffset != UVM_UNKNOWN_OFFSET)
1860 PMAP_PREFER(uoffset, start, length, topdown);
1861 #endif
1862 if (align != 0) {
1863 if ((*start & (align - 1)) != 0) {
1864 if (topdown)
1865 *start &= ~(align - 1);
1866 else
1867 *start = roundup(*start, align);
1868 }
1869 /*
1870 * XXX Should we PMAP_PREFER() here again?
1871 * eh...i think we're okay
1872 */
1873 }
1874
1875 /*
1876 * Find the end of the proposed new region. Be sure we didn't
1877 * wrap around the address; if so, we lose. Otherwise, if the
1878 * proposed new region fits before the next entry, we win.
1879 */
1880
1881 end = *start + length;
1882 if (end < *start)
1883 return (-1);
1884
1885 if (entry->next->start >= end && *start >= entry->end)
1886 return (1);
1887
1888 return (0);
1889 }
1890
1891 /*
1892 * uvm_map_findspace: find "length" sized space in "map".
1893 *
1894 * => "hint" is a hint about where we want it, unless UVM_FLAG_FIXED is
1895 * set in "flags" (in which case we insist on using "hint").
1896 * => "result" is VA returned
1897 * => uobj/uoffset are to be used to handle VAC alignment, if required
1898 * => if "align" is non-zero, we attempt to align to that value.
1899 * => caller must at least have read-locked map
1900 * => returns NULL on failure, or pointer to prev. map entry if success
1901 * => note this is a cross between the old vm_map_findspace and vm_map_find
1902 */
1903
1904 struct vm_map_entry *
1905 uvm_map_findspace(struct vm_map *map, vaddr_t hint, vsize_t length,
1906 vaddr_t *result /* OUT */, struct uvm_object *uobj, voff_t uoffset,
1907 vsize_t align, int flags)
1908 {
1909 struct vm_map_entry *entry;
1910 struct vm_map_entry *child, *prev, *tmp;
1911 vaddr_t orig_hint;
1912 const int topdown = map->flags & VM_MAP_TOPDOWN;
1913 UVMHIST_FUNC("uvm_map_findspace");
1914 UVMHIST_CALLED(maphist);
1915
1916 UVMHIST_LOG(maphist, "(map=0x%x, hint=0x%x, len=%d, flags=0x%x)",
1917 map, hint, length, flags);
1918 KASSERT((align & (align - 1)) == 0);
1919 KASSERT((flags & UVM_FLAG_FIXED) == 0 || align == 0);
1920
1921 uvm_map_check(map, "map_findspace entry");
1922
1923 /*
1924 * remember the original hint. if we are aligning, then we
1925 * may have to try again with no alignment constraint if
1926 * we fail the first time.
1927 */
1928
1929 orig_hint = hint;
1930 if (hint < vm_map_min(map)) { /* check ranges ... */
1931 if (flags & UVM_FLAG_FIXED) {
1932 UVMHIST_LOG(maphist,"<- VA below map range",0,0,0,0);
1933 return (NULL);
1934 }
1935 hint = vm_map_min(map);
1936 }
1937 if (hint > vm_map_max(map)) {
1938 UVMHIST_LOG(maphist,"<- VA 0x%x > range [0x%x->0x%x]",
1939 hint, vm_map_min(map), vm_map_max(map), 0);
1940 return (NULL);
1941 }
1942
1943 /*
1944 * Look for the first possible address; if there's already
1945 * something at this address, we have to start after it.
1946 */
1947
1948 /*
1949 * @@@: there are four, no, eight cases to consider.
1950 *
1951 * 0: found, fixed, bottom up -> fail
1952 * 1: found, fixed, top down -> fail
1953 * 2: found, not fixed, bottom up -> start after entry->end,
1954 * loop up
1955 * 3: found, not fixed, top down -> start before entry->start,
1956 * loop down
1957 * 4: not found, fixed, bottom up -> check entry->next->start, fail
1958 * 5: not found, fixed, top down -> check entry->next->start, fail
1959 * 6: not found, not fixed, bottom up -> check entry->next->start,
1960 * loop up
1961 * 7: not found, not fixed, top down -> check entry->next->start,
1962 * loop down
1963 *
1964 * as you can see, it reduces to roughly five cases, and that
1965 * adding top down mapping only adds one unique case (without
1966 * it, there would be four cases).
1967 */
1968
1969 if ((flags & UVM_FLAG_FIXED) == 0 && hint == vm_map_min(map)) {
1970 entry = map->first_free;
1971 } else {
1972 if (uvm_map_lookup_entry(map, hint, &entry)) {
1973 /* "hint" address already in use ... */
1974 if (flags & UVM_FLAG_FIXED) {
1975 UVMHIST_LOG(maphist, "<- fixed & VA in use",
1976 0, 0, 0, 0);
1977 return (NULL);
1978 }
1979 if (topdown)
1980 /* Start from lower gap. */
1981 entry = entry->prev;
1982 } else if (flags & UVM_FLAG_FIXED) {
1983 if (entry->next->start >= hint + length &&
1984 hint + length > hint)
1985 goto found;
1986
1987 /* "hint" address is gap but too small */
1988 UVMHIST_LOG(maphist, "<- fixed mapping failed",
1989 0, 0, 0, 0);
1990 return (NULL); /* only one shot at it ... */
1991 } else {
1992 /*
1993 * See if given hint fits in this gap.
1994 */
1995 switch (uvm_map_space_avail(&hint, length,
1996 uoffset, align, topdown, entry)) {
1997 case 1:
1998 goto found;
1999 case -1:
2000 goto wraparound;
2001 }
2002
2003 if (topdown) {
2004 /*
2005 * Still there is a chance to fit
2006 * if hint > entry->end.
2007 */
2008 } else {
2009 /* Start from higher gap. */
2010 entry = entry->next;
2011 if (entry == &map->header)
2012 goto notfound;
2013 goto nextgap;
2014 }
2015 }
2016 }
2017
2018 /*
2019 * Note that all UVM_FLAGS_FIXED case is already handled.
2020 */
2021 KDASSERT((flags & UVM_FLAG_FIXED) == 0);
2022
2023 /* Try to find the space in the red-black tree */
2024
2025 /* Check slot before any entry */
2026 hint = topdown ? entry->next->start - length : entry->end;
2027 switch (uvm_map_space_avail(&hint, length, uoffset, align,
2028 topdown, entry)) {
2029 case 1:
2030 goto found;
2031 case -1:
2032 goto wraparound;
2033 }
2034
2035 nextgap:
2036 KDASSERT((flags & UVM_FLAG_FIXED) == 0);
2037 /* If there is not enough space in the whole tree, we fail */
2038 tmp = ROOT_ENTRY(map);
2039 if (tmp == NULL || tmp->maxgap < length)
2040 goto notfound;
2041
2042 prev = NULL; /* previous candidate */
2043
2044 /* Find an entry close to hint that has enough space */
2045 for (; tmp;) {
2046 KASSERT(tmp->next->start == tmp->end + tmp->gap);
2047 if (topdown) {
2048 if (tmp->next->start < hint + length &&
2049 (prev == NULL || tmp->end > prev->end)) {
2050 if (tmp->gap >= length)
2051 prev = tmp;
2052 else if ((child = LEFT_ENTRY(tmp)) != NULL
2053 && child->maxgap >= length)
2054 prev = tmp;
2055 }
2056 } else {
2057 if (tmp->end >= hint &&
2058 (prev == NULL || tmp->end < prev->end)) {
2059 if (tmp->gap >= length)
2060 prev = tmp;
2061 else if ((child = RIGHT_ENTRY(tmp)) != NULL
2062 && child->maxgap >= length)
2063 prev = tmp;
2064 }
2065 }
2066 if (tmp->next->start < hint + length)
2067 child = RIGHT_ENTRY(tmp);
2068 else if (tmp->end > hint)
2069 child = LEFT_ENTRY(tmp);
2070 else {
2071 if (tmp->gap >= length)
2072 break;
2073 if (topdown)
2074 child = LEFT_ENTRY(tmp);
2075 else
2076 child = RIGHT_ENTRY(tmp);
2077 }
2078 if (child == NULL || child->maxgap < length)
2079 break;
2080 tmp = child;
2081 }
2082
2083 if (tmp != NULL && tmp->start < hint && hint < tmp->next->start) {
2084 /*
2085 * Check if the entry that we found satifies the
2086 * space requirement
2087 */
2088 if (topdown) {
2089 if (hint > tmp->next->start - length)
2090 hint = tmp->next->start - length;
2091 } else {
2092 if (hint < tmp->end)
2093 hint = tmp->end;
2094 }
2095 switch (uvm_map_space_avail(&hint, length, uoffset, align,
2096 topdown, tmp)) {
2097 case 1:
2098 entry = tmp;
2099 goto found;
2100 case -1:
2101 goto wraparound;
2102 }
2103 if (tmp->gap >= length)
2104 goto listsearch;
2105 }
2106 if (prev == NULL)
2107 goto notfound;
2108
2109 if (topdown) {
2110 KASSERT(orig_hint >= prev->next->start - length ||
2111 prev->next->start - length > prev->next->start);
2112 hint = prev->next->start - length;
2113 } else {
2114 KASSERT(orig_hint <= prev->end);
2115 hint = prev->end;
2116 }
2117 switch (uvm_map_space_avail(&hint, length, uoffset, align,
2118 topdown, prev)) {
2119 case 1:
2120 entry = prev;
2121 goto found;
2122 case -1:
2123 goto wraparound;
2124 }
2125 if (prev->gap >= length)
2126 goto listsearch;
2127
2128 if (topdown)
2129 tmp = LEFT_ENTRY(prev);
2130 else
2131 tmp = RIGHT_ENTRY(prev);
2132 for (;;) {
2133 KASSERT(tmp && tmp->maxgap >= length);
2134 if (topdown)
2135 child = RIGHT_ENTRY(tmp);
2136 else
2137 child = LEFT_ENTRY(tmp);
2138 if (child && child->maxgap >= length) {
2139 tmp = child;
2140 continue;
2141 }
2142 if (tmp->gap >= length)
2143 break;
2144 if (topdown)
2145 tmp = LEFT_ENTRY(tmp);
2146 else
2147 tmp = RIGHT_ENTRY(tmp);
2148 }
2149
2150 if (topdown) {
2151 KASSERT(orig_hint >= tmp->next->start - length ||
2152 tmp->next->start - length > tmp->next->start);
2153 hint = tmp->next->start - length;
2154 } else {
2155 KASSERT(orig_hint <= tmp->end);
2156 hint = tmp->end;
2157 }
2158 switch (uvm_map_space_avail(&hint, length, uoffset, align,
2159 topdown, tmp)) {
2160 case 1:
2161 entry = tmp;
2162 goto found;
2163 case -1:
2164 goto wraparound;
2165 }
2166
2167 /*
2168 * The tree fails to find an entry because of offset or alignment
2169 * restrictions. Search the list instead.
2170 */
2171 listsearch:
2172 /*
2173 * Look through the rest of the map, trying to fit a new region in
2174 * the gap between existing regions, or after the very last region.
2175 * note: entry->end = base VA of current gap,
2176 * entry->next->start = VA of end of current gap
2177 */
2178
2179 for (;;) {
2180 /* Update hint for current gap. */
2181 hint = topdown ? entry->next->start - length : entry->end;
2182
2183 /* See if it fits. */
2184 switch (uvm_map_space_avail(&hint, length, uoffset, align,
2185 topdown, entry)) {
2186 case 1:
2187 goto found;
2188 case -1:
2189 goto wraparound;
2190 }
2191
2192 /* Advance to next/previous gap */
2193 if (topdown) {
2194 if (entry == &map->header) {
2195 UVMHIST_LOG(maphist, "<- failed (off start)",
2196 0,0,0,0);
2197 goto notfound;
2198 }
2199 entry = entry->prev;
2200 } else {
2201 entry = entry->next;
2202 if (entry == &map->header) {
2203 UVMHIST_LOG(maphist, "<- failed (off end)",
2204 0,0,0,0);
2205 goto notfound;
2206 }
2207 }
2208 }
2209
2210 found:
2211 SAVE_HINT(map, map->hint, entry);
2212 *result = hint;
2213 UVMHIST_LOG(maphist,"<- got it! (result=0x%x)", hint, 0,0,0);
2214 KASSERT( topdown || hint >= orig_hint);
2215 KASSERT(!topdown || hint <= orig_hint);
2216 KASSERT(entry->end <= hint);
2217 KASSERT(hint + length <= entry->next->start);
2218 return (entry);
2219
2220 wraparound:
2221 UVMHIST_LOG(maphist, "<- failed (wrap around)", 0,0,0,0);
2222
2223 return (NULL);
2224
2225 notfound:
2226 UVMHIST_LOG(maphist, "<- failed (notfound)", 0,0,0,0);
2227
2228 return (NULL);
2229 }
2230
2231 /*
2232 * U N M A P - m a i n h e l p e r f u n c t i o n s
2233 */
2234
2235 /*
2236 * uvm_unmap_remove: remove mappings from a vm_map (from "start" up to "stop")
2237 *
2238 * => caller must check alignment and size
2239 * => map must be locked by caller
2240 * => we return a list of map entries that we've remove from the map
2241 * in "entry_list"
2242 */
2243
2244 void
2245 uvm_unmap_remove(struct vm_map *map, vaddr_t start, vaddr_t end,
2246 struct vm_map_entry **entry_list /* OUT */,
2247 struct uvm_mapent_reservation *umr, int flags)
2248 {
2249 struct vm_map_entry *entry, *first_entry, *next;
2250 vaddr_t len;
2251 UVMHIST_FUNC("uvm_unmap_remove"); UVMHIST_CALLED(maphist);
2252
2253 UVMHIST_LOG(maphist,"(map=0x%x, start=0x%x, end=0x%x)",
2254 map, start, end, 0);
2255 VM_MAP_RANGE_CHECK(map, start, end);
2256
2257 uvm_map_check(map, "unmap_remove entry");
2258
2259 /*
2260 * find first entry
2261 */
2262
2263 if (uvm_map_lookup_entry(map, start, &first_entry) == true) {
2264 /* clip and go... */
2265 entry = first_entry;
2266 UVM_MAP_CLIP_START(map, entry, start, umr);
2267 /* critical! prevents stale hint */
2268 SAVE_HINT(map, entry, entry->prev);
2269 } else {
2270 entry = first_entry->next;
2271 }
2272
2273 /*
2274 * Save the free space hint
2275 */
2276
2277 if (map->first_free != &map->header && map->first_free->start >= start)
2278 map->first_free = entry->prev;
2279
2280 /*
2281 * note: we now re-use first_entry for a different task. we remove
2282 * a number of map entries from the map and save them in a linked
2283 * list headed by "first_entry". once we remove them from the map
2284 * the caller should unlock the map and drop the references to the
2285 * backing objects [c.f. uvm_unmap_detach]. the object is to
2286 * separate unmapping from reference dropping. why?
2287 * [1] the map has to be locked for unmapping
2288 * [2] the map need not be locked for reference dropping
2289 * [3] dropping references may trigger pager I/O, and if we hit
2290 * a pager that does synchronous I/O we may have to wait for it.
2291 * [4] we would like all waiting for I/O to occur with maps unlocked
2292 * so that we don't block other threads.
2293 */
2294
2295 first_entry = NULL;
2296 *entry_list = NULL;
2297
2298 /*
2299 * break up the area into map entry sized regions and unmap. note
2300 * that all mappings have to be removed before we can even consider
2301 * dropping references to amaps or VM objects (otherwise we could end
2302 * up with a mapping to a page on the free list which would be very bad)
2303 */
2304
2305 while ((entry != &map->header) && (entry->start < end)) {
2306 KASSERT((entry->flags & UVM_MAP_FIRST) == 0);
2307
2308 UVM_MAP_CLIP_END(map, entry, end, umr);
2309 next = entry->next;
2310 len = entry->end - entry->start;
2311
2312 /*
2313 * unwire before removing addresses from the pmap; otherwise
2314 * unwiring will put the entries back into the pmap (XXX).
2315 */
2316
2317 if (VM_MAPENT_ISWIRED(entry)) {
2318 uvm_map_entry_unwire(map, entry);
2319 }
2320 if (flags & UVM_FLAG_VAONLY) {
2321
2322 /* nothing */
2323
2324 } else if ((map->flags & VM_MAP_PAGEABLE) == 0) {
2325
2326 /*
2327 * if the map is non-pageable, any pages mapped there
2328 * must be wired and entered with pmap_kenter_pa(),
2329 * and we should free any such pages immediately.
2330 * this is mostly used for kmem_map and mb_map.
2331 */
2332
2333 if ((entry->flags & UVM_MAP_KMAPENT) == 0) {
2334 uvm_km_pgremove_intrsafe(map, entry->start,
2335 entry->end);
2336 pmap_kremove(entry->start, len);
2337 }
2338 } else if (UVM_ET_ISOBJ(entry) &&
2339 UVM_OBJ_IS_KERN_OBJECT(entry->object.uvm_obj)) {
2340 KASSERT(vm_map_pmap(map) == pmap_kernel());
2341
2342 /*
2343 * note: kernel object mappings are currently used in
2344 * two ways:
2345 * [1] "normal" mappings of pages in the kernel object
2346 * [2] uvm_km_valloc'd allocations in which we
2347 * pmap_enter in some non-kernel-object page
2348 * (e.g. vmapbuf).
2349 *
2350 * for case [1], we need to remove the mapping from
2351 * the pmap and then remove the page from the kernel
2352 * object (because, once pages in a kernel object are
2353 * unmapped they are no longer needed, unlike, say,
2354 * a vnode where you might want the data to persist
2355 * until flushed out of a queue).
2356 *
2357 * for case [2], we need to remove the mapping from
2358 * the pmap. there shouldn't be any pages at the
2359 * specified offset in the kernel object [but it
2360 * doesn't hurt to call uvm_km_pgremove just to be
2361 * safe?]
2362 *
2363 * uvm_km_pgremove currently does the following:
2364 * for pages in the kernel object in range:
2365 * - drops the swap slot
2366 * - uvm_pagefree the page
2367 */
2368
2369 /*
2370 * remove mappings from pmap and drop the pages
2371 * from the object. offsets are always relative
2372 * to vm_map_min(kernel_map).
2373 */
2374
2375 pmap_remove(pmap_kernel(), entry->start,
2376 entry->start + len);
2377 uvm_km_pgremove(entry->start, entry->end);
2378
2379 /*
2380 * null out kernel_object reference, we've just
2381 * dropped it
2382 */
2383
2384 entry->etype &= ~UVM_ET_OBJ;
2385 entry->object.uvm_obj = NULL;
2386 } else if (UVM_ET_ISOBJ(entry) || entry->aref.ar_amap) {
2387
2388 /*
2389 * remove mappings the standard way.
2390 */
2391
2392 pmap_remove(map->pmap, entry->start, entry->end);
2393 }
2394
2395 #if defined(DEBUG)
2396 if ((entry->flags & UVM_MAP_KMAPENT) == 0) {
2397
2398 /*
2399 * check if there's remaining mapping,
2400 * which is a bug in caller.
2401 */
2402
2403 vaddr_t va;
2404 for (va = entry->start; va < entry->end;
2405 va += PAGE_SIZE) {
2406 if (pmap_extract(vm_map_pmap(map), va, NULL)) {
2407 panic("uvm_unmap_remove: has mapping");
2408 }
2409 }
2410
2411 if (VM_MAP_IS_KERNEL(map)) {
2412 uvm_km_check_empty(map, entry->start,
2413 entry->end);
2414 }
2415 }
2416 #endif /* defined(DEBUG) */
2417
2418 /*
2419 * remove entry from map and put it on our list of entries
2420 * that we've nuked. then go to next entry.
2421 */
2422
2423 UVMHIST_LOG(maphist, " removed map entry 0x%x", entry, 0, 0,0);
2424
2425 /* critical! prevents stale hint */
2426 SAVE_HINT(map, entry, entry->prev);
2427
2428 uvm_map_entry_unlink(map, entry);
2429 KASSERT(map->size >= len);
2430 map->size -= len;
2431 entry->prev = NULL;
2432 entry->next = first_entry;
2433 first_entry = entry;
2434 entry = next;
2435 }
2436 if ((map->flags & VM_MAP_DYING) == 0) {
2437 pmap_update(vm_map_pmap(map));
2438 }
2439
2440 uvm_map_check(map, "unmap_remove leave");
2441
2442 /*
2443 * now we've cleaned up the map and are ready for the caller to drop
2444 * references to the mapped objects.
2445 */
2446
2447 *entry_list = first_entry;
2448 UVMHIST_LOG(maphist,"<- done!", 0, 0, 0, 0);
2449
2450 if (map->flags & VM_MAP_WANTVA) {
2451 mutex_enter(&map->misc_lock);
2452 map->flags &= ~VM_MAP_WANTVA;
2453 cv_broadcast(&map->cv);
2454 mutex_exit(&map->misc_lock);
2455 }
2456 }
2457
2458 /*
2459 * uvm_unmap_detach: drop references in a chain of map entries
2460 *
2461 * => we will free the map entries as we traverse the list.
2462 */
2463
2464 void
2465 uvm_unmap_detach(struct vm_map_entry *first_entry, int flags)
2466 {
2467 struct vm_map_entry *next_entry;
2468 UVMHIST_FUNC("uvm_unmap_detach"); UVMHIST_CALLED(maphist);
2469
2470 while (first_entry) {
2471 KASSERT(!VM_MAPENT_ISWIRED(first_entry));
2472 UVMHIST_LOG(maphist,
2473 " detach 0x%x: amap=0x%x, obj=0x%x, submap?=%d",
2474 first_entry, first_entry->aref.ar_amap,
2475 first_entry->object.uvm_obj,
2476 UVM_ET_ISSUBMAP(first_entry));
2477
2478 /*
2479 * drop reference to amap, if we've got one
2480 */
2481
2482 if (first_entry->aref.ar_amap)
2483 uvm_map_unreference_amap(first_entry, flags);
2484
2485 /*
2486 * drop reference to our backing object, if we've got one
2487 */
2488
2489 KASSERT(!UVM_ET_ISSUBMAP(first_entry));
2490 if (UVM_ET_ISOBJ(first_entry) &&
2491 first_entry->object.uvm_obj->pgops->pgo_detach) {
2492 (*first_entry->object.uvm_obj->pgops->pgo_detach)
2493 (first_entry->object.uvm_obj);
2494 }
2495 next_entry = first_entry->next;
2496 uvm_mapent_free(first_entry);
2497 first_entry = next_entry;
2498 }
2499 UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
2500 }
2501
2502 /*
2503 * E X T R A C T I O N F U N C T I O N S
2504 */
2505
2506 /*
2507 * uvm_map_reserve: reserve space in a vm_map for future use.
2508 *
2509 * => we reserve space in a map by putting a dummy map entry in the
2510 * map (dummy means obj=NULL, amap=NULL, prot=VM_PROT_NONE)
2511 * => map should be unlocked (we will write lock it)
2512 * => we return true if we were able to reserve space
2513 * => XXXCDC: should be inline?
2514 */
2515
2516 int
2517 uvm_map_reserve(struct vm_map *map, vsize_t size,
2518 vaddr_t offset /* hint for pmap_prefer */,
2519 vsize_t align /* alignment */,
2520 vaddr_t *raddr /* IN:hint, OUT: reserved VA */,
2521 uvm_flag_t flags /* UVM_FLAG_FIXED or 0 */)
2522 {
2523 UVMHIST_FUNC("uvm_map_reserve"); UVMHIST_CALLED(maphist);
2524
2525 UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x, offset=0x%x,addr=0x%x)",
2526 map,size,offset,raddr);
2527
2528 size = round_page(size);
2529
2530 /*
2531 * reserve some virtual space.
2532 */
2533
2534 if (uvm_map(map, raddr, size, NULL, offset, align,
2535 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
2536 UVM_ADV_RANDOM, UVM_FLAG_NOMERGE|flags)) != 0) {
2537 UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
2538 return (false);
2539 }
2540
2541 UVMHIST_LOG(maphist, "<- done (*raddr=0x%x)", *raddr,0,0,0);
2542 return (true);
2543 }
2544
2545 /*
2546 * uvm_map_replace: replace a reserved (blank) area of memory with
2547 * real mappings.
2548 *
2549 * => caller must WRITE-LOCK the map
2550 * => we return true if replacement was a success
2551 * => we expect the newents chain to have nnewents entrys on it and
2552 * we expect newents->prev to point to the last entry on the list
2553 * => note newents is allowed to be NULL
2554 */
2555
2556 int
2557 uvm_map_replace(struct vm_map *map, vaddr_t start, vaddr_t end,
2558 struct vm_map_entry *newents, int nnewents, struct vm_map_entry **oldentryp)
2559 {
2560 struct vm_map_entry *oldent, *last;
2561
2562 uvm_map_check(map, "map_replace entry");
2563
2564 /*
2565 * first find the blank map entry at the specified address
2566 */
2567
2568 if (!uvm_map_lookup_entry(map, start, &oldent)) {
2569 return (false);
2570 }
2571
2572 /*
2573 * check to make sure we have a proper blank entry
2574 */
2575
2576 if (end < oldent->end && !VM_MAP_USE_KMAPENT(map)) {
2577 UVM_MAP_CLIP_END(map, oldent, end, NULL);
2578 }
2579 if (oldent->start != start || oldent->end != end ||
2580 oldent->object.uvm_obj != NULL || oldent->aref.ar_amap != NULL) {
2581 return (false);
2582 }
2583
2584 #ifdef DIAGNOSTIC
2585
2586 /*
2587 * sanity check the newents chain
2588 */
2589
2590 {
2591 struct vm_map_entry *tmpent = newents;
2592 int nent = 0;
2593 vaddr_t cur = start;
2594
2595 while (tmpent) {
2596 nent++;
2597 if (tmpent->start < cur)
2598 panic("uvm_map_replace1");
2599 if (tmpent->start > tmpent->end || tmpent->end > end) {
2600 printf("tmpent->start=0x%lx, tmpent->end=0x%lx, end=0x%lx\n",
2601 tmpent->start, tmpent->end, end);
2602 panic("uvm_map_replace2");
2603 }
2604 cur = tmpent->end;
2605 if (tmpent->next) {
2606 if (tmpent->next->prev != tmpent)
2607 panic("uvm_map_replace3");
2608 } else {
2609 if (newents->prev != tmpent)
2610 panic("uvm_map_replace4");
2611 }
2612 tmpent = tmpent->next;
2613 }
2614 if (nent != nnewents)
2615 panic("uvm_map_replace5");
2616 }
2617 #endif
2618
2619 /*
2620 * map entry is a valid blank! replace it. (this does all the
2621 * work of map entry link/unlink...).
2622 */
2623
2624 if (newents) {
2625 last = newents->prev;
2626
2627 /* critical: flush stale hints out of map */
2628 SAVE_HINT(map, map->hint, newents);
2629 if (map->first_free == oldent)
2630 map->first_free = last;
2631
2632 last->next = oldent->next;
2633 last->next->prev = last;
2634
2635 /* Fix RB tree */
2636 uvm_rb_remove(map, oldent);
2637
2638 newents->prev = oldent->prev;
2639 newents->prev->next = newents;
2640 map->nentries = map->nentries + (nnewents - 1);
2641
2642 /* Fixup the RB tree */
2643 {
2644 int i;
2645 struct vm_map_entry *tmp;
2646
2647 tmp = newents;
2648 for (i = 0; i < nnewents && tmp; i++) {
2649 uvm_rb_insert(map, tmp);
2650 tmp = tmp->next;
2651 }
2652 }
2653 } else {
2654 /* NULL list of new entries: just remove the old one */
2655 clear_hints(map, oldent);
2656 uvm_map_entry_unlink(map, oldent);
2657 }
2658
2659 uvm_map_check(map, "map_replace leave");
2660
2661 /*
2662 * now we can free the old blank entry and return.
2663 */
2664
2665 *oldentryp = oldent;
2666 return (true);
2667 }
2668
2669 /*
2670 * uvm_map_extract: extract a mapping from a map and put it somewhere
2671 * (maybe removing the old mapping)
2672 *
2673 * => maps should be unlocked (we will write lock them)
2674 * => returns 0 on success, error code otherwise
2675 * => start must be page aligned
2676 * => len must be page sized
2677 * => flags:
2678 * UVM_EXTRACT_REMOVE: remove mappings from srcmap
2679 * UVM_EXTRACT_CONTIG: abort if unmapped area (advisory only)
2680 * UVM_EXTRACT_QREF: for a temporary extraction do quick obj refs
2681 * UVM_EXTRACT_FIXPROT: set prot to maxprot as we go
2682 * >>>NOTE: if you set REMOVE, you are not allowed to use CONTIG or QREF!<<<
2683 * >>>NOTE: QREF's must be unmapped via the QREF path, thus should only
2684 * be used from within the kernel in a kernel level map <<<
2685 */
2686
2687 int
2688 uvm_map_extract(struct vm_map *srcmap, vaddr_t start, vsize_t len,
2689 struct vm_map *dstmap, vaddr_t *dstaddrp, int flags)
2690 {
2691 vaddr_t dstaddr, end, newend, oldoffset, fudge, orig_fudge;
2692 struct vm_map_entry *chain, *endchain, *entry, *orig_entry, *newentry,
2693 *deadentry, *oldentry;
2694 struct vm_map_entry *resentry = NULL; /* a dummy reservation entry */
2695 vsize_t elen;
2696 int nchain, error, copy_ok;
2697 UVMHIST_FUNC("uvm_map_extract"); UVMHIST_CALLED(maphist);
2698
2699 UVMHIST_LOG(maphist,"(srcmap=0x%x,start=0x%x, len=0x%x", srcmap, start,
2700 len,0);
2701 UVMHIST_LOG(maphist," ...,dstmap=0x%x, flags=0x%x)", dstmap,flags,0,0);
2702
2703 uvm_map_check(srcmap, "map_extract src enter");
2704 uvm_map_check(dstmap, "map_extract dst enter");
2705
2706 /*
2707 * step 0: sanity check: start must be on a page boundary, length
2708 * must be page sized. can't ask for CONTIG/QREF if you asked for
2709 * REMOVE.
2710 */
2711
2712 KASSERT((start & PAGE_MASK) == 0 && (len & PAGE_MASK) == 0);
2713 KASSERT((flags & UVM_EXTRACT_REMOVE) == 0 ||
2714 (flags & (UVM_EXTRACT_CONTIG|UVM_EXTRACT_QREF)) == 0);
2715
2716 /*
2717 * step 1: reserve space in the target map for the extracted area
2718 */
2719
2720 if ((flags & UVM_EXTRACT_RESERVED) == 0) {
2721 dstaddr = vm_map_min(dstmap);
2722 if (!uvm_map_reserve(dstmap, len, start, 0, &dstaddr, 0))
2723 return (ENOMEM);
2724 *dstaddrp = dstaddr; /* pass address back to caller */
2725 UVMHIST_LOG(maphist, " dstaddr=0x%x", dstaddr,0,0,0);
2726 } else {
2727 dstaddr = *dstaddrp;
2728 }
2729
2730 /*
2731 * step 2: setup for the extraction process loop by init'ing the
2732 * map entry chain, locking src map, and looking up the first useful
2733 * entry in the map.
2734 */
2735
2736 end = start + len;
2737 newend = dstaddr + len;
2738 chain = endchain = NULL;
2739 nchain = 0;
2740 vm_map_lock(srcmap);
2741
2742 if (uvm_map_lookup_entry(srcmap, start, &entry)) {
2743
2744 /* "start" is within an entry */
2745 if (flags & UVM_EXTRACT_QREF) {
2746
2747 /*
2748 * for quick references we don't clip the entry, so
2749 * the entry may map space "before" the starting
2750 * virtual address... this is the "fudge" factor
2751 * (which can be non-zero only the first time
2752 * through the "while" loop in step 3).
2753 */
2754
2755 fudge = start - entry->start;
2756 } else {
2757
2758 /*
2759 * normal reference: we clip the map to fit (thus
2760 * fudge is zero)
2761 */
2762
2763 UVM_MAP_CLIP_START(srcmap, entry, start, NULL);
2764 SAVE_HINT(srcmap, srcmap->hint, entry->prev);
2765 fudge = 0;
2766 }
2767 } else {
2768
2769 /* "start" is not within an entry ... skip to next entry */
2770 if (flags & UVM_EXTRACT_CONTIG) {
2771 error = EINVAL;
2772 goto bad; /* definite hole here ... */
2773 }
2774
2775 entry = entry->next;
2776 fudge = 0;
2777 }
2778
2779 /* save values from srcmap for step 6 */
2780 orig_entry = entry;
2781 orig_fudge = fudge;
2782
2783 /*
2784 * step 3: now start looping through the map entries, extracting
2785 * as we go.
2786 */
2787
2788 while (entry->start < end && entry != &srcmap->header) {
2789
2790 /* if we are not doing a quick reference, clip it */
2791 if ((flags & UVM_EXTRACT_QREF) == 0)
2792 UVM_MAP_CLIP_END(srcmap, entry, end, NULL);
2793
2794 /* clear needs_copy (allow chunking) */
2795 if (UVM_ET_ISNEEDSCOPY(entry)) {
2796 amap_copy(srcmap, entry,
2797 AMAP_COPY_NOWAIT|AMAP_COPY_NOMERGE, start, end);
2798 if (UVM_ET_ISNEEDSCOPY(entry)) { /* failed? */
2799 error = ENOMEM;
2800 goto bad;
2801 }
2802
2803 /* amap_copy could clip (during chunk)! update fudge */
2804 if (fudge) {
2805 fudge = start - entry->start;
2806 orig_fudge = fudge;
2807 }
2808 }
2809
2810 /* calculate the offset of this from "start" */
2811 oldoffset = (entry->start + fudge) - start;
2812
2813 /* allocate a new map entry */
2814 newentry = uvm_mapent_alloc(dstmap, 0);
2815 if (newentry == NULL) {
2816 error = ENOMEM;
2817 goto bad;
2818 }
2819
2820 /* set up new map entry */
2821 newentry->next = NULL;
2822 newentry->prev = endchain;
2823 newentry->start = dstaddr + oldoffset;
2824 newentry->end =
2825 newentry->start + (entry->end - (entry->start + fudge));
2826 if (newentry->end > newend || newentry->end < newentry->start)
2827 newentry->end = newend;
2828 newentry->object.uvm_obj = entry->object.uvm_obj;
2829 if (newentry->object.uvm_obj) {
2830 if (newentry->object.uvm_obj->pgops->pgo_reference)
2831 newentry->object.uvm_obj->pgops->
2832 pgo_reference(newentry->object.uvm_obj);
2833 newentry->offset = entry->offset + fudge;
2834 } else {
2835 newentry->offset = 0;
2836 }
2837 newentry->etype = entry->etype;
2838 newentry->protection = (flags & UVM_EXTRACT_FIXPROT) ?
2839 entry->max_protection : entry->protection;
2840 newentry->max_protection = entry->max_protection;
2841 newentry->inheritance = entry->inheritance;
2842 newentry->wired_count = 0;
2843 newentry->aref.ar_amap = entry->aref.ar_amap;
2844 if (newentry->aref.ar_amap) {
2845 newentry->aref.ar_pageoff =
2846 entry->aref.ar_pageoff + (fudge >> PAGE_SHIFT);
2847 uvm_map_reference_amap(newentry, AMAP_SHARED |
2848 ((flags & UVM_EXTRACT_QREF) ? AMAP_REFALL : 0));
2849 } else {
2850 newentry->aref.ar_pageoff = 0;
2851 }
2852 newentry->advice = entry->advice;
2853 if ((flags & UVM_EXTRACT_QREF) != 0) {
2854 newentry->flags |= UVM_MAP_NOMERGE;
2855 }
2856
2857 /* now link it on the chain */
2858 nchain++;
2859 if (endchain == NULL) {
2860 chain = endchain = newentry;
2861 } else {
2862 endchain->next = newentry;
2863 endchain = newentry;
2864 }
2865
2866 /* end of 'while' loop! */
2867 if ((flags & UVM_EXTRACT_CONTIG) && entry->end < end &&
2868 (entry->next == &srcmap->header ||
2869 entry->next->start != entry->end)) {
2870 error = EINVAL;
2871 goto bad;
2872 }
2873 entry = entry->next;
2874 fudge = 0;
2875 }
2876
2877 /*
2878 * step 4: close off chain (in format expected by uvm_map_replace)
2879 */
2880
2881 if (chain)
2882 chain->prev = endchain;
2883
2884 /*
2885 * step 5: attempt to lock the dest map so we can pmap_copy.
2886 * note usage of copy_ok:
2887 * 1 => dstmap locked, pmap_copy ok, and we "replace" here (step 5)
2888 * 0 => dstmap unlocked, NO pmap_copy, and we will "replace" in step 7
2889 */
2890
2891 if (srcmap == dstmap || vm_map_lock_try(dstmap) == true) {
2892 copy_ok = 1;
2893 if (!uvm_map_replace(dstmap, dstaddr, dstaddr+len, chain,
2894 nchain, &resentry)) {
2895 if (srcmap != dstmap)
2896 vm_map_unlock(dstmap);
2897 error = EIO;
2898 goto bad;
2899 }
2900 } else {
2901 copy_ok = 0;
2902 /* replace defered until step 7 */
2903 }
2904
2905 /*
2906 * step 6: traverse the srcmap a second time to do the following:
2907 * - if we got a lock on the dstmap do pmap_copy
2908 * - if UVM_EXTRACT_REMOVE remove the entries
2909 * we make use of orig_entry and orig_fudge (saved in step 2)
2910 */
2911
2912 if (copy_ok || (flags & UVM_EXTRACT_REMOVE)) {
2913
2914 /* purge possible stale hints from srcmap */
2915 if (flags & UVM_EXTRACT_REMOVE) {
2916 SAVE_HINT(srcmap, srcmap->hint, orig_entry->prev);
2917 if (srcmap->first_free != &srcmap->header &&
2918 srcmap->first_free->start >= start)
2919 srcmap->first_free = orig_entry->prev;
2920 }
2921
2922 entry = orig_entry;
2923 fudge = orig_fudge;
2924 deadentry = NULL; /* for UVM_EXTRACT_REMOVE */
2925
2926 while (entry->start < end && entry != &srcmap->header) {
2927 if (copy_ok) {
2928 oldoffset = (entry->start + fudge) - start;
2929 elen = MIN(end, entry->end) -
2930 (entry->start + fudge);
2931 pmap_copy(dstmap->pmap, srcmap->pmap,
2932 dstaddr + oldoffset, elen,
2933 entry->start + fudge);
2934 }
2935
2936 /* we advance "entry" in the following if statement */
2937 if (flags & UVM_EXTRACT_REMOVE) {
2938 pmap_remove(srcmap->pmap, entry->start,
2939 entry->end);
2940 oldentry = entry; /* save entry */
2941 entry = entry->next; /* advance */
2942 uvm_map_entry_unlink(srcmap, oldentry);
2943 /* add to dead list */
2944 oldentry->next = deadentry;
2945 deadentry = oldentry;
2946 } else {
2947 entry = entry->next; /* advance */
2948 }
2949
2950 /* end of 'while' loop */
2951 fudge = 0;
2952 }
2953 pmap_update(srcmap->pmap);
2954
2955 /*
2956 * unlock dstmap. we will dispose of deadentry in
2957 * step 7 if needed
2958 */
2959
2960 if (copy_ok && srcmap != dstmap)
2961 vm_map_unlock(dstmap);
2962
2963 } else {
2964 deadentry = NULL;
2965 }
2966
2967 /*
2968 * step 7: we are done with the source map, unlock. if copy_ok
2969 * is 0 then we have not replaced the dummy mapping in dstmap yet
2970 * and we need to do so now.
2971 */
2972
2973 vm_map_unlock(srcmap);
2974 if ((flags & UVM_EXTRACT_REMOVE) && deadentry)
2975 uvm_unmap_detach(deadentry, 0); /* dispose of old entries */
2976
2977 /* now do the replacement if we didn't do it in step 5 */
2978 if (copy_ok == 0) {
2979 vm_map_lock(dstmap);
2980 error = uvm_map_replace(dstmap, dstaddr, dstaddr+len, chain,
2981 nchain, &resentry);
2982 vm_map_unlock(dstmap);
2983
2984 if (error == false) {
2985 error = EIO;
2986 goto bad2;
2987 }
2988 }
2989
2990 if (resentry != NULL)
2991 uvm_mapent_free(resentry);
2992
2993 uvm_map_check(srcmap, "map_extract src leave");
2994 uvm_map_check(dstmap, "map_extract dst leave");
2995
2996 return (0);
2997
2998 /*
2999 * bad: failure recovery
3000 */
3001 bad:
3002 vm_map_unlock(srcmap);
3003 bad2: /* src already unlocked */
3004 if (chain)
3005 uvm_unmap_detach(chain,
3006 (flags & UVM_EXTRACT_QREF) ? AMAP_REFALL : 0);
3007
3008 if (resentry != NULL)
3009 uvm_mapent_free(resentry);
3010
3011 uvm_map_check(srcmap, "map_extract src err leave");
3012 uvm_map_check(dstmap, "map_extract dst err leave");
3013
3014 if ((flags & UVM_EXTRACT_RESERVED) == 0) {
3015 uvm_unmap(dstmap, dstaddr, dstaddr+len); /* ??? */
3016 }
3017 return (error);
3018 }
3019
3020 /* end of extraction functions */
3021
3022 /*
3023 * uvm_map_submap: punch down part of a map into a submap
3024 *
3025 * => only the kernel_map is allowed to be submapped
3026 * => the purpose of submapping is to break up the locking granularity
3027 * of a larger map
3028 * => the range specified must have been mapped previously with a uvm_map()
3029 * call [with uobj==NULL] to create a blank map entry in the main map.
3030 * [And it had better still be blank!]
3031 * => maps which contain submaps should never be copied or forked.
3032 * => to remove a submap, use uvm_unmap() on the main map
3033 * and then uvm_map_deallocate() the submap.
3034 * => main map must be unlocked.
3035 * => submap must have been init'd and have a zero reference count.
3036 * [need not be locked as we don't actually reference it]
3037 */
3038
3039 int
3040 uvm_map_submap(struct vm_map *map, vaddr_t start, vaddr_t end,
3041 struct vm_map *submap)
3042 {
3043 struct vm_map_entry *entry;
3044 struct uvm_mapent_reservation umr;
3045 int error;
3046
3047 uvm_mapent_reserve(map, &umr, 2, 0);
3048
3049 vm_map_lock(map);
3050 VM_MAP_RANGE_CHECK(map, start, end);
3051
3052 if (uvm_map_lookup_entry(map, start, &entry)) {
3053 UVM_MAP_CLIP_START(map, entry, start, &umr);
3054 UVM_MAP_CLIP_END(map, entry, end, &umr); /* to be safe */
3055 } else {
3056 entry = NULL;
3057 }
3058
3059 if (entry != NULL &&
3060 entry->start == start && entry->end == end &&
3061 entry->object.uvm_obj == NULL && entry->aref.ar_amap == NULL &&
3062 !UVM_ET_ISCOPYONWRITE(entry) && !UVM_ET_ISNEEDSCOPY(entry)) {
3063 entry->etype |= UVM_ET_SUBMAP;
3064 entry->object.sub_map = submap;
3065 entry->offset = 0;
3066 uvm_map_reference(submap);
3067 error = 0;
3068 } else {
3069 error = EINVAL;
3070 }
3071 vm_map_unlock(map);
3072
3073 uvm_mapent_unreserve(map, &umr);
3074
3075 return error;
3076 }
3077
3078 /*
3079 * uvm_map_setup_kernel: init in-kernel map
3080 *
3081 * => map must not be in service yet.
3082 */
3083
3084 void
3085 uvm_map_setup_kernel(struct vm_map_kernel *map,
3086 vaddr_t vmin, vaddr_t vmax, int flags)
3087 {
3088
3089 uvm_map_setup(&map->vmk_map, vmin, vmax, flags);
3090 callback_head_init(&map->vmk_reclaim_callback, IPL_VM);
3091 LIST_INIT(&map->vmk_kentry_free);
3092 map->vmk_merged_entries = NULL;
3093 }
3094
3095
3096 /*
3097 * uvm_map_protect: change map protection
3098 *
3099 * => set_max means set max_protection.
3100 * => map must be unlocked.
3101 */
3102
3103 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
3104 ~VM_PROT_WRITE : VM_PROT_ALL)
3105
3106 int
3107 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
3108 vm_prot_t new_prot, bool set_max)
3109 {
3110 struct vm_map_entry *current, *entry;
3111 int error = 0;
3112 UVMHIST_FUNC("uvm_map_protect"); UVMHIST_CALLED(maphist);
3113 UVMHIST_LOG(maphist,"(map=0x%x,start=0x%x,end=0x%x,new_prot=0x%x)",
3114 map, start, end, new_prot);
3115
3116 vm_map_lock(map);
3117 VM_MAP_RANGE_CHECK(map, start, end);
3118 if (uvm_map_lookup_entry(map, start, &entry)) {
3119 UVM_MAP_CLIP_START(map, entry, start, NULL);
3120 } else {
3121 entry = entry->next;
3122 }
3123
3124 /*
3125 * make a first pass to check for protection violations.
3126 */
3127
3128 current = entry;
3129 while ((current != &map->header) && (current->start < end)) {
3130 if (UVM_ET_ISSUBMAP(current)) {
3131 error = EINVAL;
3132 goto out;
3133 }
3134 if ((new_prot & current->max_protection) != new_prot) {
3135 error = EACCES;
3136 goto out;
3137 }
3138 /*
3139 * Don't allow VM_PROT_EXECUTE to be set on entries that
3140 * point to vnodes that are associated with a NOEXEC file
3141 * system.
3142 */
3143 if (UVM_ET_ISOBJ(current) &&
3144 UVM_OBJ_IS_VNODE(current->object.uvm_obj)) {
3145 struct vnode *vp =
3146 (struct vnode *) current->object.uvm_obj;
3147
3148 if ((new_prot & VM_PROT_EXECUTE) != 0 &&
3149 (vp->v_mount->mnt_flag & MNT_NOEXEC) != 0) {
3150 error = EACCES;
3151 goto out;
3152 }
3153 }
3154
3155 current = current->next;
3156 }
3157
3158 /* go back and fix up protections (no need to clip this time). */
3159
3160 current = entry;
3161 while ((current != &map->header) && (current->start < end)) {
3162 vm_prot_t old_prot;
3163
3164 UVM_MAP_CLIP_END(map, current, end, NULL);
3165 old_prot = current->protection;
3166 if (set_max)
3167 current->protection =
3168 (current->max_protection = new_prot) & old_prot;
3169 else
3170 current->protection = new_prot;
3171
3172 /*
3173 * update physical map if necessary. worry about copy-on-write
3174 * here -- CHECK THIS XXX
3175 */
3176
3177 if (current->protection != old_prot) {
3178 /* update pmap! */
3179 pmap_protect(map->pmap, current->start, current->end,
3180 current->protection & MASK(entry));
3181
3182 /*
3183 * If this entry points at a vnode, and the
3184 * protection includes VM_PROT_EXECUTE, mark
3185 * the vnode as VEXECMAP.
3186 */
3187 if (UVM_ET_ISOBJ(current)) {
3188 struct uvm_object *uobj =
3189 current->object.uvm_obj;
3190
3191 if (UVM_OBJ_IS_VNODE(uobj) &&
3192 (current->protection & VM_PROT_EXECUTE)) {
3193 vn_markexec((struct vnode *) uobj);
3194 }
3195 }
3196 }
3197
3198 /*
3199 * If the map is configured to lock any future mappings,
3200 * wire this entry now if the old protection was VM_PROT_NONE
3201 * and the new protection is not VM_PROT_NONE.
3202 */
3203
3204 if ((map->flags & VM_MAP_WIREFUTURE) != 0 &&
3205 VM_MAPENT_ISWIRED(entry) == 0 &&
3206 old_prot == VM_PROT_NONE &&
3207 new_prot != VM_PROT_NONE) {
3208 if (uvm_map_pageable(map, entry->start,
3209 entry->end, false,
3210 UVM_LK_ENTER|UVM_LK_EXIT) != 0) {
3211
3212 /*
3213 * If locking the entry fails, remember the
3214 * error if it's the first one. Note we
3215 * still continue setting the protection in
3216 * the map, but will return the error
3217 * condition regardless.
3218 *
3219 * XXX Ignore what the actual error is,
3220 * XXX just call it a resource shortage
3221 * XXX so that it doesn't get confused
3222 * XXX what uvm_map_protect() itself would
3223 * XXX normally return.
3224 */
3225
3226 error = ENOMEM;
3227 }
3228 }
3229 current = current->next;
3230 }
3231 pmap_update(map->pmap);
3232
3233 out:
3234 vm_map_unlock(map);
3235
3236 UVMHIST_LOG(maphist, "<- done, error=%d",error,0,0,0);
3237 return error;
3238 }
3239
3240 #undef MASK
3241
3242 /*
3243 * uvm_map_inherit: set inheritance code for range of addrs in map.
3244 *
3245 * => map must be unlocked
3246 * => note that the inherit code is used during a "fork". see fork
3247 * code for details.
3248 */
3249
3250 int
3251 uvm_map_inherit(struct vm_map *map, vaddr_t start, vaddr_t end,
3252 vm_inherit_t new_inheritance)
3253 {
3254 struct vm_map_entry *entry, *temp_entry;
3255 UVMHIST_FUNC("uvm_map_inherit"); UVMHIST_CALLED(maphist);
3256 UVMHIST_LOG(maphist,"(map=0x%x,start=0x%x,end=0x%x,new_inh=0x%x)",
3257 map, start, end, new_inheritance);
3258
3259 switch (new_inheritance) {
3260 case MAP_INHERIT_NONE:
3261 case MAP_INHERIT_COPY:
3262 case MAP_INHERIT_SHARE:
3263 break;
3264 default:
3265 UVMHIST_LOG(maphist,"<- done (INVALID ARG)",0,0,0,0);
3266 return EINVAL;
3267 }
3268
3269 vm_map_lock(map);
3270 VM_MAP_RANGE_CHECK(map, start, end);
3271 if (uvm_map_lookup_entry(map, start, &temp_entry)) {
3272 entry = temp_entry;
3273 UVM_MAP_CLIP_START(map, entry, start, NULL);
3274 } else {
3275 entry = temp_entry->next;
3276 }
3277 while ((entry != &map->header) && (entry->start < end)) {
3278 UVM_MAP_CLIP_END(map, entry, end, NULL);
3279 entry->inheritance = new_inheritance;
3280 entry = entry->next;
3281 }
3282 vm_map_unlock(map);
3283 UVMHIST_LOG(maphist,"<- done (OK)",0,0,0,0);
3284 return 0;
3285 }
3286
3287 /*
3288 * uvm_map_advice: set advice code for range of addrs in map.
3289 *
3290 * => map must be unlocked
3291 */
3292
3293 int
3294 uvm_map_advice(struct vm_map *map, vaddr_t start, vaddr_t end, int new_advice)
3295 {
3296 struct vm_map_entry *entry, *temp_entry;
3297 UVMHIST_FUNC("uvm_map_advice"); UVMHIST_CALLED(maphist);
3298 UVMHIST_LOG(maphist,"(map=0x%x,start=0x%x,end=0x%x,new_adv=0x%x)",
3299 map, start, end, new_advice);
3300
3301 vm_map_lock(map);
3302 VM_MAP_RANGE_CHECK(map, start, end);
3303 if (uvm_map_lookup_entry(map, start, &temp_entry)) {
3304 entry = temp_entry;
3305 UVM_MAP_CLIP_START(map, entry, start, NULL);
3306 } else {
3307 entry = temp_entry->next;
3308 }
3309
3310 /*
3311 * XXXJRT: disallow holes?
3312 */
3313
3314 while ((entry != &map->header) && (entry->start < end)) {
3315 UVM_MAP_CLIP_END(map, entry, end, NULL);
3316
3317 switch (new_advice) {
3318 case MADV_NORMAL:
3319 case MADV_RANDOM:
3320 case MADV_SEQUENTIAL:
3321 /* nothing special here */
3322 break;
3323
3324 default:
3325 vm_map_unlock(map);
3326 UVMHIST_LOG(maphist,"<- done (INVALID ARG)",0,0,0,0);
3327 return EINVAL;
3328 }
3329 entry->advice = new_advice;
3330 entry = entry->next;
3331 }
3332
3333 vm_map_unlock(map);
3334 UVMHIST_LOG(maphist,"<- done (OK)",0,0,0,0);
3335 return 0;
3336 }
3337
3338 /*
3339 * uvm_map_willneed: apply MADV_WILLNEED
3340 */
3341
3342 int
3343 uvm_map_willneed(struct vm_map *map, vaddr_t start, vaddr_t end)
3344 {
3345 struct vm_map_entry *entry;
3346 UVMHIST_FUNC("uvm_map_willneed"); UVMHIST_CALLED(maphist);
3347 UVMHIST_LOG(maphist,"(map=0x%lx,start=0x%lx,end=0x%lx)",
3348 map, start, end, 0);
3349
3350 vm_map_lock_read(map);
3351 VM_MAP_RANGE_CHECK(map, start, end);
3352 if (!uvm_map_lookup_entry(map, start, &entry)) {
3353 entry = entry->next;
3354 }
3355 while (entry->start < end) {
3356 struct vm_amap * const amap = entry->aref.ar_amap;
3357 struct uvm_object * const uobj = entry->object.uvm_obj;
3358
3359 KASSERT(entry != &map->header);
3360 KASSERT(start < entry->end);
3361 /*
3362 * XXX IMPLEMENT ME.
3363 * Should invent a "weak" mode for uvm_fault()
3364 * which would only do the PGO_LOCKED pgo_get().
3365 *
3366 * for now, we handle only the easy but common case.
3367 */
3368 if (UVM_ET_ISOBJ(entry) && amap == NULL && uobj != NULL) {
3369 off_t offset;
3370 off_t size;
3371
3372 offset = entry->offset;
3373 if (start < entry->start) {
3374 offset += entry->start - start;
3375 }
3376 size = entry->offset + (entry->end - entry->start);
3377 if (entry->end < end) {
3378 size -= end - entry->end;
3379 }
3380 uvm_readahead(uobj, offset, size);
3381 }
3382 entry = entry->next;
3383 }
3384 vm_map_unlock_read(map);
3385 UVMHIST_LOG(maphist,"<- done (OK)",0,0,0,0);
3386 return 0;
3387 }
3388
3389 /*
3390 * uvm_map_pageable: sets the pageability of a range in a map.
3391 *
3392 * => wires map entries. should not be used for transient page locking.
3393 * for that, use uvm_fault_wire()/uvm_fault_unwire() (see uvm_vslock()).
3394 * => regions specified as not pageable require lock-down (wired) memory
3395 * and page tables.
3396 * => map must never be read-locked
3397 * => if islocked is true, map is already write-locked
3398 * => we always unlock the map, since we must downgrade to a read-lock
3399 * to call uvm_fault_wire()
3400 * => XXXCDC: check this and try and clean it up.
3401 */
3402
3403 int
3404 uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end,
3405 bool new_pageable, int lockflags)
3406 {
3407 struct vm_map_entry *entry, *start_entry, *failed_entry;
3408 int rv;
3409 #ifdef DIAGNOSTIC
3410 u_int timestamp_save;
3411 #endif
3412 UVMHIST_FUNC("uvm_map_pageable"); UVMHIST_CALLED(maphist);
3413 UVMHIST_LOG(maphist,"(map=0x%x,start=0x%x,end=0x%x,new_pageable=0x%x)",
3414 map, start, end, new_pageable);
3415 KASSERT(map->flags & VM_MAP_PAGEABLE);
3416
3417 if ((lockflags & UVM_LK_ENTER) == 0)
3418 vm_map_lock(map);
3419 VM_MAP_RANGE_CHECK(map, start, end);
3420
3421 /*
3422 * only one pageability change may take place at one time, since
3423 * uvm_fault_wire assumes it will be called only once for each
3424 * wiring/unwiring. therefore, we have to make sure we're actually
3425 * changing the pageability for the entire region. we do so before
3426 * making any changes.
3427 */
3428
3429 if (uvm_map_lookup_entry(map, start, &start_entry) == false) {
3430 if ((lockflags & UVM_LK_EXIT) == 0)
3431 vm_map_unlock(map);
3432
3433 UVMHIST_LOG(maphist,"<- done (fault)",0,0,0,0);
3434 return EFAULT;
3435 }
3436 entry = start_entry;
3437
3438 /*
3439 * handle wiring and unwiring separately.
3440 */
3441
3442 if (new_pageable) { /* unwire */
3443 UVM_MAP_CLIP_START(map, entry, start, NULL);
3444
3445 /*
3446 * unwiring. first ensure that the range to be unwired is
3447 * really wired down and that there are no holes.
3448 */
3449
3450 while ((entry != &map->header) && (entry->start < end)) {
3451 if (entry->wired_count == 0 ||
3452 (entry->end < end &&
3453 (entry->next == &map->header ||
3454 entry->next->start > entry->end))) {
3455 if ((lockflags & UVM_LK_EXIT) == 0)
3456 vm_map_unlock(map);
3457 UVMHIST_LOG(maphist, "<- done (INVAL)",0,0,0,0);
3458 return EINVAL;
3459 }
3460 entry = entry->next;
3461 }
3462
3463 /*
3464 * POSIX 1003.1b - a single munlock call unlocks a region,
3465 * regardless of the number of mlock calls made on that
3466 * region.
3467 */
3468
3469 entry = start_entry;
3470 while ((entry != &map->header) && (entry->start < end)) {
3471 UVM_MAP_CLIP_END(map, entry, end, NULL);
3472 if (VM_MAPENT_ISWIRED(entry))
3473 uvm_map_entry_unwire(map, entry);
3474 entry = entry->next;
3475 }
3476 if ((lockflags & UVM_LK_EXIT) == 0)
3477 vm_map_unlock(map);
3478 UVMHIST_LOG(maphist,"<- done (OK UNWIRE)",0,0,0,0);
3479 return 0;
3480 }
3481
3482 /*
3483 * wire case: in two passes [XXXCDC: ugly block of code here]
3484 *
3485 * 1: holding the write lock, we create any anonymous maps that need
3486 * to be created. then we clip each map entry to the region to
3487 * be wired and increment its wiring count.
3488 *
3489 * 2: we downgrade to a read lock, and call uvm_fault_wire to fault
3490 * in the pages for any newly wired area (wired_count == 1).
3491 *
3492 * downgrading to a read lock for uvm_fault_wire avoids a possible
3493 * deadlock with another thread that may have faulted on one of
3494 * the pages to be wired (it would mark the page busy, blocking
3495 * us, then in turn block on the map lock that we hold). because
3496 * of problems in the recursive lock package, we cannot upgrade
3497 * to a write lock in vm_map_lookup. thus, any actions that
3498 * require the write lock must be done beforehand. because we
3499 * keep the read lock on the map, the copy-on-write status of the
3500 * entries we modify here cannot change.
3501 */
3502
3503 while ((entry != &map->header) && (entry->start < end)) {
3504 if (VM_MAPENT_ISWIRED(entry) == 0) { /* not already wired? */
3505
3506 /*
3507 * perform actions of vm_map_lookup that need the
3508 * write lock on the map: create an anonymous map
3509 * for a copy-on-write region, or an anonymous map
3510 * for a zero-fill region. (XXXCDC: submap case
3511 * ok?)
3512 */
3513
3514 if (!UVM_ET_ISSUBMAP(entry)) { /* not submap */
3515 if (UVM_ET_ISNEEDSCOPY(entry) &&
3516 ((entry->max_protection & VM_PROT_WRITE) ||
3517 (entry->object.uvm_obj == NULL))) {
3518 amap_copy(map, entry, 0, start, end);
3519 /* XXXCDC: wait OK? */
3520 }
3521 }
3522 }
3523 UVM_MAP_CLIP_START(map, entry, start, NULL);
3524 UVM_MAP_CLIP_END(map, entry, end, NULL);
3525 entry->wired_count++;
3526
3527 /*
3528 * Check for holes
3529 */
3530
3531 if (entry->protection == VM_PROT_NONE ||
3532 (entry->end < end &&
3533 (entry->next == &map->header ||
3534 entry->next->start > entry->end))) {
3535
3536 /*
3537 * found one. amap creation actions do not need to
3538 * be undone, but the wired counts need to be restored.
3539 */
3540
3541 while (entry != &map->header && entry->end > start) {
3542 entry->wired_count--;
3543 entry = entry->prev;
3544 }
3545 if ((lockflags & UVM_LK_EXIT) == 0)
3546 vm_map_unlock(map);
3547 UVMHIST_LOG(maphist,"<- done (INVALID WIRE)",0,0,0,0);
3548 return EINVAL;
3549 }
3550 entry = entry->next;
3551 }
3552
3553 /*
3554 * Pass 2.
3555 */
3556
3557 #ifdef DIAGNOSTIC
3558 timestamp_save = map->timestamp;
3559 #endif
3560 vm_map_busy(map);
3561 vm_map_unlock(map);
3562
3563 rv = 0;
3564 entry = start_entry;
3565 while (entry != &map->header && entry->start < end) {
3566 if (entry->wired_count == 1) {
3567 rv = uvm_fault_wire(map, entry->start, entry->end,
3568 entry->max_protection, 1);
3569 if (rv) {
3570
3571 /*
3572 * wiring failed. break out of the loop.
3573 * we'll clean up the map below, once we
3574 * have a write lock again.
3575 */
3576
3577 break;
3578 }
3579 }
3580 entry = entry->next;
3581 }
3582
3583 if (rv) { /* failed? */
3584
3585 /*
3586 * Get back to an exclusive (write) lock.
3587 */
3588
3589 vm_map_lock(map);
3590 vm_map_unbusy(map);
3591
3592 #ifdef DIAGNOSTIC
3593 if (timestamp_save + 1 != map->timestamp)
3594 panic("uvm_map_pageable: stale map");
3595 #endif
3596
3597 /*
3598 * first drop the wiring count on all the entries
3599 * which haven't actually been wired yet.
3600 */
3601
3602 failed_entry = entry;
3603 while (entry != &map->header && entry->start < end) {
3604 entry->wired_count--;
3605 entry = entry->next;
3606 }
3607
3608 /*
3609 * now, unwire all the entries that were successfully
3610 * wired above.
3611 */
3612
3613 entry = start_entry;
3614 while (entry != failed_entry) {
3615 entry->wired_count--;
3616 if (VM_MAPENT_ISWIRED(entry) == 0)
3617 uvm_map_entry_unwire(map, entry);
3618 entry = entry->next;
3619 }
3620 if ((lockflags & UVM_LK_EXIT) == 0)
3621 vm_map_unlock(map);
3622 UVMHIST_LOG(maphist, "<- done (RV=%d)", rv,0,0,0);
3623 return (rv);
3624 }
3625
3626 if ((lockflags & UVM_LK_EXIT) == 0) {
3627 vm_map_unbusy(map);
3628 } else {
3629
3630 /*
3631 * Get back to an exclusive (write) lock.
3632 */
3633
3634 vm_map_lock(map);
3635 vm_map_unbusy(map);
3636 }
3637
3638 UVMHIST_LOG(maphist,"<- done (OK WIRE)",0,0,0,0);
3639 return 0;
3640 }
3641
3642 /*
3643 * uvm_map_pageable_all: special case of uvm_map_pageable - affects
3644 * all mapped regions.
3645 *
3646 * => map must not be locked.
3647 * => if no flags are specified, all regions are unwired.
3648 * => XXXJRT: has some of the same problems as uvm_map_pageable() above.
3649 */
3650
3651 int
3652 uvm_map_pageable_all(struct vm_map *map, int flags, vsize_t limit)
3653 {
3654 struct vm_map_entry *entry, *failed_entry;
3655 vsize_t size;
3656 int rv;
3657 #ifdef DIAGNOSTIC
3658 u_int timestamp_save;
3659 #endif
3660 UVMHIST_FUNC("uvm_map_pageable_all"); UVMHIST_CALLED(maphist);
3661 UVMHIST_LOG(maphist,"(map=0x%x,flags=0x%x)", map, flags, 0, 0);
3662
3663 KASSERT(map->flags & VM_MAP_PAGEABLE);
3664
3665 vm_map_lock(map);
3666
3667 /*
3668 * handle wiring and unwiring separately.
3669 */
3670
3671 if (flags == 0) { /* unwire */
3672
3673 /*
3674 * POSIX 1003.1b -- munlockall unlocks all regions,
3675 * regardless of how many times mlockall has been called.
3676 */
3677
3678 for (entry = map->header.next; entry != &map->header;
3679 entry = entry->next) {
3680 if (VM_MAPENT_ISWIRED(entry))
3681 uvm_map_entry_unwire(map, entry);
3682 }
3683 map->flags &= ~VM_MAP_WIREFUTURE;
3684 vm_map_unlock(map);
3685 UVMHIST_LOG(maphist,"<- done (OK UNWIRE)",0,0,0,0);
3686 return 0;
3687 }
3688
3689 if (flags & MCL_FUTURE) {
3690
3691 /*
3692 * must wire all future mappings; remember this.
3693 */
3694
3695 map->flags |= VM_MAP_WIREFUTURE;
3696 }
3697
3698 if ((flags & MCL_CURRENT) == 0) {
3699
3700 /*
3701 * no more work to do!
3702 */
3703
3704 UVMHIST_LOG(maphist,"<- done (OK no wire)",0,0,0,0);
3705 vm_map_unlock(map);
3706 return 0;
3707 }
3708
3709 /*
3710 * wire case: in three passes [XXXCDC: ugly block of code here]
3711 *
3712 * 1: holding the write lock, count all pages mapped by non-wired
3713 * entries. if this would cause us to go over our limit, we fail.
3714 *
3715 * 2: still holding the write lock, we create any anonymous maps that
3716 * need to be created. then we increment its wiring count.
3717 *
3718 * 3: we downgrade to a read lock, and call uvm_fault_wire to fault
3719 * in the pages for any newly wired area (wired_count == 1).
3720 *
3721 * downgrading to a read lock for uvm_fault_wire avoids a possible
3722 * deadlock with another thread that may have faulted on one of
3723 * the pages to be wired (it would mark the page busy, blocking
3724 * us, then in turn block on the map lock that we hold). because
3725 * of problems in the recursive lock package, we cannot upgrade
3726 * to a write lock in vm_map_lookup. thus, any actions that
3727 * require the write lock must be done beforehand. because we
3728 * keep the read lock on the map, the copy-on-write status of the
3729 * entries we modify here cannot change.
3730 */
3731
3732 for (size = 0, entry = map->header.next; entry != &map->header;
3733 entry = entry->next) {
3734 if (entry->protection != VM_PROT_NONE &&
3735 VM_MAPENT_ISWIRED(entry) == 0) { /* not already wired? */
3736 size += entry->end - entry->start;
3737 }
3738 }
3739
3740 if (atop(size) + uvmexp.wired > uvmexp.wiredmax) {
3741 vm_map_unlock(map);
3742 return ENOMEM;
3743 }
3744
3745 if (limit != 0 &&
3746 (size + ptoa(pmap_wired_count(vm_map_pmap(map))) > limit)) {
3747 vm_map_unlock(map);
3748 return ENOMEM;
3749 }
3750
3751 /*
3752 * Pass 2.
3753 */
3754
3755 for (entry = map->header.next; entry != &map->header;
3756 entry = entry->next) {
3757 if (entry->protection == VM_PROT_NONE)
3758 continue;
3759 if (VM_MAPENT_ISWIRED(entry) == 0) { /* not already wired? */
3760
3761 /*
3762 * perform actions of vm_map_lookup that need the
3763 * write lock on the map: create an anonymous map
3764 * for a copy-on-write region, or an anonymous map
3765 * for a zero-fill region. (XXXCDC: submap case
3766 * ok?)
3767 */
3768
3769 if (!UVM_ET_ISSUBMAP(entry)) { /* not submap */
3770 if (UVM_ET_ISNEEDSCOPY(entry) &&
3771 ((entry->max_protection & VM_PROT_WRITE) ||
3772 (entry->object.uvm_obj == NULL))) {
3773 amap_copy(map, entry, 0, entry->start,
3774 entry->end);
3775 /* XXXCDC: wait OK? */
3776 }
3777 }
3778 }
3779 entry->wired_count++;
3780 }
3781
3782 /*
3783 * Pass 3.
3784 */
3785
3786 #ifdef DIAGNOSTIC
3787 timestamp_save = map->timestamp;
3788 #endif
3789 vm_map_busy(map);
3790 vm_map_unlock(map);
3791
3792 rv = 0;
3793 for (entry = map->header.next; entry != &map->header;
3794 entry = entry->next) {
3795 if (entry->wired_count == 1) {
3796 rv = uvm_fault_wire(map, entry->start, entry->end,
3797 entry->max_protection, 1);
3798 if (rv) {
3799
3800 /*
3801 * wiring failed. break out of the loop.
3802 * we'll clean up the map below, once we
3803 * have a write lock again.
3804 */
3805
3806 break;
3807 }
3808 }
3809 }
3810
3811 if (rv) {
3812
3813 /*
3814 * Get back an exclusive (write) lock.
3815 */
3816
3817 vm_map_lock(map);
3818 vm_map_unbusy(map);
3819
3820 #ifdef DIAGNOSTIC
3821 if (timestamp_save + 1 != map->timestamp)
3822 panic("uvm_map_pageable_all: stale map");
3823 #endif
3824
3825 /*
3826 * first drop the wiring count on all the entries
3827 * which haven't actually been wired yet.
3828 *
3829 * Skip VM_PROT_NONE entries like we did above.
3830 */
3831
3832 failed_entry = entry;
3833 for (/* nothing */; entry != &map->header;
3834 entry = entry->next) {
3835 if (entry->protection == VM_PROT_NONE)
3836 continue;
3837 entry->wired_count--;
3838 }
3839
3840 /*
3841 * now, unwire all the entries that were successfully
3842 * wired above.
3843 *
3844 * Skip VM_PROT_NONE entries like we did above.
3845 */
3846
3847 for (entry = map->header.next; entry != failed_entry;
3848 entry = entry->next) {
3849 if (entry->protection == VM_PROT_NONE)
3850 continue;
3851 entry->wired_count--;
3852 if (VM_MAPENT_ISWIRED(entry))
3853 uvm_map_entry_unwire(map, entry);
3854 }
3855 vm_map_unlock(map);
3856 UVMHIST_LOG(maphist,"<- done (RV=%d)", rv,0,0,0);
3857 return (rv);
3858 }
3859
3860 vm_map_unbusy(map);
3861
3862 UVMHIST_LOG(maphist,"<- done (OK WIRE)",0,0,0,0);
3863 return 0;
3864 }
3865
3866 /*
3867 * uvm_map_clean: clean out a map range
3868 *
3869 * => valid flags:
3870 * if (flags & PGO_CLEANIT): dirty pages are cleaned first
3871 * if (flags & PGO_SYNCIO): dirty pages are written synchronously
3872 * if (flags & PGO_DEACTIVATE): any cached pages are deactivated after clean
3873 * if (flags & PGO_FREE): any cached pages are freed after clean
3874 * => returns an error if any part of the specified range isn't mapped
3875 * => never a need to flush amap layer since the anonymous memory has
3876 * no permanent home, but may deactivate pages there
3877 * => called from sys_msync() and sys_madvise()
3878 * => caller must not write-lock map (read OK).
3879 * => we may sleep while cleaning if SYNCIO [with map read-locked]
3880 */
3881
3882 int
3883 uvm_map_clean(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
3884 {
3885 struct vm_map_entry *current, *entry;
3886 struct uvm_object *uobj;
3887 struct vm_amap *amap;
3888 struct vm_anon *anon;
3889 struct vm_page *pg;
3890 vaddr_t offset;
3891 vsize_t size;
3892 voff_t uoff;
3893 int error, refs;
3894 UVMHIST_FUNC("uvm_map_clean"); UVMHIST_CALLED(maphist);
3895
3896 UVMHIST_LOG(maphist,"(map=0x%x,start=0x%x,end=0x%x,flags=0x%x)",
3897 map, start, end, flags);
3898 KASSERT((flags & (PGO_FREE|PGO_DEACTIVATE)) !=
3899 (PGO_FREE|PGO_DEACTIVATE));
3900
3901 vm_map_lock_read(map);
3902 VM_MAP_RANGE_CHECK(map, start, end);
3903 if (uvm_map_lookup_entry(map, start, &entry) == false) {
3904 vm_map_unlock_read(map);
3905 return EFAULT;
3906 }
3907
3908 /*
3909 * Make a first pass to check for holes and wiring problems.
3910 */
3911
3912 for (current = entry; current->start < end; current = current->next) {
3913 if (UVM_ET_ISSUBMAP(current)) {
3914 vm_map_unlock_read(map);
3915 return EINVAL;
3916 }
3917 if ((flags & PGO_FREE) != 0 && VM_MAPENT_ISWIRED(entry)) {
3918 vm_map_unlock_read(map);
3919 return EBUSY;
3920 }
3921 if (end <= current->end) {
3922 break;
3923 }
3924 if (current->end != current->next->start) {
3925 vm_map_unlock_read(map);
3926 return EFAULT;
3927 }
3928 }
3929
3930 error = 0;
3931 for (current = entry; start < end; current = current->next) {
3932 amap = current->aref.ar_amap; /* top layer */
3933 uobj = current->object.uvm_obj; /* bottom layer */
3934 KASSERT(start >= current->start);
3935
3936 /*
3937 * No amap cleaning necessary if:
3938 *
3939 * (1) There's no amap.
3940 *
3941 * (2) We're not deactivating or freeing pages.
3942 */
3943
3944 if (amap == NULL || (flags & (PGO_DEACTIVATE|PGO_FREE)) == 0)
3945 goto flush_object;
3946
3947 amap_lock(amap);
3948 offset = start - current->start;
3949 size = MIN(end, current->end) - start;
3950 for ( ; size != 0; size -= PAGE_SIZE, offset += PAGE_SIZE) {
3951 anon = amap_lookup(¤t->aref, offset);
3952 if (anon == NULL)
3953 continue;
3954
3955 mutex_enter(&anon->an_lock);
3956 pg = anon->an_page;
3957 if (pg == NULL) {
3958 mutex_exit(&anon->an_lock);
3959 continue;
3960 }
3961
3962 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
3963
3964 /*
3965 * In these first 3 cases, we just deactivate the page.
3966 */
3967
3968 case PGO_CLEANIT|PGO_FREE:
3969 case PGO_CLEANIT|PGO_DEACTIVATE:
3970 case PGO_DEACTIVATE:
3971 deactivate_it:
3972 /*
3973 * skip the page if it's loaned or wired,
3974 * since it shouldn't be on a paging queue
3975 * at all in these cases.
3976 */
3977
3978 mutex_enter(&uvm_pageqlock);
3979 if (pg->loan_count != 0 ||
3980 pg->wire_count != 0) {
3981 mutex_exit(&uvm_pageqlock);
3982 mutex_exit(&anon->an_lock);
3983 continue;
3984 }
3985 KASSERT(pg->uanon == anon);
3986 uvm_pagedeactivate(pg);
3987 mutex_exit(&uvm_pageqlock);
3988 mutex_exit(&anon->an_lock);
3989 continue;
3990
3991 case PGO_FREE:
3992
3993 /*
3994 * If there are multiple references to
3995 * the amap, just deactivate the page.
3996 */
3997
3998 if (amap_refs(amap) > 1)
3999 goto deactivate_it;
4000
4001 /* skip the page if it's wired */
4002 if (pg->wire_count != 0) {
4003 mutex_exit(&anon->an_lock);
4004 continue;
4005 }
4006 amap_unadd(¤t->aref, offset);
4007 refs = --anon->an_ref;
4008 mutex_exit(&anon->an_lock);
4009 if (refs == 0)
4010 uvm_anfree(anon);
4011 continue;
4012 }
4013 }
4014 amap_unlock(amap);
4015
4016 flush_object:
4017 /*
4018 * flush pages if we've got a valid backing object.
4019 * note that we must always clean object pages before
4020 * freeing them since otherwise we could reveal stale
4021 * data from files.
4022 */
4023
4024 uoff = current->offset + (start - current->start);
4025 size = MIN(end, current->end) - start;
4026 if (uobj != NULL) {
4027 mutex_enter(&uobj->vmobjlock);
4028 if (uobj->pgops->pgo_put != NULL)
4029 error = (uobj->pgops->pgo_put)(uobj, uoff,
4030 uoff + size, flags | PGO_CLEANIT);
4031 else
4032 error = 0;
4033 }
4034 start += size;
4035 }
4036 vm_map_unlock_read(map);
4037 return (error);
4038 }
4039
4040
4041 /*
4042 * uvm_map_checkprot: check protection in map
4043 *
4044 * => must allow specified protection in a fully allocated region.
4045 * => map must be read or write locked by caller.
4046 */
4047
4048 bool
4049 uvm_map_checkprot(struct vm_map *map, vaddr_t start, vaddr_t end,
4050 vm_prot_t protection)
4051 {
4052 struct vm_map_entry *entry;
4053 struct vm_map_entry *tmp_entry;
4054
4055 if (!uvm_map_lookup_entry(map, start, &tmp_entry)) {
4056 return (false);
4057 }
4058 entry = tmp_entry;
4059 while (start < end) {
4060 if (entry == &map->header) {
4061 return (false);
4062 }
4063
4064 /*
4065 * no holes allowed
4066 */
4067
4068 if (start < entry->start) {
4069 return (false);
4070 }
4071
4072 /*
4073 * check protection associated with entry
4074 */
4075
4076 if ((entry->protection & protection) != protection) {
4077 return (false);
4078 }
4079 start = entry->end;
4080 entry = entry->next;
4081 }
4082 return (true);
4083 }
4084
4085 /*
4086 * uvmspace_alloc: allocate a vmspace structure.
4087 *
4088 * - structure includes vm_map and pmap
4089 * - XXX: no locking on this structure
4090 * - refcnt set to 1, rest must be init'd by caller
4091 */
4092 struct vmspace *
4093 uvmspace_alloc(vaddr_t vmin, vaddr_t vmax)
4094 {
4095 struct vmspace *vm;
4096 UVMHIST_FUNC("uvmspace_alloc"); UVMHIST_CALLED(maphist);
4097
4098 vm = pool_cache_get(&uvm_vmspace_cache, PR_WAITOK);
4099 uvmspace_init(vm, NULL, vmin, vmax);
4100 UVMHIST_LOG(maphist,"<- done (vm=0x%x)", vm,0,0,0);
4101 return (vm);
4102 }
4103
4104 /*
4105 * uvmspace_init: initialize a vmspace structure.
4106 *
4107 * - XXX: no locking on this structure
4108 * - refcnt set to 1, rest must be init'd by caller
4109 */
4110 void
4111 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
4112 {
4113 UVMHIST_FUNC("uvmspace_init"); UVMHIST_CALLED(maphist);
4114
4115 memset(vm, 0, sizeof(*vm));
4116 uvm_map_setup(&vm->vm_map, vmin, vmax, VM_MAP_PAGEABLE
4117 #ifdef __USING_TOPDOWN_VM
4118 | VM_MAP_TOPDOWN
4119 #endif
4120 );
4121 if (pmap)
4122 pmap_reference(pmap);
4123 else
4124 pmap = pmap_create();
4125 vm->vm_map.pmap = pmap;
4126 vm->vm_refcnt = 1;
4127 UVMHIST_LOG(maphist,"<- done",0,0,0,0);
4128 }
4129
4130 /*
4131 * uvmspace_share: share a vmspace between two processes
4132 *
4133 * - used for vfork, threads(?)
4134 */
4135
4136 void
4137 uvmspace_share(struct proc *p1, struct proc *p2)
4138 {
4139
4140 uvmspace_addref(p1->p_vmspace);
4141 p2->p_vmspace = p1->p_vmspace;
4142 }
4143
4144 /*
4145 * uvmspace_unshare: ensure that process "p" has its own, unshared, vmspace
4146 *
4147 * - XXX: no locking on vmspace
4148 */
4149
4150 void
4151 uvmspace_unshare(struct lwp *l)
4152 {
4153 struct proc *p = l->l_proc;
4154 struct vmspace *nvm, *ovm = p->p_vmspace;
4155
4156 if (ovm->vm_refcnt == 1)
4157 /* nothing to do: vmspace isn't shared in the first place */
4158 return;
4159
4160 /* make a new vmspace, still holding old one */
4161 nvm = uvmspace_fork(ovm);
4162
4163 kpreempt_disable();
4164 pmap_deactivate(l); /* unbind old vmspace */
4165 p->p_vmspace = nvm;
4166 pmap_activate(l); /* switch to new vmspace */
4167 kpreempt_enable();
4168
4169 uvmspace_free(ovm); /* drop reference to old vmspace */
4170 }
4171
4172 /*
4173 * uvmspace_exec: the process wants to exec a new program
4174 */
4175
4176 void
4177 uvmspace_exec(struct lwp *l, vaddr_t start, vaddr_t end)
4178 {
4179 struct proc *p = l->l_proc;
4180 struct vmspace *nvm, *ovm = p->p_vmspace;
4181 struct vm_map *map = &ovm->vm_map;
4182
4183 #ifdef __sparc__
4184 /* XXX cgd 960926: the sparc #ifdef should be a MD hook */
4185 kill_user_windows(l); /* before stack addresses go away */
4186 #endif
4187
4188 /*
4189 * see if more than one process is using this vmspace...
4190 */
4191
4192 if (ovm->vm_refcnt == 1) {
4193
4194 /*
4195 * if p is the only process using its vmspace then we can safely
4196 * recycle that vmspace for the program that is being exec'd.
4197 */
4198
4199 #ifdef SYSVSHM
4200 /*
4201 * SYSV SHM semantics require us to kill all segments on an exec
4202 */
4203
4204 if (ovm->vm_shm)
4205 shmexit(ovm);
4206 #endif
4207
4208 /*
4209 * POSIX 1003.1b -- "lock future mappings" is revoked
4210 * when a process execs another program image.
4211 */
4212
4213 map->flags &= ~VM_MAP_WIREFUTURE;
4214
4215 /*
4216 * now unmap the old program
4217 */
4218
4219 pmap_remove_all(map->pmap);
4220 uvm_unmap(map, vm_map_min(map), vm_map_max(map));
4221 KASSERT(map->header.prev == &map->header);
4222 KASSERT(map->nentries == 0);
4223
4224 /*
4225 * resize the map
4226 */
4227
4228 vm_map_setmin(map, start);
4229 vm_map_setmax(map, end);
4230 } else {
4231
4232 /*
4233 * p's vmspace is being shared, so we can't reuse it for p since
4234 * it is still being used for others. allocate a new vmspace
4235 * for p
4236 */
4237
4238 nvm = uvmspace_alloc(start, end);
4239
4240 /*
4241 * install new vmspace and drop our ref to the old one.
4242 */
4243
4244 kpreempt_disable();
4245 pmap_deactivate(l);
4246 p->p_vmspace = nvm;
4247 pmap_activate(l);
4248 kpreempt_enable();
4249
4250 uvmspace_free(ovm);
4251 }
4252 }
4253
4254 /*
4255 * uvmspace_addref: add a referece to a vmspace.
4256 */
4257
4258 void
4259 uvmspace_addref(struct vmspace *vm)
4260 {
4261 struct vm_map *map = &vm->vm_map;
4262
4263 KASSERT((map->flags & VM_MAP_DYING) == 0);
4264
4265 mutex_enter(&map->misc_lock);
4266 KASSERT(vm->vm_refcnt > 0);
4267 vm->vm_refcnt++;
4268 mutex_exit(&map->misc_lock);
4269 }
4270
4271 /*
4272 * uvmspace_free: free a vmspace data structure
4273 */
4274
4275 void
4276 uvmspace_free(struct vmspace *vm)
4277 {
4278 struct vm_map_entry *dead_entries;
4279 struct vm_map *map = &vm->vm_map;
4280 int n;
4281
4282 UVMHIST_FUNC("uvmspace_free"); UVMHIST_CALLED(maphist);
4283
4284 UVMHIST_LOG(maphist,"(vm=0x%x) ref=%d", vm, vm->vm_refcnt,0,0);
4285 mutex_enter(&map->misc_lock);
4286 n = --vm->vm_refcnt;
4287 mutex_exit(&map->misc_lock);
4288 if (n > 0)
4289 return;
4290
4291 /*
4292 * at this point, there should be no other references to the map.
4293 * delete all of the mappings, then destroy the pmap.
4294 */
4295
4296 map->flags |= VM_MAP_DYING;
4297 pmap_remove_all(map->pmap);
4298 #ifdef SYSVSHM
4299 /* Get rid of any SYSV shared memory segments. */
4300 if (vm->vm_shm != NULL)
4301 shmexit(vm);
4302 #endif
4303 if (map->nentries) {
4304 uvm_unmap_remove(map, vm_map_min(map), vm_map_max(map),
4305 &dead_entries, NULL, 0);
4306 if (dead_entries != NULL)
4307 uvm_unmap_detach(dead_entries, 0);
4308 }
4309 KASSERT(map->nentries == 0);
4310 KASSERT(map->size == 0);
4311 mutex_destroy(&map->misc_lock);
4312 mutex_destroy(&map->mutex);
4313 rw_destroy(&map->lock);
4314 cv_destroy(&map->cv);
4315 pmap_destroy(map->pmap);
4316 pool_cache_put(&uvm_vmspace_cache, vm);
4317 }
4318
4319 /*
4320 * F O R K - m a i n e n t r y p o i n t
4321 */
4322 /*
4323 * uvmspace_fork: fork a process' main map
4324 *
4325 * => create a new vmspace for child process from parent.
4326 * => parent's map must not be locked.
4327 */
4328
4329 struct vmspace *
4330 uvmspace_fork(struct vmspace *vm1)
4331 {
4332 struct vmspace *vm2;
4333 struct vm_map *old_map = &vm1->vm_map;
4334 struct vm_map *new_map;
4335 struct vm_map_entry *old_entry;
4336 struct vm_map_entry *new_entry;
4337 UVMHIST_FUNC("uvmspace_fork"); UVMHIST_CALLED(maphist);
4338
4339 vm_map_lock(old_map);
4340
4341 vm2 = uvmspace_alloc(vm_map_min(old_map), vm_map_max(old_map));
4342 memcpy(&vm2->vm_startcopy, &vm1->vm_startcopy,
4343 (char *) (vm1 + 1) - (char *) &vm1->vm_startcopy);
4344 new_map = &vm2->vm_map; /* XXX */
4345
4346 old_entry = old_map->header.next;
4347 new_map->size = old_map->size;
4348
4349 /*
4350 * go entry-by-entry
4351 */
4352
4353 while (old_entry != &old_map->header) {
4354
4355 /*
4356 * first, some sanity checks on the old entry
4357 */
4358
4359 KASSERT(!UVM_ET_ISSUBMAP(old_entry));
4360 KASSERT(UVM_ET_ISCOPYONWRITE(old_entry) ||
4361 !UVM_ET_ISNEEDSCOPY(old_entry));
4362
4363 switch (old_entry->inheritance) {
4364 case MAP_INHERIT_NONE:
4365
4366 /*
4367 * drop the mapping, modify size
4368 */
4369 new_map->size -= old_entry->end - old_entry->start;
4370 break;
4371
4372 case MAP_INHERIT_SHARE:
4373
4374 /*
4375 * share the mapping: this means we want the old and
4376 * new entries to share amaps and backing objects.
4377 */
4378 /*
4379 * if the old_entry needs a new amap (due to prev fork)
4380 * then we need to allocate it now so that we have
4381 * something we own to share with the new_entry. [in
4382 * other words, we need to clear needs_copy]
4383 */
4384
4385 if (UVM_ET_ISNEEDSCOPY(old_entry)) {
4386 /* get our own amap, clears needs_copy */
4387 amap_copy(old_map, old_entry, AMAP_COPY_NOCHUNK,
4388 0, 0);
4389 /* XXXCDC: WAITOK??? */
4390 }
4391
4392 new_entry = uvm_mapent_alloc(new_map, 0);
4393 /* old_entry -> new_entry */
4394 uvm_mapent_copy(old_entry, new_entry);
4395
4396 /* new pmap has nothing wired in it */
4397 new_entry->wired_count = 0;
4398
4399 /*
4400 * gain reference to object backing the map (can't
4401 * be a submap, already checked this case).
4402 */
4403
4404 if (new_entry->aref.ar_amap)
4405 uvm_map_reference_amap(new_entry, AMAP_SHARED);
4406
4407 if (new_entry->object.uvm_obj &&
4408 new_entry->object.uvm_obj->pgops->pgo_reference)
4409 new_entry->object.uvm_obj->
4410 pgops->pgo_reference(
4411 new_entry->object.uvm_obj);
4412
4413 /* insert entry at end of new_map's entry list */
4414 uvm_map_entry_link(new_map, new_map->header.prev,
4415 new_entry);
4416
4417 break;
4418
4419 case MAP_INHERIT_COPY:
4420
4421 /*
4422 * copy-on-write the mapping (using mmap's
4423 * MAP_PRIVATE semantics)
4424 *
4425 * allocate new_entry, adjust reference counts.
4426 * (note that new references are read-only).
4427 */
4428
4429 new_entry = uvm_mapent_alloc(new_map, 0);
4430 /* old_entry -> new_entry */
4431 uvm_mapent_copy(old_entry, new_entry);
4432
4433 if (new_entry->aref.ar_amap)
4434 uvm_map_reference_amap(new_entry, 0);
4435
4436 if (new_entry->object.uvm_obj &&
4437 new_entry->object.uvm_obj->pgops->pgo_reference)
4438 new_entry->object.uvm_obj->pgops->pgo_reference
4439 (new_entry->object.uvm_obj);
4440
4441 /* new pmap has nothing wired in it */
4442 new_entry->wired_count = 0;
4443
4444 new_entry->etype |=
4445 (UVM_ET_COPYONWRITE|UVM_ET_NEEDSCOPY);
4446 uvm_map_entry_link(new_map, new_map->header.prev,
4447 new_entry);
4448
4449 /*
4450 * the new entry will need an amap. it will either
4451 * need to be copied from the old entry or created
4452 * from scratch (if the old entry does not have an
4453 * amap). can we defer this process until later
4454 * (by setting "needs_copy") or do we need to copy
4455 * the amap now?
4456 *
4457 * we must copy the amap now if any of the following
4458 * conditions hold:
4459 * 1. the old entry has an amap and that amap is
4460 * being shared. this means that the old (parent)
4461 * process is sharing the amap with another
4462 * process. if we do not clear needs_copy here
4463 * we will end up in a situation where both the
4464 * parent and child process are refering to the
4465 * same amap with "needs_copy" set. if the
4466 * parent write-faults, the fault routine will
4467 * clear "needs_copy" in the parent by allocating
4468 * a new amap. this is wrong because the
4469 * parent is supposed to be sharing the old amap
4470 * and the new amap will break that.
4471 *
4472 * 2. if the old entry has an amap and a non-zero
4473 * wire count then we are going to have to call
4474 * amap_cow_now to avoid page faults in the
4475 * parent process. since amap_cow_now requires
4476 * "needs_copy" to be clear we might as well
4477 * clear it here as well.
4478 *
4479 */
4480
4481 if (old_entry->aref.ar_amap != NULL) {
4482 if ((amap_flags(old_entry->aref.ar_amap) &
4483 AMAP_SHARED) != 0 ||
4484 VM_MAPENT_ISWIRED(old_entry)) {
4485
4486 amap_copy(new_map, new_entry,
4487 AMAP_COPY_NOCHUNK, 0, 0);
4488 /* XXXCDC: M_WAITOK ... ok? */
4489 }
4490 }
4491
4492 /*
4493 * if the parent's entry is wired down, then the
4494 * parent process does not want page faults on
4495 * access to that memory. this means that we
4496 * cannot do copy-on-write because we can't write
4497 * protect the old entry. in this case we
4498 * resolve all copy-on-write faults now, using
4499 * amap_cow_now. note that we have already
4500 * allocated any needed amap (above).
4501 */
4502
4503 if (VM_MAPENT_ISWIRED(old_entry)) {
4504
4505 /*
4506 * resolve all copy-on-write faults now
4507 * (note that there is nothing to do if
4508 * the old mapping does not have an amap).
4509 */
4510 if (old_entry->aref.ar_amap)
4511 amap_cow_now(new_map, new_entry);
4512
4513 } else {
4514
4515 /*
4516 * setup mappings to trigger copy-on-write faults
4517 * we must write-protect the parent if it has
4518 * an amap and it is not already "needs_copy"...
4519 * if it is already "needs_copy" then the parent
4520 * has already been write-protected by a previous
4521 * fork operation.
4522 */
4523
4524 if (old_entry->aref.ar_amap &&
4525 !UVM_ET_ISNEEDSCOPY(old_entry)) {
4526 if (old_entry->max_protection & VM_PROT_WRITE) {
4527 pmap_protect(old_map->pmap,
4528 old_entry->start,
4529 old_entry->end,
4530 old_entry->protection &
4531 ~VM_PROT_WRITE);
4532 }
4533 old_entry->etype |= UVM_ET_NEEDSCOPY;
4534 }
4535 }
4536 break;
4537 } /* end of switch statement */
4538 old_entry = old_entry->next;
4539 }
4540
4541 pmap_update(old_map->pmap);
4542 vm_map_unlock(old_map);
4543
4544 #ifdef SYSVSHM
4545 if (vm1->vm_shm)
4546 shmfork(vm1, vm2);
4547 #endif
4548
4549 #ifdef PMAP_FORK
4550 pmap_fork(vm1->vm_map.pmap, vm2->vm_map.pmap);
4551 #endif
4552
4553 UVMHIST_LOG(maphist,"<- done",0,0,0,0);
4554 return (vm2);
4555 }
4556
4557
4558 /*
4559 * in-kernel map entry allocation.
4560 */
4561
4562 struct uvm_kmapent_hdr {
4563 LIST_ENTRY(uvm_kmapent_hdr) ukh_listq;
4564 int ukh_nused;
4565 struct vm_map_entry *ukh_freelist;
4566 struct vm_map *ukh_map;
4567 struct vm_map_entry ukh_entries[0];
4568 };
4569
4570 #define UVM_KMAPENT_CHUNK \
4571 ((PAGE_SIZE - sizeof(struct uvm_kmapent_hdr)) \
4572 / sizeof(struct vm_map_entry))
4573
4574 #define UVM_KHDR_FIND(entry) \
4575 ((struct uvm_kmapent_hdr *)(((vaddr_t)entry) & ~PAGE_MASK))
4576
4577
4578 #ifdef DIAGNOSTIC
4579 static struct vm_map *
4580 uvm_kmapent_map(struct vm_map_entry *entry)
4581 {
4582 const struct uvm_kmapent_hdr *ukh;
4583
4584 ukh = UVM_KHDR_FIND(entry);
4585 return ukh->ukh_map;
4586 }
4587 #endif
4588
4589 static inline struct vm_map_entry *
4590 uvm_kmapent_get(struct uvm_kmapent_hdr *ukh)
4591 {
4592 struct vm_map_entry *entry;
4593
4594 KASSERT(ukh->ukh_nused <= UVM_KMAPENT_CHUNK);
4595 KASSERT(ukh->ukh_nused >= 0);
4596
4597 entry = ukh->ukh_freelist;
4598 if (entry) {
4599 KASSERT((entry->flags & (UVM_MAP_KERNEL | UVM_MAP_KMAPENT))
4600 == UVM_MAP_KERNEL);
4601 ukh->ukh_freelist = entry->next;
4602 ukh->ukh_nused++;
4603 KASSERT(ukh->ukh_nused <= UVM_KMAPENT_CHUNK);
4604 } else {
4605 KASSERT(ukh->ukh_nused == UVM_KMAPENT_CHUNK);
4606 }
4607
4608 return entry;
4609 }
4610
4611 static inline void
4612 uvm_kmapent_put(struct uvm_kmapent_hdr *ukh, struct vm_map_entry *entry)
4613 {
4614
4615 KASSERT((entry->flags & (UVM_MAP_KERNEL | UVM_MAP_KMAPENT))
4616 == UVM_MAP_KERNEL);
4617 KASSERT(ukh->ukh_nused <= UVM_KMAPENT_CHUNK);
4618 KASSERT(ukh->ukh_nused > 0);
4619 KASSERT(ukh->ukh_freelist != NULL ||
4620 ukh->ukh_nused == UVM_KMAPENT_CHUNK);
4621 KASSERT(ukh->ukh_freelist == NULL ||
4622 ukh->ukh_nused < UVM_KMAPENT_CHUNK);
4623
4624 ukh->ukh_nused--;
4625 entry->next = ukh->ukh_freelist;
4626 ukh->ukh_freelist = entry;
4627 }
4628
4629 /*
4630 * uvm_kmapent_alloc: allocate a map entry for in-kernel map
4631 */
4632
4633 static struct vm_map_entry *
4634 uvm_kmapent_alloc(struct vm_map *map, int flags)
4635 {
4636 struct vm_page *pg;
4637 struct uvm_map_args args;
4638 struct uvm_kmapent_hdr *ukh;
4639 struct vm_map_entry *entry;
4640 uvm_flag_t mapflags = UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
4641 UVM_INH_NONE, UVM_ADV_RANDOM, flags | UVM_FLAG_NOMERGE);
4642 vaddr_t va;
4643 int error;
4644 int i;
4645
4646 KDASSERT(UVM_KMAPENT_CHUNK > 2);
4647 KDASSERT(kernel_map != NULL);
4648 KASSERT(vm_map_pmap(map) == pmap_kernel());
4649
4650 UVMMAP_EVCNT_INCR(uke_alloc);
4651 entry = NULL;
4652 again:
4653 /*
4654 * try to grab an entry from freelist.
4655 */
4656 mutex_spin_enter(&uvm_kentry_lock);
4657 ukh = LIST_FIRST(&vm_map_to_kernel(map)->vmk_kentry_free);
4658 if (ukh) {
4659 entry = uvm_kmapent_get(ukh);
4660 if (ukh->ukh_nused == UVM_KMAPENT_CHUNK)
4661 LIST_REMOVE(ukh, ukh_listq);
4662 }
4663 mutex_spin_exit(&uvm_kentry_lock);
4664
4665 if (entry)
4666 return entry;
4667
4668 /*
4669 * there's no free entry for this vm_map.
4670 * now we need to allocate some vm_map_entry.
4671 * for simplicity, always allocate one page chunk of them at once.
4672 */
4673
4674 pg = uvm_pagealloc(NULL, 0, NULL,
4675 (flags & UVM_KMF_NOWAIT) != 0 ? UVM_PGA_USERESERVE : 0);
4676 if (__predict_false(pg == NULL)) {
4677 if (flags & UVM_FLAG_NOWAIT)
4678 return NULL;
4679 uvm_wait("kme_alloc");
4680 goto again;
4681 }
4682
4683 error = uvm_map_prepare(map, 0, PAGE_SIZE, NULL, UVM_UNKNOWN_OFFSET,
4684 0, mapflags, &args);
4685 if (error) {
4686 uvm_pagefree(pg);
4687 return NULL;
4688 }
4689
4690 va = args.uma_start;
4691
4692 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg),
4693 VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE);
4694 pmap_update(vm_map_pmap(map));
4695
4696 ukh = (void *)va;
4697
4698 /*
4699 * use the first entry for ukh itsself.
4700 */
4701
4702 entry = &ukh->ukh_entries[0];
4703 entry->flags = UVM_MAP_KERNEL | UVM_MAP_KMAPENT;
4704 error = uvm_map_enter(map, &args, entry);
4705 KASSERT(error == 0);
4706
4707 ukh->ukh_nused = UVM_KMAPENT_CHUNK;
4708 ukh->ukh_map = map;
4709 ukh->ukh_freelist = NULL;
4710 for (i = UVM_KMAPENT_CHUNK - 1; i >= 2; i--) {
4711 struct vm_map_entry *xentry = &ukh->ukh_entries[i];
4712
4713 xentry->flags = UVM_MAP_KERNEL;
4714 uvm_kmapent_put(ukh, xentry);
4715 }
4716 KASSERT(ukh->ukh_nused == 2);
4717
4718 mutex_spin_enter(&uvm_kentry_lock);
4719 LIST_INSERT_HEAD(&vm_map_to_kernel(map)->vmk_kentry_free,
4720 ukh, ukh_listq);
4721 mutex_spin_exit(&uvm_kentry_lock);
4722
4723 /*
4724 * return second entry.
4725 */
4726
4727 entry = &ukh->ukh_entries[1];
4728 entry->flags = UVM_MAP_KERNEL;
4729 UVMMAP_EVCNT_INCR(ukh_alloc);
4730 return entry;
4731 }
4732
4733 /*
4734 * uvm_mapent_free: free map entry for in-kernel map
4735 */
4736
4737 static void
4738 uvm_kmapent_free(struct vm_map_entry *entry)
4739 {
4740 struct uvm_kmapent_hdr *ukh;
4741 struct vm_page *pg;
4742 struct vm_map *map;
4743 struct pmap *pmap;
4744 vaddr_t va;
4745 paddr_t pa;
4746 struct vm_map_entry *deadentry;
4747
4748 UVMMAP_EVCNT_INCR(uke_free);
4749 ukh = UVM_KHDR_FIND(entry);
4750 map = ukh->ukh_map;
4751
4752 mutex_spin_enter(&uvm_kentry_lock);
4753 uvm_kmapent_put(ukh, entry);
4754 if (ukh->ukh_nused > 1) {
4755 if (ukh->ukh_nused == UVM_KMAPENT_CHUNK - 1)
4756 LIST_INSERT_HEAD(
4757 &vm_map_to_kernel(map)->vmk_kentry_free,
4758 ukh, ukh_listq);
4759 mutex_spin_exit(&uvm_kentry_lock);
4760 return;
4761 }
4762
4763 /*
4764 * now we can free this ukh.
4765 *
4766 * however, keep an empty ukh to avoid ping-pong.
4767 */
4768
4769 if (LIST_FIRST(&vm_map_to_kernel(map)->vmk_kentry_free) == ukh &&
4770 LIST_NEXT(ukh, ukh_listq) == NULL) {
4771 mutex_spin_exit(&uvm_kentry_lock);
4772 return;
4773 }
4774 LIST_REMOVE(ukh, ukh_listq);
4775 mutex_spin_exit(&uvm_kentry_lock);
4776
4777 KASSERT(ukh->ukh_nused == 1);
4778
4779 /*
4780 * remove map entry for ukh itsself.
4781 */
4782
4783 va = (vaddr_t)ukh;
4784 KASSERT((va & PAGE_MASK) == 0);
4785 vm_map_lock(map);
4786 uvm_unmap_remove(map, va, va + PAGE_SIZE, &deadentry, NULL, 0);
4787 KASSERT(deadentry->flags & UVM_MAP_KERNEL);
4788 KASSERT(deadentry->flags & UVM_MAP_KMAPENT);
4789 KASSERT(deadentry->next == NULL);
4790 KASSERT(deadentry == &ukh->ukh_entries[0]);
4791
4792 /*
4793 * unmap the page from pmap and free it.
4794 */
4795
4796 pmap = vm_map_pmap(map);
4797 KASSERT(pmap == pmap_kernel());
4798 if (!pmap_extract(pmap, va, &pa))
4799 panic("%s: no mapping", __func__);
4800 pmap_kremove(va, PAGE_SIZE);
4801 pmap_update(vm_map_pmap(map));
4802 vm_map_unlock(map);
4803 pg = PHYS_TO_VM_PAGE(pa);
4804 uvm_pagefree(pg);
4805 UVMMAP_EVCNT_INCR(ukh_free);
4806 }
4807
4808 static vsize_t
4809 uvm_kmapent_overhead(vsize_t size)
4810 {
4811
4812 /*
4813 * - the max number of unmerged entries is howmany(size, PAGE_SIZE)
4814 * as the min allocation unit is PAGE_SIZE.
4815 * - UVM_KMAPENT_CHUNK "kmapent"s are allocated from a page.
4816 * one of them are used to map the page itself.
4817 */
4818
4819 return howmany(howmany(size, PAGE_SIZE), (UVM_KMAPENT_CHUNK - 1)) *
4820 PAGE_SIZE;
4821 }
4822
4823 /*
4824 * map entry reservation
4825 */
4826
4827 /*
4828 * uvm_mapent_reserve: reserve map entries for clipping before locking map.
4829 *
4830 * => needed when unmapping entries allocated without UVM_FLAG_QUANTUM.
4831 * => caller shouldn't hold map locked.
4832 */
4833 int
4834 uvm_mapent_reserve(struct vm_map *map, struct uvm_mapent_reservation *umr,
4835 int nentries, int flags)
4836 {
4837
4838 umr->umr_nentries = 0;
4839
4840 if ((flags & UVM_FLAG_QUANTUM) != 0)
4841 return 0;
4842
4843 if (!VM_MAP_USE_KMAPENT(map))
4844 return 0;
4845
4846 while (nentries--) {
4847 struct vm_map_entry *ent;
4848 ent = uvm_kmapent_alloc(map, flags);
4849 if (!ent) {
4850 uvm_mapent_unreserve(map, umr);
4851 return ENOMEM;
4852 }
4853 UMR_PUTENTRY(umr, ent);
4854 }
4855
4856 return 0;
4857 }
4858
4859 /*
4860 * uvm_mapent_unreserve:
4861 *
4862 * => caller shouldn't hold map locked.
4863 * => never fail or sleep.
4864 */
4865 void
4866 uvm_mapent_unreserve(struct vm_map *map, struct uvm_mapent_reservation *umr)
4867 {
4868
4869 while (!UMR_EMPTY(umr))
4870 uvm_kmapent_free(UMR_GETENTRY(umr));
4871 }
4872
4873 /*
4874 * uvm_mapent_trymerge: try to merge an entry with its neighbors.
4875 *
4876 * => called with map locked.
4877 * => return non zero if successfully merged.
4878 */
4879
4880 int
4881 uvm_mapent_trymerge(struct vm_map *map, struct vm_map_entry *entry, int flags)
4882 {
4883 struct uvm_object *uobj;
4884 struct vm_map_entry *next;
4885 struct vm_map_entry *prev;
4886 vsize_t size;
4887 int merged = 0;
4888 bool copying;
4889 int newetype;
4890
4891 if (VM_MAP_USE_KMAPENT(map)) {
4892 return 0;
4893 }
4894 if (entry->aref.ar_amap != NULL) {
4895 return 0;
4896 }
4897 if ((entry->flags & UVM_MAP_NOMERGE) != 0) {
4898 return 0;
4899 }
4900
4901 uobj = entry->object.uvm_obj;
4902 size = entry->end - entry->start;
4903 copying = (flags & UVM_MERGE_COPYING) != 0;
4904 newetype = copying ? (entry->etype & ~UVM_ET_NEEDSCOPY) : entry->etype;
4905
4906 next = entry->next;
4907 if (next != &map->header &&
4908 next->start == entry->end &&
4909 ((copying && next->aref.ar_amap != NULL &&
4910 amap_refs(next->aref.ar_amap) == 1) ||
4911 (!copying && next->aref.ar_amap == NULL)) &&
4912 UVM_ET_ISCOMPATIBLE(next, newetype,
4913 uobj, entry->flags, entry->protection,
4914 entry->max_protection, entry->inheritance, entry->advice,
4915 entry->wired_count) &&
4916 (uobj == NULL || entry->offset + size == next->offset)) {
4917 int error;
4918
4919 if (copying) {
4920 error = amap_extend(next, size,
4921 AMAP_EXTEND_NOWAIT|AMAP_EXTEND_BACKWARDS);
4922 } else {
4923 error = 0;
4924 }
4925 if (error == 0) {
4926 if (uobj) {
4927 if (uobj->pgops->pgo_detach) {
4928 uobj->pgops->pgo_detach(uobj);
4929 }
4930 }
4931
4932 entry->end = next->end;
4933 clear_hints(map, next);
4934 uvm_map_entry_unlink(map, next);
4935 if (copying) {
4936 entry->aref = next->aref;
4937 entry->etype &= ~UVM_ET_NEEDSCOPY;
4938 }
4939 uvm_map_check(map, "trymerge forwardmerge");
4940 uvm_mapent_free_merged(map, next);
4941 merged++;
4942 }
4943 }
4944
4945 prev = entry->prev;
4946 if (prev != &map->header &&
4947 prev->end == entry->start &&
4948 ((copying && !merged && prev->aref.ar_amap != NULL &&
4949 amap_refs(prev->aref.ar_amap) == 1) ||
4950 (!copying && prev->aref.ar_amap == NULL)) &&
4951 UVM_ET_ISCOMPATIBLE(prev, newetype,
4952 uobj, entry->flags, entry->protection,
4953 entry->max_protection, entry->inheritance, entry->advice,
4954 entry->wired_count) &&
4955 (uobj == NULL ||
4956 prev->offset + prev->end - prev->start == entry->offset)) {
4957 int error;
4958
4959 if (copying) {
4960 error = amap_extend(prev, size,
4961 AMAP_EXTEND_NOWAIT|AMAP_EXTEND_FORWARDS);
4962 } else {
4963 error = 0;
4964 }
4965 if (error == 0) {
4966 if (uobj) {
4967 if (uobj->pgops->pgo_detach) {
4968 uobj->pgops->pgo_detach(uobj);
4969 }
4970 entry->offset = prev->offset;
4971 }
4972
4973 entry->start = prev->start;
4974 clear_hints(map, prev);
4975 uvm_map_entry_unlink(map, prev);
4976 if (copying) {
4977 entry->aref = prev->aref;
4978 entry->etype &= ~UVM_ET_NEEDSCOPY;
4979 }
4980 uvm_map_check(map, "trymerge backmerge");
4981 uvm_mapent_free_merged(map, prev);
4982 merged++;
4983 }
4984 }
4985
4986 return merged;
4987 }
4988
4989 #if defined(DDB) || defined(DEBUGPRINT)
4990
4991 /*
4992 * DDB hooks
4993 */
4994
4995 /*
4996 * uvm_map_printit: actually prints the map
4997 */
4998
4999 void
5000 uvm_map_printit(struct vm_map *map, bool full,
5001 void (*pr)(const char *, ...))
5002 {
5003 struct vm_map_entry *entry;
5004
5005 (*pr)("MAP %p: [0x%lx->0x%lx]\n", map, vm_map_min(map),
5006 vm_map_max(map));
5007 (*pr)("\t#ent=%d, sz=%d, ref=%d, version=%d, flags=0x%x\n",
5008 map->nentries, map->size, map->ref_count, map->timestamp,
5009 map->flags);
5010 (*pr)("\tpmap=%p(resident=%ld, wired=%ld)\n", map->pmap,
5011 pmap_resident_count(map->pmap), pmap_wired_count(map->pmap));
5012 if (!full)
5013 return;
5014 for (entry = map->header.next; entry != &map->header;
5015 entry = entry->next) {
5016 (*pr)(" - %p: 0x%lx->0x%lx: obj=%p/0x%llx, amap=%p/%d\n",
5017 entry, entry->start, entry->end, entry->object.uvm_obj,
5018 (long long)entry->offset, entry->aref.ar_amap,
5019 entry->aref.ar_pageoff);
5020 (*pr)(
5021 "\tsubmap=%c, cow=%c, nc=%c, prot(max)=%d/%d, inh=%d, "
5022 "wc=%d, adv=%d\n",
5023 (entry->etype & UVM_ET_SUBMAP) ? 'T' : 'F',
5024 (entry->etype & UVM_ET_COPYONWRITE) ? 'T' : 'F',
5025 (entry->etype & UVM_ET_NEEDSCOPY) ? 'T' : 'F',
5026 entry->protection, entry->max_protection,
5027 entry->inheritance, entry->wired_count, entry->advice);
5028 }
5029 }
5030
5031 /*
5032 * uvm_object_printit: actually prints the object
5033 */
5034
5035 void
5036 uvm_object_printit(struct uvm_object *uobj, bool full,
5037 void (*pr)(const char *, ...))
5038 {
5039 struct vm_page *pg;
5040 int cnt = 0;
5041
5042 (*pr)("OBJECT %p: locked=%d, pgops=%p, npages=%d, ",
5043 uobj, mutex_owned(&uobj->vmobjlock), uobj->pgops, uobj->uo_npages);
5044 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
5045 (*pr)("refs=<SYSTEM>\n");
5046 else
5047 (*pr)("refs=%d\n", uobj->uo_refs);
5048
5049 if (!full) {
5050 return;
5051 }
5052 (*pr)(" PAGES <pg,offset>:\n ");
5053 TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
5054 cnt++;
5055 (*pr)("<%p,0x%llx> ", pg, (long long)pg->offset);
5056 if ((cnt % 3) == 0) {
5057 (*pr)("\n ");
5058 }
5059 }
5060 if ((cnt % 3) != 0) {
5061 (*pr)("\n");
5062 }
5063 }
5064
5065 /*
5066 * uvm_page_printit: actually print the page
5067 */
5068
5069 static const char page_flagbits[] = UVM_PGFLAGBITS;
5070 static const char page_pqflagbits[] = UVM_PQFLAGBITS;
5071
5072 void
5073 uvm_page_printit(struct vm_page *pg, bool full,
5074 void (*pr)(const char *, ...))
5075 {
5076 struct vm_page *tpg;
5077 struct uvm_object *uobj;
5078 struct pgflist *pgl;
5079 char pgbuf[128];
5080 char pqbuf[128];
5081
5082 (*pr)("PAGE %p:\n", pg);
5083 snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
5084 snprintb(pqbuf, sizeof(pqbuf), page_pqflagbits, pg->pqflags);
5085 (*pr)(" flags=%s, pqflags=%s, wire_count=%d, pa=0x%lx\n",
5086 pgbuf, pqbuf, pg->wire_count, (long)VM_PAGE_TO_PHYS(pg));
5087 (*pr)(" uobject=%p, uanon=%p, offset=0x%llx loan_count=%d\n",
5088 pg->uobject, pg->uanon, (long long)pg->offset, pg->loan_count);
5089 #if defined(UVM_PAGE_TRKOWN)
5090 if (pg->flags & PG_BUSY)
5091 (*pr)(" owning process = %d, tag=%s\n",
5092 pg->owner, pg->owner_tag);
5093 else
5094 (*pr)(" page not busy, no owner\n");
5095 #else
5096 (*pr)(" [page ownership tracking disabled]\n");
5097 #endif
5098
5099 if (!full)
5100 return;
5101
5102 /* cross-verify object/anon */
5103 if ((pg->pqflags & PQ_FREE) == 0) {
5104 if (pg->pqflags & PQ_ANON) {
5105 if (pg->uanon == NULL || pg->uanon->an_page != pg)
5106 (*pr)(" >>> ANON DOES NOT POINT HERE <<< (%p)\n",
5107 (pg->uanon) ? pg->uanon->an_page : NULL);
5108 else
5109 (*pr)(" anon backpointer is OK\n");
5110 } else {
5111 uobj = pg->uobject;
5112 if (uobj) {
5113 (*pr)(" checking object list\n");
5114 TAILQ_FOREACH(tpg, &uobj->memq, listq.queue) {
5115 if (tpg == pg) {
5116 break;
5117 }
5118 }
5119 if (tpg)
5120 (*pr)(" page found on object list\n");
5121 else
5122 (*pr)(" >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
5123 }
5124 }
5125 }
5126
5127 /* cross-verify page queue */
5128 if (pg->pqflags & PQ_FREE) {
5129 int fl = uvm_page_lookup_freelist(pg);
5130 int color = VM_PGCOLOR_BUCKET(pg);
5131 pgl = &uvm.page_free[fl].pgfl_buckets[color].pgfl_queues[
5132 ((pg)->flags & PG_ZERO) ? PGFL_ZEROS : PGFL_UNKNOWN];
5133 } else {
5134 pgl = NULL;
5135 }
5136
5137 if (pgl) {
5138 (*pr)(" checking pageq list\n");
5139 LIST_FOREACH(tpg, pgl, pageq.list) {
5140 if (tpg == pg) {
5141 break;
5142 }
5143 }
5144 if (tpg)
5145 (*pr)(" page found on pageq list\n");
5146 else
5147 (*pr)(" >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
5148 }
5149 }
5150
5151 /*
5152 * uvm_pages_printthem - print a summary of all managed pages
5153 */
5154
5155 void
5156 uvm_page_printall(void (*pr)(const char *, ...))
5157 {
5158 unsigned i;
5159 struct vm_page *pg;
5160
5161 (*pr)("%18s %4s %4s %18s %18s"
5162 #ifdef UVM_PAGE_TRKOWN
5163 " OWNER"
5164 #endif
5165 "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
5166 for (i = 0; i < vm_nphysseg; i++) {
5167 for (pg = vm_physmem[i].pgs; pg <= vm_physmem[i].lastpg; pg++) {
5168 (*pr)("%18p %04x %04x %18p %18p",
5169 pg, pg->flags, pg->pqflags, pg->uobject,
5170 pg->uanon);
5171 #ifdef UVM_PAGE_TRKOWN
5172 if (pg->flags & PG_BUSY)
5173 (*pr)(" %d [%s]", pg->owner, pg->owner_tag);
5174 #endif
5175 (*pr)("\n");
5176 }
5177 }
5178 }
5179
5180 #endif
5181
5182 /*
5183 * uvm_map_create: create map
5184 */
5185
5186 struct vm_map *
5187 uvm_map_create(pmap_t pmap, vaddr_t vmin, vaddr_t vmax, int flags)
5188 {
5189 struct vm_map *result;
5190
5191 result = malloc(sizeof(struct vm_map), M_VMMAP, M_WAITOK);
5192 uvm_map_setup(result, vmin, vmax, flags);
5193 result->pmap = pmap;
5194 return(result);
5195 }
5196
5197 /*
5198 * uvm_map_setup: init map
5199 *
5200 * => map must not be in service yet.
5201 */
5202
5203 void
5204 uvm_map_setup(struct vm_map *map, vaddr_t vmin, vaddr_t vmax, int flags)
5205 {
5206 int ipl;
5207
5208 rb_tree_init(&map->rb_tree, &uvm_map_tree_ops);
5209 map->header.next = map->header.prev = &map->header;
5210 map->nentries = 0;
5211 map->size = 0;
5212 map->ref_count = 1;
5213 vm_map_setmin(map, vmin);
5214 vm_map_setmax(map, vmax);
5215 map->flags = flags;
5216 map->first_free = &map->header;
5217 map->hint = &map->header;
5218 map->timestamp = 0;
5219 map->busy = NULL;
5220
5221 if ((flags & VM_MAP_INTRSAFE) != 0) {
5222 ipl = IPL_VM;
5223 } else {
5224 ipl = IPL_NONE;
5225 }
5226
5227 rw_init(&map->lock);
5228 cv_init(&map->cv, "vm_map");
5229 mutex_init(&map->misc_lock, MUTEX_DRIVER, ipl);
5230 mutex_init(&map->mutex, MUTEX_DRIVER, ipl);
5231 }
5232
5233
5234 /*
5235 * U N M A P - m a i n e n t r y p o i n t
5236 */
5237
5238 /*
5239 * uvm_unmap1: remove mappings from a vm_map (from "start" up to "stop")
5240 *
5241 * => caller must check alignment and size
5242 * => map must be unlocked (we will lock it)
5243 * => flags is UVM_FLAG_QUANTUM or 0.
5244 */
5245
5246 void
5247 uvm_unmap1(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
5248 {
5249 struct vm_map_entry *dead_entries;
5250 struct uvm_mapent_reservation umr;
5251 UVMHIST_FUNC("uvm_unmap"); UVMHIST_CALLED(maphist);
5252
5253 UVMHIST_LOG(maphist, " (map=0x%x, start=0x%x, end=0x%x)",
5254 map, start, end, 0);
5255 if (map == kernel_map) {
5256 LOCKDEBUG_MEM_CHECK((void *)start, end - start);
5257 }
5258 /*
5259 * work now done by helper functions. wipe the pmap's and then
5260 * detach from the dead entries...
5261 */
5262 uvm_mapent_reserve(map, &umr, 2, flags);
5263 vm_map_lock(map);
5264 uvm_unmap_remove(map, start, end, &dead_entries, &umr, flags);
5265 vm_map_unlock(map);
5266 uvm_mapent_unreserve(map, &umr);
5267
5268 if (dead_entries != NULL)
5269 uvm_unmap_detach(dead_entries, 0);
5270
5271 UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
5272 }
5273
5274
5275 /*
5276 * uvm_map_reference: add reference to a map
5277 *
5278 * => map need not be locked (we use misc_lock).
5279 */
5280
5281 void
5282 uvm_map_reference(struct vm_map *map)
5283 {
5284 mutex_enter(&map->misc_lock);
5285 map->ref_count++;
5286 mutex_exit(&map->misc_lock);
5287 }
5288
5289 struct vm_map_kernel *
5290 vm_map_to_kernel(struct vm_map *map)
5291 {
5292
5293 KASSERT(VM_MAP_IS_KERNEL(map));
5294
5295 return (struct vm_map_kernel *)map;
5296 }
5297
5298 bool
5299 vm_map_starved_p(struct vm_map *map)
5300 {
5301
5302 if ((map->flags & VM_MAP_WANTVA) != 0) {
5303 return true;
5304 }
5305 /* XXX */
5306 if ((vm_map_max(map) - vm_map_min(map)) / 16 * 15 < map->size) {
5307 return true;
5308 }
5309 return false;
5310 }
5311
5312 #if defined(DDB) || defined(DEBUGPRINT)
5313 void
5314 uvm_whatis(uintptr_t addr, void (*pr)(const char *, ...))
5315 {
5316 struct vm_map *map;
5317
5318 for (map = kernel_map;;) {
5319 struct vm_map_entry *entry;
5320
5321 if (!uvm_map_lookup_entry_bytree(map, (vaddr_t)addr, &entry)) {
5322 break;
5323 }
5324 (*pr)("%p is %p+%zu from VMMAP %p\n",
5325 (void *)addr, (void *)entry->start,
5326 (size_t)(addr - (uintptr_t)entry->start), map);
5327 if (!UVM_ET_ISSUBMAP(entry)) {
5328 break;
5329 }
5330 map = entry->object.sub_map;
5331 }
5332 }
5333 #endif /* defined(DDB) || defined(DEBUGPRINT) */
5334