uvm_map.c revision 1.387 1 /* $NetBSD: uvm_map.c,v 1.387 2021/04/17 01:53:58 mrg Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vm_map.c 8.3 (Berkeley) 1/12/94
37 * from: Id: uvm_map.c,v 1.1.2.27 1998/02/07 01:16:54 chs Exp
38 *
39 *
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
48 *
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 *
53 * Carnegie Mellon requests users of this software to return to
54 *
55 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 * School of Computer Science
57 * Carnegie Mellon University
58 * Pittsburgh PA 15213-3890
59 *
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
62 */
63
64 /*
65 * uvm_map.c: uvm map operations
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: uvm_map.c,v 1.387 2021/04/17 01:53:58 mrg Exp $");
70
71 #include "opt_ddb.h"
72 #include "opt_pax.h"
73 #include "opt_uvmhist.h"
74 #include "opt_uvm.h"
75 #include "opt_sysv.h"
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/mman.h>
80 #include <sys/proc.h>
81 #include <sys/pool.h>
82 #include <sys/kernel.h>
83 #include <sys/mount.h>
84 #include <sys/pax.h>
85 #include <sys/vnode.h>
86 #include <sys/filedesc.h>
87 #include <sys/lockdebug.h>
88 #include <sys/atomic.h>
89 #include <sys/sysctl.h>
90 #ifndef __USER_VA0_IS_SAFE
91 #include <sys/kauth.h>
92 #include "opt_user_va0_disable_default.h"
93 #endif
94
95 #include <sys/shm.h>
96
97 #include <uvm/uvm.h>
98 #include <uvm/uvm_readahead.h>
99
100 #if defined(DDB) || defined(DEBUGPRINT)
101 #include <uvm/uvm_ddb.h>
102 #endif
103
104 #ifdef UVMHIST
105 #ifndef UVMHIST_MAPHIST_SIZE
106 #define UVMHIST_MAPHIST_SIZE 100
107 #endif
108 #ifndef UVMHIST_PDHIST_SIZE
109 #define UVMHIST_PDHIST_SIZE 100
110 #endif
111 static struct kern_history_ent maphistbuf[UVMHIST_MAPHIST_SIZE];
112 UVMHIST_DEFINE(maphist) = UVMHIST_INITIALIZER(maphist, maphistbuf);
113 #endif
114
115 #if !defined(UVMMAP_COUNTERS)
116
117 #define UVMMAP_EVCNT_DEFINE(name) /* nothing */
118 #define UVMMAP_EVCNT_INCR(ev) /* nothing */
119 #define UVMMAP_EVCNT_DECR(ev) /* nothing */
120
121 #else /* defined(UVMMAP_NOCOUNTERS) */
122
123 #include <sys/evcnt.h>
124 #define UVMMAP_EVCNT_DEFINE(name) \
125 struct evcnt uvmmap_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
126 "uvmmap", #name); \
127 EVCNT_ATTACH_STATIC(uvmmap_evcnt_##name);
128 #define UVMMAP_EVCNT_INCR(ev) uvmmap_evcnt_##ev.ev_count++
129 #define UVMMAP_EVCNT_DECR(ev) uvmmap_evcnt_##ev.ev_count--
130
131 #endif /* defined(UVMMAP_NOCOUNTERS) */
132
133 UVMMAP_EVCNT_DEFINE(ubackmerge)
134 UVMMAP_EVCNT_DEFINE(uforwmerge)
135 UVMMAP_EVCNT_DEFINE(ubimerge)
136 UVMMAP_EVCNT_DEFINE(unomerge)
137 UVMMAP_EVCNT_DEFINE(kbackmerge)
138 UVMMAP_EVCNT_DEFINE(kforwmerge)
139 UVMMAP_EVCNT_DEFINE(kbimerge)
140 UVMMAP_EVCNT_DEFINE(knomerge)
141 UVMMAP_EVCNT_DEFINE(map_call)
142 UVMMAP_EVCNT_DEFINE(mlk_call)
143 UVMMAP_EVCNT_DEFINE(mlk_hint)
144 UVMMAP_EVCNT_DEFINE(mlk_tree)
145 UVMMAP_EVCNT_DEFINE(mlk_treeloop)
146
147 const char vmmapbsy[] = "vmmapbsy";
148
149 /*
150 * cache for vmspace structures.
151 */
152
153 static struct pool_cache uvm_vmspace_cache;
154
155 /*
156 * cache for dynamically-allocated map entries.
157 */
158
159 static struct pool_cache uvm_map_entry_cache;
160
161 #ifdef PMAP_GROWKERNEL
162 /*
163 * This global represents the end of the kernel virtual address
164 * space. If we want to exceed this, we must grow the kernel
165 * virtual address space dynamically.
166 *
167 * Note, this variable is locked by kernel_map's lock.
168 */
169 vaddr_t uvm_maxkaddr;
170 #endif
171
172 #ifndef __USER_VA0_IS_SAFE
173 #ifndef __USER_VA0_DISABLE_DEFAULT
174 #define __USER_VA0_DISABLE_DEFAULT 1
175 #endif
176 #ifdef USER_VA0_DISABLE_DEFAULT /* kernel config option overrides */
177 #undef __USER_VA0_DISABLE_DEFAULT
178 #define __USER_VA0_DISABLE_DEFAULT USER_VA0_DISABLE_DEFAULT
179 #endif
180 int user_va0_disable = __USER_VA0_DISABLE_DEFAULT;
181 #endif
182
183 /*
184 * macros
185 */
186
187 /*
188 * uvm_map_align_va: round down or up virtual address
189 */
190 static __inline void
191 uvm_map_align_va(vaddr_t *vap, vsize_t align, int topdown)
192 {
193
194 KASSERT(powerof2(align));
195
196 if (align != 0 && (*vap & (align - 1)) != 0) {
197 if (topdown)
198 *vap = rounddown2(*vap, align);
199 else
200 *vap = roundup2(*vap, align);
201 }
202 }
203
204 /*
205 * UVM_ET_ISCOMPATIBLE: check some requirements for map entry merging
206 */
207 extern struct vm_map *pager_map;
208
209 #define UVM_ET_ISCOMPATIBLE(ent, type, uobj, meflags, \
210 prot, maxprot, inh, adv, wire) \
211 ((ent)->etype == (type) && \
212 (((ent)->flags ^ (meflags)) & (UVM_MAP_NOMERGE)) == 0 && \
213 (ent)->object.uvm_obj == (uobj) && \
214 (ent)->protection == (prot) && \
215 (ent)->max_protection == (maxprot) && \
216 (ent)->inheritance == (inh) && \
217 (ent)->advice == (adv) && \
218 (ent)->wired_count == (wire))
219
220 /*
221 * uvm_map_entry_link: insert entry into a map
222 *
223 * => map must be locked
224 */
225 #define uvm_map_entry_link(map, after_where, entry) do { \
226 uvm_mapent_check(entry); \
227 (map)->nentries++; \
228 (entry)->prev = (after_where); \
229 (entry)->next = (after_where)->next; \
230 (entry)->prev->next = (entry); \
231 (entry)->next->prev = (entry); \
232 uvm_rb_insert((map), (entry)); \
233 } while (/*CONSTCOND*/ 0)
234
235 /*
236 * uvm_map_entry_unlink: remove entry from a map
237 *
238 * => map must be locked
239 */
240 #define uvm_map_entry_unlink(map, entry) do { \
241 KASSERT((entry) != (map)->first_free); \
242 KASSERT((entry) != (map)->hint); \
243 uvm_mapent_check(entry); \
244 (map)->nentries--; \
245 (entry)->next->prev = (entry)->prev; \
246 (entry)->prev->next = (entry)->next; \
247 uvm_rb_remove((map), (entry)); \
248 } while (/*CONSTCOND*/ 0)
249
250 /*
251 * SAVE_HINT: saves the specified entry as the hint for future lookups.
252 *
253 * => map need not be locked.
254 */
255 #define SAVE_HINT(map, check, value) do { \
256 if ((map)->hint == (check)) \
257 (map)->hint = (value); \
258 } while (/*CONSTCOND*/ 0)
259
260 /*
261 * clear_hints: ensure that hints don't point to the entry.
262 *
263 * => map must be write-locked.
264 */
265 static void
266 clear_hints(struct vm_map *map, struct vm_map_entry *ent)
267 {
268
269 SAVE_HINT(map, ent, ent->prev);
270 if (map->first_free == ent) {
271 map->first_free = ent->prev;
272 }
273 }
274
275 /*
276 * VM_MAP_RANGE_CHECK: check and correct range
277 *
278 * => map must at least be read locked
279 */
280
281 #define VM_MAP_RANGE_CHECK(map, start, end) do { \
282 if (start < vm_map_min(map)) \
283 start = vm_map_min(map); \
284 if (end > vm_map_max(map)) \
285 end = vm_map_max(map); \
286 if (start > end) \
287 start = end; \
288 } while (/*CONSTCOND*/ 0)
289
290 /*
291 * local prototypes
292 */
293
294 static struct vm_map_entry *
295 uvm_mapent_alloc(struct vm_map *, int);
296 static void uvm_mapent_copy(struct vm_map_entry *, struct vm_map_entry *);
297 static void uvm_mapent_free(struct vm_map_entry *);
298 #if defined(DEBUG)
299 static void _uvm_mapent_check(const struct vm_map_entry *, int);
300 #define uvm_mapent_check(map) _uvm_mapent_check(map, __LINE__)
301 #else /* defined(DEBUG) */
302 #define uvm_mapent_check(e) /* nothing */
303 #endif /* defined(DEBUG) */
304
305 static void uvm_map_entry_unwire(struct vm_map *, struct vm_map_entry *);
306 static void uvm_map_reference_amap(struct vm_map_entry *, int);
307 static int uvm_map_space_avail(vaddr_t *, vsize_t, voff_t, vsize_t, int,
308 int, struct vm_map_entry *);
309 static void uvm_map_unreference_amap(struct vm_map_entry *, int);
310
311 int _uvm_map_sanity(struct vm_map *);
312 int _uvm_tree_sanity(struct vm_map *);
313 static vsize_t uvm_rb_maxgap(const struct vm_map_entry *);
314
315 #define ROOT_ENTRY(map) ((struct vm_map_entry *)(map)->rb_tree.rbt_root)
316 #define LEFT_ENTRY(entry) ((struct vm_map_entry *)(entry)->rb_node.rb_left)
317 #define RIGHT_ENTRY(entry) ((struct vm_map_entry *)(entry)->rb_node.rb_right)
318 #define PARENT_ENTRY(map, entry) \
319 (ROOT_ENTRY(map) == (entry) \
320 ? NULL : (struct vm_map_entry *)RB_FATHER(&(entry)->rb_node))
321
322 /*
323 * These get filled in if/when SYSVSHM shared memory code is loaded
324 *
325 * We do this with function pointers rather the #ifdef SYSVSHM so the
326 * SYSVSHM code can be loaded and unloaded
327 */
328 void (*uvm_shmexit)(struct vmspace *) = NULL;
329 void (*uvm_shmfork)(struct vmspace *, struct vmspace *) = NULL;
330
331 static int
332 uvm_map_compare_nodes(void *ctx, const void *nparent, const void *nkey)
333 {
334 const struct vm_map_entry *eparent = nparent;
335 const struct vm_map_entry *ekey = nkey;
336
337 KASSERT(eparent->start < ekey->start || eparent->start >= ekey->end);
338 KASSERT(ekey->start < eparent->start || ekey->start >= eparent->end);
339
340 if (eparent->start < ekey->start)
341 return -1;
342 if (eparent->end >= ekey->start)
343 return 1;
344 return 0;
345 }
346
347 static int
348 uvm_map_compare_key(void *ctx, const void *nparent, const void *vkey)
349 {
350 const struct vm_map_entry *eparent = nparent;
351 const vaddr_t va = *(const vaddr_t *) vkey;
352
353 if (eparent->start < va)
354 return -1;
355 if (eparent->end >= va)
356 return 1;
357 return 0;
358 }
359
360 static const rb_tree_ops_t uvm_map_tree_ops = {
361 .rbto_compare_nodes = uvm_map_compare_nodes,
362 .rbto_compare_key = uvm_map_compare_key,
363 .rbto_node_offset = offsetof(struct vm_map_entry, rb_node),
364 .rbto_context = NULL
365 };
366
367 /*
368 * uvm_rb_gap: return the gap size between our entry and next entry.
369 */
370 static inline vsize_t
371 uvm_rb_gap(const struct vm_map_entry *entry)
372 {
373
374 KASSERT(entry->next != NULL);
375 return entry->next->start - entry->end;
376 }
377
378 static vsize_t
379 uvm_rb_maxgap(const struct vm_map_entry *entry)
380 {
381 struct vm_map_entry *child;
382 vsize_t maxgap = entry->gap;
383
384 /*
385 * We need maxgap to be the largest gap of us or any of our
386 * descendents. Since each of our children's maxgap is the
387 * cached value of their largest gap of themselves or their
388 * descendents, we can just use that value and avoid recursing
389 * down the tree to calculate it.
390 */
391 if ((child = LEFT_ENTRY(entry)) != NULL && maxgap < child->maxgap)
392 maxgap = child->maxgap;
393
394 if ((child = RIGHT_ENTRY(entry)) != NULL && maxgap < child->maxgap)
395 maxgap = child->maxgap;
396
397 return maxgap;
398 }
399
400 static void
401 uvm_rb_fixup(struct vm_map *map, struct vm_map_entry *entry)
402 {
403 struct vm_map_entry *parent;
404
405 KASSERT(entry->gap == uvm_rb_gap(entry));
406 entry->maxgap = uvm_rb_maxgap(entry);
407
408 while ((parent = PARENT_ENTRY(map, entry)) != NULL) {
409 struct vm_map_entry *brother;
410 vsize_t maxgap = parent->gap;
411 unsigned int which;
412
413 KDASSERT(parent->gap == uvm_rb_gap(parent));
414 if (maxgap < entry->maxgap)
415 maxgap = entry->maxgap;
416 /*
417 * Since we work towards the root, we know entry's maxgap
418 * value is OK, but its brothers may now be out-of-date due
419 * to rebalancing. So refresh it.
420 */
421 which = RB_POSITION(&entry->rb_node) ^ RB_DIR_OTHER;
422 brother = (struct vm_map_entry *)parent->rb_node.rb_nodes[which];
423 if (brother != NULL) {
424 KDASSERT(brother->gap == uvm_rb_gap(brother));
425 brother->maxgap = uvm_rb_maxgap(brother);
426 if (maxgap < brother->maxgap)
427 maxgap = brother->maxgap;
428 }
429
430 parent->maxgap = maxgap;
431 entry = parent;
432 }
433 }
434
435 static void
436 uvm_rb_insert(struct vm_map *map, struct vm_map_entry *entry)
437 {
438 struct vm_map_entry *ret __diagused;
439
440 entry->gap = entry->maxgap = uvm_rb_gap(entry);
441 if (entry->prev != &map->header)
442 entry->prev->gap = uvm_rb_gap(entry->prev);
443
444 ret = rb_tree_insert_node(&map->rb_tree, entry);
445 KASSERTMSG(ret == entry,
446 "uvm_rb_insert: map %p: duplicate entry %p", map, ret);
447
448 /*
449 * If the previous entry is not our immediate left child, then it's an
450 * ancestor and will be fixed up on the way to the root. We don't
451 * have to check entry->prev against &map->header since &map->header
452 * will never be in the tree.
453 */
454 uvm_rb_fixup(map,
455 LEFT_ENTRY(entry) == entry->prev ? entry->prev : entry);
456 }
457
458 static void
459 uvm_rb_remove(struct vm_map *map, struct vm_map_entry *entry)
460 {
461 struct vm_map_entry *prev_parent = NULL, *next_parent = NULL;
462
463 /*
464 * If we are removing an interior node, then an adjacent node will
465 * be used to replace its position in the tree. Therefore we will
466 * need to fixup the tree starting at the parent of the replacement
467 * node. So record their parents for later use.
468 */
469 if (entry->prev != &map->header)
470 prev_parent = PARENT_ENTRY(map, entry->prev);
471 if (entry->next != &map->header)
472 next_parent = PARENT_ENTRY(map, entry->next);
473
474 rb_tree_remove_node(&map->rb_tree, entry);
475
476 /*
477 * If the previous node has a new parent, fixup the tree starting
478 * at the previous node's old parent.
479 */
480 if (entry->prev != &map->header) {
481 /*
482 * Update the previous entry's gap due to our absence.
483 */
484 entry->prev->gap = uvm_rb_gap(entry->prev);
485 uvm_rb_fixup(map, entry->prev);
486 if (prev_parent != NULL
487 && prev_parent != entry
488 && prev_parent != PARENT_ENTRY(map, entry->prev))
489 uvm_rb_fixup(map, prev_parent);
490 }
491
492 /*
493 * If the next node has a new parent, fixup the tree starting
494 * at the next node's old parent.
495 */
496 if (entry->next != &map->header) {
497 uvm_rb_fixup(map, entry->next);
498 if (next_parent != NULL
499 && next_parent != entry
500 && next_parent != PARENT_ENTRY(map, entry->next))
501 uvm_rb_fixup(map, next_parent);
502 }
503 }
504
505 #if defined(DEBUG)
506 int uvm_debug_check_map = 0;
507 int uvm_debug_check_rbtree = 0;
508 #define uvm_map_check(map, name) \
509 _uvm_map_check((map), (name), __FILE__, __LINE__)
510 static void
511 _uvm_map_check(struct vm_map *map, const char *name,
512 const char *file, int line)
513 {
514
515 if ((uvm_debug_check_map && _uvm_map_sanity(map)) ||
516 (uvm_debug_check_rbtree && _uvm_tree_sanity(map))) {
517 panic("uvm_map_check failed: \"%s\" map=%p (%s:%d)",
518 name, map, file, line);
519 }
520 }
521 #else /* defined(DEBUG) */
522 #define uvm_map_check(map, name) /* nothing */
523 #endif /* defined(DEBUG) */
524
525 #if defined(DEBUG) || defined(DDB)
526 int
527 _uvm_map_sanity(struct vm_map *map)
528 {
529 bool first_free_found = false;
530 bool hint_found = false;
531 const struct vm_map_entry *e;
532 struct vm_map_entry *hint = map->hint;
533
534 e = &map->header;
535 for (;;) {
536 if (map->first_free == e) {
537 first_free_found = true;
538 } else if (!first_free_found && e->next->start > e->end) {
539 printf("first_free %p should be %p\n",
540 map->first_free, e);
541 return -1;
542 }
543 if (hint == e) {
544 hint_found = true;
545 }
546
547 e = e->next;
548 if (e == &map->header) {
549 break;
550 }
551 }
552 if (!first_free_found) {
553 printf("stale first_free\n");
554 return -1;
555 }
556 if (!hint_found) {
557 printf("stale hint\n");
558 return -1;
559 }
560 return 0;
561 }
562
563 int
564 _uvm_tree_sanity(struct vm_map *map)
565 {
566 struct vm_map_entry *tmp, *trtmp;
567 int n = 0, i = 1;
568
569 for (tmp = map->header.next; tmp != &map->header; tmp = tmp->next) {
570 if (tmp->gap != uvm_rb_gap(tmp)) {
571 printf("%d/%d gap %#lx != %#lx %s\n",
572 n + 1, map->nentries,
573 (ulong)tmp->gap, (ulong)uvm_rb_gap(tmp),
574 tmp->next == &map->header ? "(last)" : "");
575 goto error;
576 }
577 /*
578 * If any entries are out of order, tmp->gap will be unsigned
579 * and will likely exceed the size of the map.
580 */
581 if (tmp->gap >= vm_map_max(map) - vm_map_min(map)) {
582 printf("too large gap %zu\n", (size_t)tmp->gap);
583 goto error;
584 }
585 n++;
586 }
587
588 if (n != map->nentries) {
589 printf("nentries: %d vs %d\n", n, map->nentries);
590 goto error;
591 }
592
593 trtmp = NULL;
594 for (tmp = map->header.next; tmp != &map->header; tmp = tmp->next) {
595 if (tmp->maxgap != uvm_rb_maxgap(tmp)) {
596 printf("maxgap %#lx != %#lx\n",
597 (ulong)tmp->maxgap,
598 (ulong)uvm_rb_maxgap(tmp));
599 goto error;
600 }
601 if (trtmp != NULL && trtmp->start >= tmp->start) {
602 printf("corrupt: 0x%"PRIxVADDR"x >= 0x%"PRIxVADDR"x\n",
603 trtmp->start, tmp->start);
604 goto error;
605 }
606
607 trtmp = tmp;
608 }
609
610 for (tmp = map->header.next; tmp != &map->header;
611 tmp = tmp->next, i++) {
612 trtmp = rb_tree_iterate(&map->rb_tree, tmp, RB_DIR_LEFT);
613 if (trtmp == NULL)
614 trtmp = &map->header;
615 if (tmp->prev != trtmp) {
616 printf("lookup: %d: %p->prev=%p: %p\n",
617 i, tmp, tmp->prev, trtmp);
618 goto error;
619 }
620 trtmp = rb_tree_iterate(&map->rb_tree, tmp, RB_DIR_RIGHT);
621 if (trtmp == NULL)
622 trtmp = &map->header;
623 if (tmp->next != trtmp) {
624 printf("lookup: %d: %p->next=%p: %p\n",
625 i, tmp, tmp->next, trtmp);
626 goto error;
627 }
628 trtmp = rb_tree_find_node(&map->rb_tree, &tmp->start);
629 if (trtmp != tmp) {
630 printf("lookup: %d: %p - %p: %p\n", i, tmp, trtmp,
631 PARENT_ENTRY(map, tmp));
632 goto error;
633 }
634 }
635
636 return (0);
637 error:
638 return (-1);
639 }
640 #endif /* defined(DEBUG) || defined(DDB) */
641
642 /*
643 * vm_map_lock: acquire an exclusive (write) lock on a map.
644 *
645 * => The locking protocol provides for guaranteed upgrade from shared ->
646 * exclusive by whichever thread currently has the map marked busy.
647 * See "LOCKING PROTOCOL NOTES" in uvm_map.h. This is horrible; among
648 * other problems, it defeats any fairness guarantees provided by RW
649 * locks.
650 */
651
652 void
653 vm_map_lock(struct vm_map *map)
654 {
655
656 for (;;) {
657 rw_enter(&map->lock, RW_WRITER);
658 if (map->busy == NULL || map->busy == curlwp) {
659 break;
660 }
661 mutex_enter(&map->misc_lock);
662 rw_exit(&map->lock);
663 if (map->busy != NULL) {
664 cv_wait(&map->cv, &map->misc_lock);
665 }
666 mutex_exit(&map->misc_lock);
667 }
668 map->timestamp++;
669 }
670
671 /*
672 * vm_map_lock_try: try to lock a map, failing if it is already locked.
673 */
674
675 bool
676 vm_map_lock_try(struct vm_map *map)
677 {
678
679 if (!rw_tryenter(&map->lock, RW_WRITER)) {
680 return false;
681 }
682 if (map->busy != NULL) {
683 rw_exit(&map->lock);
684 return false;
685 }
686 map->timestamp++;
687 return true;
688 }
689
690 /*
691 * vm_map_unlock: release an exclusive lock on a map.
692 */
693
694 void
695 vm_map_unlock(struct vm_map *map)
696 {
697
698 KASSERT(rw_write_held(&map->lock));
699 KASSERT(map->busy == NULL || map->busy == curlwp);
700 rw_exit(&map->lock);
701 }
702
703 /*
704 * vm_map_unbusy: mark the map as unbusy, and wake any waiters that
705 * want an exclusive lock.
706 */
707
708 void
709 vm_map_unbusy(struct vm_map *map)
710 {
711
712 KASSERT(map->busy == curlwp);
713
714 /*
715 * Safe to clear 'busy' and 'waiters' with only a read lock held:
716 *
717 * o they can only be set with a write lock held
718 * o writers are blocked out with a read or write hold
719 * o at any time, only one thread owns the set of values
720 */
721 mutex_enter(&map->misc_lock);
722 map->busy = NULL;
723 cv_broadcast(&map->cv);
724 mutex_exit(&map->misc_lock);
725 }
726
727 /*
728 * vm_map_lock_read: acquire a shared (read) lock on a map.
729 */
730
731 void
732 vm_map_lock_read(struct vm_map *map)
733 {
734
735 rw_enter(&map->lock, RW_READER);
736 }
737
738 /*
739 * vm_map_unlock_read: release a shared lock on a map.
740 */
741
742 void
743 vm_map_unlock_read(struct vm_map *map)
744 {
745
746 rw_exit(&map->lock);
747 }
748
749 /*
750 * vm_map_busy: mark a map as busy.
751 *
752 * => the caller must hold the map write locked
753 */
754
755 void
756 vm_map_busy(struct vm_map *map)
757 {
758
759 KASSERT(rw_write_held(&map->lock));
760 KASSERT(map->busy == NULL);
761
762 map->busy = curlwp;
763 }
764
765 /*
766 * vm_map_locked_p: return true if the map is write locked.
767 *
768 * => only for debug purposes like KASSERTs.
769 * => should not be used to verify that a map is not locked.
770 */
771
772 bool
773 vm_map_locked_p(struct vm_map *map)
774 {
775
776 return rw_write_held(&map->lock);
777 }
778
779 /*
780 * uvm_mapent_alloc: allocate a map entry
781 */
782
783 static struct vm_map_entry *
784 uvm_mapent_alloc(struct vm_map *map, int flags)
785 {
786 struct vm_map_entry *me;
787 int pflags = (flags & UVM_FLAG_NOWAIT) ? PR_NOWAIT : PR_WAITOK;
788 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
789
790 me = pool_cache_get(&uvm_map_entry_cache, pflags);
791 if (__predict_false(me == NULL)) {
792 return NULL;
793 }
794 me->flags = 0;
795
796 UVMHIST_LOG(maphist, "<- new entry=%#jx [kentry=%jd]", (uintptr_t)me,
797 (map == kernel_map), 0, 0);
798 return me;
799 }
800
801 /*
802 * uvm_mapent_free: free map entry
803 */
804
805 static void
806 uvm_mapent_free(struct vm_map_entry *me)
807 {
808 UVMHIST_FUNC(__func__);
809 UVMHIST_CALLARGS(maphist,"<- freeing map entry=%#jx [flags=%#jx]",
810 (uintptr_t)me, me->flags, 0, 0);
811 pool_cache_put(&uvm_map_entry_cache, me);
812 }
813
814 /*
815 * uvm_mapent_copy: copy a map entry, preserving flags
816 */
817
818 static inline void
819 uvm_mapent_copy(struct vm_map_entry *src, struct vm_map_entry *dst)
820 {
821
822 memcpy(dst, src, sizeof(*dst));
823 dst->flags = 0;
824 }
825
826 #if defined(DEBUG)
827 static void
828 _uvm_mapent_check(const struct vm_map_entry *entry, int line)
829 {
830
831 if (entry->start >= entry->end) {
832 goto bad;
833 }
834 if (UVM_ET_ISOBJ(entry)) {
835 if (entry->object.uvm_obj == NULL) {
836 goto bad;
837 }
838 } else if (UVM_ET_ISSUBMAP(entry)) {
839 if (entry->object.sub_map == NULL) {
840 goto bad;
841 }
842 } else {
843 if (entry->object.uvm_obj != NULL ||
844 entry->object.sub_map != NULL) {
845 goto bad;
846 }
847 }
848 if (!UVM_ET_ISOBJ(entry)) {
849 if (entry->offset != 0) {
850 goto bad;
851 }
852 }
853
854 return;
855
856 bad:
857 panic("%s: bad entry %p, line %d", __func__, entry, line);
858 }
859 #endif /* defined(DEBUG) */
860
861 /*
862 * uvm_map_entry_unwire: unwire a map entry
863 *
864 * => map should be locked by caller
865 */
866
867 static inline void
868 uvm_map_entry_unwire(struct vm_map *map, struct vm_map_entry *entry)
869 {
870
871 entry->wired_count = 0;
872 uvm_fault_unwire_locked(map, entry->start, entry->end);
873 }
874
875
876 /*
877 * wrapper for calling amap_ref()
878 */
879 static inline void
880 uvm_map_reference_amap(struct vm_map_entry *entry, int flags)
881 {
882
883 amap_ref(entry->aref.ar_amap, entry->aref.ar_pageoff,
884 (entry->end - entry->start) >> PAGE_SHIFT, flags);
885 }
886
887
888 /*
889 * wrapper for calling amap_unref()
890 */
891 static inline void
892 uvm_map_unreference_amap(struct vm_map_entry *entry, int flags)
893 {
894
895 amap_unref(entry->aref.ar_amap, entry->aref.ar_pageoff,
896 (entry->end - entry->start) >> PAGE_SHIFT, flags);
897 }
898
899
900 /*
901 * uvm_map_init: init mapping system at boot time.
902 */
903
904 void
905 uvm_map_init(void)
906 {
907 /*
908 * first, init logging system.
909 */
910
911 UVMHIST_FUNC(__func__);
912 UVMHIST_LINK_STATIC(maphist);
913 UVMHIST_LINK_STATIC(pdhist);
914 UVMHIST_CALLED(maphist);
915 UVMHIST_LOG(maphist,"<starting uvm map system>", 0, 0, 0, 0);
916
917 /*
918 * initialize the global lock for kernel map entry.
919 */
920
921 mutex_init(&uvm_kentry_lock, MUTEX_DRIVER, IPL_VM);
922 }
923
924 /*
925 * uvm_map_init_caches: init mapping system caches.
926 */
927 void
928 uvm_map_init_caches(void)
929 {
930 /*
931 * initialize caches.
932 */
933
934 pool_cache_bootstrap(&uvm_map_entry_cache, sizeof(struct vm_map_entry),
935 coherency_unit, 0, PR_LARGECACHE, "vmmpepl", NULL, IPL_NONE, NULL,
936 NULL, NULL);
937 pool_cache_bootstrap(&uvm_vmspace_cache, sizeof(struct vmspace),
938 0, 0, 0, "vmsppl", NULL, IPL_NONE, NULL, NULL, NULL);
939 }
940
941 /*
942 * clippers
943 */
944
945 /*
946 * uvm_mapent_splitadj: adjust map entries for splitting, after uvm_mapent_copy.
947 */
948
949 static void
950 uvm_mapent_splitadj(struct vm_map_entry *entry1, struct vm_map_entry *entry2,
951 vaddr_t splitat)
952 {
953 vaddr_t adj;
954
955 KASSERT(entry1->start < splitat);
956 KASSERT(splitat < entry1->end);
957
958 adj = splitat - entry1->start;
959 entry1->end = entry2->start = splitat;
960
961 if (entry1->aref.ar_amap) {
962 amap_splitref(&entry1->aref, &entry2->aref, adj);
963 }
964 if (UVM_ET_ISSUBMAP(entry1)) {
965 /* ... unlikely to happen, but play it safe */
966 uvm_map_reference(entry1->object.sub_map);
967 } else if (UVM_ET_ISOBJ(entry1)) {
968 KASSERT(entry1->object.uvm_obj != NULL); /* suppress coverity */
969 entry2->offset += adj;
970 if (entry1->object.uvm_obj->pgops &&
971 entry1->object.uvm_obj->pgops->pgo_reference)
972 entry1->object.uvm_obj->pgops->pgo_reference(
973 entry1->object.uvm_obj);
974 }
975 }
976
977 /*
978 * uvm_map_clip_start: ensure that the entry begins at or after
979 * the starting address, if it doesn't we split the entry.
980 *
981 * => caller should use UVM_MAP_CLIP_START macro rather than calling
982 * this directly
983 * => map must be locked by caller
984 */
985
986 void
987 uvm_map_clip_start(struct vm_map *map, struct vm_map_entry *entry,
988 vaddr_t start)
989 {
990 struct vm_map_entry *new_entry;
991
992 /* uvm_map_simplify_entry(map, entry); */ /* XXX */
993
994 uvm_map_check(map, "clip_start entry");
995 uvm_mapent_check(entry);
996
997 /*
998 * Split off the front portion. note that we must insert the new
999 * entry BEFORE this one, so that this entry has the specified
1000 * starting address.
1001 */
1002 new_entry = uvm_mapent_alloc(map, 0);
1003 uvm_mapent_copy(entry, new_entry); /* entry -> new_entry */
1004 uvm_mapent_splitadj(new_entry, entry, start);
1005 uvm_map_entry_link(map, entry->prev, new_entry);
1006
1007 uvm_map_check(map, "clip_start leave");
1008 }
1009
1010 /*
1011 * uvm_map_clip_end: ensure that the entry ends at or before
1012 * the ending address, if it does't we split the reference
1013 *
1014 * => caller should use UVM_MAP_CLIP_END macro rather than calling
1015 * this directly
1016 * => map must be locked by caller
1017 */
1018
1019 void
1020 uvm_map_clip_end(struct vm_map *map, struct vm_map_entry *entry, vaddr_t end)
1021 {
1022 struct vm_map_entry *new_entry;
1023
1024 uvm_map_check(map, "clip_end entry");
1025 uvm_mapent_check(entry);
1026
1027 /*
1028 * Create a new entry and insert it
1029 * AFTER the specified entry
1030 */
1031 new_entry = uvm_mapent_alloc(map, 0);
1032 uvm_mapent_copy(entry, new_entry); /* entry -> new_entry */
1033 uvm_mapent_splitadj(entry, new_entry, end);
1034 uvm_map_entry_link(map, entry, new_entry);
1035
1036 uvm_map_check(map, "clip_end leave");
1037 }
1038
1039 /*
1040 * M A P - m a i n e n t r y p o i n t
1041 */
1042 /*
1043 * uvm_map: establish a valid mapping in a map
1044 *
1045 * => assume startp is page aligned.
1046 * => assume size is a multiple of PAGE_SIZE.
1047 * => assume sys_mmap provides enough of a "hint" to have us skip
1048 * over text/data/bss area.
1049 * => map must be unlocked (we will lock it)
1050 * => <uobj,uoffset> value meanings (4 cases):
1051 * [1] <NULL,uoffset> == uoffset is a hint for PMAP_PREFER
1052 * [2] <NULL,UVM_UNKNOWN_OFFSET> == don't PMAP_PREFER
1053 * [3] <uobj,uoffset> == normal mapping
1054 * [4] <uobj,UVM_UNKNOWN_OFFSET> == uvm_map finds offset based on VA
1055 *
1056 * case [4] is for kernel mappings where we don't know the offset until
1057 * we've found a virtual address. note that kernel object offsets are
1058 * always relative to vm_map_min(kernel_map).
1059 *
1060 * => if `align' is non-zero, we align the virtual address to the specified
1061 * alignment.
1062 * this is provided as a mechanism for large pages.
1063 *
1064 * => XXXCDC: need way to map in external amap?
1065 */
1066
1067 int
1068 uvm_map(struct vm_map *map, vaddr_t *startp /* IN/OUT */, vsize_t size,
1069 struct uvm_object *uobj, voff_t uoffset, vsize_t align, uvm_flag_t flags)
1070 {
1071 struct uvm_map_args args;
1072 struct vm_map_entry *new_entry;
1073 int error;
1074
1075 KASSERT((size & PAGE_MASK) == 0);
1076 KASSERT((flags & UVM_FLAG_FIXED) == 0 || align == 0);
1077
1078 /*
1079 * for pager_map, allocate the new entry first to avoid sleeping
1080 * for memory while we have the map locked.
1081 */
1082
1083 new_entry = NULL;
1084 if (map == pager_map) {
1085 new_entry = uvm_mapent_alloc(map, (flags & UVM_FLAG_NOWAIT));
1086 if (__predict_false(new_entry == NULL))
1087 return ENOMEM;
1088 }
1089 if (map == pager_map)
1090 flags |= UVM_FLAG_NOMERGE;
1091
1092 error = uvm_map_prepare(map, *startp, size, uobj, uoffset, align,
1093 flags, &args);
1094 if (!error) {
1095 error = uvm_map_enter(map, &args, new_entry);
1096 *startp = args.uma_start;
1097 } else if (new_entry) {
1098 uvm_mapent_free(new_entry);
1099 }
1100
1101 #if defined(DEBUG)
1102 if (!error && VM_MAP_IS_KERNEL(map) && (flags & UVM_FLAG_NOWAIT) == 0) {
1103 uvm_km_check_empty(map, *startp, *startp + size);
1104 }
1105 #endif /* defined(DEBUG) */
1106
1107 return error;
1108 }
1109
1110 /*
1111 * uvm_map_prepare:
1112 *
1113 * called with map unlocked.
1114 * on success, returns the map locked.
1115 */
1116
1117 int
1118 uvm_map_prepare(struct vm_map *map, vaddr_t start, vsize_t size,
1119 struct uvm_object *uobj, voff_t uoffset, vsize_t align, uvm_flag_t flags,
1120 struct uvm_map_args *args)
1121 {
1122 struct vm_map_entry *prev_entry;
1123 vm_prot_t prot = UVM_PROTECTION(flags);
1124 vm_prot_t maxprot = UVM_MAXPROTECTION(flags);
1125
1126 UVMHIST_FUNC(__func__);
1127 UVMHIST_CALLARGS(maphist, "(map=%#jx, start=%#jx, size=%ju, flags=%#jx)",
1128 (uintptr_t)map, start, size, flags);
1129 UVMHIST_LOG(maphist, " uobj/offset %#jx/%jd", (uintptr_t)uobj,
1130 uoffset,0,0);
1131
1132 /*
1133 * detect a popular device driver bug.
1134 */
1135
1136 KASSERT(doing_shutdown || curlwp != NULL);
1137
1138 /*
1139 * zero-sized mapping doesn't make any sense.
1140 */
1141 KASSERT(size > 0);
1142
1143 KASSERT((~flags & (UVM_FLAG_NOWAIT | UVM_FLAG_WAITVA)) != 0);
1144
1145 uvm_map_check(map, "map entry");
1146
1147 /*
1148 * check sanity of protection code
1149 */
1150
1151 if ((prot & maxprot) != prot) {
1152 UVMHIST_LOG(maphist, "<- prot. failure: prot=%#jx, max=%#jx",
1153 prot, maxprot,0,0);
1154 return EACCES;
1155 }
1156
1157 /*
1158 * figure out where to put new VM range
1159 */
1160 retry:
1161 if (vm_map_lock_try(map) == false) {
1162 if ((flags & UVM_FLAG_TRYLOCK) != 0) {
1163 return EAGAIN;
1164 }
1165 vm_map_lock(map); /* could sleep here */
1166 }
1167 if (flags & UVM_FLAG_UNMAP) {
1168 KASSERT(flags & UVM_FLAG_FIXED);
1169 KASSERT((flags & UVM_FLAG_NOWAIT) == 0);
1170
1171 /*
1172 * Set prev_entry to what it will need to be after any existing
1173 * entries are removed later in uvm_map_enter().
1174 */
1175
1176 if (uvm_map_lookup_entry(map, start, &prev_entry)) {
1177 if (start == prev_entry->start)
1178 prev_entry = prev_entry->prev;
1179 else
1180 UVM_MAP_CLIP_END(map, prev_entry, start);
1181 SAVE_HINT(map, map->hint, prev_entry);
1182 }
1183 } else {
1184 prev_entry = uvm_map_findspace(map, start, size, &start,
1185 uobj, uoffset, align, flags);
1186 }
1187 if (prev_entry == NULL) {
1188 unsigned int timestamp;
1189
1190 timestamp = map->timestamp;
1191 UVMHIST_LOG(maphist,"waiting va timestamp=%#jx",
1192 timestamp,0,0,0);
1193 map->flags |= VM_MAP_WANTVA;
1194 vm_map_unlock(map);
1195
1196 /*
1197 * try to reclaim kva and wait until someone does unmap.
1198 * fragile locking here, so we awaken every second to
1199 * recheck the condition.
1200 */
1201
1202 mutex_enter(&map->misc_lock);
1203 while ((map->flags & VM_MAP_WANTVA) != 0 &&
1204 map->timestamp == timestamp) {
1205 if ((flags & UVM_FLAG_WAITVA) == 0) {
1206 mutex_exit(&map->misc_lock);
1207 UVMHIST_LOG(maphist,
1208 "<- uvm_map_findspace failed!", 0,0,0,0);
1209 return ENOMEM;
1210 } else {
1211 cv_timedwait(&map->cv, &map->misc_lock, hz);
1212 }
1213 }
1214 mutex_exit(&map->misc_lock);
1215 goto retry;
1216 }
1217
1218 #ifdef PMAP_GROWKERNEL
1219 /*
1220 * If the kernel pmap can't map the requested space,
1221 * then allocate more resources for it.
1222 */
1223 if (map == kernel_map && uvm_maxkaddr < (start + size))
1224 uvm_maxkaddr = pmap_growkernel(start + size);
1225 #endif
1226
1227 UVMMAP_EVCNT_INCR(map_call);
1228
1229 /*
1230 * if uobj is null, then uoffset is either a VAC hint for PMAP_PREFER
1231 * [typically from uvm_map_reserve] or it is UVM_UNKNOWN_OFFSET. in
1232 * either case we want to zero it before storing it in the map entry
1233 * (because it looks strange and confusing when debugging...)
1234 *
1235 * if uobj is not null
1236 * if uoffset is not UVM_UNKNOWN_OFFSET then we have a normal mapping
1237 * and we do not need to change uoffset.
1238 * if uoffset is UVM_UNKNOWN_OFFSET then we need to find the offset
1239 * now (based on the starting address of the map). this case is
1240 * for kernel object mappings where we don't know the offset until
1241 * the virtual address is found (with uvm_map_findspace). the
1242 * offset is the distance we are from the start of the map.
1243 */
1244
1245 if (uobj == NULL) {
1246 uoffset = 0;
1247 } else {
1248 if (uoffset == UVM_UNKNOWN_OFFSET) {
1249 KASSERT(UVM_OBJ_IS_KERN_OBJECT(uobj));
1250 uoffset = start - vm_map_min(kernel_map);
1251 }
1252 }
1253
1254 args->uma_flags = flags;
1255 args->uma_prev = prev_entry;
1256 args->uma_start = start;
1257 args->uma_size = size;
1258 args->uma_uobj = uobj;
1259 args->uma_uoffset = uoffset;
1260
1261 UVMHIST_LOG(maphist, "<- done!", 0,0,0,0);
1262 return 0;
1263 }
1264
1265 /*
1266 * uvm_map_enter:
1267 *
1268 * called with map locked.
1269 * unlock the map before returning.
1270 */
1271
1272 int
1273 uvm_map_enter(struct vm_map *map, const struct uvm_map_args *args,
1274 struct vm_map_entry *new_entry)
1275 {
1276 struct vm_map_entry *prev_entry = args->uma_prev;
1277 struct vm_map_entry *dead = NULL, *dead_entries = NULL;
1278
1279 const uvm_flag_t flags = args->uma_flags;
1280 const vm_prot_t prot = UVM_PROTECTION(flags);
1281 const vm_prot_t maxprot = UVM_MAXPROTECTION(flags);
1282 const vm_inherit_t inherit = UVM_INHERIT(flags);
1283 const int amapwaitflag = (flags & UVM_FLAG_NOWAIT) ?
1284 AMAP_EXTEND_NOWAIT : 0;
1285 const int advice = UVM_ADVICE(flags);
1286
1287 vaddr_t start = args->uma_start;
1288 vsize_t size = args->uma_size;
1289 struct uvm_object *uobj = args->uma_uobj;
1290 voff_t uoffset = args->uma_uoffset;
1291
1292 const int kmap = (vm_map_pmap(map) == pmap_kernel());
1293 int merged = 0;
1294 int error;
1295 int newetype;
1296
1297 UVMHIST_FUNC(__func__);
1298 UVMHIST_CALLARGS(maphist, "(map=%#jx, start=%#jx, size=%ju, flags=%#jx)",
1299 (uintptr_t)map, start, size, flags);
1300 UVMHIST_LOG(maphist, " uobj/offset %#jx/%jd", (uintptr_t)uobj,
1301 uoffset,0,0);
1302
1303 KASSERT(map->hint == prev_entry); /* bimerge case assumes this */
1304 KASSERT(vm_map_locked_p(map));
1305 KASSERT((flags & (UVM_FLAG_NOWAIT | UVM_FLAG_UNMAP)) !=
1306 (UVM_FLAG_NOWAIT | UVM_FLAG_UNMAP));
1307
1308 if (uobj)
1309 newetype = UVM_ET_OBJ;
1310 else
1311 newetype = 0;
1312
1313 if (flags & UVM_FLAG_COPYONW) {
1314 newetype |= UVM_ET_COPYONWRITE;
1315 if ((flags & UVM_FLAG_OVERLAY) == 0)
1316 newetype |= UVM_ET_NEEDSCOPY;
1317 }
1318
1319 /*
1320 * For mappings with unmap, remove any old entries now. Adding the new
1321 * entry cannot fail because that can only happen if UVM_FLAG_NOWAIT
1322 * is set, and we do not support nowait and unmap together.
1323 */
1324
1325 if (flags & UVM_FLAG_UNMAP) {
1326 KASSERT(flags & UVM_FLAG_FIXED);
1327 uvm_unmap_remove(map, start, start + size, &dead_entries, 0);
1328 #ifdef DEBUG
1329 struct vm_map_entry *tmp_entry __diagused;
1330 bool rv __diagused;
1331
1332 rv = uvm_map_lookup_entry(map, start, &tmp_entry);
1333 KASSERT(!rv);
1334 KASSERTMSG(prev_entry == tmp_entry,
1335 "args %p prev_entry %p tmp_entry %p",
1336 args, prev_entry, tmp_entry);
1337 #endif
1338 SAVE_HINT(map, map->hint, prev_entry);
1339 }
1340
1341 /*
1342 * try and insert in map by extending previous entry, if possible.
1343 * XXX: we don't try and pull back the next entry. might be useful
1344 * for a stack, but we are currently allocating our stack in advance.
1345 */
1346
1347 if (flags & UVM_FLAG_NOMERGE)
1348 goto nomerge;
1349
1350 if (prev_entry->end == start &&
1351 prev_entry != &map->header &&
1352 UVM_ET_ISCOMPATIBLE(prev_entry, newetype, uobj, 0,
1353 prot, maxprot, inherit, advice, 0)) {
1354
1355 if (uobj && prev_entry->offset +
1356 (prev_entry->end - prev_entry->start) != uoffset)
1357 goto forwardmerge;
1358
1359 /*
1360 * can't extend a shared amap. note: no need to lock amap to
1361 * look at refs since we don't care about its exact value.
1362 * if it is one (i.e. we have only reference) it will stay there
1363 */
1364
1365 if (prev_entry->aref.ar_amap &&
1366 amap_refs(prev_entry->aref.ar_amap) != 1) {
1367 goto forwardmerge;
1368 }
1369
1370 if (prev_entry->aref.ar_amap) {
1371 error = amap_extend(prev_entry, size,
1372 amapwaitflag | AMAP_EXTEND_FORWARDS);
1373 if (error)
1374 goto nomerge;
1375 }
1376
1377 if (kmap) {
1378 UVMMAP_EVCNT_INCR(kbackmerge);
1379 } else {
1380 UVMMAP_EVCNT_INCR(ubackmerge);
1381 }
1382 UVMHIST_LOG(maphist," starting back merge", 0, 0, 0, 0);
1383
1384 /*
1385 * drop our reference to uobj since we are extending a reference
1386 * that we already have (the ref count can not drop to zero).
1387 */
1388
1389 if (uobj && uobj->pgops->pgo_detach)
1390 uobj->pgops->pgo_detach(uobj);
1391
1392 /*
1393 * Now that we've merged the entries, note that we've grown
1394 * and our gap has shrunk. Then fix the tree.
1395 */
1396 prev_entry->end += size;
1397 prev_entry->gap -= size;
1398 uvm_rb_fixup(map, prev_entry);
1399
1400 uvm_map_check(map, "map backmerged");
1401
1402 UVMHIST_LOG(maphist,"<- done (via backmerge)!", 0, 0, 0, 0);
1403 merged++;
1404 }
1405
1406 forwardmerge:
1407 if (prev_entry->next->start == (start + size) &&
1408 prev_entry->next != &map->header &&
1409 UVM_ET_ISCOMPATIBLE(prev_entry->next, newetype, uobj, 0,
1410 prot, maxprot, inherit, advice, 0)) {
1411
1412 if (uobj && prev_entry->next->offset != uoffset + size)
1413 goto nomerge;
1414
1415 /*
1416 * can't extend a shared amap. note: no need to lock amap to
1417 * look at refs since we don't care about its exact value.
1418 * if it is one (i.e. we have only reference) it will stay there.
1419 *
1420 * note that we also can't merge two amaps, so if we
1421 * merged with the previous entry which has an amap,
1422 * and the next entry also has an amap, we give up.
1423 *
1424 * Interesting cases:
1425 * amap, new, amap -> give up second merge (single fwd extend)
1426 * amap, new, none -> double forward extend (extend again here)
1427 * none, new, amap -> double backward extend (done here)
1428 * uobj, new, amap -> single backward extend (done here)
1429 *
1430 * XXX should we attempt to deal with someone refilling
1431 * the deallocated region between two entries that are
1432 * backed by the same amap (ie, arefs is 2, "prev" and
1433 * "next" refer to it, and adding this allocation will
1434 * close the hole, thus restoring arefs to 1 and
1435 * deallocating the "next" vm_map_entry)? -- @@@
1436 */
1437
1438 if (prev_entry->next->aref.ar_amap &&
1439 (amap_refs(prev_entry->next->aref.ar_amap) != 1 ||
1440 (merged && prev_entry->aref.ar_amap))) {
1441 goto nomerge;
1442 }
1443
1444 if (merged) {
1445 /*
1446 * Try to extend the amap of the previous entry to
1447 * cover the next entry as well. If it doesn't work
1448 * just skip on, don't actually give up, since we've
1449 * already completed the back merge.
1450 */
1451 if (prev_entry->aref.ar_amap) {
1452 if (amap_extend(prev_entry,
1453 prev_entry->next->end -
1454 prev_entry->next->start,
1455 amapwaitflag | AMAP_EXTEND_FORWARDS))
1456 goto nomerge;
1457 }
1458
1459 /*
1460 * Try to extend the amap of the *next* entry
1461 * back to cover the new allocation *and* the
1462 * previous entry as well (the previous merge
1463 * didn't have an amap already otherwise we
1464 * wouldn't be checking here for an amap). If
1465 * it doesn't work just skip on, again, don't
1466 * actually give up, since we've already
1467 * completed the back merge.
1468 */
1469 else if (prev_entry->next->aref.ar_amap) {
1470 if (amap_extend(prev_entry->next,
1471 prev_entry->end -
1472 prev_entry->start,
1473 amapwaitflag | AMAP_EXTEND_BACKWARDS))
1474 goto nomerge;
1475 }
1476 } else {
1477 /*
1478 * Pull the next entry's amap backwards to cover this
1479 * new allocation.
1480 */
1481 if (prev_entry->next->aref.ar_amap) {
1482 error = amap_extend(prev_entry->next, size,
1483 amapwaitflag | AMAP_EXTEND_BACKWARDS);
1484 if (error)
1485 goto nomerge;
1486 }
1487 }
1488
1489 if (merged) {
1490 if (kmap) {
1491 UVMMAP_EVCNT_DECR(kbackmerge);
1492 UVMMAP_EVCNT_INCR(kbimerge);
1493 } else {
1494 UVMMAP_EVCNT_DECR(ubackmerge);
1495 UVMMAP_EVCNT_INCR(ubimerge);
1496 }
1497 } else {
1498 if (kmap) {
1499 UVMMAP_EVCNT_INCR(kforwmerge);
1500 } else {
1501 UVMMAP_EVCNT_INCR(uforwmerge);
1502 }
1503 }
1504 UVMHIST_LOG(maphist," starting forward merge", 0, 0, 0, 0);
1505
1506 /*
1507 * drop our reference to uobj since we are extending a reference
1508 * that we already have (the ref count can not drop to zero).
1509 */
1510 if (uobj && uobj->pgops->pgo_detach)
1511 uobj->pgops->pgo_detach(uobj);
1512
1513 if (merged) {
1514 dead = prev_entry->next;
1515 prev_entry->end = dead->end;
1516 uvm_map_entry_unlink(map, dead);
1517 if (dead->aref.ar_amap != NULL) {
1518 prev_entry->aref = dead->aref;
1519 dead->aref.ar_amap = NULL;
1520 }
1521 } else {
1522 prev_entry->next->start -= size;
1523 if (prev_entry != &map->header) {
1524 prev_entry->gap -= size;
1525 KASSERT(prev_entry->gap == uvm_rb_gap(prev_entry));
1526 uvm_rb_fixup(map, prev_entry);
1527 }
1528 if (uobj)
1529 prev_entry->next->offset = uoffset;
1530 }
1531
1532 uvm_map_check(map, "map forwardmerged");
1533
1534 UVMHIST_LOG(maphist,"<- done forwardmerge", 0, 0, 0, 0);
1535 merged++;
1536 }
1537
1538 nomerge:
1539 if (!merged) {
1540 UVMHIST_LOG(maphist," allocating new map entry", 0, 0, 0, 0);
1541 if (kmap) {
1542 UVMMAP_EVCNT_INCR(knomerge);
1543 } else {
1544 UVMMAP_EVCNT_INCR(unomerge);
1545 }
1546
1547 /*
1548 * allocate new entry and link it in.
1549 */
1550
1551 if (new_entry == NULL) {
1552 new_entry = uvm_mapent_alloc(map,
1553 (flags & UVM_FLAG_NOWAIT));
1554 if (__predict_false(new_entry == NULL)) {
1555 error = ENOMEM;
1556 goto done;
1557 }
1558 }
1559 new_entry->start = start;
1560 new_entry->end = new_entry->start + size;
1561 new_entry->object.uvm_obj = uobj;
1562 new_entry->offset = uoffset;
1563
1564 new_entry->etype = newetype;
1565
1566 if (flags & UVM_FLAG_NOMERGE) {
1567 new_entry->flags |= UVM_MAP_NOMERGE;
1568 }
1569
1570 new_entry->protection = prot;
1571 new_entry->max_protection = maxprot;
1572 new_entry->inheritance = inherit;
1573 new_entry->wired_count = 0;
1574 new_entry->advice = advice;
1575 if (flags & UVM_FLAG_OVERLAY) {
1576
1577 /*
1578 * to_add: for BSS we overallocate a little since we
1579 * are likely to extend
1580 */
1581
1582 vaddr_t to_add = (flags & UVM_FLAG_AMAPPAD) ?
1583 UVM_AMAP_CHUNK << PAGE_SHIFT : 0;
1584 struct vm_amap *amap = amap_alloc(size, to_add,
1585 (flags & UVM_FLAG_NOWAIT));
1586 if (__predict_false(amap == NULL)) {
1587 error = ENOMEM;
1588 goto done;
1589 }
1590 new_entry->aref.ar_pageoff = 0;
1591 new_entry->aref.ar_amap = amap;
1592 } else {
1593 new_entry->aref.ar_pageoff = 0;
1594 new_entry->aref.ar_amap = NULL;
1595 }
1596 uvm_map_entry_link(map, prev_entry, new_entry);
1597
1598 /*
1599 * Update the free space hint
1600 */
1601
1602 if ((map->first_free == prev_entry) &&
1603 (prev_entry->end >= new_entry->start))
1604 map->first_free = new_entry;
1605
1606 new_entry = NULL;
1607 }
1608
1609 map->size += size;
1610
1611 UVMHIST_LOG(maphist,"<- done!", 0, 0, 0, 0);
1612
1613 error = 0;
1614
1615 done:
1616 vm_map_unlock(map);
1617
1618 if (new_entry) {
1619 uvm_mapent_free(new_entry);
1620 }
1621 if (dead) {
1622 KDASSERT(merged);
1623 uvm_mapent_free(dead);
1624 }
1625 if (dead_entries)
1626 uvm_unmap_detach(dead_entries, 0);
1627
1628 return error;
1629 }
1630
1631 /*
1632 * uvm_map_lookup_entry_bytree: lookup an entry in tree
1633 */
1634
1635 static inline bool
1636 uvm_map_lookup_entry_bytree(struct vm_map *map, vaddr_t address,
1637 struct vm_map_entry **entry /* OUT */)
1638 {
1639 struct vm_map_entry *prev = &map->header;
1640 struct vm_map_entry *cur = ROOT_ENTRY(map);
1641
1642 while (cur) {
1643 UVMMAP_EVCNT_INCR(mlk_treeloop);
1644 if (address >= cur->start) {
1645 if (address < cur->end) {
1646 *entry = cur;
1647 return true;
1648 }
1649 prev = cur;
1650 cur = RIGHT_ENTRY(cur);
1651 } else
1652 cur = LEFT_ENTRY(cur);
1653 }
1654 *entry = prev;
1655 return false;
1656 }
1657
1658 /*
1659 * uvm_map_lookup_entry: find map entry at or before an address
1660 *
1661 * => map must at least be read-locked by caller
1662 * => entry is returned in "entry"
1663 * => return value is true if address is in the returned entry
1664 */
1665
1666 bool
1667 uvm_map_lookup_entry(struct vm_map *map, vaddr_t address,
1668 struct vm_map_entry **entry /* OUT */)
1669 {
1670 struct vm_map_entry *cur;
1671 UVMHIST_FUNC(__func__);
1672 UVMHIST_CALLARGS(maphist,"(map=%#jx,addr=%#jx,ent=%#jx)",
1673 (uintptr_t)map, address, (uintptr_t)entry, 0);
1674
1675 /*
1676 * make a quick check to see if we are already looking at
1677 * the entry we want (which is usually the case). note also
1678 * that we don't need to save the hint here... it is the
1679 * same hint (unless we are at the header, in which case the
1680 * hint didn't buy us anything anyway).
1681 */
1682
1683 cur = map->hint;
1684 UVMMAP_EVCNT_INCR(mlk_call);
1685 if (cur != &map->header &&
1686 address >= cur->start && cur->end > address) {
1687 UVMMAP_EVCNT_INCR(mlk_hint);
1688 *entry = cur;
1689 UVMHIST_LOG(maphist,"<- got it via hint (%#jx)",
1690 (uintptr_t)cur, 0, 0, 0);
1691 uvm_mapent_check(*entry);
1692 return (true);
1693 }
1694 uvm_map_check(map, __func__);
1695
1696 /*
1697 * lookup in the tree.
1698 */
1699
1700 UVMMAP_EVCNT_INCR(mlk_tree);
1701 if (__predict_true(uvm_map_lookup_entry_bytree(map, address, entry))) {
1702 SAVE_HINT(map, map->hint, *entry);
1703 UVMHIST_LOG(maphist,"<- search got it (%#jx)",
1704 (uintptr_t)cur, 0, 0, 0);
1705 KDASSERT((*entry)->start <= address);
1706 KDASSERT(address < (*entry)->end);
1707 uvm_mapent_check(*entry);
1708 return (true);
1709 }
1710
1711 SAVE_HINT(map, map->hint, *entry);
1712 UVMHIST_LOG(maphist,"<- failed!",0,0,0,0);
1713 KDASSERT((*entry) == &map->header || (*entry)->end <= address);
1714 KDASSERT((*entry)->next == &map->header ||
1715 address < (*entry)->next->start);
1716 return (false);
1717 }
1718
1719 /*
1720 * See if the range between start and start + length fits in the gap
1721 * entry->next->start and entry->end. Returns 1 if fits, 0 if doesn't
1722 * fit, and -1 address wraps around.
1723 */
1724 static int
1725 uvm_map_space_avail(vaddr_t *start, vsize_t length, voff_t uoffset,
1726 vsize_t align, int flags, int topdown, struct vm_map_entry *entry)
1727 {
1728 vaddr_t end;
1729
1730 #ifdef PMAP_PREFER
1731 /*
1732 * push start address forward as needed to avoid VAC alias problems.
1733 * we only do this if a valid offset is specified.
1734 */
1735
1736 if (uoffset != UVM_UNKNOWN_OFFSET)
1737 PMAP_PREFER(uoffset, start, length, topdown);
1738 #endif
1739 if ((flags & UVM_FLAG_COLORMATCH) != 0) {
1740 KASSERT(align < uvmexp.ncolors);
1741 if (uvmexp.ncolors > 1) {
1742 const u_int colormask = uvmexp.colormask;
1743 const u_int colorsize = colormask + 1;
1744 vaddr_t hint = atop(*start);
1745 const u_int color = hint & colormask;
1746 if (color != align) {
1747 hint -= color; /* adjust to color boundary */
1748 KASSERT((hint & colormask) == 0);
1749 if (topdown) {
1750 if (align > color)
1751 hint -= colorsize;
1752 } else {
1753 if (align < color)
1754 hint += colorsize;
1755 }
1756 *start = ptoa(hint + align); /* adjust to color */
1757 }
1758 }
1759 } else {
1760 KASSERT(powerof2(align));
1761 uvm_map_align_va(start, align, topdown);
1762 /*
1763 * XXX Should we PMAP_PREFER() here again?
1764 * eh...i think we're okay
1765 */
1766 }
1767
1768 /*
1769 * Find the end of the proposed new region. Be sure we didn't
1770 * wrap around the address; if so, we lose. Otherwise, if the
1771 * proposed new region fits before the next entry, we win.
1772 */
1773
1774 end = *start + length;
1775 if (end < *start)
1776 return (-1);
1777
1778 if (entry->next->start >= end && *start >= entry->end)
1779 return (1);
1780
1781 return (0);
1782 }
1783
1784 /*
1785 * uvm_map_findspace: find "length" sized space in "map".
1786 *
1787 * => "hint" is a hint about where we want it, unless UVM_FLAG_FIXED is
1788 * set in "flags" (in which case we insist on using "hint").
1789 * => "result" is VA returned
1790 * => uobj/uoffset are to be used to handle VAC alignment, if required
1791 * => if "align" is non-zero, we attempt to align to that value.
1792 * => caller must at least have read-locked map
1793 * => returns NULL on failure, or pointer to prev. map entry if success
1794 * => note this is a cross between the old vm_map_findspace and vm_map_find
1795 */
1796
1797 struct vm_map_entry *
1798 uvm_map_findspace(struct vm_map *map, vaddr_t hint, vsize_t length,
1799 vaddr_t *result /* OUT */, struct uvm_object *uobj, voff_t uoffset,
1800 vsize_t align, int flags)
1801 {
1802 struct vm_map_entry *entry;
1803 struct vm_map_entry *child, *prev, *tmp;
1804 vaddr_t orig_hint __diagused;
1805 const int topdown = map->flags & VM_MAP_TOPDOWN;
1806 UVMHIST_FUNC(__func__);
1807 UVMHIST_CALLARGS(maphist, "(map=%#jx, hint=%#jx, len=%ju, flags=%#jx)",
1808 (uintptr_t)map, hint, length, flags);
1809
1810 KASSERT((flags & UVM_FLAG_COLORMATCH) != 0 || powerof2(align));
1811 KASSERT((flags & UVM_FLAG_COLORMATCH) == 0 || align < uvmexp.ncolors);
1812 KASSERT((flags & UVM_FLAG_FIXED) == 0 || align == 0);
1813
1814 uvm_map_check(map, "map_findspace entry");
1815
1816 /*
1817 * remember the original hint. if we are aligning, then we
1818 * may have to try again with no alignment constraint if
1819 * we fail the first time.
1820 */
1821
1822 orig_hint = hint;
1823 if (hint < vm_map_min(map)) { /* check ranges ... */
1824 if (flags & UVM_FLAG_FIXED) {
1825 UVMHIST_LOG(maphist,"<- VA below map range",0,0,0,0);
1826 return (NULL);
1827 }
1828 hint = vm_map_min(map);
1829 }
1830 if (hint > vm_map_max(map)) {
1831 UVMHIST_LOG(maphist,"<- VA %#jx > range [%#jx->%#jx]",
1832 hint, vm_map_min(map), vm_map_max(map), 0);
1833 return (NULL);
1834 }
1835
1836 /*
1837 * hint may not be aligned properly; we need round up or down it
1838 * before proceeding further.
1839 */
1840 if ((flags & UVM_FLAG_COLORMATCH) == 0)
1841 uvm_map_align_va(&hint, align, topdown);
1842
1843 /*
1844 * Look for the first possible address; if there's already
1845 * something at this address, we have to start after it.
1846 */
1847
1848 /*
1849 * @@@: there are four, no, eight cases to consider.
1850 *
1851 * 0: found, fixed, bottom up -> fail
1852 * 1: found, fixed, top down -> fail
1853 * 2: found, not fixed, bottom up -> start after entry->end,
1854 * loop up
1855 * 3: found, not fixed, top down -> start before entry->start,
1856 * loop down
1857 * 4: not found, fixed, bottom up -> check entry->next->start, fail
1858 * 5: not found, fixed, top down -> check entry->next->start, fail
1859 * 6: not found, not fixed, bottom up -> check entry->next->start,
1860 * loop up
1861 * 7: not found, not fixed, top down -> check entry->next->start,
1862 * loop down
1863 *
1864 * as you can see, it reduces to roughly five cases, and that
1865 * adding top down mapping only adds one unique case (without
1866 * it, there would be four cases).
1867 */
1868
1869 if ((flags & UVM_FLAG_FIXED) == 0 && hint == vm_map_min(map)) {
1870 entry = map->first_free;
1871 } else {
1872 if (uvm_map_lookup_entry(map, hint, &entry)) {
1873 /* "hint" address already in use ... */
1874 if (flags & UVM_FLAG_FIXED) {
1875 UVMHIST_LOG(maphist, "<- fixed & VA in use",
1876 0, 0, 0, 0);
1877 return (NULL);
1878 }
1879 if (topdown)
1880 /* Start from lower gap. */
1881 entry = entry->prev;
1882 } else if (flags & UVM_FLAG_FIXED) {
1883 if (entry->next->start >= hint + length &&
1884 hint + length > hint)
1885 goto found;
1886
1887 /* "hint" address is gap but too small */
1888 UVMHIST_LOG(maphist, "<- fixed mapping failed",
1889 0, 0, 0, 0);
1890 return (NULL); /* only one shot at it ... */
1891 } else {
1892 /*
1893 * See if given hint fits in this gap.
1894 */
1895 switch (uvm_map_space_avail(&hint, length,
1896 uoffset, align, flags, topdown, entry)) {
1897 case 1:
1898 goto found;
1899 case -1:
1900 goto wraparound;
1901 }
1902
1903 if (topdown) {
1904 /*
1905 * Still there is a chance to fit
1906 * if hint > entry->end.
1907 */
1908 } else {
1909 /* Start from higher gap. */
1910 entry = entry->next;
1911 if (entry == &map->header)
1912 goto notfound;
1913 goto nextgap;
1914 }
1915 }
1916 }
1917
1918 /*
1919 * Note that all UVM_FLAGS_FIXED case is already handled.
1920 */
1921 KDASSERT((flags & UVM_FLAG_FIXED) == 0);
1922
1923 /* Try to find the space in the red-black tree */
1924
1925 /* Check slot before any entry */
1926 hint = topdown ? entry->next->start - length : entry->end;
1927 switch (uvm_map_space_avail(&hint, length, uoffset, align, flags,
1928 topdown, entry)) {
1929 case 1:
1930 goto found;
1931 case -1:
1932 goto wraparound;
1933 }
1934
1935 nextgap:
1936 KDASSERT((flags & UVM_FLAG_FIXED) == 0);
1937 /* If there is not enough space in the whole tree, we fail */
1938 tmp = ROOT_ENTRY(map);
1939 if (tmp == NULL || tmp->maxgap < length)
1940 goto notfound;
1941
1942 prev = NULL; /* previous candidate */
1943
1944 /* Find an entry close to hint that has enough space */
1945 for (; tmp;) {
1946 KASSERT(tmp->next->start == tmp->end + tmp->gap);
1947 if (topdown) {
1948 if (tmp->next->start < hint + length &&
1949 (prev == NULL || tmp->end > prev->end)) {
1950 if (tmp->gap >= length)
1951 prev = tmp;
1952 else if ((child = LEFT_ENTRY(tmp)) != NULL
1953 && child->maxgap >= length)
1954 prev = tmp;
1955 }
1956 } else {
1957 if (tmp->end >= hint &&
1958 (prev == NULL || tmp->end < prev->end)) {
1959 if (tmp->gap >= length)
1960 prev = tmp;
1961 else if ((child = RIGHT_ENTRY(tmp)) != NULL
1962 && child->maxgap >= length)
1963 prev = tmp;
1964 }
1965 }
1966 if (tmp->next->start < hint + length)
1967 child = RIGHT_ENTRY(tmp);
1968 else if (tmp->end > hint)
1969 child = LEFT_ENTRY(tmp);
1970 else {
1971 if (tmp->gap >= length)
1972 break;
1973 if (topdown)
1974 child = LEFT_ENTRY(tmp);
1975 else
1976 child = RIGHT_ENTRY(tmp);
1977 }
1978 if (child == NULL || child->maxgap < length)
1979 break;
1980 tmp = child;
1981 }
1982
1983 if (tmp != NULL && tmp->start < hint && hint < tmp->next->start) {
1984 /*
1985 * Check if the entry that we found satifies the
1986 * space requirement
1987 */
1988 if (topdown) {
1989 if (hint > tmp->next->start - length)
1990 hint = tmp->next->start - length;
1991 } else {
1992 if (hint < tmp->end)
1993 hint = tmp->end;
1994 }
1995 switch (uvm_map_space_avail(&hint, length, uoffset, align,
1996 flags, topdown, tmp)) {
1997 case 1:
1998 entry = tmp;
1999 goto found;
2000 case -1:
2001 goto wraparound;
2002 }
2003 if (tmp->gap >= length)
2004 goto listsearch;
2005 }
2006 if (prev == NULL)
2007 goto notfound;
2008
2009 if (topdown) {
2010 KASSERT(orig_hint >= prev->next->start - length ||
2011 prev->next->start - length > prev->next->start);
2012 hint = prev->next->start - length;
2013 } else {
2014 KASSERT(orig_hint <= prev->end);
2015 hint = prev->end;
2016 }
2017 switch (uvm_map_space_avail(&hint, length, uoffset, align,
2018 flags, topdown, prev)) {
2019 case 1:
2020 entry = prev;
2021 goto found;
2022 case -1:
2023 goto wraparound;
2024 }
2025 if (prev->gap >= length)
2026 goto listsearch;
2027
2028 if (topdown)
2029 tmp = LEFT_ENTRY(prev);
2030 else
2031 tmp = RIGHT_ENTRY(prev);
2032 for (;;) {
2033 KASSERT(tmp && tmp->maxgap >= length);
2034 if (topdown)
2035 child = RIGHT_ENTRY(tmp);
2036 else
2037 child = LEFT_ENTRY(tmp);
2038 if (child && child->maxgap >= length) {
2039 tmp = child;
2040 continue;
2041 }
2042 if (tmp->gap >= length)
2043 break;
2044 if (topdown)
2045 tmp = LEFT_ENTRY(tmp);
2046 else
2047 tmp = RIGHT_ENTRY(tmp);
2048 }
2049
2050 if (topdown) {
2051 KASSERT(orig_hint >= tmp->next->start - length ||
2052 tmp->next->start - length > tmp->next->start);
2053 hint = tmp->next->start - length;
2054 } else {
2055 KASSERT(orig_hint <= tmp->end);
2056 hint = tmp->end;
2057 }
2058 switch (uvm_map_space_avail(&hint, length, uoffset, align,
2059 flags, topdown, tmp)) {
2060 case 1:
2061 entry = tmp;
2062 goto found;
2063 case -1:
2064 goto wraparound;
2065 }
2066
2067 /*
2068 * The tree fails to find an entry because of offset or alignment
2069 * restrictions. Search the list instead.
2070 */
2071 listsearch:
2072 /*
2073 * Look through the rest of the map, trying to fit a new region in
2074 * the gap between existing regions, or after the very last region.
2075 * note: entry->end = base VA of current gap,
2076 * entry->next->start = VA of end of current gap
2077 */
2078
2079 for (;;) {
2080 /* Update hint for current gap. */
2081 hint = topdown ? entry->next->start - length : entry->end;
2082
2083 /* See if it fits. */
2084 switch (uvm_map_space_avail(&hint, length, uoffset, align,
2085 flags, topdown, entry)) {
2086 case 1:
2087 goto found;
2088 case -1:
2089 goto wraparound;
2090 }
2091
2092 /* Advance to next/previous gap */
2093 if (topdown) {
2094 if (entry == &map->header) {
2095 UVMHIST_LOG(maphist, "<- failed (off start)",
2096 0,0,0,0);
2097 goto notfound;
2098 }
2099 entry = entry->prev;
2100 } else {
2101 entry = entry->next;
2102 if (entry == &map->header) {
2103 UVMHIST_LOG(maphist, "<- failed (off end)",
2104 0,0,0,0);
2105 goto notfound;
2106 }
2107 }
2108 }
2109
2110 found:
2111 SAVE_HINT(map, map->hint, entry);
2112 *result = hint;
2113 UVMHIST_LOG(maphist,"<- got it! (result=%#jx)", hint, 0,0,0);
2114 KASSERTMSG( topdown || hint >= orig_hint, "hint: %#jx, orig_hint: %#jx",
2115 (uintmax_t)hint, (uintmax_t)orig_hint);
2116 KASSERTMSG(!topdown || hint <= orig_hint, "hint: %#jx, orig_hint: %#jx",
2117 (uintmax_t)hint, (uintmax_t)orig_hint);
2118 KASSERT(entry->end <= hint);
2119 KASSERT(hint + length <= entry->next->start);
2120 return (entry);
2121
2122 wraparound:
2123 UVMHIST_LOG(maphist, "<- failed (wrap around)", 0,0,0,0);
2124
2125 return (NULL);
2126
2127 notfound:
2128 UVMHIST_LOG(maphist, "<- failed (notfound)", 0,0,0,0);
2129
2130 return (NULL);
2131 }
2132
2133 /*
2134 * U N M A P - m a i n h e l p e r f u n c t i o n s
2135 */
2136
2137 /*
2138 * uvm_unmap_remove: remove mappings from a vm_map (from "start" up to "stop")
2139 *
2140 * => caller must check alignment and size
2141 * => map must be locked by caller
2142 * => we return a list of map entries that we've remove from the map
2143 * in "entry_list"
2144 */
2145
2146 void
2147 uvm_unmap_remove(struct vm_map *map, vaddr_t start, vaddr_t end,
2148 struct vm_map_entry **entry_list /* OUT */, int flags)
2149 {
2150 struct vm_map_entry *entry, *first_entry, *next;
2151 vaddr_t len;
2152 UVMHIST_FUNC(__func__);
2153 UVMHIST_CALLARGS(maphist,"(map=%#jx, start=%#jx, end=%#jx)",
2154 (uintptr_t)map, start, end, 0);
2155 VM_MAP_RANGE_CHECK(map, start, end);
2156
2157 uvm_map_check(map, "unmap_remove entry");
2158
2159 /*
2160 * find first entry
2161 */
2162
2163 if (uvm_map_lookup_entry(map, start, &first_entry) == true) {
2164 /* clip and go... */
2165 entry = first_entry;
2166 UVM_MAP_CLIP_START(map, entry, start);
2167 /* critical! prevents stale hint */
2168 SAVE_HINT(map, entry, entry->prev);
2169 } else {
2170 entry = first_entry->next;
2171 }
2172
2173 /*
2174 * save the free space hint
2175 */
2176
2177 if (map->first_free != &map->header && map->first_free->start >= start)
2178 map->first_free = entry->prev;
2179
2180 /*
2181 * note: we now re-use first_entry for a different task. we remove
2182 * a number of map entries from the map and save them in a linked
2183 * list headed by "first_entry". once we remove them from the map
2184 * the caller should unlock the map and drop the references to the
2185 * backing objects [c.f. uvm_unmap_detach]. the object is to
2186 * separate unmapping from reference dropping. why?
2187 * [1] the map has to be locked for unmapping
2188 * [2] the map need not be locked for reference dropping
2189 * [3] dropping references may trigger pager I/O, and if we hit
2190 * a pager that does synchronous I/O we may have to wait for it.
2191 * [4] we would like all waiting for I/O to occur with maps unlocked
2192 * so that we don't block other threads.
2193 */
2194
2195 first_entry = NULL;
2196 *entry_list = NULL;
2197
2198 /*
2199 * break up the area into map entry sized regions and unmap. note
2200 * that all mappings have to be removed before we can even consider
2201 * dropping references to amaps or VM objects (otherwise we could end
2202 * up with a mapping to a page on the free list which would be very bad)
2203 */
2204
2205 while ((entry != &map->header) && (entry->start < end)) {
2206 KASSERT((entry->flags & UVM_MAP_STATIC) == 0);
2207
2208 UVM_MAP_CLIP_END(map, entry, end);
2209 next = entry->next;
2210 len = entry->end - entry->start;
2211
2212 /*
2213 * unwire before removing addresses from the pmap; otherwise
2214 * unwiring will put the entries back into the pmap (XXX).
2215 */
2216
2217 if (VM_MAPENT_ISWIRED(entry)) {
2218 uvm_map_entry_unwire(map, entry);
2219 }
2220 if (flags & UVM_FLAG_VAONLY) {
2221
2222 /* nothing */
2223
2224 } else if ((map->flags & VM_MAP_PAGEABLE) == 0) {
2225
2226 /*
2227 * if the map is non-pageable, any pages mapped there
2228 * must be wired and entered with pmap_kenter_pa(),
2229 * and we should free any such pages immediately.
2230 * this is mostly used for kmem_map.
2231 */
2232 KASSERT(vm_map_pmap(map) == pmap_kernel());
2233
2234 uvm_km_pgremove_intrsafe(map, entry->start, entry->end);
2235 } else if (UVM_ET_ISOBJ(entry) &&
2236 UVM_OBJ_IS_KERN_OBJECT(entry->object.uvm_obj)) {
2237 panic("%s: kernel object %p %p\n",
2238 __func__, map, entry);
2239 } else if (UVM_ET_ISOBJ(entry) || entry->aref.ar_amap) {
2240 /*
2241 * remove mappings the standard way. lock object
2242 * and/or amap to ensure vm_page state does not
2243 * change while in pmap_remove().
2244 */
2245
2246 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
2247 uvm_map_lock_entry(entry, RW_WRITER);
2248 #else
2249 uvm_map_lock_entry(entry, RW_READER);
2250 #endif
2251 pmap_remove(map->pmap, entry->start, entry->end);
2252
2253 /*
2254 * note: if map is dying, leave pmap_update() for
2255 * later. if the map is to be reused (exec) then
2256 * pmap_update() will be called. if the map is
2257 * being disposed of (exit) then pmap_destroy()
2258 * will be called.
2259 */
2260
2261 if ((map->flags & VM_MAP_DYING) == 0) {
2262 pmap_update(vm_map_pmap(map));
2263 } else {
2264 KASSERT(vm_map_pmap(map) != pmap_kernel());
2265 }
2266
2267 uvm_map_unlock_entry(entry);
2268 }
2269
2270 #if defined(UVMDEBUG)
2271 /*
2272 * check if there's remaining mapping,
2273 * which is a bug in caller.
2274 */
2275
2276 vaddr_t va;
2277 for (va = entry->start; va < entry->end;
2278 va += PAGE_SIZE) {
2279 if (pmap_extract(vm_map_pmap(map), va, NULL)) {
2280 panic("%s: %#"PRIxVADDR" has mapping",
2281 __func__, va);
2282 }
2283 }
2284
2285 if (VM_MAP_IS_KERNEL(map) && (flags & UVM_FLAG_NOWAIT) == 0) {
2286 uvm_km_check_empty(map, entry->start,
2287 entry->end);
2288 }
2289 #endif /* defined(UVMDEBUG) */
2290
2291 /*
2292 * remove entry from map and put it on our list of entries
2293 * that we've nuked. then go to next entry.
2294 */
2295
2296 UVMHIST_LOG(maphist, " removed map entry %#jx",
2297 (uintptr_t)entry, 0, 0, 0);
2298
2299 /* critical! prevents stale hint */
2300 SAVE_HINT(map, entry, entry->prev);
2301
2302 uvm_map_entry_unlink(map, entry);
2303 KASSERT(map->size >= len);
2304 map->size -= len;
2305 entry->prev = NULL;
2306 entry->next = first_entry;
2307 first_entry = entry;
2308 entry = next;
2309 }
2310
2311 uvm_map_check(map, "unmap_remove leave");
2312
2313 /*
2314 * now we've cleaned up the map and are ready for the caller to drop
2315 * references to the mapped objects.
2316 */
2317
2318 *entry_list = first_entry;
2319 UVMHIST_LOG(maphist,"<- done!", 0, 0, 0, 0);
2320
2321 if (map->flags & VM_MAP_WANTVA) {
2322 mutex_enter(&map->misc_lock);
2323 map->flags &= ~VM_MAP_WANTVA;
2324 cv_broadcast(&map->cv);
2325 mutex_exit(&map->misc_lock);
2326 }
2327 }
2328
2329 /*
2330 * uvm_unmap_detach: drop references in a chain of map entries
2331 *
2332 * => we will free the map entries as we traverse the list.
2333 */
2334
2335 void
2336 uvm_unmap_detach(struct vm_map_entry *first_entry, int flags)
2337 {
2338 struct vm_map_entry *next_entry;
2339 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2340
2341 while (first_entry) {
2342 KASSERT(!VM_MAPENT_ISWIRED(first_entry));
2343 UVMHIST_LOG(maphist,
2344 " detach %#jx: amap=%#jx, obj=%#jx, submap?=%jd",
2345 (uintptr_t)first_entry,
2346 (uintptr_t)first_entry->aref.ar_amap,
2347 (uintptr_t)first_entry->object.uvm_obj,
2348 UVM_ET_ISSUBMAP(first_entry));
2349
2350 /*
2351 * drop reference to amap, if we've got one
2352 */
2353
2354 if (first_entry->aref.ar_amap)
2355 uvm_map_unreference_amap(first_entry, flags);
2356
2357 /*
2358 * drop reference to our backing object, if we've got one
2359 */
2360
2361 KASSERT(!UVM_ET_ISSUBMAP(first_entry));
2362 if (UVM_ET_ISOBJ(first_entry) &&
2363 first_entry->object.uvm_obj->pgops->pgo_detach) {
2364 (*first_entry->object.uvm_obj->pgops->pgo_detach)
2365 (first_entry->object.uvm_obj);
2366 }
2367 next_entry = first_entry->next;
2368 uvm_mapent_free(first_entry);
2369 first_entry = next_entry;
2370 }
2371 UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
2372 }
2373
2374 /*
2375 * E X T R A C T I O N F U N C T I O N S
2376 */
2377
2378 /*
2379 * uvm_map_reserve: reserve space in a vm_map for future use.
2380 *
2381 * => we reserve space in a map by putting a dummy map entry in the
2382 * map (dummy means obj=NULL, amap=NULL, prot=VM_PROT_NONE)
2383 * => map should be unlocked (we will write lock it)
2384 * => we return true if we were able to reserve space
2385 * => XXXCDC: should be inline?
2386 */
2387
2388 int
2389 uvm_map_reserve(struct vm_map *map, vsize_t size,
2390 vaddr_t offset /* hint for pmap_prefer */,
2391 vsize_t align /* alignment */,
2392 vaddr_t *raddr /* IN:hint, OUT: reserved VA */,
2393 uvm_flag_t flags /* UVM_FLAG_FIXED or UVM_FLAG_COLORMATCH or 0 */)
2394 {
2395 UVMHIST_FUNC(__func__);
2396 UVMHIST_CALLARGS(maphist, "(map=%#jx, size=%#jx, offset=%#jx, addr=%#jx)",
2397 (uintptr_t)map, size, offset, (uintptr_t)raddr);
2398
2399 size = round_page(size);
2400
2401 /*
2402 * reserve some virtual space.
2403 */
2404
2405 if (uvm_map(map, raddr, size, NULL, offset, align,
2406 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
2407 UVM_ADV_RANDOM, UVM_FLAG_NOMERGE|flags)) != 0) {
2408 UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
2409 return (false);
2410 }
2411
2412 UVMHIST_LOG(maphist, "<- done (*raddr=%#jx)", *raddr,0,0,0);
2413 return (true);
2414 }
2415
2416 /*
2417 * uvm_map_replace: replace a reserved (blank) area of memory with
2418 * real mappings.
2419 *
2420 * => caller must WRITE-LOCK the map
2421 * => we return true if replacement was a success
2422 * => we expect the newents chain to have nnewents entrys on it and
2423 * we expect newents->prev to point to the last entry on the list
2424 * => note newents is allowed to be NULL
2425 */
2426
2427 static int
2428 uvm_map_replace(struct vm_map *map, vaddr_t start, vaddr_t end,
2429 struct vm_map_entry *newents, int nnewents, vsize_t nsize,
2430 struct vm_map_entry **oldentryp)
2431 {
2432 struct vm_map_entry *oldent, *last;
2433
2434 uvm_map_check(map, "map_replace entry");
2435
2436 /*
2437 * first find the blank map entry at the specified address
2438 */
2439
2440 if (!uvm_map_lookup_entry(map, start, &oldent)) {
2441 return (false);
2442 }
2443
2444 /*
2445 * check to make sure we have a proper blank entry
2446 */
2447
2448 if (end < oldent->end) {
2449 UVM_MAP_CLIP_END(map, oldent, end);
2450 }
2451 if (oldent->start != start || oldent->end != end ||
2452 oldent->object.uvm_obj != NULL || oldent->aref.ar_amap != NULL) {
2453 return (false);
2454 }
2455
2456 #ifdef DIAGNOSTIC
2457
2458 /*
2459 * sanity check the newents chain
2460 */
2461
2462 {
2463 struct vm_map_entry *tmpent = newents;
2464 int nent = 0;
2465 vsize_t sz = 0;
2466 vaddr_t cur = start;
2467
2468 while (tmpent) {
2469 nent++;
2470 sz += tmpent->end - tmpent->start;
2471 if (tmpent->start < cur)
2472 panic("uvm_map_replace1");
2473 if (tmpent->start >= tmpent->end || tmpent->end > end) {
2474 panic("uvm_map_replace2: "
2475 "tmpent->start=%#"PRIxVADDR
2476 ", tmpent->end=%#"PRIxVADDR
2477 ", end=%#"PRIxVADDR,
2478 tmpent->start, tmpent->end, end);
2479 }
2480 cur = tmpent->end;
2481 if (tmpent->next) {
2482 if (tmpent->next->prev != tmpent)
2483 panic("uvm_map_replace3");
2484 } else {
2485 if (newents->prev != tmpent)
2486 panic("uvm_map_replace4");
2487 }
2488 tmpent = tmpent->next;
2489 }
2490 if (nent != nnewents)
2491 panic("uvm_map_replace5");
2492 if (sz != nsize)
2493 panic("uvm_map_replace6");
2494 }
2495 #endif
2496
2497 /*
2498 * map entry is a valid blank! replace it. (this does all the
2499 * work of map entry link/unlink...).
2500 */
2501
2502 if (newents) {
2503 last = newents->prev;
2504
2505 /* critical: flush stale hints out of map */
2506 SAVE_HINT(map, map->hint, newents);
2507 if (map->first_free == oldent)
2508 map->first_free = last;
2509
2510 last->next = oldent->next;
2511 last->next->prev = last;
2512
2513 /* Fix RB tree */
2514 uvm_rb_remove(map, oldent);
2515
2516 newents->prev = oldent->prev;
2517 newents->prev->next = newents;
2518 map->nentries = map->nentries + (nnewents - 1);
2519
2520 /* Fixup the RB tree */
2521 {
2522 int i;
2523 struct vm_map_entry *tmp;
2524
2525 tmp = newents;
2526 for (i = 0; i < nnewents && tmp; i++) {
2527 uvm_rb_insert(map, tmp);
2528 tmp = tmp->next;
2529 }
2530 }
2531 } else {
2532 /* NULL list of new entries: just remove the old one */
2533 clear_hints(map, oldent);
2534 uvm_map_entry_unlink(map, oldent);
2535 }
2536 map->size -= end - start - nsize;
2537
2538 uvm_map_check(map, "map_replace leave");
2539
2540 /*
2541 * now we can free the old blank entry and return.
2542 */
2543
2544 *oldentryp = oldent;
2545 return (true);
2546 }
2547
2548 /*
2549 * uvm_map_extract: extract a mapping from a map and put it somewhere
2550 * (maybe removing the old mapping)
2551 *
2552 * => maps should be unlocked (we will write lock them)
2553 * => returns 0 on success, error code otherwise
2554 * => start must be page aligned
2555 * => len must be page sized
2556 * => flags:
2557 * UVM_EXTRACT_REMOVE: remove mappings from srcmap
2558 * UVM_EXTRACT_CONTIG: abort if unmapped area (advisory only)
2559 * UVM_EXTRACT_QREF: for a temporary extraction do quick obj refs
2560 * UVM_EXTRACT_FIXPROT: set prot to maxprot as we go
2561 * UVM_EXTRACT_PROT_ALL: set prot to UVM_PROT_ALL as we go
2562 * >>>NOTE: if you set REMOVE, you are not allowed to use CONTIG or QREF!<<<
2563 * >>>NOTE: QREF's must be unmapped via the QREF path, thus should only
2564 * be used from within the kernel in a kernel level map <<<
2565 */
2566
2567 int
2568 uvm_map_extract(struct vm_map *srcmap, vaddr_t start, vsize_t len,
2569 struct vm_map *dstmap, vaddr_t *dstaddrp, int flags)
2570 {
2571 vaddr_t dstaddr, end, newend, oldoffset, fudge, orig_fudge;
2572 struct vm_map_entry *chain, *endchain, *entry, *orig_entry, *newentry,
2573 *deadentry, *oldentry;
2574 struct vm_map_entry *resentry = NULL; /* a dummy reservation entry */
2575 vsize_t elen __unused;
2576 int nchain, error, copy_ok;
2577 vsize_t nsize;
2578 UVMHIST_FUNC(__func__);
2579 UVMHIST_CALLARGS(maphist,"(srcmap=%#jx,start=%#jx, len=%#jx",
2580 (uintptr_t)srcmap, start, len, 0);
2581 UVMHIST_LOG(maphist," ...,dstmap=%#jx, flags=%#jx)",
2582 (uintptr_t)dstmap, flags, 0, 0);
2583
2584 /*
2585 * step 0: sanity check: start must be on a page boundary, length
2586 * must be page sized. can't ask for CONTIG/QREF if you asked for
2587 * REMOVE.
2588 */
2589
2590 KASSERT((start & PAGE_MASK) == 0 && (len & PAGE_MASK) == 0);
2591 KASSERT((flags & UVM_EXTRACT_REMOVE) == 0 ||
2592 (flags & (UVM_EXTRACT_CONTIG|UVM_EXTRACT_QREF)) == 0);
2593
2594 /*
2595 * step 1: reserve space in the target map for the extracted area
2596 */
2597
2598 if ((flags & UVM_EXTRACT_RESERVED) == 0) {
2599 dstaddr = vm_map_min(dstmap);
2600 if (!uvm_map_reserve(dstmap, len, start,
2601 atop(start) & uvmexp.colormask, &dstaddr,
2602 UVM_FLAG_COLORMATCH))
2603 return (ENOMEM);
2604 KASSERT((atop(start ^ dstaddr) & uvmexp.colormask) == 0);
2605 *dstaddrp = dstaddr; /* pass address back to caller */
2606 UVMHIST_LOG(maphist, " dstaddr=%#jx", dstaddr,0,0,0);
2607 } else {
2608 dstaddr = *dstaddrp;
2609 }
2610
2611 /*
2612 * step 2: setup for the extraction process loop by init'ing the
2613 * map entry chain, locking src map, and looking up the first useful
2614 * entry in the map.
2615 */
2616
2617 end = start + len;
2618 newend = dstaddr + len;
2619 chain = endchain = NULL;
2620 nchain = 0;
2621 nsize = 0;
2622 vm_map_lock(srcmap);
2623
2624 if (uvm_map_lookup_entry(srcmap, start, &entry)) {
2625
2626 /* "start" is within an entry */
2627 if (flags & UVM_EXTRACT_QREF) {
2628
2629 /*
2630 * for quick references we don't clip the entry, so
2631 * the entry may map space "before" the starting
2632 * virtual address... this is the "fudge" factor
2633 * (which can be non-zero only the first time
2634 * through the "while" loop in step 3).
2635 */
2636
2637 fudge = start - entry->start;
2638 } else {
2639
2640 /*
2641 * normal reference: we clip the map to fit (thus
2642 * fudge is zero)
2643 */
2644
2645 UVM_MAP_CLIP_START(srcmap, entry, start);
2646 SAVE_HINT(srcmap, srcmap->hint, entry->prev);
2647 fudge = 0;
2648 }
2649 } else {
2650
2651 /* "start" is not within an entry ... skip to next entry */
2652 if (flags & UVM_EXTRACT_CONTIG) {
2653 error = EINVAL;
2654 goto bad; /* definite hole here ... */
2655 }
2656
2657 entry = entry->next;
2658 fudge = 0;
2659 }
2660
2661 /* save values from srcmap for step 6 */
2662 orig_entry = entry;
2663 orig_fudge = fudge;
2664
2665 /*
2666 * step 3: now start looping through the map entries, extracting
2667 * as we go.
2668 */
2669
2670 while (entry->start < end && entry != &srcmap->header) {
2671
2672 /* if we are not doing a quick reference, clip it */
2673 if ((flags & UVM_EXTRACT_QREF) == 0)
2674 UVM_MAP_CLIP_END(srcmap, entry, end);
2675
2676 /* clear needs_copy (allow chunking) */
2677 if (UVM_ET_ISNEEDSCOPY(entry)) {
2678 amap_copy(srcmap, entry,
2679 AMAP_COPY_NOWAIT|AMAP_COPY_NOMERGE, start, end);
2680 if (UVM_ET_ISNEEDSCOPY(entry)) { /* failed? */
2681 error = ENOMEM;
2682 goto bad;
2683 }
2684
2685 /* amap_copy could clip (during chunk)! update fudge */
2686 if (fudge) {
2687 fudge = start - entry->start;
2688 orig_fudge = fudge;
2689 }
2690 }
2691
2692 /* calculate the offset of this from "start" */
2693 oldoffset = (entry->start + fudge) - start;
2694
2695 /* allocate a new map entry */
2696 newentry = uvm_mapent_alloc(dstmap, 0);
2697 if (newentry == NULL) {
2698 error = ENOMEM;
2699 goto bad;
2700 }
2701
2702 /* set up new map entry */
2703 newentry->next = NULL;
2704 newentry->prev = endchain;
2705 newentry->start = dstaddr + oldoffset;
2706 newentry->end =
2707 newentry->start + (entry->end - (entry->start + fudge));
2708 if (newentry->end > newend || newentry->end < newentry->start)
2709 newentry->end = newend;
2710 newentry->object.uvm_obj = entry->object.uvm_obj;
2711 if (newentry->object.uvm_obj) {
2712 if (newentry->object.uvm_obj->pgops->pgo_reference)
2713 newentry->object.uvm_obj->pgops->
2714 pgo_reference(newentry->object.uvm_obj);
2715 newentry->offset = entry->offset + fudge;
2716 } else {
2717 newentry->offset = 0;
2718 }
2719 newentry->etype = entry->etype;
2720 if (flags & UVM_EXTRACT_PROT_ALL) {
2721 newentry->protection = newentry->max_protection =
2722 UVM_PROT_ALL;
2723 } else {
2724 newentry->protection = (flags & UVM_EXTRACT_FIXPROT) ?
2725 entry->max_protection : entry->protection;
2726 newentry->max_protection = entry->max_protection;
2727 }
2728 newentry->inheritance = entry->inheritance;
2729 newentry->wired_count = 0;
2730 newentry->aref.ar_amap = entry->aref.ar_amap;
2731 if (newentry->aref.ar_amap) {
2732 newentry->aref.ar_pageoff =
2733 entry->aref.ar_pageoff + (fudge >> PAGE_SHIFT);
2734 uvm_map_reference_amap(newentry, AMAP_SHARED |
2735 ((flags & UVM_EXTRACT_QREF) ? AMAP_REFALL : 0));
2736 } else {
2737 newentry->aref.ar_pageoff = 0;
2738 }
2739 newentry->advice = entry->advice;
2740 if ((flags & UVM_EXTRACT_QREF) != 0) {
2741 newentry->flags |= UVM_MAP_NOMERGE;
2742 }
2743
2744 /* now link it on the chain */
2745 nchain++;
2746 nsize += newentry->end - newentry->start;
2747 if (endchain == NULL) {
2748 chain = endchain = newentry;
2749 } else {
2750 endchain->next = newentry;
2751 endchain = newentry;
2752 }
2753
2754 /* end of 'while' loop! */
2755 if ((flags & UVM_EXTRACT_CONTIG) && entry->end < end &&
2756 (entry->next == &srcmap->header ||
2757 entry->next->start != entry->end)) {
2758 error = EINVAL;
2759 goto bad;
2760 }
2761 entry = entry->next;
2762 fudge = 0;
2763 }
2764
2765 /*
2766 * step 4: close off chain (in format expected by uvm_map_replace)
2767 */
2768
2769 if (chain)
2770 chain->prev = endchain;
2771
2772 /*
2773 * step 5: attempt to lock the dest map so we can pmap_copy.
2774 * note usage of copy_ok:
2775 * 1 => dstmap locked, pmap_copy ok, and we "replace" here (step 5)
2776 * 0 => dstmap unlocked, NO pmap_copy, and we will "replace" in step 7
2777 */
2778
2779 if (srcmap == dstmap || vm_map_lock_try(dstmap) == true) {
2780 copy_ok = 1;
2781 if (!uvm_map_replace(dstmap, dstaddr, dstaddr+len, chain,
2782 nchain, nsize, &resentry)) {
2783 if (srcmap != dstmap)
2784 vm_map_unlock(dstmap);
2785 error = EIO;
2786 goto bad;
2787 }
2788 } else {
2789 copy_ok = 0;
2790 /* replace defered until step 7 */
2791 }
2792
2793 /*
2794 * step 6: traverse the srcmap a second time to do the following:
2795 * - if we got a lock on the dstmap do pmap_copy
2796 * - if UVM_EXTRACT_REMOVE remove the entries
2797 * we make use of orig_entry and orig_fudge (saved in step 2)
2798 */
2799
2800 if (copy_ok || (flags & UVM_EXTRACT_REMOVE)) {
2801
2802 /* purge possible stale hints from srcmap */
2803 if (flags & UVM_EXTRACT_REMOVE) {
2804 SAVE_HINT(srcmap, srcmap->hint, orig_entry->prev);
2805 if (srcmap->first_free != &srcmap->header &&
2806 srcmap->first_free->start >= start)
2807 srcmap->first_free = orig_entry->prev;
2808 }
2809
2810 entry = orig_entry;
2811 fudge = orig_fudge;
2812 deadentry = NULL; /* for UVM_EXTRACT_REMOVE */
2813
2814 while (entry->start < end && entry != &srcmap->header) {
2815 if (copy_ok) {
2816 oldoffset = (entry->start + fudge) - start;
2817 elen = MIN(end, entry->end) -
2818 (entry->start + fudge);
2819 pmap_copy(dstmap->pmap, srcmap->pmap,
2820 dstaddr + oldoffset, elen,
2821 entry->start + fudge);
2822 }
2823
2824 /* we advance "entry" in the following if statement */
2825 if (flags & UVM_EXTRACT_REMOVE) {
2826 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
2827 uvm_map_lock_entry(entry, RW_WRITER);
2828 #else
2829 uvm_map_lock_entry(entry, RW_READER);
2830 #endif
2831 pmap_remove(srcmap->pmap, entry->start,
2832 entry->end);
2833 uvm_map_unlock_entry(entry);
2834 oldentry = entry; /* save entry */
2835 entry = entry->next; /* advance */
2836 uvm_map_entry_unlink(srcmap, oldentry);
2837 /* add to dead list */
2838 oldentry->next = deadentry;
2839 deadentry = oldentry;
2840 } else {
2841 entry = entry->next; /* advance */
2842 }
2843
2844 /* end of 'while' loop */
2845 fudge = 0;
2846 }
2847 pmap_update(srcmap->pmap);
2848
2849 /*
2850 * unlock dstmap. we will dispose of deadentry in
2851 * step 7 if needed
2852 */
2853
2854 if (copy_ok && srcmap != dstmap)
2855 vm_map_unlock(dstmap);
2856
2857 } else {
2858 deadentry = NULL;
2859 }
2860
2861 /*
2862 * step 7: we are done with the source map, unlock. if copy_ok
2863 * is 0 then we have not replaced the dummy mapping in dstmap yet
2864 * and we need to do so now.
2865 */
2866
2867 vm_map_unlock(srcmap);
2868 if ((flags & UVM_EXTRACT_REMOVE) && deadentry)
2869 uvm_unmap_detach(deadentry, 0); /* dispose of old entries */
2870
2871 /* now do the replacement if we didn't do it in step 5 */
2872 if (copy_ok == 0) {
2873 vm_map_lock(dstmap);
2874 error = uvm_map_replace(dstmap, dstaddr, dstaddr+len, chain,
2875 nchain, nsize, &resentry);
2876 vm_map_unlock(dstmap);
2877
2878 if (error == false) {
2879 error = EIO;
2880 goto bad2;
2881 }
2882 }
2883
2884 if (resentry != NULL)
2885 uvm_mapent_free(resentry);
2886
2887 return (0);
2888
2889 /*
2890 * bad: failure recovery
2891 */
2892 bad:
2893 vm_map_unlock(srcmap);
2894 bad2: /* src already unlocked */
2895 if (chain)
2896 uvm_unmap_detach(chain,
2897 (flags & UVM_EXTRACT_QREF) ? AMAP_REFALL : 0);
2898
2899 if (resentry != NULL)
2900 uvm_mapent_free(resentry);
2901
2902 if ((flags & UVM_EXTRACT_RESERVED) == 0) {
2903 uvm_unmap(dstmap, dstaddr, dstaddr+len); /* ??? */
2904 }
2905 return (error);
2906 }
2907
2908 /* end of extraction functions */
2909
2910 /*
2911 * uvm_map_submap: punch down part of a map into a submap
2912 *
2913 * => only the kernel_map is allowed to be submapped
2914 * => the purpose of submapping is to break up the locking granularity
2915 * of a larger map
2916 * => the range specified must have been mapped previously with a uvm_map()
2917 * call [with uobj==NULL] to create a blank map entry in the main map.
2918 * [And it had better still be blank!]
2919 * => maps which contain submaps should never be copied or forked.
2920 * => to remove a submap, use uvm_unmap() on the main map
2921 * and then uvm_map_deallocate() the submap.
2922 * => main map must be unlocked.
2923 * => submap must have been init'd and have a zero reference count.
2924 * [need not be locked as we don't actually reference it]
2925 */
2926
2927 int
2928 uvm_map_submap(struct vm_map *map, vaddr_t start, vaddr_t end,
2929 struct vm_map *submap)
2930 {
2931 struct vm_map_entry *entry;
2932 int error;
2933
2934 vm_map_lock(map);
2935 VM_MAP_RANGE_CHECK(map, start, end);
2936
2937 if (uvm_map_lookup_entry(map, start, &entry)) {
2938 UVM_MAP_CLIP_START(map, entry, start);
2939 UVM_MAP_CLIP_END(map, entry, end); /* to be safe */
2940 } else {
2941 entry = NULL;
2942 }
2943
2944 if (entry != NULL &&
2945 entry->start == start && entry->end == end &&
2946 entry->object.uvm_obj == NULL && entry->aref.ar_amap == NULL &&
2947 !UVM_ET_ISCOPYONWRITE(entry) && !UVM_ET_ISNEEDSCOPY(entry)) {
2948 entry->etype |= UVM_ET_SUBMAP;
2949 entry->object.sub_map = submap;
2950 entry->offset = 0;
2951 uvm_map_reference(submap);
2952 error = 0;
2953 } else {
2954 error = EINVAL;
2955 }
2956 vm_map_unlock(map);
2957
2958 return error;
2959 }
2960
2961 /*
2962 * uvm_map_protect_user: change map protection on behalf of the user.
2963 * Enforces PAX settings as necessary.
2964 */
2965 int
2966 uvm_map_protect_user(struct lwp *l, vaddr_t start, vaddr_t end,
2967 vm_prot_t new_prot)
2968 {
2969 int error;
2970
2971 if ((error = PAX_MPROTECT_VALIDATE(l, new_prot)))
2972 return error;
2973
2974 return uvm_map_protect(&l->l_proc->p_vmspace->vm_map, start, end,
2975 new_prot, false);
2976 }
2977
2978
2979 /*
2980 * uvm_map_protect: change map protection
2981 *
2982 * => set_max means set max_protection.
2983 * => map must be unlocked.
2984 */
2985
2986 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
2987 ~VM_PROT_WRITE : VM_PROT_ALL)
2988
2989 int
2990 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
2991 vm_prot_t new_prot, bool set_max)
2992 {
2993 struct vm_map_entry *current, *entry;
2994 int error = 0;
2995 UVMHIST_FUNC(__func__);
2996 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,new_prot=%#jx)",
2997 (uintptr_t)map, start, end, new_prot);
2998
2999 vm_map_lock(map);
3000 VM_MAP_RANGE_CHECK(map, start, end);
3001 if (uvm_map_lookup_entry(map, start, &entry)) {
3002 UVM_MAP_CLIP_START(map, entry, start);
3003 } else {
3004 entry = entry->next;
3005 }
3006
3007 /*
3008 * make a first pass to check for protection violations.
3009 */
3010
3011 current = entry;
3012 while ((current != &map->header) && (current->start < end)) {
3013 if (UVM_ET_ISSUBMAP(current)) {
3014 error = EINVAL;
3015 goto out;
3016 }
3017 if ((new_prot & current->max_protection) != new_prot) {
3018 error = EACCES;
3019 goto out;
3020 }
3021 /*
3022 * Don't allow VM_PROT_EXECUTE to be set on entries that
3023 * point to vnodes that are associated with a NOEXEC file
3024 * system.
3025 */
3026 if (UVM_ET_ISOBJ(current) &&
3027 UVM_OBJ_IS_VNODE(current->object.uvm_obj)) {
3028 struct vnode *vp =
3029 (struct vnode *) current->object.uvm_obj;
3030
3031 if ((new_prot & VM_PROT_EXECUTE) != 0 &&
3032 (vp->v_mount->mnt_flag & MNT_NOEXEC) != 0) {
3033 error = EACCES;
3034 goto out;
3035 }
3036 }
3037
3038 current = current->next;
3039 }
3040
3041 /* go back and fix up protections (no need to clip this time). */
3042
3043 current = entry;
3044 while ((current != &map->header) && (current->start < end)) {
3045 vm_prot_t old_prot;
3046
3047 UVM_MAP_CLIP_END(map, current, end);
3048 old_prot = current->protection;
3049 if (set_max)
3050 current->protection =
3051 (current->max_protection = new_prot) & old_prot;
3052 else
3053 current->protection = new_prot;
3054
3055 /*
3056 * update physical map if necessary. worry about copy-on-write
3057 * here -- CHECK THIS XXX
3058 */
3059
3060 if (current->protection != old_prot) {
3061 /* update pmap! */
3062 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
3063 uvm_map_lock_entry(current, RW_WRITER);
3064 #else
3065 uvm_map_lock_entry(current, RW_READER);
3066 #endif
3067 pmap_protect(map->pmap, current->start, current->end,
3068 current->protection & MASK(current));
3069 uvm_map_unlock_entry(current);
3070
3071 /*
3072 * If this entry points at a vnode, and the
3073 * protection includes VM_PROT_EXECUTE, mark
3074 * the vnode as VEXECMAP.
3075 */
3076 if (UVM_ET_ISOBJ(current)) {
3077 struct uvm_object *uobj =
3078 current->object.uvm_obj;
3079
3080 if (UVM_OBJ_IS_VNODE(uobj) &&
3081 (current->protection & VM_PROT_EXECUTE)) {
3082 vn_markexec((struct vnode *) uobj);
3083 }
3084 }
3085 }
3086
3087 /*
3088 * If the map is configured to lock any future mappings,
3089 * wire this entry now if the old protection was VM_PROT_NONE
3090 * and the new protection is not VM_PROT_NONE.
3091 */
3092
3093 if ((map->flags & VM_MAP_WIREFUTURE) != 0 &&
3094 VM_MAPENT_ISWIRED(current) == 0 &&
3095 old_prot == VM_PROT_NONE &&
3096 new_prot != VM_PROT_NONE) {
3097
3098 /*
3099 * We must call pmap_update() here because the
3100 * pmap_protect() call above might have removed some
3101 * pmap entries and uvm_map_pageable() might create
3102 * some new pmap entries that rely on the prior
3103 * removals being completely finished.
3104 */
3105
3106 pmap_update(map->pmap);
3107
3108 if (uvm_map_pageable(map, current->start,
3109 current->end, false,
3110 UVM_LK_ENTER|UVM_LK_EXIT) != 0) {
3111
3112 /*
3113 * If locking the entry fails, remember the
3114 * error if it's the first one. Note we
3115 * still continue setting the protection in
3116 * the map, but will return the error
3117 * condition regardless.
3118 *
3119 * XXX Ignore what the actual error is,
3120 * XXX just call it a resource shortage
3121 * XXX so that it doesn't get confused
3122 * XXX what uvm_map_protect() itself would
3123 * XXX normally return.
3124 */
3125
3126 error = ENOMEM;
3127 }
3128 }
3129 current = current->next;
3130 }
3131 pmap_update(map->pmap);
3132
3133 out:
3134 vm_map_unlock(map);
3135
3136 UVMHIST_LOG(maphist, "<- done, error=%jd",error,0,0,0);
3137 return error;
3138 }
3139
3140 #undef MASK
3141
3142 /*
3143 * uvm_map_inherit: set inheritance code for range of addrs in map.
3144 *
3145 * => map must be unlocked
3146 * => note that the inherit code is used during a "fork". see fork
3147 * code for details.
3148 */
3149
3150 int
3151 uvm_map_inherit(struct vm_map *map, vaddr_t start, vaddr_t end,
3152 vm_inherit_t new_inheritance)
3153 {
3154 struct vm_map_entry *entry, *temp_entry;
3155 UVMHIST_FUNC(__func__);
3156 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,new_inh=%#jx)",
3157 (uintptr_t)map, start, end, new_inheritance);
3158
3159 switch (new_inheritance) {
3160 case MAP_INHERIT_NONE:
3161 case MAP_INHERIT_COPY:
3162 case MAP_INHERIT_SHARE:
3163 case MAP_INHERIT_ZERO:
3164 break;
3165 default:
3166 UVMHIST_LOG(maphist,"<- done (INVALID ARG)",0,0,0,0);
3167 return EINVAL;
3168 }
3169
3170 vm_map_lock(map);
3171 VM_MAP_RANGE_CHECK(map, start, end);
3172 if (uvm_map_lookup_entry(map, start, &temp_entry)) {
3173 entry = temp_entry;
3174 UVM_MAP_CLIP_START(map, entry, start);
3175 } else {
3176 entry = temp_entry->next;
3177 }
3178 while ((entry != &map->header) && (entry->start < end)) {
3179 UVM_MAP_CLIP_END(map, entry, end);
3180 entry->inheritance = new_inheritance;
3181 entry = entry->next;
3182 }
3183 vm_map_unlock(map);
3184 UVMHIST_LOG(maphist,"<- done (OK)",0,0,0,0);
3185 return 0;
3186 }
3187
3188 /*
3189 * uvm_map_advice: set advice code for range of addrs in map.
3190 *
3191 * => map must be unlocked
3192 */
3193
3194 int
3195 uvm_map_advice(struct vm_map *map, vaddr_t start, vaddr_t end, int new_advice)
3196 {
3197 struct vm_map_entry *entry, *temp_entry;
3198 UVMHIST_FUNC(__func__);
3199 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,new_adv=%#jx)",
3200 (uintptr_t)map, start, end, new_advice);
3201
3202 vm_map_lock(map);
3203 VM_MAP_RANGE_CHECK(map, start, end);
3204 if (uvm_map_lookup_entry(map, start, &temp_entry)) {
3205 entry = temp_entry;
3206 UVM_MAP_CLIP_START(map, entry, start);
3207 } else {
3208 entry = temp_entry->next;
3209 }
3210
3211 /*
3212 * XXXJRT: disallow holes?
3213 */
3214
3215 while ((entry != &map->header) && (entry->start < end)) {
3216 UVM_MAP_CLIP_END(map, entry, end);
3217
3218 switch (new_advice) {
3219 case MADV_NORMAL:
3220 case MADV_RANDOM:
3221 case MADV_SEQUENTIAL:
3222 /* nothing special here */
3223 break;
3224
3225 default:
3226 vm_map_unlock(map);
3227 UVMHIST_LOG(maphist,"<- done (INVALID ARG)",0,0,0,0);
3228 return EINVAL;
3229 }
3230 entry->advice = new_advice;
3231 entry = entry->next;
3232 }
3233
3234 vm_map_unlock(map);
3235 UVMHIST_LOG(maphist,"<- done (OK)",0,0,0,0);
3236 return 0;
3237 }
3238
3239 /*
3240 * uvm_map_willneed: apply MADV_WILLNEED
3241 */
3242
3243 int
3244 uvm_map_willneed(struct vm_map *map, vaddr_t start, vaddr_t end)
3245 {
3246 struct vm_map_entry *entry;
3247 UVMHIST_FUNC(__func__);
3248 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx)",
3249 (uintptr_t)map, start, end, 0);
3250
3251 vm_map_lock_read(map);
3252 VM_MAP_RANGE_CHECK(map, start, end);
3253 if (!uvm_map_lookup_entry(map, start, &entry)) {
3254 entry = entry->next;
3255 }
3256 while (entry->start < end) {
3257 struct vm_amap * const amap = entry->aref.ar_amap;
3258 struct uvm_object * const uobj = entry->object.uvm_obj;
3259
3260 KASSERT(entry != &map->header);
3261 KASSERT(start < entry->end);
3262 /*
3263 * For now, we handle only the easy but commonly-requested case.
3264 * ie. start prefetching of backing uobj pages.
3265 *
3266 * XXX It might be useful to pmap_enter() the already-in-core
3267 * pages by inventing a "weak" mode for uvm_fault() which would
3268 * only do the PGO_LOCKED pgo_get().
3269 */
3270 if (UVM_ET_ISOBJ(entry) && amap == NULL && uobj != NULL) {
3271 off_t offset;
3272 off_t size;
3273
3274 offset = entry->offset;
3275 if (start < entry->start) {
3276 offset += entry->start - start;
3277 }
3278 size = entry->offset + (entry->end - entry->start);
3279 if (entry->end < end) {
3280 size -= end - entry->end;
3281 }
3282 uvm_readahead(uobj, offset, size);
3283 }
3284 entry = entry->next;
3285 }
3286 vm_map_unlock_read(map);
3287 UVMHIST_LOG(maphist,"<- done (OK)",0,0,0,0);
3288 return 0;
3289 }
3290
3291 /*
3292 * uvm_map_pageable: sets the pageability of a range in a map.
3293 *
3294 * => wires map entries. should not be used for transient page locking.
3295 * for that, use uvm_fault_wire()/uvm_fault_unwire() (see uvm_vslock()).
3296 * => regions specified as not pageable require lock-down (wired) memory
3297 * and page tables.
3298 * => map must never be read-locked
3299 * => if islocked is true, map is already write-locked
3300 * => we always unlock the map, since we must downgrade to a read-lock
3301 * to call uvm_fault_wire()
3302 * => XXXCDC: check this and try and clean it up.
3303 */
3304
3305 int
3306 uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end,
3307 bool new_pageable, int lockflags)
3308 {
3309 struct vm_map_entry *entry, *start_entry, *failed_entry;
3310 int rv;
3311 #ifdef DIAGNOSTIC
3312 u_int timestamp_save;
3313 #endif
3314 UVMHIST_FUNC(__func__);
3315 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,new_pageable=%ju)",
3316 (uintptr_t)map, start, end, new_pageable);
3317 KASSERT(map->flags & VM_MAP_PAGEABLE);
3318
3319 if ((lockflags & UVM_LK_ENTER) == 0)
3320 vm_map_lock(map);
3321 VM_MAP_RANGE_CHECK(map, start, end);
3322
3323 /*
3324 * only one pageability change may take place at one time, since
3325 * uvm_fault_wire assumes it will be called only once for each
3326 * wiring/unwiring. therefore, we have to make sure we're actually
3327 * changing the pageability for the entire region. we do so before
3328 * making any changes.
3329 */
3330
3331 if (uvm_map_lookup_entry(map, start, &start_entry) == false) {
3332 if ((lockflags & UVM_LK_EXIT) == 0)
3333 vm_map_unlock(map);
3334
3335 UVMHIST_LOG(maphist,"<- done (fault)",0,0,0,0);
3336 return EFAULT;
3337 }
3338 entry = start_entry;
3339
3340 if (start == end) { /* nothing required */
3341 if ((lockflags & UVM_LK_EXIT) == 0)
3342 vm_map_unlock(map);
3343
3344 UVMHIST_LOG(maphist,"<- done (nothing)",0,0,0,0);
3345 return 0;
3346 }
3347
3348 /*
3349 * handle wiring and unwiring separately.
3350 */
3351
3352 if (new_pageable) { /* unwire */
3353 UVM_MAP_CLIP_START(map, entry, start);
3354
3355 /*
3356 * unwiring. first ensure that the range to be unwired is
3357 * really wired down and that there are no holes.
3358 */
3359
3360 while ((entry != &map->header) && (entry->start < end)) {
3361 if (entry->wired_count == 0 ||
3362 (entry->end < end &&
3363 (entry->next == &map->header ||
3364 entry->next->start > entry->end))) {
3365 if ((lockflags & UVM_LK_EXIT) == 0)
3366 vm_map_unlock(map);
3367 UVMHIST_LOG(maphist, "<- done (INVAL)",0,0,0,0);
3368 return EINVAL;
3369 }
3370 entry = entry->next;
3371 }
3372
3373 /*
3374 * POSIX 1003.1b - a single munlock call unlocks a region,
3375 * regardless of the number of mlock calls made on that
3376 * region.
3377 */
3378
3379 entry = start_entry;
3380 while ((entry != &map->header) && (entry->start < end)) {
3381 UVM_MAP_CLIP_END(map, entry, end);
3382 if (VM_MAPENT_ISWIRED(entry))
3383 uvm_map_entry_unwire(map, entry);
3384 entry = entry->next;
3385 }
3386 if ((lockflags & UVM_LK_EXIT) == 0)
3387 vm_map_unlock(map);
3388 UVMHIST_LOG(maphist,"<- done (OK UNWIRE)",0,0,0,0);
3389 return 0;
3390 }
3391
3392 /*
3393 * wire case: in two passes [XXXCDC: ugly block of code here]
3394 *
3395 * 1: holding the write lock, we create any anonymous maps that need
3396 * to be created. then we clip each map entry to the region to
3397 * be wired and increment its wiring count.
3398 *
3399 * 2: we downgrade to a read lock, and call uvm_fault_wire to fault
3400 * in the pages for any newly wired area (wired_count == 1).
3401 *
3402 * downgrading to a read lock for uvm_fault_wire avoids a possible
3403 * deadlock with another thread that may have faulted on one of
3404 * the pages to be wired (it would mark the page busy, blocking
3405 * us, then in turn block on the map lock that we hold). because
3406 * of problems in the recursive lock package, we cannot upgrade
3407 * to a write lock in vm_map_lookup. thus, any actions that
3408 * require the write lock must be done beforehand. because we
3409 * keep the read lock on the map, the copy-on-write status of the
3410 * entries we modify here cannot change.
3411 */
3412
3413 while ((entry != &map->header) && (entry->start < end)) {
3414 if (VM_MAPENT_ISWIRED(entry) == 0) { /* not already wired? */
3415
3416 /*
3417 * perform actions of vm_map_lookup that need the
3418 * write lock on the map: create an anonymous map
3419 * for a copy-on-write region, or an anonymous map
3420 * for a zero-fill region. (XXXCDC: submap case
3421 * ok?)
3422 */
3423
3424 if (!UVM_ET_ISSUBMAP(entry)) { /* not submap */
3425 if (UVM_ET_ISNEEDSCOPY(entry) &&
3426 ((entry->max_protection & VM_PROT_WRITE) ||
3427 (entry->object.uvm_obj == NULL))) {
3428 amap_copy(map, entry, 0, start, end);
3429 /* XXXCDC: wait OK? */
3430 }
3431 }
3432 }
3433 UVM_MAP_CLIP_START(map, entry, start);
3434 UVM_MAP_CLIP_END(map, entry, end);
3435 entry->wired_count++;
3436
3437 /*
3438 * Check for holes
3439 */
3440
3441 if (entry->protection == VM_PROT_NONE ||
3442 (entry->end < end &&
3443 (entry->next == &map->header ||
3444 entry->next->start > entry->end))) {
3445
3446 /*
3447 * found one. amap creation actions do not need to
3448 * be undone, but the wired counts need to be restored.
3449 */
3450
3451 while (entry != &map->header && entry->end > start) {
3452 entry->wired_count--;
3453 entry = entry->prev;
3454 }
3455 if ((lockflags & UVM_LK_EXIT) == 0)
3456 vm_map_unlock(map);
3457 UVMHIST_LOG(maphist,"<- done (INVALID WIRE)",0,0,0,0);
3458 return EINVAL;
3459 }
3460 entry = entry->next;
3461 }
3462
3463 /*
3464 * Pass 2.
3465 */
3466
3467 #ifdef DIAGNOSTIC
3468 timestamp_save = map->timestamp;
3469 #endif
3470 vm_map_busy(map);
3471 vm_map_unlock(map);
3472
3473 rv = 0;
3474 entry = start_entry;
3475 while (entry != &map->header && entry->start < end) {
3476 if (entry->wired_count == 1) {
3477 rv = uvm_fault_wire(map, entry->start, entry->end,
3478 entry->max_protection, 1);
3479 if (rv) {
3480
3481 /*
3482 * wiring failed. break out of the loop.
3483 * we'll clean up the map below, once we
3484 * have a write lock again.
3485 */
3486
3487 break;
3488 }
3489 }
3490 entry = entry->next;
3491 }
3492
3493 if (rv) { /* failed? */
3494
3495 /*
3496 * Get back to an exclusive (write) lock.
3497 */
3498
3499 vm_map_lock(map);
3500 vm_map_unbusy(map);
3501
3502 #ifdef DIAGNOSTIC
3503 if (timestamp_save + 1 != map->timestamp)
3504 panic("uvm_map_pageable: stale map");
3505 #endif
3506
3507 /*
3508 * first drop the wiring count on all the entries
3509 * which haven't actually been wired yet.
3510 */
3511
3512 failed_entry = entry;
3513 while (entry != &map->header && entry->start < end) {
3514 entry->wired_count--;
3515 entry = entry->next;
3516 }
3517
3518 /*
3519 * now, unwire all the entries that were successfully
3520 * wired above.
3521 */
3522
3523 entry = start_entry;
3524 while (entry != failed_entry) {
3525 entry->wired_count--;
3526 if (VM_MAPENT_ISWIRED(entry) == 0)
3527 uvm_map_entry_unwire(map, entry);
3528 entry = entry->next;
3529 }
3530 if ((lockflags & UVM_LK_EXIT) == 0)
3531 vm_map_unlock(map);
3532 UVMHIST_LOG(maphist, "<- done (RV=%jd)", rv,0,0,0);
3533 return (rv);
3534 }
3535
3536 if ((lockflags & UVM_LK_EXIT) == 0) {
3537 vm_map_unbusy(map);
3538 } else {
3539
3540 /*
3541 * Get back to an exclusive (write) lock.
3542 */
3543
3544 vm_map_lock(map);
3545 vm_map_unbusy(map);
3546 }
3547
3548 UVMHIST_LOG(maphist,"<- done (OK WIRE)",0,0,0,0);
3549 return 0;
3550 }
3551
3552 /*
3553 * uvm_map_pageable_all: special case of uvm_map_pageable - affects
3554 * all mapped regions.
3555 *
3556 * => map must not be locked.
3557 * => if no flags are specified, all regions are unwired.
3558 * => XXXJRT: has some of the same problems as uvm_map_pageable() above.
3559 */
3560
3561 int
3562 uvm_map_pageable_all(struct vm_map *map, int flags, vsize_t limit)
3563 {
3564 struct vm_map_entry *entry, *failed_entry;
3565 vsize_t size;
3566 int rv;
3567 #ifdef DIAGNOSTIC
3568 u_int timestamp_save;
3569 #endif
3570 UVMHIST_FUNC(__func__);
3571 UVMHIST_CALLARGS(maphist,"(map=%#jx,flags=%#jx)", (uintptr_t)map, flags,
3572 0, 0);
3573
3574 KASSERT(map->flags & VM_MAP_PAGEABLE);
3575
3576 vm_map_lock(map);
3577
3578 /*
3579 * handle wiring and unwiring separately.
3580 */
3581
3582 if (flags == 0) { /* unwire */
3583
3584 /*
3585 * POSIX 1003.1b -- munlockall unlocks all regions,
3586 * regardless of how many times mlockall has been called.
3587 */
3588
3589 for (entry = map->header.next; entry != &map->header;
3590 entry = entry->next) {
3591 if (VM_MAPENT_ISWIRED(entry))
3592 uvm_map_entry_unwire(map, entry);
3593 }
3594 map->flags &= ~VM_MAP_WIREFUTURE;
3595 vm_map_unlock(map);
3596 UVMHIST_LOG(maphist,"<- done (OK UNWIRE)",0,0,0,0);
3597 return 0;
3598 }
3599
3600 if (flags & MCL_FUTURE) {
3601
3602 /*
3603 * must wire all future mappings; remember this.
3604 */
3605
3606 map->flags |= VM_MAP_WIREFUTURE;
3607 }
3608
3609 if ((flags & MCL_CURRENT) == 0) {
3610
3611 /*
3612 * no more work to do!
3613 */
3614
3615 UVMHIST_LOG(maphist,"<- done (OK no wire)",0,0,0,0);
3616 vm_map_unlock(map);
3617 return 0;
3618 }
3619
3620 /*
3621 * wire case: in three passes [XXXCDC: ugly block of code here]
3622 *
3623 * 1: holding the write lock, count all pages mapped by non-wired
3624 * entries. if this would cause us to go over our limit, we fail.
3625 *
3626 * 2: still holding the write lock, we create any anonymous maps that
3627 * need to be created. then we increment its wiring count.
3628 *
3629 * 3: we downgrade to a read lock, and call uvm_fault_wire to fault
3630 * in the pages for any newly wired area (wired_count == 1).
3631 *
3632 * downgrading to a read lock for uvm_fault_wire avoids a possible
3633 * deadlock with another thread that may have faulted on one of
3634 * the pages to be wired (it would mark the page busy, blocking
3635 * us, then in turn block on the map lock that we hold). because
3636 * of problems in the recursive lock package, we cannot upgrade
3637 * to a write lock in vm_map_lookup. thus, any actions that
3638 * require the write lock must be done beforehand. because we
3639 * keep the read lock on the map, the copy-on-write status of the
3640 * entries we modify here cannot change.
3641 */
3642
3643 for (size = 0, entry = map->header.next; entry != &map->header;
3644 entry = entry->next) {
3645 if (entry->protection != VM_PROT_NONE &&
3646 VM_MAPENT_ISWIRED(entry) == 0) { /* not already wired? */
3647 size += entry->end - entry->start;
3648 }
3649 }
3650
3651 if (atop(size) + uvmexp.wired > uvmexp.wiredmax) {
3652 vm_map_unlock(map);
3653 return ENOMEM;
3654 }
3655
3656 if (limit != 0 &&
3657 (size + ptoa(pmap_wired_count(vm_map_pmap(map))) > limit)) {
3658 vm_map_unlock(map);
3659 return ENOMEM;
3660 }
3661
3662 /*
3663 * Pass 2.
3664 */
3665
3666 for (entry = map->header.next; entry != &map->header;
3667 entry = entry->next) {
3668 if (entry->protection == VM_PROT_NONE)
3669 continue;
3670 if (VM_MAPENT_ISWIRED(entry) == 0) { /* not already wired? */
3671
3672 /*
3673 * perform actions of vm_map_lookup that need the
3674 * write lock on the map: create an anonymous map
3675 * for a copy-on-write region, or an anonymous map
3676 * for a zero-fill region. (XXXCDC: submap case
3677 * ok?)
3678 */
3679
3680 if (!UVM_ET_ISSUBMAP(entry)) { /* not submap */
3681 if (UVM_ET_ISNEEDSCOPY(entry) &&
3682 ((entry->max_protection & VM_PROT_WRITE) ||
3683 (entry->object.uvm_obj == NULL))) {
3684 amap_copy(map, entry, 0, entry->start,
3685 entry->end);
3686 /* XXXCDC: wait OK? */
3687 }
3688 }
3689 }
3690 entry->wired_count++;
3691 }
3692
3693 /*
3694 * Pass 3.
3695 */
3696
3697 #ifdef DIAGNOSTIC
3698 timestamp_save = map->timestamp;
3699 #endif
3700 vm_map_busy(map);
3701 vm_map_unlock(map);
3702
3703 rv = 0;
3704 for (entry = map->header.next; entry != &map->header;
3705 entry = entry->next) {
3706 if (entry->wired_count == 1) {
3707 rv = uvm_fault_wire(map, entry->start, entry->end,
3708 entry->max_protection, 1);
3709 if (rv) {
3710
3711 /*
3712 * wiring failed. break out of the loop.
3713 * we'll clean up the map below, once we
3714 * have a write lock again.
3715 */
3716
3717 break;
3718 }
3719 }
3720 }
3721
3722 if (rv) {
3723
3724 /*
3725 * Get back an exclusive (write) lock.
3726 */
3727
3728 vm_map_lock(map);
3729 vm_map_unbusy(map);
3730
3731 #ifdef DIAGNOSTIC
3732 if (timestamp_save + 1 != map->timestamp)
3733 panic("uvm_map_pageable_all: stale map");
3734 #endif
3735
3736 /*
3737 * first drop the wiring count on all the entries
3738 * which haven't actually been wired yet.
3739 *
3740 * Skip VM_PROT_NONE entries like we did above.
3741 */
3742
3743 failed_entry = entry;
3744 for (/* nothing */; entry != &map->header;
3745 entry = entry->next) {
3746 if (entry->protection == VM_PROT_NONE)
3747 continue;
3748 entry->wired_count--;
3749 }
3750
3751 /*
3752 * now, unwire all the entries that were successfully
3753 * wired above.
3754 *
3755 * Skip VM_PROT_NONE entries like we did above.
3756 */
3757
3758 for (entry = map->header.next; entry != failed_entry;
3759 entry = entry->next) {
3760 if (entry->protection == VM_PROT_NONE)
3761 continue;
3762 entry->wired_count--;
3763 if (VM_MAPENT_ISWIRED(entry))
3764 uvm_map_entry_unwire(map, entry);
3765 }
3766 vm_map_unlock(map);
3767 UVMHIST_LOG(maphist,"<- done (RV=%jd)", rv,0,0,0);
3768 return (rv);
3769 }
3770
3771 vm_map_unbusy(map);
3772
3773 UVMHIST_LOG(maphist,"<- done (OK WIRE)",0,0,0,0);
3774 return 0;
3775 }
3776
3777 /*
3778 * uvm_map_clean: clean out a map range
3779 *
3780 * => valid flags:
3781 * if (flags & PGO_CLEANIT): dirty pages are cleaned first
3782 * if (flags & PGO_SYNCIO): dirty pages are written synchronously
3783 * if (flags & PGO_DEACTIVATE): any cached pages are deactivated after clean
3784 * if (flags & PGO_FREE): any cached pages are freed after clean
3785 * => returns an error if any part of the specified range isn't mapped
3786 * => never a need to flush amap layer since the anonymous memory has
3787 * no permanent home, but may deactivate pages there
3788 * => called from sys_msync() and sys_madvise()
3789 * => caller must not write-lock map (read OK).
3790 * => we may sleep while cleaning if SYNCIO [with map read-locked]
3791 */
3792
3793 int
3794 uvm_map_clean(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
3795 {
3796 struct vm_map_entry *current, *entry;
3797 struct uvm_object *uobj;
3798 struct vm_amap *amap;
3799 struct vm_anon *anon;
3800 struct vm_page *pg;
3801 vaddr_t offset;
3802 vsize_t size;
3803 voff_t uoff;
3804 int error, refs;
3805 UVMHIST_FUNC(__func__);
3806 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,flags=%#jx)",
3807 (uintptr_t)map, start, end, flags);
3808
3809 KASSERT((flags & (PGO_FREE|PGO_DEACTIVATE)) !=
3810 (PGO_FREE|PGO_DEACTIVATE));
3811
3812 vm_map_lock_read(map);
3813 VM_MAP_RANGE_CHECK(map, start, end);
3814 if (uvm_map_lookup_entry(map, start, &entry) == false) {
3815 vm_map_unlock_read(map);
3816 return EFAULT;
3817 }
3818
3819 /*
3820 * Make a first pass to check for holes and wiring problems.
3821 */
3822
3823 for (current = entry; current->start < end; current = current->next) {
3824 if (UVM_ET_ISSUBMAP(current)) {
3825 vm_map_unlock_read(map);
3826 return EINVAL;
3827 }
3828 if ((flags & PGO_FREE) != 0 && VM_MAPENT_ISWIRED(entry)) {
3829 vm_map_unlock_read(map);
3830 return EBUSY;
3831 }
3832 if (end <= current->end) {
3833 break;
3834 }
3835 if (current->end != current->next->start) {
3836 vm_map_unlock_read(map);
3837 return EFAULT;
3838 }
3839 }
3840
3841 error = 0;
3842 for (current = entry; start < end; current = current->next) {
3843 amap = current->aref.ar_amap; /* upper layer */
3844 uobj = current->object.uvm_obj; /* lower layer */
3845 KASSERT(start >= current->start);
3846
3847 /*
3848 * No amap cleaning necessary if:
3849 *
3850 * (1) There's no amap.
3851 *
3852 * (2) We're not deactivating or freeing pages.
3853 */
3854
3855 if (amap == NULL || (flags & (PGO_DEACTIVATE|PGO_FREE)) == 0)
3856 goto flush_object;
3857
3858 offset = start - current->start;
3859 size = MIN(end, current->end) - start;
3860
3861 amap_lock(amap, RW_WRITER);
3862 for ( ; size != 0; size -= PAGE_SIZE, offset += PAGE_SIZE) {
3863 anon = amap_lookup(¤t->aref, offset);
3864 if (anon == NULL)
3865 continue;
3866
3867 KASSERT(anon->an_lock == amap->am_lock);
3868 pg = anon->an_page;
3869 if (pg == NULL) {
3870 continue;
3871 }
3872 if (pg->flags & PG_BUSY) {
3873 continue;
3874 }
3875
3876 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
3877
3878 /*
3879 * In these first 3 cases, we just deactivate the page.
3880 */
3881
3882 case PGO_CLEANIT|PGO_FREE:
3883 case PGO_CLEANIT|PGO_DEACTIVATE:
3884 case PGO_DEACTIVATE:
3885 deactivate_it:
3886 /*
3887 * skip the page if it's loaned or wired,
3888 * since it shouldn't be on a paging queue
3889 * at all in these cases.
3890 */
3891
3892 if (pg->loan_count != 0 ||
3893 pg->wire_count != 0) {
3894 continue;
3895 }
3896 KASSERT(pg->uanon == anon);
3897 uvm_pagelock(pg);
3898 uvm_pagedeactivate(pg);
3899 uvm_pageunlock(pg);
3900 continue;
3901
3902 case PGO_FREE:
3903
3904 /*
3905 * If there are multiple references to
3906 * the amap, just deactivate the page.
3907 */
3908
3909 if (amap_refs(amap) > 1)
3910 goto deactivate_it;
3911
3912 /* skip the page if it's wired */
3913 if (pg->wire_count != 0) {
3914 continue;
3915 }
3916 amap_unadd(¤t->aref, offset);
3917 refs = --anon->an_ref;
3918 if (refs == 0) {
3919 uvm_anfree(anon);
3920 }
3921 continue;
3922 }
3923 }
3924 amap_unlock(amap);
3925
3926 flush_object:
3927 /*
3928 * flush pages if we've got a valid backing object.
3929 * note that we must always clean object pages before
3930 * freeing them since otherwise we could reveal stale
3931 * data from files.
3932 */
3933
3934 uoff = current->offset + (start - current->start);
3935 size = MIN(end, current->end) - start;
3936 if (uobj != NULL) {
3937 rw_enter(uobj->vmobjlock, RW_WRITER);
3938 if (uobj->pgops->pgo_put != NULL)
3939 error = (uobj->pgops->pgo_put)(uobj, uoff,
3940 uoff + size, flags | PGO_CLEANIT);
3941 else
3942 error = 0;
3943 }
3944 start += size;
3945 }
3946 vm_map_unlock_read(map);
3947 return (error);
3948 }
3949
3950
3951 /*
3952 * uvm_map_checkprot: check protection in map
3953 *
3954 * => must allow specified protection in a fully allocated region.
3955 * => map must be read or write locked by caller.
3956 */
3957
3958 bool
3959 uvm_map_checkprot(struct vm_map *map, vaddr_t start, vaddr_t end,
3960 vm_prot_t protection)
3961 {
3962 struct vm_map_entry *entry;
3963 struct vm_map_entry *tmp_entry;
3964
3965 if (!uvm_map_lookup_entry(map, start, &tmp_entry)) {
3966 return (false);
3967 }
3968 entry = tmp_entry;
3969 while (start < end) {
3970 if (entry == &map->header) {
3971 return (false);
3972 }
3973
3974 /*
3975 * no holes allowed
3976 */
3977
3978 if (start < entry->start) {
3979 return (false);
3980 }
3981
3982 /*
3983 * check protection associated with entry
3984 */
3985
3986 if ((entry->protection & protection) != protection) {
3987 return (false);
3988 }
3989 start = entry->end;
3990 entry = entry->next;
3991 }
3992 return (true);
3993 }
3994
3995 /*
3996 * uvmspace_alloc: allocate a vmspace structure.
3997 *
3998 * - structure includes vm_map and pmap
3999 * - XXX: no locking on this structure
4000 * - refcnt set to 1, rest must be init'd by caller
4001 */
4002 struct vmspace *
4003 uvmspace_alloc(vaddr_t vmin, vaddr_t vmax, bool topdown)
4004 {
4005 struct vmspace *vm;
4006 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4007
4008 vm = pool_cache_get(&uvm_vmspace_cache, PR_WAITOK);
4009 uvmspace_init(vm, NULL, vmin, vmax, topdown);
4010 UVMHIST_LOG(maphist,"<- done (vm=%#jx)", (uintptr_t)vm, 0, 0, 0);
4011 return (vm);
4012 }
4013
4014 /*
4015 * uvmspace_init: initialize a vmspace structure.
4016 *
4017 * - XXX: no locking on this structure
4018 * - refcnt set to 1, rest must be init'd by caller
4019 */
4020 void
4021 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin,
4022 vaddr_t vmax, bool topdown)
4023 {
4024 UVMHIST_FUNC(__func__);
4025 UVMHIST_CALLARGS(maphist, "(vm=%#jx, pmap=%#jx, vmin=%#jx, vmax=%#jx",
4026 (uintptr_t)vm, (uintptr_t)pmap, vmin, vmax);
4027 UVMHIST_LOG(maphist, " topdown=%ju)", topdown, 0, 0, 0);
4028
4029 memset(vm, 0, sizeof(*vm));
4030 uvm_map_setup(&vm->vm_map, vmin, vmax, VM_MAP_PAGEABLE
4031 | (topdown ? VM_MAP_TOPDOWN : 0)
4032 );
4033 if (pmap)
4034 pmap_reference(pmap);
4035 else
4036 pmap = pmap_create();
4037 vm->vm_map.pmap = pmap;
4038 vm->vm_refcnt = 1;
4039 UVMHIST_LOG(maphist,"<- done",0,0,0,0);
4040 }
4041
4042 /*
4043 * uvmspace_share: share a vmspace between two processes
4044 *
4045 * - used for vfork, threads(?)
4046 */
4047
4048 void
4049 uvmspace_share(struct proc *p1, struct proc *p2)
4050 {
4051
4052 uvmspace_addref(p1->p_vmspace);
4053 p2->p_vmspace = p1->p_vmspace;
4054 }
4055
4056 #if 0
4057
4058 /*
4059 * uvmspace_unshare: ensure that process "p" has its own, unshared, vmspace
4060 *
4061 * - XXX: no locking on vmspace
4062 */
4063
4064 void
4065 uvmspace_unshare(struct lwp *l)
4066 {
4067 struct proc *p = l->l_proc;
4068 struct vmspace *nvm, *ovm = p->p_vmspace;
4069
4070 if (ovm->vm_refcnt == 1)
4071 /* nothing to do: vmspace isn't shared in the first place */
4072 return;
4073
4074 /* make a new vmspace, still holding old one */
4075 nvm = uvmspace_fork(ovm);
4076
4077 kpreempt_disable();
4078 pmap_deactivate(l); /* unbind old vmspace */
4079 p->p_vmspace = nvm;
4080 pmap_activate(l); /* switch to new vmspace */
4081 kpreempt_enable();
4082
4083 uvmspace_free(ovm); /* drop reference to old vmspace */
4084 }
4085
4086 #endif
4087
4088
4089 /*
4090 * uvmspace_spawn: a new process has been spawned and needs a vmspace
4091 */
4092
4093 void
4094 uvmspace_spawn(struct lwp *l, vaddr_t start, vaddr_t end, bool topdown)
4095 {
4096 struct proc *p = l->l_proc;
4097 struct vmspace *nvm;
4098
4099 #ifdef __HAVE_CPU_VMSPACE_EXEC
4100 cpu_vmspace_exec(l, start, end);
4101 #endif
4102
4103 nvm = uvmspace_alloc(start, end, topdown);
4104 kpreempt_disable();
4105 p->p_vmspace = nvm;
4106 pmap_activate(l);
4107 kpreempt_enable();
4108 }
4109
4110 /*
4111 * uvmspace_exec: the process wants to exec a new program
4112 */
4113
4114 void
4115 uvmspace_exec(struct lwp *l, vaddr_t start, vaddr_t end, bool topdown)
4116 {
4117 struct proc *p = l->l_proc;
4118 struct vmspace *nvm, *ovm = p->p_vmspace;
4119 struct vm_map *map;
4120 int flags;
4121
4122 KASSERT(ovm != NULL);
4123 #ifdef __HAVE_CPU_VMSPACE_EXEC
4124 cpu_vmspace_exec(l, start, end);
4125 #endif
4126
4127 map = &ovm->vm_map;
4128 /*
4129 * see if more than one process is using this vmspace...
4130 */
4131
4132 if (ovm->vm_refcnt == 1
4133 && topdown == ((ovm->vm_map.flags & VM_MAP_TOPDOWN) != 0)) {
4134
4135 /*
4136 * if p is the only process using its vmspace then we can safely
4137 * recycle that vmspace for the program that is being exec'd.
4138 * But only if TOPDOWN matches the requested value for the new
4139 * vm space!
4140 */
4141
4142 /*
4143 * SYSV SHM semantics require us to kill all segments on an exec
4144 */
4145 if (uvm_shmexit && ovm->vm_shm)
4146 (*uvm_shmexit)(ovm);
4147
4148 /*
4149 * POSIX 1003.1b -- "lock future mappings" is revoked
4150 * when a process execs another program image.
4151 */
4152
4153 map->flags &= ~VM_MAP_WIREFUTURE;
4154
4155 /*
4156 * now unmap the old program.
4157 *
4158 * XXX set VM_MAP_DYING for the duration, so pmap_update()
4159 * is not called until the pmap has been totally cleared out
4160 * after pmap_remove_all(), or it can confuse some pmap
4161 * implementations. it would be nice to handle this by
4162 * deferring the pmap_update() while it is known the address
4163 * space is not visible to any user LWP other than curlwp,
4164 * but there isn't an elegant way of inferring that right
4165 * now.
4166 */
4167
4168 flags = pmap_remove_all(map->pmap) ? UVM_FLAG_VAONLY : 0;
4169 map->flags |= VM_MAP_DYING;
4170 uvm_unmap1(map, vm_map_min(map), vm_map_max(map), flags);
4171 map->flags &= ~VM_MAP_DYING;
4172 pmap_update(map->pmap);
4173 KASSERT(map->header.prev == &map->header);
4174 KASSERT(map->nentries == 0);
4175
4176 /*
4177 * resize the map
4178 */
4179
4180 vm_map_setmin(map, start);
4181 vm_map_setmax(map, end);
4182 } else {
4183
4184 /*
4185 * p's vmspace is being shared, so we can't reuse it for p since
4186 * it is still being used for others. allocate a new vmspace
4187 * for p
4188 */
4189
4190 nvm = uvmspace_alloc(start, end, topdown);
4191
4192 /*
4193 * install new vmspace and drop our ref to the old one.
4194 */
4195
4196 kpreempt_disable();
4197 pmap_deactivate(l);
4198 p->p_vmspace = nvm;
4199 pmap_activate(l);
4200 kpreempt_enable();
4201
4202 uvmspace_free(ovm);
4203 }
4204 }
4205
4206 /*
4207 * uvmspace_addref: add a reference to a vmspace.
4208 */
4209
4210 void
4211 uvmspace_addref(struct vmspace *vm)
4212 {
4213
4214 KASSERT((vm->vm_map.flags & VM_MAP_DYING) == 0);
4215 KASSERT(vm->vm_refcnt > 0);
4216 atomic_inc_uint(&vm->vm_refcnt);
4217 }
4218
4219 /*
4220 * uvmspace_free: free a vmspace data structure
4221 */
4222
4223 void
4224 uvmspace_free(struct vmspace *vm)
4225 {
4226 struct vm_map_entry *dead_entries;
4227 struct vm_map *map = &vm->vm_map;
4228 int flags;
4229
4230 UVMHIST_FUNC(__func__);
4231 UVMHIST_CALLARGS(maphist,"(vm=%#jx) ref=%jd", (uintptr_t)vm,
4232 vm->vm_refcnt, 0, 0);
4233 if (atomic_dec_uint_nv(&vm->vm_refcnt) > 0)
4234 return;
4235
4236 /*
4237 * at this point, there should be no other references to the map.
4238 * delete all of the mappings, then destroy the pmap.
4239 */
4240
4241 map->flags |= VM_MAP_DYING;
4242 flags = pmap_remove_all(map->pmap) ? UVM_FLAG_VAONLY : 0;
4243
4244 /* Get rid of any SYSV shared memory segments. */
4245 if (uvm_shmexit && vm->vm_shm != NULL)
4246 (*uvm_shmexit)(vm);
4247
4248 if (map->nentries) {
4249 uvm_unmap_remove(map, vm_map_min(map), vm_map_max(map),
4250 &dead_entries, flags);
4251 if (dead_entries != NULL)
4252 uvm_unmap_detach(dead_entries, 0);
4253 }
4254 KASSERT(map->nentries == 0);
4255 KASSERT(map->size == 0);
4256
4257 mutex_destroy(&map->misc_lock);
4258 rw_destroy(&map->lock);
4259 cv_destroy(&map->cv);
4260 pmap_destroy(map->pmap);
4261 pool_cache_put(&uvm_vmspace_cache, vm);
4262 }
4263
4264 static struct vm_map_entry *
4265 uvm_mapent_clone(struct vm_map *new_map, struct vm_map_entry *old_entry,
4266 int flags)
4267 {
4268 struct vm_map_entry *new_entry;
4269
4270 new_entry = uvm_mapent_alloc(new_map, 0);
4271 /* old_entry -> new_entry */
4272 uvm_mapent_copy(old_entry, new_entry);
4273
4274 /* new pmap has nothing wired in it */
4275 new_entry->wired_count = 0;
4276
4277 /*
4278 * gain reference to object backing the map (can't
4279 * be a submap, already checked this case).
4280 */
4281
4282 if (new_entry->aref.ar_amap)
4283 uvm_map_reference_amap(new_entry, flags);
4284
4285 if (new_entry->object.uvm_obj &&
4286 new_entry->object.uvm_obj->pgops->pgo_reference)
4287 new_entry->object.uvm_obj->pgops->pgo_reference(
4288 new_entry->object.uvm_obj);
4289
4290 /* insert entry at end of new_map's entry list */
4291 uvm_map_entry_link(new_map, new_map->header.prev,
4292 new_entry);
4293
4294 return new_entry;
4295 }
4296
4297 /*
4298 * share the mapping: this means we want the old and
4299 * new entries to share amaps and backing objects.
4300 */
4301 static void
4302 uvm_mapent_forkshared(struct vm_map *new_map, struct vm_map *old_map,
4303 struct vm_map_entry *old_entry)
4304 {
4305 /*
4306 * if the old_entry needs a new amap (due to prev fork)
4307 * then we need to allocate it now so that we have
4308 * something we own to share with the new_entry. [in
4309 * other words, we need to clear needs_copy]
4310 */
4311
4312 if (UVM_ET_ISNEEDSCOPY(old_entry)) {
4313 /* get our own amap, clears needs_copy */
4314 amap_copy(old_map, old_entry, AMAP_COPY_NOCHUNK,
4315 0, 0);
4316 /* XXXCDC: WAITOK??? */
4317 }
4318
4319 uvm_mapent_clone(new_map, old_entry, AMAP_SHARED);
4320 }
4321
4322
4323 static void
4324 uvm_mapent_forkcopy(struct vm_map *new_map, struct vm_map *old_map,
4325 struct vm_map_entry *old_entry)
4326 {
4327 struct vm_map_entry *new_entry;
4328
4329 /*
4330 * copy-on-write the mapping (using mmap's
4331 * MAP_PRIVATE semantics)
4332 *
4333 * allocate new_entry, adjust reference counts.
4334 * (note that new references are read-only).
4335 */
4336
4337 new_entry = uvm_mapent_clone(new_map, old_entry, 0);
4338
4339 new_entry->etype |=
4340 (UVM_ET_COPYONWRITE|UVM_ET_NEEDSCOPY);
4341
4342 /*
4343 * the new entry will need an amap. it will either
4344 * need to be copied from the old entry or created
4345 * from scratch (if the old entry does not have an
4346 * amap). can we defer this process until later
4347 * (by setting "needs_copy") or do we need to copy
4348 * the amap now?
4349 *
4350 * we must copy the amap now if any of the following
4351 * conditions hold:
4352 * 1. the old entry has an amap and that amap is
4353 * being shared. this means that the old (parent)
4354 * process is sharing the amap with another
4355 * process. if we do not clear needs_copy here
4356 * we will end up in a situation where both the
4357 * parent and child process are refering to the
4358 * same amap with "needs_copy" set. if the
4359 * parent write-faults, the fault routine will
4360 * clear "needs_copy" in the parent by allocating
4361 * a new amap. this is wrong because the
4362 * parent is supposed to be sharing the old amap
4363 * and the new amap will break that.
4364 *
4365 * 2. if the old entry has an amap and a non-zero
4366 * wire count then we are going to have to call
4367 * amap_cow_now to avoid page faults in the
4368 * parent process. since amap_cow_now requires
4369 * "needs_copy" to be clear we might as well
4370 * clear it here as well.
4371 *
4372 */
4373
4374 if (old_entry->aref.ar_amap != NULL) {
4375 if ((amap_flags(old_entry->aref.ar_amap) & AMAP_SHARED) != 0 ||
4376 VM_MAPENT_ISWIRED(old_entry)) {
4377
4378 amap_copy(new_map, new_entry,
4379 AMAP_COPY_NOCHUNK, 0, 0);
4380 /* XXXCDC: M_WAITOK ... ok? */
4381 }
4382 }
4383
4384 /*
4385 * if the parent's entry is wired down, then the
4386 * parent process does not want page faults on
4387 * access to that memory. this means that we
4388 * cannot do copy-on-write because we can't write
4389 * protect the old entry. in this case we
4390 * resolve all copy-on-write faults now, using
4391 * amap_cow_now. note that we have already
4392 * allocated any needed amap (above).
4393 */
4394
4395 if (VM_MAPENT_ISWIRED(old_entry)) {
4396
4397 /*
4398 * resolve all copy-on-write faults now
4399 * (note that there is nothing to do if
4400 * the old mapping does not have an amap).
4401 */
4402 if (old_entry->aref.ar_amap)
4403 amap_cow_now(new_map, new_entry);
4404
4405 } else {
4406 /*
4407 * setup mappings to trigger copy-on-write faults
4408 * we must write-protect the parent if it has
4409 * an amap and it is not already "needs_copy"...
4410 * if it is already "needs_copy" then the parent
4411 * has already been write-protected by a previous
4412 * fork operation.
4413 */
4414 if (old_entry->aref.ar_amap &&
4415 !UVM_ET_ISNEEDSCOPY(old_entry)) {
4416 if (old_entry->max_protection & VM_PROT_WRITE) {
4417 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
4418 uvm_map_lock_entry(old_entry, RW_WRITER);
4419 #else
4420 uvm_map_lock_entry(old_entry, RW_READER);
4421 #endif
4422 pmap_protect(old_map->pmap,
4423 old_entry->start, old_entry->end,
4424 old_entry->protection & ~VM_PROT_WRITE);
4425 uvm_map_unlock_entry(old_entry);
4426 }
4427 old_entry->etype |= UVM_ET_NEEDSCOPY;
4428 }
4429 }
4430 }
4431
4432 /*
4433 * zero the mapping: the new entry will be zero initialized
4434 */
4435 static void
4436 uvm_mapent_forkzero(struct vm_map *new_map, struct vm_map *old_map,
4437 struct vm_map_entry *old_entry)
4438 {
4439 struct vm_map_entry *new_entry;
4440
4441 new_entry = uvm_mapent_clone(new_map, old_entry, 0);
4442
4443 new_entry->etype |=
4444 (UVM_ET_COPYONWRITE|UVM_ET_NEEDSCOPY);
4445
4446 if (new_entry->aref.ar_amap) {
4447 uvm_map_unreference_amap(new_entry, 0);
4448 new_entry->aref.ar_pageoff = 0;
4449 new_entry->aref.ar_amap = NULL;
4450 }
4451
4452 if (UVM_ET_ISOBJ(new_entry)) {
4453 if (new_entry->object.uvm_obj->pgops->pgo_detach)
4454 new_entry->object.uvm_obj->pgops->pgo_detach(
4455 new_entry->object.uvm_obj);
4456 new_entry->object.uvm_obj = NULL;
4457 new_entry->etype &= ~UVM_ET_OBJ;
4458 }
4459 }
4460
4461 /*
4462 * F O R K - m a i n e n t r y p o i n t
4463 */
4464 /*
4465 * uvmspace_fork: fork a process' main map
4466 *
4467 * => create a new vmspace for child process from parent.
4468 * => parent's map must not be locked.
4469 */
4470
4471 struct vmspace *
4472 uvmspace_fork(struct vmspace *vm1)
4473 {
4474 struct vmspace *vm2;
4475 struct vm_map *old_map = &vm1->vm_map;
4476 struct vm_map *new_map;
4477 struct vm_map_entry *old_entry;
4478 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4479
4480 vm_map_lock(old_map);
4481
4482 vm2 = uvmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4483 vm1->vm_map.flags & VM_MAP_TOPDOWN);
4484 memcpy(&vm2->vm_startcopy, &vm1->vm_startcopy,
4485 (char *) (vm1 + 1) - (char *) &vm1->vm_startcopy);
4486 new_map = &vm2->vm_map; /* XXX */
4487
4488 old_entry = old_map->header.next;
4489 new_map->size = old_map->size;
4490
4491 /*
4492 * go entry-by-entry
4493 */
4494
4495 while (old_entry != &old_map->header) {
4496
4497 /*
4498 * first, some sanity checks on the old entry
4499 */
4500
4501 KASSERT(!UVM_ET_ISSUBMAP(old_entry));
4502 KASSERT(UVM_ET_ISCOPYONWRITE(old_entry) ||
4503 !UVM_ET_ISNEEDSCOPY(old_entry));
4504
4505 switch (old_entry->inheritance) {
4506 case MAP_INHERIT_NONE:
4507 /*
4508 * drop the mapping, modify size
4509 */
4510 new_map->size -= old_entry->end - old_entry->start;
4511 break;
4512
4513 case MAP_INHERIT_SHARE:
4514 uvm_mapent_forkshared(new_map, old_map, old_entry);
4515 break;
4516
4517 case MAP_INHERIT_COPY:
4518 uvm_mapent_forkcopy(new_map, old_map, old_entry);
4519 break;
4520
4521 case MAP_INHERIT_ZERO:
4522 uvm_mapent_forkzero(new_map, old_map, old_entry);
4523 break;
4524 default:
4525 KASSERT(0);
4526 break;
4527 }
4528 old_entry = old_entry->next;
4529 }
4530
4531 pmap_update(old_map->pmap);
4532 vm_map_unlock(old_map);
4533
4534 if (uvm_shmfork && vm1->vm_shm)
4535 (*uvm_shmfork)(vm1, vm2);
4536
4537 #ifdef PMAP_FORK
4538 pmap_fork(vm1->vm_map.pmap, vm2->vm_map.pmap);
4539 #endif
4540
4541 UVMHIST_LOG(maphist,"<- done",0,0,0,0);
4542 return (vm2);
4543 }
4544
4545
4546 /*
4547 * uvm_mapent_trymerge: try to merge an entry with its neighbors.
4548 *
4549 * => called with map locked.
4550 * => return non zero if successfully merged.
4551 */
4552
4553 int
4554 uvm_mapent_trymerge(struct vm_map *map, struct vm_map_entry *entry, int flags)
4555 {
4556 struct uvm_object *uobj;
4557 struct vm_map_entry *next;
4558 struct vm_map_entry *prev;
4559 vsize_t size;
4560 int merged = 0;
4561 bool copying;
4562 int newetype;
4563
4564 if (entry->aref.ar_amap != NULL) {
4565 return 0;
4566 }
4567 if ((entry->flags & UVM_MAP_NOMERGE) != 0) {
4568 return 0;
4569 }
4570
4571 uobj = entry->object.uvm_obj;
4572 size = entry->end - entry->start;
4573 copying = (flags & UVM_MERGE_COPYING) != 0;
4574 newetype = copying ? (entry->etype & ~UVM_ET_NEEDSCOPY) : entry->etype;
4575
4576 next = entry->next;
4577 if (next != &map->header &&
4578 next->start == entry->end &&
4579 ((copying && next->aref.ar_amap != NULL &&
4580 amap_refs(next->aref.ar_amap) == 1) ||
4581 (!copying && next->aref.ar_amap == NULL)) &&
4582 UVM_ET_ISCOMPATIBLE(next, newetype,
4583 uobj, entry->flags, entry->protection,
4584 entry->max_protection, entry->inheritance, entry->advice,
4585 entry->wired_count) &&
4586 (uobj == NULL || entry->offset + size == next->offset)) {
4587 int error;
4588
4589 if (copying) {
4590 error = amap_extend(next, size,
4591 AMAP_EXTEND_NOWAIT|AMAP_EXTEND_BACKWARDS);
4592 } else {
4593 error = 0;
4594 }
4595 if (error == 0) {
4596 if (uobj) {
4597 if (uobj->pgops->pgo_detach) {
4598 uobj->pgops->pgo_detach(uobj);
4599 }
4600 }
4601
4602 entry->end = next->end;
4603 clear_hints(map, next);
4604 uvm_map_entry_unlink(map, next);
4605 if (copying) {
4606 entry->aref = next->aref;
4607 entry->etype &= ~UVM_ET_NEEDSCOPY;
4608 }
4609 uvm_map_check(map, "trymerge forwardmerge");
4610 uvm_mapent_free(next);
4611 merged++;
4612 }
4613 }
4614
4615 prev = entry->prev;
4616 if (prev != &map->header &&
4617 prev->end == entry->start &&
4618 ((copying && !merged && prev->aref.ar_amap != NULL &&
4619 amap_refs(prev->aref.ar_amap) == 1) ||
4620 (!copying && prev->aref.ar_amap == NULL)) &&
4621 UVM_ET_ISCOMPATIBLE(prev, newetype,
4622 uobj, entry->flags, entry->protection,
4623 entry->max_protection, entry->inheritance, entry->advice,
4624 entry->wired_count) &&
4625 (uobj == NULL ||
4626 prev->offset + prev->end - prev->start == entry->offset)) {
4627 int error;
4628
4629 if (copying) {
4630 error = amap_extend(prev, size,
4631 AMAP_EXTEND_NOWAIT|AMAP_EXTEND_FORWARDS);
4632 } else {
4633 error = 0;
4634 }
4635 if (error == 0) {
4636 if (uobj) {
4637 if (uobj->pgops->pgo_detach) {
4638 uobj->pgops->pgo_detach(uobj);
4639 }
4640 entry->offset = prev->offset;
4641 }
4642
4643 entry->start = prev->start;
4644 clear_hints(map, prev);
4645 uvm_map_entry_unlink(map, prev);
4646 if (copying) {
4647 entry->aref = prev->aref;
4648 entry->etype &= ~UVM_ET_NEEDSCOPY;
4649 }
4650 uvm_map_check(map, "trymerge backmerge");
4651 uvm_mapent_free(prev);
4652 merged++;
4653 }
4654 }
4655
4656 return merged;
4657 }
4658
4659 /*
4660 * uvm_map_setup: init map
4661 *
4662 * => map must not be in service yet.
4663 */
4664
4665 void
4666 uvm_map_setup(struct vm_map *map, vaddr_t vmin, vaddr_t vmax, int flags)
4667 {
4668
4669 rb_tree_init(&map->rb_tree, &uvm_map_tree_ops);
4670 map->header.next = map->header.prev = &map->header;
4671 map->nentries = 0;
4672 map->size = 0;
4673 map->ref_count = 1;
4674 vm_map_setmin(map, vmin);
4675 vm_map_setmax(map, vmax);
4676 map->flags = flags;
4677 map->first_free = &map->header;
4678 map->hint = &map->header;
4679 map->timestamp = 0;
4680 map->busy = NULL;
4681
4682 rw_init(&map->lock);
4683 cv_init(&map->cv, "vm_map");
4684 mutex_init(&map->misc_lock, MUTEX_DRIVER, IPL_NONE);
4685 }
4686
4687 /*
4688 * U N M A P - m a i n e n t r y p o i n t
4689 */
4690
4691 /*
4692 * uvm_unmap1: remove mappings from a vm_map (from "start" up to "stop")
4693 *
4694 * => caller must check alignment and size
4695 * => map must be unlocked (we will lock it)
4696 * => flags is UVM_FLAG_QUANTUM or 0.
4697 */
4698
4699 void
4700 uvm_unmap1(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
4701 {
4702 struct vm_map_entry *dead_entries;
4703 UVMHIST_FUNC(__func__);
4704 UVMHIST_CALLARGS(maphist, " (map=%#jx, start=%#jx, end=%#jx)",
4705 (uintptr_t)map, start, end, 0);
4706
4707 KASSERTMSG(start < end,
4708 "%s: map %p: start %#jx < end %#jx", __func__, map,
4709 (uintmax_t)start, (uintmax_t)end);
4710 if (map == kernel_map) {
4711 LOCKDEBUG_MEM_CHECK((void *)start, end - start);
4712 }
4713
4714 /*
4715 * work now done by helper functions. wipe the pmap's and then
4716 * detach from the dead entries...
4717 */
4718 vm_map_lock(map);
4719 uvm_unmap_remove(map, start, end, &dead_entries, flags);
4720 vm_map_unlock(map);
4721
4722 if (dead_entries != NULL)
4723 uvm_unmap_detach(dead_entries, 0);
4724
4725 UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
4726 }
4727
4728
4729 /*
4730 * uvm_map_reference: add reference to a map
4731 *
4732 * => map need not be locked
4733 */
4734
4735 void
4736 uvm_map_reference(struct vm_map *map)
4737 {
4738
4739 atomic_inc_uint(&map->ref_count);
4740 }
4741
4742 void
4743 uvm_map_lock_entry(struct vm_map_entry *entry, krw_t op)
4744 {
4745
4746 if (entry->aref.ar_amap != NULL) {
4747 amap_lock(entry->aref.ar_amap, op);
4748 }
4749 if (UVM_ET_ISOBJ(entry)) {
4750 rw_enter(entry->object.uvm_obj->vmobjlock, op);
4751 }
4752 }
4753
4754 void
4755 uvm_map_unlock_entry(struct vm_map_entry *entry)
4756 {
4757
4758 if (UVM_ET_ISOBJ(entry)) {
4759 rw_exit(entry->object.uvm_obj->vmobjlock);
4760 }
4761 if (entry->aref.ar_amap != NULL) {
4762 amap_unlock(entry->aref.ar_amap);
4763 }
4764 }
4765
4766 #define UVM_VOADDR_TYPE_MASK 0x3UL
4767 #define UVM_VOADDR_TYPE_UOBJ 0x1UL
4768 #define UVM_VOADDR_TYPE_ANON 0x2UL
4769 #define UVM_VOADDR_OBJECT_MASK ~UVM_VOADDR_TYPE_MASK
4770
4771 #define UVM_VOADDR_GET_TYPE(voa) \
4772 ((voa)->object & UVM_VOADDR_TYPE_MASK)
4773 #define UVM_VOADDR_GET_OBJECT(voa) \
4774 ((voa)->object & UVM_VOADDR_OBJECT_MASK)
4775 #define UVM_VOADDR_SET_OBJECT(voa, obj, type) \
4776 do { \
4777 KASSERT(((uintptr_t)(obj) & UVM_VOADDR_TYPE_MASK) == 0); \
4778 (voa)->object = ((uintptr_t)(obj)) | (type); \
4779 } while (/*CONSTCOND*/0)
4780
4781 #define UVM_VOADDR_GET_UOBJ(voa) \
4782 ((struct uvm_object *)UVM_VOADDR_GET_OBJECT(voa))
4783 #define UVM_VOADDR_SET_UOBJ(voa, uobj) \
4784 UVM_VOADDR_SET_OBJECT(voa, uobj, UVM_VOADDR_TYPE_UOBJ)
4785
4786 #define UVM_VOADDR_GET_ANON(voa) \
4787 ((struct vm_anon *)UVM_VOADDR_GET_OBJECT(voa))
4788 #define UVM_VOADDR_SET_ANON(voa, anon) \
4789 UVM_VOADDR_SET_OBJECT(voa, anon, UVM_VOADDR_TYPE_ANON)
4790
4791 /*
4792 * uvm_voaddr_acquire: returns the virtual object address corresponding
4793 * to the specified virtual address.
4794 *
4795 * => resolves COW so the true page identity is tracked.
4796 *
4797 * => acquires a reference on the page's owner (uvm_object or vm_anon)
4798 */
4799 bool
4800 uvm_voaddr_acquire(struct vm_map * const map, vaddr_t const va,
4801 struct uvm_voaddr * const voaddr)
4802 {
4803 struct vm_map_entry *entry;
4804 struct vm_anon *anon = NULL;
4805 bool result = false;
4806 bool exclusive = false;
4807 void (*unlock_fn)(struct vm_map *);
4808
4809 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4810 UVMHIST_LOG(maphist,"(map=%#jx,va=%#jx)", (uintptr_t)map, va, 0, 0);
4811
4812 const vaddr_t start = trunc_page(va);
4813 const vaddr_t end = round_page(va+1);
4814
4815 lookup_again:
4816 if (__predict_false(exclusive)) {
4817 vm_map_lock(map);
4818 unlock_fn = vm_map_unlock;
4819 } else {
4820 vm_map_lock_read(map);
4821 unlock_fn = vm_map_unlock_read;
4822 }
4823
4824 if (__predict_false(!uvm_map_lookup_entry(map, start, &entry))) {
4825 unlock_fn(map);
4826 UVMHIST_LOG(maphist,"<- done (no entry)",0,0,0,0);
4827 return false;
4828 }
4829
4830 if (__predict_false(entry->protection == VM_PROT_NONE)) {
4831 unlock_fn(map);
4832 UVMHIST_LOG(maphist,"<- done (PROT_NONE)",0,0,0,0);
4833 return false;
4834 }
4835
4836 /*
4837 * We have a fast path for the common case of "no COW resolution
4838 * needed" whereby we have taken a read lock on the map and if
4839 * we don't encounter any need to create a vm_anon then great!
4840 * But if we do, we loop around again, instead taking an exclusive
4841 * lock so that we can perform the fault.
4842 *
4843 * In the event that we have to resolve the fault, we do nearly the
4844 * same work as uvm_map_pageable() does:
4845 *
4846 * 1: holding the write lock, we create any anonymous maps that need
4847 * to be created. however, we do NOT need to clip the map entries
4848 * in this case.
4849 *
4850 * 2: we downgrade to a read lock, and call uvm_fault_wire to fault
4851 * in the page (assuming the entry is not already wired). this
4852 * is done because we need the vm_anon to be present.
4853 */
4854 if (__predict_true(!VM_MAPENT_ISWIRED(entry))) {
4855
4856 bool need_fault = false;
4857
4858 /*
4859 * perform the action of vm_map_lookup that need the
4860 * write lock on the map: create an anonymous map for
4861 * a copy-on-write region, or an anonymous map for
4862 * a zero-fill region.
4863 */
4864 if (__predict_false(UVM_ET_ISSUBMAP(entry))) {
4865 unlock_fn(map);
4866 UVMHIST_LOG(maphist,"<- done (submap)",0,0,0,0);
4867 return false;
4868 }
4869 if (__predict_false(UVM_ET_ISNEEDSCOPY(entry) &&
4870 ((entry->max_protection & VM_PROT_WRITE) ||
4871 (entry->object.uvm_obj == NULL)))) {
4872 if (!exclusive) {
4873 /* need to take the slow path */
4874 KASSERT(unlock_fn == vm_map_unlock_read);
4875 vm_map_unlock_read(map);
4876 exclusive = true;
4877 goto lookup_again;
4878 }
4879 need_fault = true;
4880 amap_copy(map, entry, 0, start, end);
4881 /* XXXCDC: wait OK? */
4882 }
4883
4884 /*
4885 * do a quick check to see if the fault has already
4886 * been resolved to the upper layer.
4887 */
4888 if (__predict_true(entry->aref.ar_amap != NULL &&
4889 need_fault == false)) {
4890 amap_lock(entry->aref.ar_amap, RW_WRITER);
4891 anon = amap_lookup(&entry->aref, start - entry->start);
4892 if (__predict_true(anon != NULL)) {
4893 /* amap unlocked below */
4894 goto found_anon;
4895 }
4896 amap_unlock(entry->aref.ar_amap);
4897 need_fault = true;
4898 }
4899
4900 /*
4901 * we predict this test as false because if we reach
4902 * this point, then we are likely dealing with a
4903 * shared memory region backed by a uvm_object, in
4904 * which case a fault to create the vm_anon is not
4905 * necessary.
4906 */
4907 if (__predict_false(need_fault)) {
4908 if (exclusive) {
4909 vm_map_busy(map);
4910 vm_map_unlock(map);
4911 unlock_fn = vm_map_unbusy;
4912 }
4913
4914 if (uvm_fault_wire(map, start, end,
4915 entry->max_protection, 1)) {
4916 /* wiring failed */
4917 unlock_fn(map);
4918 UVMHIST_LOG(maphist,"<- done (wire failed)",
4919 0,0,0,0);
4920 return false;
4921 }
4922
4923 /*
4924 * now that we have resolved the fault, we can unwire
4925 * the page.
4926 */
4927 if (exclusive) {
4928 vm_map_lock(map);
4929 vm_map_unbusy(map);
4930 unlock_fn = vm_map_unlock;
4931 }
4932
4933 uvm_fault_unwire_locked(map, start, end);
4934 }
4935 }
4936
4937 /* check the upper layer */
4938 if (entry->aref.ar_amap) {
4939 amap_lock(entry->aref.ar_amap, RW_WRITER);
4940 anon = amap_lookup(&entry->aref, start - entry->start);
4941 if (anon) {
4942 found_anon: KASSERT(anon->an_lock == entry->aref.ar_amap->am_lock);
4943 anon->an_ref++;
4944 rw_obj_hold(anon->an_lock);
4945 KASSERT(anon->an_ref != 0);
4946 UVM_VOADDR_SET_ANON(voaddr, anon);
4947 voaddr->offset = va & PAGE_MASK;
4948 result = true;
4949 }
4950 amap_unlock(entry->aref.ar_amap);
4951 }
4952
4953 /* check the lower layer */
4954 if (!result && UVM_ET_ISOBJ(entry)) {
4955 struct uvm_object *uobj = entry->object.uvm_obj;
4956
4957 KASSERT(uobj != NULL);
4958 (*uobj->pgops->pgo_reference)(uobj);
4959 UVM_VOADDR_SET_UOBJ(voaddr, uobj);
4960 voaddr->offset = entry->offset + (va - entry->start);
4961 result = true;
4962 }
4963
4964 unlock_fn(map);
4965
4966 if (result) {
4967 UVMHIST_LOG(maphist,
4968 "<- done OK (type=%jd,owner=%#jx,offset=%#jx)",
4969 UVM_VOADDR_GET_TYPE(voaddr),
4970 UVM_VOADDR_GET_OBJECT(voaddr),
4971 voaddr->offset, 0);
4972 } else {
4973 UVMHIST_LOG(maphist,"<- done (failed)",0,0,0,0);
4974 }
4975
4976 return result;
4977 }
4978
4979 /*
4980 * uvm_voaddr_release: release the references held by the
4981 * vitual object address.
4982 */
4983 void
4984 uvm_voaddr_release(struct uvm_voaddr * const voaddr)
4985 {
4986
4987 switch (UVM_VOADDR_GET_TYPE(voaddr)) {
4988 case UVM_VOADDR_TYPE_UOBJ: {
4989 struct uvm_object * const uobj = UVM_VOADDR_GET_UOBJ(voaddr);
4990
4991 KASSERT(uobj != NULL);
4992 KASSERT(uobj->pgops->pgo_detach != NULL);
4993 (*uobj->pgops->pgo_detach)(uobj);
4994 break;
4995 }
4996 case UVM_VOADDR_TYPE_ANON: {
4997 struct vm_anon * const anon = UVM_VOADDR_GET_ANON(voaddr);
4998 krwlock_t *lock;
4999
5000 KASSERT(anon != NULL);
5001 rw_enter((lock = anon->an_lock), RW_WRITER);
5002 KASSERT(anon->an_ref > 0);
5003 if (--anon->an_ref == 0) {
5004 uvm_anfree(anon);
5005 }
5006 rw_exit(lock);
5007 rw_obj_free(lock);
5008 break;
5009 }
5010 default:
5011 panic("uvm_voaddr_release: bad type");
5012 }
5013 memset(voaddr, 0, sizeof(*voaddr));
5014 }
5015
5016 /*
5017 * uvm_voaddr_compare: compare two uvm_voaddr objects.
5018 *
5019 * => memcmp() semantics
5020 */
5021 int
5022 uvm_voaddr_compare(const struct uvm_voaddr * const voaddr1,
5023 const struct uvm_voaddr * const voaddr2)
5024 {
5025 const uintptr_t type1 = UVM_VOADDR_GET_TYPE(voaddr1);
5026 const uintptr_t type2 = UVM_VOADDR_GET_TYPE(voaddr2);
5027
5028 KASSERT(type1 == UVM_VOADDR_TYPE_UOBJ ||
5029 type1 == UVM_VOADDR_TYPE_ANON);
5030
5031 KASSERT(type2 == UVM_VOADDR_TYPE_UOBJ ||
5032 type2 == UVM_VOADDR_TYPE_ANON);
5033
5034 if (type1 < type2)
5035 return -1;
5036 if (type1 > type2)
5037 return 1;
5038
5039 const uintptr_t addr1 = UVM_VOADDR_GET_OBJECT(voaddr1);
5040 const uintptr_t addr2 = UVM_VOADDR_GET_OBJECT(voaddr2);
5041
5042 if (addr1 < addr2)
5043 return -1;
5044 if (addr1 > addr2)
5045 return 1;
5046
5047 if (voaddr1->offset < voaddr2->offset)
5048 return -1;
5049 if (voaddr1->offset > voaddr2->offset)
5050 return 1;
5051
5052 return 0;
5053 }
5054
5055 #if defined(DDB) || defined(DEBUGPRINT)
5056
5057 /*
5058 * uvm_map_printit: actually prints the map
5059 */
5060
5061 void
5062 uvm_map_printit(struct vm_map *map, bool full,
5063 void (*pr)(const char *, ...))
5064 {
5065 struct vm_map_entry *entry;
5066
5067 (*pr)("MAP %p: [%#lx->%#lx]\n", map, vm_map_min(map),
5068 vm_map_max(map));
5069 (*pr)("\t#ent=%d, sz=%d, ref=%d, version=%d, flags=%#x\n",
5070 map->nentries, map->size, map->ref_count, map->timestamp,
5071 map->flags);
5072 (*pr)("\tpmap=%p(resident=%ld, wired=%ld)\n", map->pmap,
5073 pmap_resident_count(map->pmap), pmap_wired_count(map->pmap));
5074 if (!full)
5075 return;
5076 for (entry = map->header.next; entry != &map->header;
5077 entry = entry->next) {
5078 (*pr)(" - %p: %#lx->%#lx: obj=%p/%#llx, amap=%p/%d\n",
5079 entry, entry->start, entry->end, entry->object.uvm_obj,
5080 (long long)entry->offset, entry->aref.ar_amap,
5081 entry->aref.ar_pageoff);
5082 (*pr)(
5083 "\tsubmap=%c, cow=%c, nc=%c, prot(max)=%d/%d, inh=%d, "
5084 "wc=%d, adv=%d\n",
5085 (entry->etype & UVM_ET_SUBMAP) ? 'T' : 'F',
5086 (entry->etype & UVM_ET_COPYONWRITE) ? 'T' : 'F',
5087 (entry->etype & UVM_ET_NEEDSCOPY) ? 'T' : 'F',
5088 entry->protection, entry->max_protection,
5089 entry->inheritance, entry->wired_count, entry->advice);
5090 }
5091 }
5092
5093 void
5094 uvm_whatis(uintptr_t addr, void (*pr)(const char *, ...))
5095 {
5096 struct vm_map *map;
5097
5098 for (map = kernel_map;;) {
5099 struct vm_map_entry *entry;
5100
5101 if (!uvm_map_lookup_entry_bytree(map, (vaddr_t)addr, &entry)) {
5102 break;
5103 }
5104 (*pr)("%p is %p+%zu from VMMAP %p\n",
5105 (void *)addr, (void *)entry->start,
5106 (size_t)(addr - (uintptr_t)entry->start), map);
5107 if (!UVM_ET_ISSUBMAP(entry)) {
5108 break;
5109 }
5110 map = entry->object.sub_map;
5111 }
5112 }
5113
5114 #endif /* DDB || DEBUGPRINT */
5115
5116 #ifndef __USER_VA0_IS_SAFE
5117 static int
5118 sysctl_user_va0_disable(SYSCTLFN_ARGS)
5119 {
5120 struct sysctlnode node;
5121 int t, error;
5122
5123 node = *rnode;
5124 node.sysctl_data = &t;
5125 t = user_va0_disable;
5126 error = sysctl_lookup(SYSCTLFN_CALL(&node));
5127 if (error || newp == NULL)
5128 return (error);
5129
5130 if (!t && user_va0_disable &&
5131 kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_MAP_VA_ZERO, 0,
5132 NULL, NULL, NULL))
5133 return EPERM;
5134
5135 user_va0_disable = !!t;
5136 return 0;
5137 }
5138 #endif
5139
5140 static int
5141 fill_vmentry(struct lwp *l, struct proc *p, struct kinfo_vmentry *kve,
5142 struct vm_map *m, struct vm_map_entry *e)
5143 {
5144 #ifndef _RUMPKERNEL
5145 int error;
5146
5147 memset(kve, 0, sizeof(*kve));
5148 KASSERT(e != NULL);
5149 if (UVM_ET_ISOBJ(e)) {
5150 struct uvm_object *uobj = e->object.uvm_obj;
5151 KASSERT(uobj != NULL);
5152 kve->kve_ref_count = uobj->uo_refs;
5153 kve->kve_count = uobj->uo_npages;
5154 if (UVM_OBJ_IS_VNODE(uobj)) {
5155 struct vattr va;
5156 struct vnode *vp = (struct vnode *)uobj;
5157 vn_lock(vp, LK_SHARED | LK_RETRY);
5158 error = VOP_GETATTR(vp, &va, l->l_cred);
5159 VOP_UNLOCK(vp);
5160 kve->kve_type = KVME_TYPE_VNODE;
5161 if (error == 0) {
5162 kve->kve_vn_size = vp->v_size;
5163 kve->kve_vn_type = (int)vp->v_type;
5164 kve->kve_vn_mode = va.va_mode;
5165 kve->kve_vn_rdev = va.va_rdev;
5166 kve->kve_vn_fileid = va.va_fileid;
5167 kve->kve_vn_fsid = va.va_fsid;
5168 error = vnode_to_path(kve->kve_path,
5169 sizeof(kve->kve_path) / 2, vp, l, p);
5170 #ifdef DIAGNOSTIC
5171 if (error)
5172 printf("%s: vp %p error %d\n", __func__,
5173 vp, error);
5174 #endif
5175 }
5176 } else if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
5177 kve->kve_type = KVME_TYPE_KERN;
5178 } else if (UVM_OBJ_IS_DEVICE(uobj)) {
5179 kve->kve_type = KVME_TYPE_DEVICE;
5180 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
5181 kve->kve_type = KVME_TYPE_ANON;
5182 } else {
5183 kve->kve_type = KVME_TYPE_OBJECT;
5184 }
5185 } else if (UVM_ET_ISSUBMAP(e)) {
5186 struct vm_map *map = e->object.sub_map;
5187 KASSERT(map != NULL);
5188 kve->kve_ref_count = map->ref_count;
5189 kve->kve_count = map->nentries;
5190 kve->kve_type = KVME_TYPE_SUBMAP;
5191 } else
5192 kve->kve_type = KVME_TYPE_UNKNOWN;
5193
5194 kve->kve_start = e->start;
5195 kve->kve_end = e->end;
5196 kve->kve_offset = e->offset;
5197 kve->kve_wired_count = e->wired_count;
5198 kve->kve_inheritance = e->inheritance;
5199 kve->kve_attributes = 0; /* unused */
5200 kve->kve_advice = e->advice;
5201 #define PROT(p) (((p) & VM_PROT_READ) ? KVME_PROT_READ : 0) | \
5202 (((p) & VM_PROT_WRITE) ? KVME_PROT_WRITE : 0) | \
5203 (((p) & VM_PROT_EXECUTE) ? KVME_PROT_EXEC : 0)
5204 kve->kve_protection = PROT(e->protection);
5205 kve->kve_max_protection = PROT(e->max_protection);
5206 kve->kve_flags |= (e->etype & UVM_ET_COPYONWRITE)
5207 ? KVME_FLAG_COW : 0;
5208 kve->kve_flags |= (e->etype & UVM_ET_NEEDSCOPY)
5209 ? KVME_FLAG_NEEDS_COPY : 0;
5210 kve->kve_flags |= (m->flags & VM_MAP_TOPDOWN)
5211 ? KVME_FLAG_GROWS_DOWN : KVME_FLAG_GROWS_UP;
5212 kve->kve_flags |= (m->flags & VM_MAP_PAGEABLE)
5213 ? KVME_FLAG_PAGEABLE : 0;
5214 #endif
5215 return 0;
5216 }
5217
5218 static int
5219 fill_vmentries(struct lwp *l, pid_t pid, u_int elem_size, void *oldp,
5220 size_t *oldlenp)
5221 {
5222 int error;
5223 struct proc *p;
5224 struct kinfo_vmentry *vme;
5225 struct vmspace *vm;
5226 struct vm_map *map;
5227 struct vm_map_entry *entry;
5228 char *dp;
5229 size_t count, vmesize;
5230
5231 if (elem_size == 0 || elem_size > 2 * sizeof(*vme))
5232 return EINVAL;
5233
5234 if (oldp) {
5235 if (*oldlenp > 10UL * 1024UL * 1024UL)
5236 return E2BIG;
5237 count = *oldlenp / elem_size;
5238 if (count == 0)
5239 return ENOMEM;
5240 vmesize = count * sizeof(*vme);
5241 } else
5242 vmesize = 0;
5243
5244 if ((error = proc_find_locked(l, &p, pid)) != 0)
5245 return error;
5246
5247 vme = NULL;
5248 count = 0;
5249
5250 if ((error = proc_vmspace_getref(p, &vm)) != 0)
5251 goto out;
5252
5253 map = &vm->vm_map;
5254 vm_map_lock_read(map);
5255
5256 dp = oldp;
5257 if (oldp)
5258 vme = kmem_alloc(vmesize, KM_SLEEP);
5259 for (entry = map->header.next; entry != &map->header;
5260 entry = entry->next) {
5261 if (oldp && (dp - (char *)oldp) < vmesize) {
5262 error = fill_vmentry(l, p, &vme[count], map, entry);
5263 if (error)
5264 goto out;
5265 dp += elem_size;
5266 }
5267 count++;
5268 }
5269 vm_map_unlock_read(map);
5270 uvmspace_free(vm);
5271
5272 out:
5273 if (pid != -1)
5274 mutex_exit(p->p_lock);
5275 if (error == 0) {
5276 const u_int esize = uimin(sizeof(*vme), elem_size);
5277 dp = oldp;
5278 for (size_t i = 0; i < count; i++) {
5279 if (oldp && (dp - (char *)oldp) < vmesize) {
5280 error = sysctl_copyout(l, &vme[i], dp, esize);
5281 if (error)
5282 break;
5283 dp += elem_size;
5284 } else
5285 break;
5286 }
5287 count *= elem_size;
5288 if (oldp != NULL && *oldlenp < count)
5289 error = ENOSPC;
5290 *oldlenp = count;
5291 }
5292 if (vme)
5293 kmem_free(vme, vmesize);
5294 return error;
5295 }
5296
5297 static int
5298 sysctl_vmproc(SYSCTLFN_ARGS)
5299 {
5300 int error;
5301
5302 if (namelen == 1 && name[0] == CTL_QUERY)
5303 return (sysctl_query(SYSCTLFN_CALL(rnode)));
5304
5305 if (namelen == 0)
5306 return EINVAL;
5307
5308 switch (name[0]) {
5309 case VM_PROC_MAP:
5310 if (namelen != 3)
5311 return EINVAL;
5312 sysctl_unlock();
5313 error = fill_vmentries(l, name[1], name[2], oldp, oldlenp);
5314 sysctl_relock();
5315 return error;
5316 default:
5317 return EINVAL;
5318 }
5319 }
5320
5321 SYSCTL_SETUP(sysctl_uvmmap_setup, "sysctl uvmmap setup")
5322 {
5323
5324 sysctl_createv(clog, 0, NULL, NULL,
5325 CTLFLAG_PERMANENT,
5326 CTLTYPE_STRUCT, "proc",
5327 SYSCTL_DESCR("Process vm information"),
5328 sysctl_vmproc, 0, NULL, 0,
5329 CTL_VM, VM_PROC, CTL_EOL);
5330 #ifndef __USER_VA0_IS_SAFE
5331 sysctl_createv(clog, 0, NULL, NULL,
5332 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5333 CTLTYPE_INT, "user_va0_disable",
5334 SYSCTL_DESCR("Disable VA 0"),
5335 sysctl_user_va0_disable, 0, &user_va0_disable, 0,
5336 CTL_VM, CTL_CREATE, CTL_EOL);
5337 #endif
5338 }
5339