uvm_map.c revision 1.391 1 /* $NetBSD: uvm_map.c,v 1.391 2021/11/25 09:40:45 skrll Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vm_map.c 8.3 (Berkeley) 1/12/94
37 * from: Id: uvm_map.c,v 1.1.2.27 1998/02/07 01:16:54 chs Exp
38 *
39 *
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
48 *
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 *
53 * Carnegie Mellon requests users of this software to return to
54 *
55 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 * School of Computer Science
57 * Carnegie Mellon University
58 * Pittsburgh PA 15213-3890
59 *
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
62 */
63
64 /*
65 * uvm_map.c: uvm map operations
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: uvm_map.c,v 1.391 2021/11/25 09:40:45 skrll Exp $");
70
71 #include "opt_ddb.h"
72 #include "opt_pax.h"
73 #include "opt_uvmhist.h"
74 #include "opt_uvm.h"
75 #include "opt_sysv.h"
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/mman.h>
80 #include <sys/proc.h>
81 #include <sys/pool.h>
82 #include <sys/kernel.h>
83 #include <sys/mount.h>
84 #include <sys/pax.h>
85 #include <sys/vnode.h>
86 #include <sys/filedesc.h>
87 #include <sys/lockdebug.h>
88 #include <sys/atomic.h>
89 #include <sys/sysctl.h>
90 #ifndef __USER_VA0_IS_SAFE
91 #include <sys/kauth.h>
92 #include "opt_user_va0_disable_default.h"
93 #endif
94
95 #include <sys/shm.h>
96
97 #include <uvm/uvm.h>
98 #include <uvm/uvm_readahead.h>
99
100 #if defined(DDB) || defined(DEBUGPRINT)
101 #include <uvm/uvm_ddb.h>
102 #endif
103
104 #ifdef UVMHIST
105 #ifndef UVMHIST_MAPHIST_SIZE
106 #define UVMHIST_MAPHIST_SIZE 100
107 #endif
108 static struct kern_history_ent maphistbuf[UVMHIST_MAPHIST_SIZE];
109 UVMHIST_DEFINE(maphist) = UVMHIST_INITIALIZER(maphist, maphistbuf);
110 #endif
111
112 #if !defined(UVMMAP_COUNTERS)
113
114 #define UVMMAP_EVCNT_DEFINE(name) /* nothing */
115 #define UVMMAP_EVCNT_INCR(ev) /* nothing */
116 #define UVMMAP_EVCNT_DECR(ev) /* nothing */
117
118 #else /* defined(UVMMAP_NOCOUNTERS) */
119
120 #include <sys/evcnt.h>
121 #define UVMMAP_EVCNT_DEFINE(name) \
122 struct evcnt uvmmap_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
123 "uvmmap", #name); \
124 EVCNT_ATTACH_STATIC(uvmmap_evcnt_##name);
125 #define UVMMAP_EVCNT_INCR(ev) uvmmap_evcnt_##ev.ev_count++
126 #define UVMMAP_EVCNT_DECR(ev) uvmmap_evcnt_##ev.ev_count--
127
128 #endif /* defined(UVMMAP_NOCOUNTERS) */
129
130 UVMMAP_EVCNT_DEFINE(ubackmerge)
131 UVMMAP_EVCNT_DEFINE(uforwmerge)
132 UVMMAP_EVCNT_DEFINE(ubimerge)
133 UVMMAP_EVCNT_DEFINE(unomerge)
134 UVMMAP_EVCNT_DEFINE(kbackmerge)
135 UVMMAP_EVCNT_DEFINE(kforwmerge)
136 UVMMAP_EVCNT_DEFINE(kbimerge)
137 UVMMAP_EVCNT_DEFINE(knomerge)
138 UVMMAP_EVCNT_DEFINE(map_call)
139 UVMMAP_EVCNT_DEFINE(mlk_call)
140 UVMMAP_EVCNT_DEFINE(mlk_hint)
141 UVMMAP_EVCNT_DEFINE(mlk_tree)
142 UVMMAP_EVCNT_DEFINE(mlk_treeloop)
143
144 const char vmmapbsy[] = "vmmapbsy";
145
146 /*
147 * cache for vmspace structures.
148 */
149
150 static struct pool_cache uvm_vmspace_cache;
151
152 /*
153 * cache for dynamically-allocated map entries.
154 */
155
156 static struct pool_cache uvm_map_entry_cache;
157
158 #ifdef PMAP_GROWKERNEL
159 /*
160 * This global represents the end of the kernel virtual address
161 * space. If we want to exceed this, we must grow the kernel
162 * virtual address space dynamically.
163 *
164 * Note, this variable is locked by kernel_map's lock.
165 */
166 vaddr_t uvm_maxkaddr;
167 #endif
168
169 #ifndef __USER_VA0_IS_SAFE
170 #ifndef __USER_VA0_DISABLE_DEFAULT
171 #define __USER_VA0_DISABLE_DEFAULT 1
172 #endif
173 #ifdef USER_VA0_DISABLE_DEFAULT /* kernel config option overrides */
174 #undef __USER_VA0_DISABLE_DEFAULT
175 #define __USER_VA0_DISABLE_DEFAULT USER_VA0_DISABLE_DEFAULT
176 #endif
177 int user_va0_disable = __USER_VA0_DISABLE_DEFAULT;
178 #endif
179
180 /*
181 * macros
182 */
183
184 /*
185 * uvm_map_align_va: round down or up virtual address
186 */
187 static __inline void
188 uvm_map_align_va(vaddr_t *vap, vsize_t align, int topdown)
189 {
190
191 KASSERT(powerof2(align));
192
193 if (align != 0 && (*vap & (align - 1)) != 0) {
194 if (topdown)
195 *vap = rounddown2(*vap, align);
196 else
197 *vap = roundup2(*vap, align);
198 }
199 }
200
201 /*
202 * UVM_ET_ISCOMPATIBLE: check some requirements for map entry merging
203 */
204 extern struct vm_map *pager_map;
205
206 #define UVM_ET_ISCOMPATIBLE(ent, type, uobj, meflags, \
207 prot, maxprot, inh, adv, wire) \
208 ((ent)->etype == (type) && \
209 (((ent)->flags ^ (meflags)) & (UVM_MAP_NOMERGE)) == 0 && \
210 (ent)->object.uvm_obj == (uobj) && \
211 (ent)->protection == (prot) && \
212 (ent)->max_protection == (maxprot) && \
213 (ent)->inheritance == (inh) && \
214 (ent)->advice == (adv) && \
215 (ent)->wired_count == (wire))
216
217 /*
218 * uvm_map_entry_link: insert entry into a map
219 *
220 * => map must be locked
221 */
222 #define uvm_map_entry_link(map, after_where, entry) do { \
223 uvm_mapent_check(entry); \
224 (map)->nentries++; \
225 (entry)->prev = (after_where); \
226 (entry)->next = (after_where)->next; \
227 (entry)->prev->next = (entry); \
228 (entry)->next->prev = (entry); \
229 uvm_rb_insert((map), (entry)); \
230 } while (/*CONSTCOND*/ 0)
231
232 /*
233 * uvm_map_entry_unlink: remove entry from a map
234 *
235 * => map must be locked
236 */
237 #define uvm_map_entry_unlink(map, entry) do { \
238 KASSERT((entry) != (map)->first_free); \
239 KASSERT((entry) != (map)->hint); \
240 uvm_mapent_check(entry); \
241 (map)->nentries--; \
242 (entry)->next->prev = (entry)->prev; \
243 (entry)->prev->next = (entry)->next; \
244 uvm_rb_remove((map), (entry)); \
245 } while (/*CONSTCOND*/ 0)
246
247 /*
248 * SAVE_HINT: saves the specified entry as the hint for future lookups.
249 *
250 * => map need not be locked.
251 */
252 #define SAVE_HINT(map, check, value) do { \
253 if ((map)->hint == (check)) \
254 (map)->hint = (value); \
255 } while (/*CONSTCOND*/ 0)
256
257 /*
258 * clear_hints: ensure that hints don't point to the entry.
259 *
260 * => map must be write-locked.
261 */
262 static void
263 clear_hints(struct vm_map *map, struct vm_map_entry *ent)
264 {
265
266 SAVE_HINT(map, ent, ent->prev);
267 if (map->first_free == ent) {
268 map->first_free = ent->prev;
269 }
270 }
271
272 /*
273 * VM_MAP_RANGE_CHECK: check and correct range
274 *
275 * => map must at least be read locked
276 */
277
278 #define VM_MAP_RANGE_CHECK(map, start, end) do { \
279 if (start < vm_map_min(map)) \
280 start = vm_map_min(map); \
281 if (end > vm_map_max(map)) \
282 end = vm_map_max(map); \
283 if (start > end) \
284 start = end; \
285 } while (/*CONSTCOND*/ 0)
286
287 /*
288 * local prototypes
289 */
290
291 static struct vm_map_entry *
292 uvm_mapent_alloc(struct vm_map *, int);
293 static void uvm_mapent_copy(struct vm_map_entry *, struct vm_map_entry *);
294 static void uvm_mapent_free(struct vm_map_entry *);
295 #if defined(DEBUG)
296 static void _uvm_mapent_check(const struct vm_map_entry *, int);
297 #define uvm_mapent_check(map) _uvm_mapent_check(map, __LINE__)
298 #else /* defined(DEBUG) */
299 #define uvm_mapent_check(e) /* nothing */
300 #endif /* defined(DEBUG) */
301
302 static void uvm_map_entry_unwire(struct vm_map *, struct vm_map_entry *);
303 static void uvm_map_reference_amap(struct vm_map_entry *, int);
304 static int uvm_map_space_avail(vaddr_t *, vsize_t, voff_t, vsize_t, int,
305 int, struct vm_map_entry *);
306 static void uvm_map_unreference_amap(struct vm_map_entry *, int);
307
308 int _uvm_map_sanity(struct vm_map *);
309 int _uvm_tree_sanity(struct vm_map *);
310 static vsize_t uvm_rb_maxgap(const struct vm_map_entry *);
311
312 #define ROOT_ENTRY(map) ((struct vm_map_entry *)(map)->rb_tree.rbt_root)
313 #define LEFT_ENTRY(entry) ((struct vm_map_entry *)(entry)->rb_node.rb_left)
314 #define RIGHT_ENTRY(entry) ((struct vm_map_entry *)(entry)->rb_node.rb_right)
315 #define PARENT_ENTRY(map, entry) \
316 (ROOT_ENTRY(map) == (entry) \
317 ? NULL : (struct vm_map_entry *)RB_FATHER(&(entry)->rb_node))
318
319 /*
320 * These get filled in if/when SYSVSHM shared memory code is loaded
321 *
322 * We do this with function pointers rather the #ifdef SYSVSHM so the
323 * SYSVSHM code can be loaded and unloaded
324 */
325 void (*uvm_shmexit)(struct vmspace *) = NULL;
326 void (*uvm_shmfork)(struct vmspace *, struct vmspace *) = NULL;
327
328 static int
329 uvm_map_compare_nodes(void *ctx, const void *nparent, const void *nkey)
330 {
331 const struct vm_map_entry *eparent = nparent;
332 const struct vm_map_entry *ekey = nkey;
333
334 KASSERT(eparent->start < ekey->start || eparent->start >= ekey->end);
335 KASSERT(ekey->start < eparent->start || ekey->start >= eparent->end);
336
337 if (eparent->start < ekey->start)
338 return -1;
339 if (eparent->end >= ekey->start)
340 return 1;
341 return 0;
342 }
343
344 static int
345 uvm_map_compare_key(void *ctx, const void *nparent, const void *vkey)
346 {
347 const struct vm_map_entry *eparent = nparent;
348 const vaddr_t va = *(const vaddr_t *) vkey;
349
350 if (eparent->start < va)
351 return -1;
352 if (eparent->end >= va)
353 return 1;
354 return 0;
355 }
356
357 static const rb_tree_ops_t uvm_map_tree_ops = {
358 .rbto_compare_nodes = uvm_map_compare_nodes,
359 .rbto_compare_key = uvm_map_compare_key,
360 .rbto_node_offset = offsetof(struct vm_map_entry, rb_node),
361 .rbto_context = NULL
362 };
363
364 /*
365 * uvm_rb_gap: return the gap size between our entry and next entry.
366 */
367 static inline vsize_t
368 uvm_rb_gap(const struct vm_map_entry *entry)
369 {
370
371 KASSERT(entry->next != NULL);
372 return entry->next->start - entry->end;
373 }
374
375 static vsize_t
376 uvm_rb_maxgap(const struct vm_map_entry *entry)
377 {
378 struct vm_map_entry *child;
379 vsize_t maxgap = entry->gap;
380
381 /*
382 * We need maxgap to be the largest gap of us or any of our
383 * descendents. Since each of our children's maxgap is the
384 * cached value of their largest gap of themselves or their
385 * descendents, we can just use that value and avoid recursing
386 * down the tree to calculate it.
387 */
388 if ((child = LEFT_ENTRY(entry)) != NULL && maxgap < child->maxgap)
389 maxgap = child->maxgap;
390
391 if ((child = RIGHT_ENTRY(entry)) != NULL && maxgap < child->maxgap)
392 maxgap = child->maxgap;
393
394 return maxgap;
395 }
396
397 static void
398 uvm_rb_fixup(struct vm_map *map, struct vm_map_entry *entry)
399 {
400 struct vm_map_entry *parent;
401
402 KASSERT(entry->gap == uvm_rb_gap(entry));
403 entry->maxgap = uvm_rb_maxgap(entry);
404
405 while ((parent = PARENT_ENTRY(map, entry)) != NULL) {
406 struct vm_map_entry *brother;
407 vsize_t maxgap = parent->gap;
408 unsigned int which;
409
410 KDASSERT(parent->gap == uvm_rb_gap(parent));
411 if (maxgap < entry->maxgap)
412 maxgap = entry->maxgap;
413 /*
414 * Since we work towards the root, we know entry's maxgap
415 * value is OK, but its brothers may now be out-of-date due
416 * to rebalancing. So refresh it.
417 */
418 which = RB_POSITION(&entry->rb_node) ^ RB_DIR_OTHER;
419 brother = (struct vm_map_entry *)parent->rb_node.rb_nodes[which];
420 if (brother != NULL) {
421 KDASSERT(brother->gap == uvm_rb_gap(brother));
422 brother->maxgap = uvm_rb_maxgap(brother);
423 if (maxgap < brother->maxgap)
424 maxgap = brother->maxgap;
425 }
426
427 parent->maxgap = maxgap;
428 entry = parent;
429 }
430 }
431
432 static void
433 uvm_rb_insert(struct vm_map *map, struct vm_map_entry *entry)
434 {
435 struct vm_map_entry *ret __diagused;
436
437 entry->gap = entry->maxgap = uvm_rb_gap(entry);
438 if (entry->prev != &map->header)
439 entry->prev->gap = uvm_rb_gap(entry->prev);
440
441 ret = rb_tree_insert_node(&map->rb_tree, entry);
442 KASSERTMSG(ret == entry,
443 "uvm_rb_insert: map %p: duplicate entry %p", map, ret);
444
445 /*
446 * If the previous entry is not our immediate left child, then it's an
447 * ancestor and will be fixed up on the way to the root. We don't
448 * have to check entry->prev against &map->header since &map->header
449 * will never be in the tree.
450 */
451 uvm_rb_fixup(map,
452 LEFT_ENTRY(entry) == entry->prev ? entry->prev : entry);
453 }
454
455 static void
456 uvm_rb_remove(struct vm_map *map, struct vm_map_entry *entry)
457 {
458 struct vm_map_entry *prev_parent = NULL, *next_parent = NULL;
459
460 /*
461 * If we are removing an interior node, then an adjacent node will
462 * be used to replace its position in the tree. Therefore we will
463 * need to fixup the tree starting at the parent of the replacement
464 * node. So record their parents for later use.
465 */
466 if (entry->prev != &map->header)
467 prev_parent = PARENT_ENTRY(map, entry->prev);
468 if (entry->next != &map->header)
469 next_parent = PARENT_ENTRY(map, entry->next);
470
471 rb_tree_remove_node(&map->rb_tree, entry);
472
473 /*
474 * If the previous node has a new parent, fixup the tree starting
475 * at the previous node's old parent.
476 */
477 if (entry->prev != &map->header) {
478 /*
479 * Update the previous entry's gap due to our absence.
480 */
481 entry->prev->gap = uvm_rb_gap(entry->prev);
482 uvm_rb_fixup(map, entry->prev);
483 if (prev_parent != NULL
484 && prev_parent != entry
485 && prev_parent != PARENT_ENTRY(map, entry->prev))
486 uvm_rb_fixup(map, prev_parent);
487 }
488
489 /*
490 * If the next node has a new parent, fixup the tree starting
491 * at the next node's old parent.
492 */
493 if (entry->next != &map->header) {
494 uvm_rb_fixup(map, entry->next);
495 if (next_parent != NULL
496 && next_parent != entry
497 && next_parent != PARENT_ENTRY(map, entry->next))
498 uvm_rb_fixup(map, next_parent);
499 }
500 }
501
502 #if defined(DEBUG)
503 int uvm_debug_check_map = 0;
504 int uvm_debug_check_rbtree = 0;
505 #define uvm_map_check(map, name) \
506 _uvm_map_check((map), (name), __FILE__, __LINE__)
507 static void
508 _uvm_map_check(struct vm_map *map, const char *name,
509 const char *file, int line)
510 {
511
512 if ((uvm_debug_check_map && _uvm_map_sanity(map)) ||
513 (uvm_debug_check_rbtree && _uvm_tree_sanity(map))) {
514 panic("uvm_map_check failed: \"%s\" map=%p (%s:%d)",
515 name, map, file, line);
516 }
517 }
518 #else /* defined(DEBUG) */
519 #define uvm_map_check(map, name) /* nothing */
520 #endif /* defined(DEBUG) */
521
522 #if defined(DEBUG) || defined(DDB)
523 int
524 _uvm_map_sanity(struct vm_map *map)
525 {
526 bool first_free_found = false;
527 bool hint_found = false;
528 const struct vm_map_entry *e;
529 struct vm_map_entry *hint = map->hint;
530
531 e = &map->header;
532 for (;;) {
533 if (map->first_free == e) {
534 first_free_found = true;
535 } else if (!first_free_found && e->next->start > e->end) {
536 printf("first_free %p should be %p\n",
537 map->first_free, e);
538 return -1;
539 }
540 if (hint == e) {
541 hint_found = true;
542 }
543
544 e = e->next;
545 if (e == &map->header) {
546 break;
547 }
548 }
549 if (!first_free_found) {
550 printf("stale first_free\n");
551 return -1;
552 }
553 if (!hint_found) {
554 printf("stale hint\n");
555 return -1;
556 }
557 return 0;
558 }
559
560 int
561 _uvm_tree_sanity(struct vm_map *map)
562 {
563 struct vm_map_entry *tmp, *trtmp;
564 int n = 0, i = 1;
565
566 for (tmp = map->header.next; tmp != &map->header; tmp = tmp->next) {
567 if (tmp->gap != uvm_rb_gap(tmp)) {
568 printf("%d/%d gap %#lx != %#lx %s\n",
569 n + 1, map->nentries,
570 (ulong)tmp->gap, (ulong)uvm_rb_gap(tmp),
571 tmp->next == &map->header ? "(last)" : "");
572 goto error;
573 }
574 /*
575 * If any entries are out of order, tmp->gap will be unsigned
576 * and will likely exceed the size of the map.
577 */
578 if (tmp->gap >= vm_map_max(map) - vm_map_min(map)) {
579 printf("too large gap %zu\n", (size_t)tmp->gap);
580 goto error;
581 }
582 n++;
583 }
584
585 if (n != map->nentries) {
586 printf("nentries: %d vs %d\n", n, map->nentries);
587 goto error;
588 }
589
590 trtmp = NULL;
591 for (tmp = map->header.next; tmp != &map->header; tmp = tmp->next) {
592 if (tmp->maxgap != uvm_rb_maxgap(tmp)) {
593 printf("maxgap %#lx != %#lx\n",
594 (ulong)tmp->maxgap,
595 (ulong)uvm_rb_maxgap(tmp));
596 goto error;
597 }
598 if (trtmp != NULL && trtmp->start >= tmp->start) {
599 printf("corrupt: 0x%"PRIxVADDR"x >= 0x%"PRIxVADDR"x\n",
600 trtmp->start, tmp->start);
601 goto error;
602 }
603
604 trtmp = tmp;
605 }
606
607 for (tmp = map->header.next; tmp != &map->header;
608 tmp = tmp->next, i++) {
609 trtmp = rb_tree_iterate(&map->rb_tree, tmp, RB_DIR_LEFT);
610 if (trtmp == NULL)
611 trtmp = &map->header;
612 if (tmp->prev != trtmp) {
613 printf("lookup: %d: %p->prev=%p: %p\n",
614 i, tmp, tmp->prev, trtmp);
615 goto error;
616 }
617 trtmp = rb_tree_iterate(&map->rb_tree, tmp, RB_DIR_RIGHT);
618 if (trtmp == NULL)
619 trtmp = &map->header;
620 if (tmp->next != trtmp) {
621 printf("lookup: %d: %p->next=%p: %p\n",
622 i, tmp, tmp->next, trtmp);
623 goto error;
624 }
625 trtmp = rb_tree_find_node(&map->rb_tree, &tmp->start);
626 if (trtmp != tmp) {
627 printf("lookup: %d: %p - %p: %p\n", i, tmp, trtmp,
628 PARENT_ENTRY(map, tmp));
629 goto error;
630 }
631 }
632
633 return (0);
634 error:
635 return (-1);
636 }
637 #endif /* defined(DEBUG) || defined(DDB) */
638
639 /*
640 * vm_map_lock: acquire an exclusive (write) lock on a map.
641 *
642 * => The locking protocol provides for guaranteed upgrade from shared ->
643 * exclusive by whichever thread currently has the map marked busy.
644 * See "LOCKING PROTOCOL NOTES" in uvm_map.h. This is horrible; among
645 * other problems, it defeats any fairness guarantees provided by RW
646 * locks.
647 */
648
649 void
650 vm_map_lock(struct vm_map *map)
651 {
652
653 for (;;) {
654 rw_enter(&map->lock, RW_WRITER);
655 if (map->busy == NULL || map->busy == curlwp) {
656 break;
657 }
658 mutex_enter(&map->misc_lock);
659 rw_exit(&map->lock);
660 if (map->busy != NULL) {
661 cv_wait(&map->cv, &map->misc_lock);
662 }
663 mutex_exit(&map->misc_lock);
664 }
665 map->timestamp++;
666 }
667
668 /*
669 * vm_map_lock_try: try to lock a map, failing if it is already locked.
670 */
671
672 bool
673 vm_map_lock_try(struct vm_map *map)
674 {
675
676 if (!rw_tryenter(&map->lock, RW_WRITER)) {
677 return false;
678 }
679 if (map->busy != NULL) {
680 rw_exit(&map->lock);
681 return false;
682 }
683 map->timestamp++;
684 return true;
685 }
686
687 /*
688 * vm_map_unlock: release an exclusive lock on a map.
689 */
690
691 void
692 vm_map_unlock(struct vm_map *map)
693 {
694
695 KASSERT(rw_write_held(&map->lock));
696 KASSERT(map->busy == NULL || map->busy == curlwp);
697 rw_exit(&map->lock);
698 }
699
700 /*
701 * vm_map_unbusy: mark the map as unbusy, and wake any waiters that
702 * want an exclusive lock.
703 */
704
705 void
706 vm_map_unbusy(struct vm_map *map)
707 {
708
709 KASSERT(map->busy == curlwp);
710
711 /*
712 * Safe to clear 'busy' and 'waiters' with only a read lock held:
713 *
714 * o they can only be set with a write lock held
715 * o writers are blocked out with a read or write hold
716 * o at any time, only one thread owns the set of values
717 */
718 mutex_enter(&map->misc_lock);
719 map->busy = NULL;
720 cv_broadcast(&map->cv);
721 mutex_exit(&map->misc_lock);
722 }
723
724 /*
725 * vm_map_lock_read: acquire a shared (read) lock on a map.
726 */
727
728 void
729 vm_map_lock_read(struct vm_map *map)
730 {
731
732 rw_enter(&map->lock, RW_READER);
733 }
734
735 /*
736 * vm_map_unlock_read: release a shared lock on a map.
737 */
738
739 void
740 vm_map_unlock_read(struct vm_map *map)
741 {
742
743 rw_exit(&map->lock);
744 }
745
746 /*
747 * vm_map_busy: mark a map as busy.
748 *
749 * => the caller must hold the map write locked
750 */
751
752 void
753 vm_map_busy(struct vm_map *map)
754 {
755
756 KASSERT(rw_write_held(&map->lock));
757 KASSERT(map->busy == NULL);
758
759 map->busy = curlwp;
760 }
761
762 /*
763 * vm_map_locked_p: return true if the map is write locked.
764 *
765 * => only for debug purposes like KASSERTs.
766 * => should not be used to verify that a map is not locked.
767 */
768
769 bool
770 vm_map_locked_p(struct vm_map *map)
771 {
772
773 return rw_write_held(&map->lock);
774 }
775
776 /*
777 * uvm_mapent_alloc: allocate a map entry
778 */
779
780 static struct vm_map_entry *
781 uvm_mapent_alloc(struct vm_map *map, int flags)
782 {
783 struct vm_map_entry *me;
784 int pflags = (flags & UVM_FLAG_NOWAIT) ? PR_NOWAIT : PR_WAITOK;
785 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
786
787 me = pool_cache_get(&uvm_map_entry_cache, pflags);
788 if (__predict_false(me == NULL)) {
789 return NULL;
790 }
791 me->flags = 0;
792
793 UVMHIST_LOG(maphist, "<- new entry=%#jx [kentry=%jd]", (uintptr_t)me,
794 (map == kernel_map), 0, 0);
795 return me;
796 }
797
798 /*
799 * uvm_mapent_free: free map entry
800 */
801
802 static void
803 uvm_mapent_free(struct vm_map_entry *me)
804 {
805 UVMHIST_FUNC(__func__);
806 UVMHIST_CALLARGS(maphist,"<- freeing map entry=%#jx [flags=%#jx]",
807 (uintptr_t)me, me->flags, 0, 0);
808 pool_cache_put(&uvm_map_entry_cache, me);
809 }
810
811 /*
812 * uvm_mapent_copy: copy a map entry, preserving flags
813 */
814
815 static inline void
816 uvm_mapent_copy(struct vm_map_entry *src, struct vm_map_entry *dst)
817 {
818
819 memcpy(dst, src, sizeof(*dst));
820 dst->flags = 0;
821 }
822
823 #if defined(DEBUG)
824 static void
825 _uvm_mapent_check(const struct vm_map_entry *entry, int line)
826 {
827
828 if (entry->start >= entry->end) {
829 goto bad;
830 }
831 if (UVM_ET_ISOBJ(entry)) {
832 if (entry->object.uvm_obj == NULL) {
833 goto bad;
834 }
835 } else if (UVM_ET_ISSUBMAP(entry)) {
836 if (entry->object.sub_map == NULL) {
837 goto bad;
838 }
839 } else {
840 if (entry->object.uvm_obj != NULL ||
841 entry->object.sub_map != NULL) {
842 goto bad;
843 }
844 }
845 if (!UVM_ET_ISOBJ(entry)) {
846 if (entry->offset != 0) {
847 goto bad;
848 }
849 }
850
851 return;
852
853 bad:
854 panic("%s: bad entry %p, line %d", __func__, entry, line);
855 }
856 #endif /* defined(DEBUG) */
857
858 /*
859 * uvm_map_entry_unwire: unwire a map entry
860 *
861 * => map should be locked by caller
862 */
863
864 static inline void
865 uvm_map_entry_unwire(struct vm_map *map, struct vm_map_entry *entry)
866 {
867
868 entry->wired_count = 0;
869 uvm_fault_unwire_locked(map, entry->start, entry->end);
870 }
871
872
873 /*
874 * wrapper for calling amap_ref()
875 */
876 static inline void
877 uvm_map_reference_amap(struct vm_map_entry *entry, int flags)
878 {
879
880 amap_ref(entry->aref.ar_amap, entry->aref.ar_pageoff,
881 (entry->end - entry->start) >> PAGE_SHIFT, flags);
882 }
883
884
885 /*
886 * wrapper for calling amap_unref()
887 */
888 static inline void
889 uvm_map_unreference_amap(struct vm_map_entry *entry, int flags)
890 {
891
892 amap_unref(entry->aref.ar_amap, entry->aref.ar_pageoff,
893 (entry->end - entry->start) >> PAGE_SHIFT, flags);
894 }
895
896
897 /*
898 * uvm_map_init: init mapping system at boot time.
899 */
900
901 void
902 uvm_map_init(void)
903 {
904 /*
905 * first, init logging system.
906 */
907
908 UVMHIST_FUNC(__func__);
909 UVMHIST_LINK_STATIC(maphist);
910 UVMHIST_LINK_STATIC(pdhist);
911 UVMHIST_CALLED(maphist);
912 UVMHIST_LOG(maphist,"<starting uvm map system>", 0, 0, 0, 0);
913
914 /*
915 * initialize the global lock for kernel map entry.
916 */
917
918 mutex_init(&uvm_kentry_lock, MUTEX_DRIVER, IPL_VM);
919 }
920
921 /*
922 * uvm_map_init_caches: init mapping system caches.
923 */
924 void
925 uvm_map_init_caches(void)
926 {
927 /*
928 * initialize caches.
929 */
930
931 pool_cache_bootstrap(&uvm_map_entry_cache, sizeof(struct vm_map_entry),
932 coherency_unit, 0, PR_LARGECACHE, "vmmpepl", NULL, IPL_NONE, NULL,
933 NULL, NULL);
934 pool_cache_bootstrap(&uvm_vmspace_cache, sizeof(struct vmspace),
935 0, 0, 0, "vmsppl", NULL, IPL_NONE, NULL, NULL, NULL);
936 }
937
938 /*
939 * clippers
940 */
941
942 /*
943 * uvm_mapent_splitadj: adjust map entries for splitting, after uvm_mapent_copy.
944 */
945
946 static void
947 uvm_mapent_splitadj(struct vm_map_entry *entry1, struct vm_map_entry *entry2,
948 vaddr_t splitat)
949 {
950 vaddr_t adj;
951
952 KASSERT(entry1->start < splitat);
953 KASSERT(splitat < entry1->end);
954
955 adj = splitat - entry1->start;
956 entry1->end = entry2->start = splitat;
957
958 if (entry1->aref.ar_amap) {
959 amap_splitref(&entry1->aref, &entry2->aref, adj);
960 }
961 if (UVM_ET_ISSUBMAP(entry1)) {
962 /* ... unlikely to happen, but play it safe */
963 uvm_map_reference(entry1->object.sub_map);
964 } else if (UVM_ET_ISOBJ(entry1)) {
965 KASSERT(entry1->object.uvm_obj != NULL); /* suppress coverity */
966 entry2->offset += adj;
967 if (entry1->object.uvm_obj->pgops &&
968 entry1->object.uvm_obj->pgops->pgo_reference)
969 entry1->object.uvm_obj->pgops->pgo_reference(
970 entry1->object.uvm_obj);
971 }
972 }
973
974 /*
975 * uvm_map_clip_start: ensure that the entry begins at or after
976 * the starting address, if it doesn't we split the entry.
977 *
978 * => caller should use UVM_MAP_CLIP_START macro rather than calling
979 * this directly
980 * => map must be locked by caller
981 */
982
983 void
984 uvm_map_clip_start(struct vm_map *map, struct vm_map_entry *entry,
985 vaddr_t start)
986 {
987 struct vm_map_entry *new_entry;
988
989 /* uvm_map_simplify_entry(map, entry); */ /* XXX */
990
991 uvm_map_check(map, "clip_start entry");
992 uvm_mapent_check(entry);
993
994 /*
995 * Split off the front portion. note that we must insert the new
996 * entry BEFORE this one, so that this entry has the specified
997 * starting address.
998 */
999 new_entry = uvm_mapent_alloc(map, 0);
1000 uvm_mapent_copy(entry, new_entry); /* entry -> new_entry */
1001 uvm_mapent_splitadj(new_entry, entry, start);
1002 uvm_map_entry_link(map, entry->prev, new_entry);
1003
1004 uvm_map_check(map, "clip_start leave");
1005 }
1006
1007 /*
1008 * uvm_map_clip_end: ensure that the entry ends at or before
1009 * the ending address, if it does't we split the reference
1010 *
1011 * => caller should use UVM_MAP_CLIP_END macro rather than calling
1012 * this directly
1013 * => map must be locked by caller
1014 */
1015
1016 void
1017 uvm_map_clip_end(struct vm_map *map, struct vm_map_entry *entry, vaddr_t end)
1018 {
1019 struct vm_map_entry *new_entry;
1020
1021 uvm_map_check(map, "clip_end entry");
1022 uvm_mapent_check(entry);
1023
1024 /*
1025 * Create a new entry and insert it
1026 * AFTER the specified entry
1027 */
1028 new_entry = uvm_mapent_alloc(map, 0);
1029 uvm_mapent_copy(entry, new_entry); /* entry -> new_entry */
1030 uvm_mapent_splitadj(entry, new_entry, end);
1031 uvm_map_entry_link(map, entry, new_entry);
1032
1033 uvm_map_check(map, "clip_end leave");
1034 }
1035
1036 /*
1037 * M A P - m a i n e n t r y p o i n t
1038 */
1039 /*
1040 * uvm_map: establish a valid mapping in a map
1041 *
1042 * => assume startp is page aligned.
1043 * => assume size is a multiple of PAGE_SIZE.
1044 * => assume sys_mmap provides enough of a "hint" to have us skip
1045 * over text/data/bss area.
1046 * => map must be unlocked (we will lock it)
1047 * => <uobj,uoffset> value meanings (4 cases):
1048 * [1] <NULL,uoffset> == uoffset is a hint for PMAP_PREFER
1049 * [2] <NULL,UVM_UNKNOWN_OFFSET> == don't PMAP_PREFER
1050 * [3] <uobj,uoffset> == normal mapping
1051 * [4] <uobj,UVM_UNKNOWN_OFFSET> == uvm_map finds offset based on VA
1052 *
1053 * case [4] is for kernel mappings where we don't know the offset until
1054 * we've found a virtual address. note that kernel object offsets are
1055 * always relative to vm_map_min(kernel_map).
1056 *
1057 * => if `align' is non-zero, we align the virtual address to the specified
1058 * alignment.
1059 * this is provided as a mechanism for large pages.
1060 *
1061 * => XXXCDC: need way to map in external amap?
1062 */
1063
1064 int
1065 uvm_map(struct vm_map *map, vaddr_t *startp /* IN/OUT */, vsize_t size,
1066 struct uvm_object *uobj, voff_t uoffset, vsize_t align, uvm_flag_t flags)
1067 {
1068 struct uvm_map_args args;
1069 struct vm_map_entry *new_entry;
1070 int error;
1071
1072 KASSERT((size & PAGE_MASK) == 0);
1073 KASSERT((flags & UVM_FLAG_FIXED) == 0 || align == 0);
1074
1075 /*
1076 * for pager_map, allocate the new entry first to avoid sleeping
1077 * for memory while we have the map locked.
1078 */
1079
1080 new_entry = NULL;
1081 if (map == pager_map) {
1082 new_entry = uvm_mapent_alloc(map, (flags & UVM_FLAG_NOWAIT));
1083 if (__predict_false(new_entry == NULL))
1084 return ENOMEM;
1085 }
1086 if (map == pager_map)
1087 flags |= UVM_FLAG_NOMERGE;
1088
1089 error = uvm_map_prepare(map, *startp, size, uobj, uoffset, align,
1090 flags, &args);
1091 if (!error) {
1092 error = uvm_map_enter(map, &args, new_entry);
1093 *startp = args.uma_start;
1094 } else if (new_entry) {
1095 uvm_mapent_free(new_entry);
1096 }
1097
1098 #if defined(DEBUG)
1099 if (!error && VM_MAP_IS_KERNEL(map) && (flags & UVM_FLAG_NOWAIT) == 0) {
1100 uvm_km_check_empty(map, *startp, *startp + size);
1101 }
1102 #endif /* defined(DEBUG) */
1103
1104 return error;
1105 }
1106
1107 /*
1108 * uvm_map_prepare:
1109 *
1110 * called with map unlocked.
1111 * on success, returns the map locked.
1112 */
1113
1114 int
1115 uvm_map_prepare(struct vm_map *map, vaddr_t start, vsize_t size,
1116 struct uvm_object *uobj, voff_t uoffset, vsize_t align, uvm_flag_t flags,
1117 struct uvm_map_args *args)
1118 {
1119 struct vm_map_entry *prev_entry;
1120 vm_prot_t prot = UVM_PROTECTION(flags);
1121 vm_prot_t maxprot = UVM_MAXPROTECTION(flags);
1122
1123 UVMHIST_FUNC(__func__);
1124 UVMHIST_CALLARGS(maphist, "(map=%#jx, start=%#jx, size=%jx, flags=%#jx)",
1125 (uintptr_t)map, start, size, flags);
1126 UVMHIST_LOG(maphist, " uobj/offset %#jx/%jd", (uintptr_t)uobj,
1127 uoffset,0,0);
1128
1129 /*
1130 * detect a popular device driver bug.
1131 */
1132
1133 KASSERT(doing_shutdown || curlwp != NULL);
1134
1135 /*
1136 * zero-sized mapping doesn't make any sense.
1137 */
1138 KASSERT(size > 0);
1139
1140 KASSERT((~flags & (UVM_FLAG_NOWAIT | UVM_FLAG_WAITVA)) != 0);
1141
1142 uvm_map_check(map, "map entry");
1143
1144 /*
1145 * check sanity of protection code
1146 */
1147
1148 if ((prot & maxprot) != prot) {
1149 UVMHIST_LOG(maphist, "<- prot. failure: prot=%#jx, max=%#jx",
1150 prot, maxprot,0,0);
1151 return EACCES;
1152 }
1153
1154 /*
1155 * figure out where to put new VM range
1156 */
1157 retry:
1158 if (vm_map_lock_try(map) == false) {
1159 if ((flags & UVM_FLAG_TRYLOCK) != 0) {
1160 return EAGAIN;
1161 }
1162 vm_map_lock(map); /* could sleep here */
1163 }
1164 if (flags & UVM_FLAG_UNMAP) {
1165 KASSERT(flags & UVM_FLAG_FIXED);
1166 KASSERT((flags & UVM_FLAG_NOWAIT) == 0);
1167
1168 /*
1169 * Set prev_entry to what it will need to be after any existing
1170 * entries are removed later in uvm_map_enter().
1171 */
1172
1173 if (uvm_map_lookup_entry(map, start, &prev_entry)) {
1174 if (start == prev_entry->start)
1175 prev_entry = prev_entry->prev;
1176 else
1177 UVM_MAP_CLIP_END(map, prev_entry, start);
1178 SAVE_HINT(map, map->hint, prev_entry);
1179 }
1180 } else {
1181 prev_entry = uvm_map_findspace(map, start, size, &start,
1182 uobj, uoffset, align, flags);
1183 }
1184 if (prev_entry == NULL) {
1185 unsigned int timestamp;
1186
1187 timestamp = map->timestamp;
1188 UVMHIST_LOG(maphist,"waiting va timestamp=%#jx",
1189 timestamp,0,0,0);
1190 map->flags |= VM_MAP_WANTVA;
1191 vm_map_unlock(map);
1192
1193 /*
1194 * try to reclaim kva and wait until someone does unmap.
1195 * fragile locking here, so we awaken every second to
1196 * recheck the condition.
1197 */
1198
1199 mutex_enter(&map->misc_lock);
1200 while ((map->flags & VM_MAP_WANTVA) != 0 &&
1201 map->timestamp == timestamp) {
1202 if ((flags & UVM_FLAG_WAITVA) == 0) {
1203 mutex_exit(&map->misc_lock);
1204 UVMHIST_LOG(maphist,
1205 "<- uvm_map_findspace failed!", 0,0,0,0);
1206 return ENOMEM;
1207 } else {
1208 cv_timedwait(&map->cv, &map->misc_lock, hz);
1209 }
1210 }
1211 mutex_exit(&map->misc_lock);
1212 goto retry;
1213 }
1214
1215 #ifdef PMAP_GROWKERNEL
1216 /*
1217 * If the kernel pmap can't map the requested space,
1218 * then allocate more resources for it.
1219 */
1220 if (map == kernel_map && uvm_maxkaddr < (start + size))
1221 uvm_maxkaddr = pmap_growkernel(start + size);
1222 #endif
1223
1224 UVMMAP_EVCNT_INCR(map_call);
1225
1226 /*
1227 * if uobj is null, then uoffset is either a VAC hint for PMAP_PREFER
1228 * [typically from uvm_map_reserve] or it is UVM_UNKNOWN_OFFSET. in
1229 * either case we want to zero it before storing it in the map entry
1230 * (because it looks strange and confusing when debugging...)
1231 *
1232 * if uobj is not null
1233 * if uoffset is not UVM_UNKNOWN_OFFSET then we have a normal mapping
1234 * and we do not need to change uoffset.
1235 * if uoffset is UVM_UNKNOWN_OFFSET then we need to find the offset
1236 * now (based on the starting address of the map). this case is
1237 * for kernel object mappings where we don't know the offset until
1238 * the virtual address is found (with uvm_map_findspace). the
1239 * offset is the distance we are from the start of the map.
1240 */
1241
1242 if (uobj == NULL) {
1243 uoffset = 0;
1244 } else {
1245 if (uoffset == UVM_UNKNOWN_OFFSET) {
1246 KASSERT(UVM_OBJ_IS_KERN_OBJECT(uobj));
1247 uoffset = start - vm_map_min(kernel_map);
1248 }
1249 }
1250
1251 args->uma_flags = flags;
1252 args->uma_prev = prev_entry;
1253 args->uma_start = start;
1254 args->uma_size = size;
1255 args->uma_uobj = uobj;
1256 args->uma_uoffset = uoffset;
1257
1258 UVMHIST_LOG(maphist, "<- done!", 0,0,0,0);
1259 return 0;
1260 }
1261
1262 /*
1263 * uvm_map_enter:
1264 *
1265 * called with map locked.
1266 * unlock the map before returning.
1267 */
1268
1269 int
1270 uvm_map_enter(struct vm_map *map, const struct uvm_map_args *args,
1271 struct vm_map_entry *new_entry)
1272 {
1273 struct vm_map_entry *prev_entry = args->uma_prev;
1274 struct vm_map_entry *dead = NULL, *dead_entries = NULL;
1275
1276 const uvm_flag_t flags = args->uma_flags;
1277 const vm_prot_t prot = UVM_PROTECTION(flags);
1278 const vm_prot_t maxprot = UVM_MAXPROTECTION(flags);
1279 const vm_inherit_t inherit = UVM_INHERIT(flags);
1280 const int amapwaitflag = (flags & UVM_FLAG_NOWAIT) ?
1281 AMAP_EXTEND_NOWAIT : 0;
1282 const int advice = UVM_ADVICE(flags);
1283
1284 vaddr_t start = args->uma_start;
1285 vsize_t size = args->uma_size;
1286 struct uvm_object *uobj = args->uma_uobj;
1287 voff_t uoffset = args->uma_uoffset;
1288
1289 const int kmap = (vm_map_pmap(map) == pmap_kernel());
1290 int merged = 0;
1291 int error;
1292 int newetype;
1293
1294 UVMHIST_FUNC(__func__);
1295 UVMHIST_CALLARGS(maphist, "(map=%#jx, start=%#jx, size=%ju, flags=%#jx)",
1296 (uintptr_t)map, start, size, flags);
1297 UVMHIST_LOG(maphist, " uobj/offset %#jx/%jd", (uintptr_t)uobj,
1298 uoffset,0,0);
1299
1300 KASSERT(map->hint == prev_entry); /* bimerge case assumes this */
1301 KASSERT(vm_map_locked_p(map));
1302 KASSERT((flags & (UVM_FLAG_NOWAIT | UVM_FLAG_UNMAP)) !=
1303 (UVM_FLAG_NOWAIT | UVM_FLAG_UNMAP));
1304
1305 if (uobj)
1306 newetype = UVM_ET_OBJ;
1307 else
1308 newetype = 0;
1309
1310 if (flags & UVM_FLAG_COPYONW) {
1311 newetype |= UVM_ET_COPYONWRITE;
1312 if ((flags & UVM_FLAG_OVERLAY) == 0)
1313 newetype |= UVM_ET_NEEDSCOPY;
1314 }
1315
1316 /*
1317 * For mappings with unmap, remove any old entries now. Adding the new
1318 * entry cannot fail because that can only happen if UVM_FLAG_NOWAIT
1319 * is set, and we do not support nowait and unmap together.
1320 */
1321
1322 if (flags & UVM_FLAG_UNMAP) {
1323 KASSERT(flags & UVM_FLAG_FIXED);
1324 uvm_unmap_remove(map, start, start + size, &dead_entries, 0);
1325 #ifdef DEBUG
1326 struct vm_map_entry *tmp_entry __diagused;
1327 bool rv __diagused;
1328
1329 rv = uvm_map_lookup_entry(map, start, &tmp_entry);
1330 KASSERT(!rv);
1331 KASSERTMSG(prev_entry == tmp_entry,
1332 "args %p prev_entry %p tmp_entry %p",
1333 args, prev_entry, tmp_entry);
1334 #endif
1335 SAVE_HINT(map, map->hint, prev_entry);
1336 }
1337
1338 /*
1339 * try and insert in map by extending previous entry, if possible.
1340 * XXX: we don't try and pull back the next entry. might be useful
1341 * for a stack, but we are currently allocating our stack in advance.
1342 */
1343
1344 if (flags & UVM_FLAG_NOMERGE)
1345 goto nomerge;
1346
1347 if (prev_entry->end == start &&
1348 prev_entry != &map->header &&
1349 UVM_ET_ISCOMPATIBLE(prev_entry, newetype, uobj, 0,
1350 prot, maxprot, inherit, advice, 0)) {
1351
1352 if (uobj && prev_entry->offset +
1353 (prev_entry->end - prev_entry->start) != uoffset)
1354 goto forwardmerge;
1355
1356 /*
1357 * can't extend a shared amap. note: no need to lock amap to
1358 * look at refs since we don't care about its exact value.
1359 * if it is one (i.e. we have only reference) it will stay there
1360 */
1361
1362 if (prev_entry->aref.ar_amap &&
1363 amap_refs(prev_entry->aref.ar_amap) != 1) {
1364 goto forwardmerge;
1365 }
1366
1367 if (prev_entry->aref.ar_amap) {
1368 error = amap_extend(prev_entry, size,
1369 amapwaitflag | AMAP_EXTEND_FORWARDS);
1370 if (error)
1371 goto nomerge;
1372 }
1373
1374 if (kmap) {
1375 UVMMAP_EVCNT_INCR(kbackmerge);
1376 } else {
1377 UVMMAP_EVCNT_INCR(ubackmerge);
1378 }
1379 UVMHIST_LOG(maphist," starting back merge", 0, 0, 0, 0);
1380
1381 /*
1382 * drop our reference to uobj since we are extending a reference
1383 * that we already have (the ref count can not drop to zero).
1384 */
1385
1386 if (uobj && uobj->pgops->pgo_detach)
1387 uobj->pgops->pgo_detach(uobj);
1388
1389 /*
1390 * Now that we've merged the entries, note that we've grown
1391 * and our gap has shrunk. Then fix the tree.
1392 */
1393 prev_entry->end += size;
1394 prev_entry->gap -= size;
1395 uvm_rb_fixup(map, prev_entry);
1396
1397 uvm_map_check(map, "map backmerged");
1398
1399 UVMHIST_LOG(maphist,"<- done (via backmerge)!", 0, 0, 0, 0);
1400 merged++;
1401 }
1402
1403 forwardmerge:
1404 if (prev_entry->next->start == (start + size) &&
1405 prev_entry->next != &map->header &&
1406 UVM_ET_ISCOMPATIBLE(prev_entry->next, newetype, uobj, 0,
1407 prot, maxprot, inherit, advice, 0)) {
1408
1409 if (uobj && prev_entry->next->offset != uoffset + size)
1410 goto nomerge;
1411
1412 /*
1413 * can't extend a shared amap. note: no need to lock amap to
1414 * look at refs since we don't care about its exact value.
1415 * if it is one (i.e. we have only reference) it will stay there.
1416 *
1417 * note that we also can't merge two amaps, so if we
1418 * merged with the previous entry which has an amap,
1419 * and the next entry also has an amap, we give up.
1420 *
1421 * Interesting cases:
1422 * amap, new, amap -> give up second merge (single fwd extend)
1423 * amap, new, none -> double forward extend (extend again here)
1424 * none, new, amap -> double backward extend (done here)
1425 * uobj, new, amap -> single backward extend (done here)
1426 *
1427 * XXX should we attempt to deal with someone refilling
1428 * the deallocated region between two entries that are
1429 * backed by the same amap (ie, arefs is 2, "prev" and
1430 * "next" refer to it, and adding this allocation will
1431 * close the hole, thus restoring arefs to 1 and
1432 * deallocating the "next" vm_map_entry)? -- @@@
1433 */
1434
1435 if (prev_entry->next->aref.ar_amap &&
1436 (amap_refs(prev_entry->next->aref.ar_amap) != 1 ||
1437 (merged && prev_entry->aref.ar_amap))) {
1438 goto nomerge;
1439 }
1440
1441 if (merged) {
1442 /*
1443 * Try to extend the amap of the previous entry to
1444 * cover the next entry as well. If it doesn't work
1445 * just skip on, don't actually give up, since we've
1446 * already completed the back merge.
1447 */
1448 if (prev_entry->aref.ar_amap) {
1449 if (amap_extend(prev_entry,
1450 prev_entry->next->end -
1451 prev_entry->next->start,
1452 amapwaitflag | AMAP_EXTEND_FORWARDS))
1453 goto nomerge;
1454 }
1455
1456 /*
1457 * Try to extend the amap of the *next* entry
1458 * back to cover the new allocation *and* the
1459 * previous entry as well (the previous merge
1460 * didn't have an amap already otherwise we
1461 * wouldn't be checking here for an amap). If
1462 * it doesn't work just skip on, again, don't
1463 * actually give up, since we've already
1464 * completed the back merge.
1465 */
1466 else if (prev_entry->next->aref.ar_amap) {
1467 if (amap_extend(prev_entry->next,
1468 prev_entry->end -
1469 prev_entry->start,
1470 amapwaitflag | AMAP_EXTEND_BACKWARDS))
1471 goto nomerge;
1472 }
1473 } else {
1474 /*
1475 * Pull the next entry's amap backwards to cover this
1476 * new allocation.
1477 */
1478 if (prev_entry->next->aref.ar_amap) {
1479 error = amap_extend(prev_entry->next, size,
1480 amapwaitflag | AMAP_EXTEND_BACKWARDS);
1481 if (error)
1482 goto nomerge;
1483 }
1484 }
1485
1486 if (merged) {
1487 if (kmap) {
1488 UVMMAP_EVCNT_DECR(kbackmerge);
1489 UVMMAP_EVCNT_INCR(kbimerge);
1490 } else {
1491 UVMMAP_EVCNT_DECR(ubackmerge);
1492 UVMMAP_EVCNT_INCR(ubimerge);
1493 }
1494 } else {
1495 if (kmap) {
1496 UVMMAP_EVCNT_INCR(kforwmerge);
1497 } else {
1498 UVMMAP_EVCNT_INCR(uforwmerge);
1499 }
1500 }
1501 UVMHIST_LOG(maphist," starting forward merge", 0, 0, 0, 0);
1502
1503 /*
1504 * drop our reference to uobj since we are extending a reference
1505 * that we already have (the ref count can not drop to zero).
1506 */
1507 if (uobj && uobj->pgops->pgo_detach)
1508 uobj->pgops->pgo_detach(uobj);
1509
1510 if (merged) {
1511 dead = prev_entry->next;
1512 prev_entry->end = dead->end;
1513 uvm_map_entry_unlink(map, dead);
1514 if (dead->aref.ar_amap != NULL) {
1515 prev_entry->aref = dead->aref;
1516 dead->aref.ar_amap = NULL;
1517 }
1518 } else {
1519 prev_entry->next->start -= size;
1520 if (prev_entry != &map->header) {
1521 prev_entry->gap -= size;
1522 KASSERT(prev_entry->gap == uvm_rb_gap(prev_entry));
1523 uvm_rb_fixup(map, prev_entry);
1524 }
1525 if (uobj)
1526 prev_entry->next->offset = uoffset;
1527 }
1528
1529 uvm_map_check(map, "map forwardmerged");
1530
1531 UVMHIST_LOG(maphist,"<- done forwardmerge", 0, 0, 0, 0);
1532 merged++;
1533 }
1534
1535 nomerge:
1536 if (!merged) {
1537 UVMHIST_LOG(maphist," allocating new map entry", 0, 0, 0, 0);
1538 if (kmap) {
1539 UVMMAP_EVCNT_INCR(knomerge);
1540 } else {
1541 UVMMAP_EVCNT_INCR(unomerge);
1542 }
1543
1544 /*
1545 * allocate new entry and link it in.
1546 */
1547
1548 if (new_entry == NULL) {
1549 new_entry = uvm_mapent_alloc(map,
1550 (flags & UVM_FLAG_NOWAIT));
1551 if (__predict_false(new_entry == NULL)) {
1552 error = ENOMEM;
1553 goto done;
1554 }
1555 }
1556 new_entry->start = start;
1557 new_entry->end = new_entry->start + size;
1558 new_entry->object.uvm_obj = uobj;
1559 new_entry->offset = uoffset;
1560
1561 new_entry->etype = newetype;
1562
1563 if (flags & UVM_FLAG_NOMERGE) {
1564 new_entry->flags |= UVM_MAP_NOMERGE;
1565 }
1566
1567 new_entry->protection = prot;
1568 new_entry->max_protection = maxprot;
1569 new_entry->inheritance = inherit;
1570 new_entry->wired_count = 0;
1571 new_entry->advice = advice;
1572 if (flags & UVM_FLAG_OVERLAY) {
1573
1574 /*
1575 * to_add: for BSS we overallocate a little since we
1576 * are likely to extend
1577 */
1578
1579 vaddr_t to_add = (flags & UVM_FLAG_AMAPPAD) ?
1580 UVM_AMAP_CHUNK << PAGE_SHIFT : 0;
1581 struct vm_amap *amap = amap_alloc(size, to_add,
1582 (flags & UVM_FLAG_NOWAIT));
1583 if (__predict_false(amap == NULL)) {
1584 error = ENOMEM;
1585 goto done;
1586 }
1587 new_entry->aref.ar_pageoff = 0;
1588 new_entry->aref.ar_amap = amap;
1589 } else {
1590 new_entry->aref.ar_pageoff = 0;
1591 new_entry->aref.ar_amap = NULL;
1592 }
1593 uvm_map_entry_link(map, prev_entry, new_entry);
1594
1595 /*
1596 * Update the free space hint
1597 */
1598
1599 if ((map->first_free == prev_entry) &&
1600 (prev_entry->end >= new_entry->start))
1601 map->first_free = new_entry;
1602
1603 new_entry = NULL;
1604 }
1605
1606 map->size += size;
1607
1608 UVMHIST_LOG(maphist,"<- done!", 0, 0, 0, 0);
1609
1610 error = 0;
1611
1612 done:
1613 vm_map_unlock(map);
1614
1615 if (new_entry) {
1616 uvm_mapent_free(new_entry);
1617 }
1618 if (dead) {
1619 KDASSERT(merged);
1620 uvm_mapent_free(dead);
1621 }
1622 if (dead_entries)
1623 uvm_unmap_detach(dead_entries, 0);
1624
1625 return error;
1626 }
1627
1628 /*
1629 * uvm_map_lookup_entry_bytree: lookup an entry in tree
1630 */
1631
1632 static inline bool
1633 uvm_map_lookup_entry_bytree(struct vm_map *map, vaddr_t address,
1634 struct vm_map_entry **entry /* OUT */)
1635 {
1636 struct vm_map_entry *prev = &map->header;
1637 struct vm_map_entry *cur = ROOT_ENTRY(map);
1638
1639 while (cur) {
1640 UVMMAP_EVCNT_INCR(mlk_treeloop);
1641 if (address >= cur->start) {
1642 if (address < cur->end) {
1643 *entry = cur;
1644 return true;
1645 }
1646 prev = cur;
1647 cur = RIGHT_ENTRY(cur);
1648 } else
1649 cur = LEFT_ENTRY(cur);
1650 }
1651 *entry = prev;
1652 return false;
1653 }
1654
1655 /*
1656 * uvm_map_lookup_entry: find map entry at or before an address
1657 *
1658 * => map must at least be read-locked by caller
1659 * => entry is returned in "entry"
1660 * => return value is true if address is in the returned entry
1661 */
1662
1663 bool
1664 uvm_map_lookup_entry(struct vm_map *map, vaddr_t address,
1665 struct vm_map_entry **entry /* OUT */)
1666 {
1667 struct vm_map_entry *cur;
1668 UVMHIST_FUNC(__func__);
1669 UVMHIST_CALLARGS(maphist,"(map=%#jx,addr=%#jx,ent=%#jx)",
1670 (uintptr_t)map, address, (uintptr_t)entry, 0);
1671
1672 /*
1673 * make a quick check to see if we are already looking at
1674 * the entry we want (which is usually the case). note also
1675 * that we don't need to save the hint here... it is the
1676 * same hint (unless we are at the header, in which case the
1677 * hint didn't buy us anything anyway).
1678 */
1679
1680 cur = map->hint;
1681 UVMMAP_EVCNT_INCR(mlk_call);
1682 if (cur != &map->header &&
1683 address >= cur->start && cur->end > address) {
1684 UVMMAP_EVCNT_INCR(mlk_hint);
1685 *entry = cur;
1686 UVMHIST_LOG(maphist,"<- got it via hint (%#jx)",
1687 (uintptr_t)cur, 0, 0, 0);
1688 uvm_mapent_check(*entry);
1689 return (true);
1690 }
1691 uvm_map_check(map, __func__);
1692
1693 /*
1694 * lookup in the tree.
1695 */
1696
1697 UVMMAP_EVCNT_INCR(mlk_tree);
1698 if (__predict_true(uvm_map_lookup_entry_bytree(map, address, entry))) {
1699 SAVE_HINT(map, map->hint, *entry);
1700 UVMHIST_LOG(maphist,"<- search got it (%#jx)",
1701 (uintptr_t)cur, 0, 0, 0);
1702 KDASSERT((*entry)->start <= address);
1703 KDASSERT(address < (*entry)->end);
1704 uvm_mapent_check(*entry);
1705 return (true);
1706 }
1707
1708 SAVE_HINT(map, map->hint, *entry);
1709 UVMHIST_LOG(maphist,"<- failed!",0,0,0,0);
1710 KDASSERT((*entry) == &map->header || (*entry)->end <= address);
1711 KDASSERT((*entry)->next == &map->header ||
1712 address < (*entry)->next->start);
1713 return (false);
1714 }
1715
1716 /*
1717 * See if the range between start and start + length fits in the gap
1718 * entry->next->start and entry->end. Returns 1 if fits, 0 if doesn't
1719 * fit, and -1 address wraps around.
1720 */
1721 static int
1722 uvm_map_space_avail(vaddr_t *start, vsize_t length, voff_t uoffset,
1723 vsize_t align, int flags, int topdown, struct vm_map_entry *entry)
1724 {
1725 vaddr_t end;
1726
1727 #ifdef PMAP_PREFER
1728 /*
1729 * push start address forward as needed to avoid VAC alias problems.
1730 * we only do this if a valid offset is specified.
1731 */
1732
1733 if (uoffset != UVM_UNKNOWN_OFFSET)
1734 PMAP_PREFER(uoffset, start, length, topdown);
1735 #endif
1736 if ((flags & UVM_FLAG_COLORMATCH) != 0) {
1737 KASSERT(align < uvmexp.ncolors);
1738 if (uvmexp.ncolors > 1) {
1739 const u_int colormask = uvmexp.colormask;
1740 const u_int colorsize = colormask + 1;
1741 vaddr_t hint = atop(*start);
1742 const u_int color = hint & colormask;
1743 if (color != align) {
1744 hint -= color; /* adjust to color boundary */
1745 KASSERT((hint & colormask) == 0);
1746 if (topdown) {
1747 if (align > color)
1748 hint -= colorsize;
1749 } else {
1750 if (align < color)
1751 hint += colorsize;
1752 }
1753 *start = ptoa(hint + align); /* adjust to color */
1754 }
1755 }
1756 } else {
1757 KASSERT(powerof2(align));
1758 uvm_map_align_va(start, align, topdown);
1759 /*
1760 * XXX Should we PMAP_PREFER() here again?
1761 * eh...i think we're okay
1762 */
1763 }
1764
1765 /*
1766 * Find the end of the proposed new region. Be sure we didn't
1767 * wrap around the address; if so, we lose. Otherwise, if the
1768 * proposed new region fits before the next entry, we win.
1769 */
1770
1771 end = *start + length;
1772 if (end < *start)
1773 return (-1);
1774
1775 if (entry->next->start >= end && *start >= entry->end)
1776 return (1);
1777
1778 return (0);
1779 }
1780
1781 /*
1782 * uvm_map_findspace: find "length" sized space in "map".
1783 *
1784 * => "hint" is a hint about where we want it, unless UVM_FLAG_FIXED is
1785 * set in "flags" (in which case we insist on using "hint").
1786 * => "result" is VA returned
1787 * => uobj/uoffset are to be used to handle VAC alignment, if required
1788 * => if "align" is non-zero, we attempt to align to that value.
1789 * => caller must at least have read-locked map
1790 * => returns NULL on failure, or pointer to prev. map entry if success
1791 * => note this is a cross between the old vm_map_findspace and vm_map_find
1792 */
1793
1794 struct vm_map_entry *
1795 uvm_map_findspace(struct vm_map *map, vaddr_t hint, vsize_t length,
1796 vaddr_t *result /* OUT */, struct uvm_object *uobj, voff_t uoffset,
1797 vsize_t align, int flags)
1798 {
1799 struct vm_map_entry *entry;
1800 struct vm_map_entry *child, *prev, *tmp;
1801 vaddr_t orig_hint __diagused;
1802 const int topdown = map->flags & VM_MAP_TOPDOWN;
1803 UVMHIST_FUNC(__func__);
1804 UVMHIST_CALLARGS(maphist, "(map=%#jx, hint=%#jx, len=%ju, flags=%#jx...",
1805 (uintptr_t)map, hint, length, flags);
1806 UVMHIST_LOG(maphist, " uobj=%#jx, uoffset=%#jx, align=%#jx)",
1807 (uintptr_t)uobj, uoffset, align, 0);
1808
1809 KASSERT((flags & UVM_FLAG_COLORMATCH) != 0 || powerof2(align));
1810 KASSERT((flags & UVM_FLAG_COLORMATCH) == 0 || align < uvmexp.ncolors);
1811 KASSERT((flags & UVM_FLAG_FIXED) == 0 || align == 0);
1812
1813 uvm_map_check(map, "map_findspace entry");
1814
1815 /*
1816 * remember the original hint. if we are aligning, then we
1817 * may have to try again with no alignment constraint if
1818 * we fail the first time.
1819 */
1820
1821 orig_hint = hint;
1822 if (hint < vm_map_min(map)) { /* check ranges ... */
1823 if (flags & UVM_FLAG_FIXED) {
1824 UVMHIST_LOG(maphist,"<- VA below map range",0,0,0,0);
1825 return (NULL);
1826 }
1827 hint = vm_map_min(map);
1828 }
1829 if (hint > vm_map_max(map)) {
1830 UVMHIST_LOG(maphist,"<- VA %#jx > range [%#jx->%#jx]",
1831 hint, vm_map_min(map), vm_map_max(map), 0);
1832 return (NULL);
1833 }
1834
1835 UVMHIST_LOG(maphist,"<- VA %#jx vs range [%#jx->%#jx]",
1836 hint, vm_map_min(map), vm_map_max(map), 0);
1837
1838 /*
1839 * hint may not be aligned properly; we need round up or down it
1840 * before proceeding further.
1841 */
1842 if ((flags & UVM_FLAG_COLORMATCH) == 0)
1843 uvm_map_align_va(&hint, align, topdown);
1844
1845 UVMHIST_LOG(maphist,"<- VA %#jx vs range [%#jx->%#jx]",
1846 hint, vm_map_min(map), vm_map_max(map), 0);
1847 /*
1848 * Look for the first possible address; if there's already
1849 * something at this address, we have to start after it.
1850 */
1851
1852 /*
1853 * @@@: there are four, no, eight cases to consider.
1854 *
1855 * 0: found, fixed, bottom up -> fail
1856 * 1: found, fixed, top down -> fail
1857 * 2: found, not fixed, bottom up -> start after entry->end,
1858 * loop up
1859 * 3: found, not fixed, top down -> start before entry->start,
1860 * loop down
1861 * 4: not found, fixed, bottom up -> check entry->next->start, fail
1862 * 5: not found, fixed, top down -> check entry->next->start, fail
1863 * 6: not found, not fixed, bottom up -> check entry->next->start,
1864 * loop up
1865 * 7: not found, not fixed, top down -> check entry->next->start,
1866 * loop down
1867 *
1868 * as you can see, it reduces to roughly five cases, and that
1869 * adding top down mapping only adds one unique case (without
1870 * it, there would be four cases).
1871 */
1872
1873 if ((flags & UVM_FLAG_FIXED) == 0 && hint == vm_map_min(map)) {
1874 entry = map->first_free;
1875 } else {
1876 if (uvm_map_lookup_entry(map, hint, &entry)) {
1877 /* "hint" address already in use ... */
1878 if (flags & UVM_FLAG_FIXED) {
1879 UVMHIST_LOG(maphist, "<- fixed & VA in use",
1880 0, 0, 0, 0);
1881 return (NULL);
1882 }
1883 if (topdown)
1884 /* Start from lower gap. */
1885 entry = entry->prev;
1886 } else if (flags & UVM_FLAG_FIXED) {
1887 if (entry->next->start >= hint + length &&
1888 hint + length > hint)
1889 goto found;
1890
1891 /* "hint" address is gap but too small */
1892 UVMHIST_LOG(maphist, "<- fixed mapping failed",
1893 0, 0, 0, 0);
1894 return (NULL); /* only one shot at it ... */
1895 } else {
1896 /*
1897 * See if given hint fits in this gap.
1898 */
1899 switch (uvm_map_space_avail(&hint, length,
1900 uoffset, align, flags, topdown, entry)) {
1901 case 1:
1902 goto found;
1903 case -1:
1904 goto wraparound;
1905 }
1906
1907 if (topdown) {
1908 /*
1909 * Still there is a chance to fit
1910 * if hint > entry->end.
1911 */
1912 } else {
1913 /* Start from higher gap. */
1914 entry = entry->next;
1915 if (entry == &map->header)
1916 goto notfound;
1917 goto nextgap;
1918 }
1919 }
1920 }
1921
1922 /*
1923 * Note that all UVM_FLAGS_FIXED case is already handled.
1924 */
1925 KDASSERT((flags & UVM_FLAG_FIXED) == 0);
1926
1927 /* Try to find the space in the red-black tree */
1928
1929 /* Check slot before any entry */
1930 hint = topdown ? entry->next->start - length : entry->end;
1931 switch (uvm_map_space_avail(&hint, length, uoffset, align, flags,
1932 topdown, entry)) {
1933 case 1:
1934 goto found;
1935 case -1:
1936 goto wraparound;
1937 }
1938
1939 nextgap:
1940 KDASSERT((flags & UVM_FLAG_FIXED) == 0);
1941 /* If there is not enough space in the whole tree, we fail */
1942 tmp = ROOT_ENTRY(map);
1943 if (tmp == NULL || tmp->maxgap < length)
1944 goto notfound;
1945
1946 prev = NULL; /* previous candidate */
1947
1948 /* Find an entry close to hint that has enough space */
1949 for (; tmp;) {
1950 KASSERT(tmp->next->start == tmp->end + tmp->gap);
1951 if (topdown) {
1952 if (tmp->next->start < hint + length &&
1953 (prev == NULL || tmp->end > prev->end)) {
1954 if (tmp->gap >= length)
1955 prev = tmp;
1956 else if ((child = LEFT_ENTRY(tmp)) != NULL
1957 && child->maxgap >= length)
1958 prev = tmp;
1959 }
1960 } else {
1961 if (tmp->end >= hint &&
1962 (prev == NULL || tmp->end < prev->end)) {
1963 if (tmp->gap >= length)
1964 prev = tmp;
1965 else if ((child = RIGHT_ENTRY(tmp)) != NULL
1966 && child->maxgap >= length)
1967 prev = tmp;
1968 }
1969 }
1970 if (tmp->next->start < hint + length)
1971 child = RIGHT_ENTRY(tmp);
1972 else if (tmp->end > hint)
1973 child = LEFT_ENTRY(tmp);
1974 else {
1975 if (tmp->gap >= length)
1976 break;
1977 if (topdown)
1978 child = LEFT_ENTRY(tmp);
1979 else
1980 child = RIGHT_ENTRY(tmp);
1981 }
1982 if (child == NULL || child->maxgap < length)
1983 break;
1984 tmp = child;
1985 }
1986
1987 if (tmp != NULL && tmp->start < hint && hint < tmp->next->start) {
1988 /*
1989 * Check if the entry that we found satifies the
1990 * space requirement
1991 */
1992 if (topdown) {
1993 if (hint > tmp->next->start - length)
1994 hint = tmp->next->start - length;
1995 } else {
1996 if (hint < tmp->end)
1997 hint = tmp->end;
1998 }
1999 switch (uvm_map_space_avail(&hint, length, uoffset, align,
2000 flags, topdown, tmp)) {
2001 case 1:
2002 entry = tmp;
2003 goto found;
2004 case -1:
2005 goto wraparound;
2006 }
2007 if (tmp->gap >= length)
2008 goto listsearch;
2009 }
2010 if (prev == NULL)
2011 goto notfound;
2012
2013 if (topdown) {
2014 KASSERT(orig_hint >= prev->next->start - length ||
2015 prev->next->start - length > prev->next->start);
2016 hint = prev->next->start - length;
2017 } else {
2018 KASSERT(orig_hint <= prev->end);
2019 hint = prev->end;
2020 }
2021 switch (uvm_map_space_avail(&hint, length, uoffset, align,
2022 flags, topdown, prev)) {
2023 case 1:
2024 entry = prev;
2025 goto found;
2026 case -1:
2027 goto wraparound;
2028 }
2029 if (prev->gap >= length)
2030 goto listsearch;
2031
2032 if (topdown)
2033 tmp = LEFT_ENTRY(prev);
2034 else
2035 tmp = RIGHT_ENTRY(prev);
2036 for (;;) {
2037 KASSERT(tmp && tmp->maxgap >= length);
2038 if (topdown)
2039 child = RIGHT_ENTRY(tmp);
2040 else
2041 child = LEFT_ENTRY(tmp);
2042 if (child && child->maxgap >= length) {
2043 tmp = child;
2044 continue;
2045 }
2046 if (tmp->gap >= length)
2047 break;
2048 if (topdown)
2049 tmp = LEFT_ENTRY(tmp);
2050 else
2051 tmp = RIGHT_ENTRY(tmp);
2052 }
2053
2054 if (topdown) {
2055 KASSERT(orig_hint >= tmp->next->start - length ||
2056 tmp->next->start - length > tmp->next->start);
2057 hint = tmp->next->start - length;
2058 } else {
2059 KASSERT(orig_hint <= tmp->end);
2060 hint = tmp->end;
2061 }
2062 switch (uvm_map_space_avail(&hint, length, uoffset, align,
2063 flags, topdown, tmp)) {
2064 case 1:
2065 entry = tmp;
2066 goto found;
2067 case -1:
2068 goto wraparound;
2069 }
2070
2071 /*
2072 * The tree fails to find an entry because of offset or alignment
2073 * restrictions. Search the list instead.
2074 */
2075 listsearch:
2076 /*
2077 * Look through the rest of the map, trying to fit a new region in
2078 * the gap between existing regions, or after the very last region.
2079 * note: entry->end = base VA of current gap,
2080 * entry->next->start = VA of end of current gap
2081 */
2082
2083 for (;;) {
2084 /* Update hint for current gap. */
2085 hint = topdown ? entry->next->start - length : entry->end;
2086
2087 /* See if it fits. */
2088 switch (uvm_map_space_avail(&hint, length, uoffset, align,
2089 flags, topdown, entry)) {
2090 case 1:
2091 goto found;
2092 case -1:
2093 goto wraparound;
2094 }
2095
2096 /* Advance to next/previous gap */
2097 if (topdown) {
2098 if (entry == &map->header) {
2099 UVMHIST_LOG(maphist, "<- failed (off start)",
2100 0,0,0,0);
2101 goto notfound;
2102 }
2103 entry = entry->prev;
2104 } else {
2105 entry = entry->next;
2106 if (entry == &map->header) {
2107 UVMHIST_LOG(maphist, "<- failed (off end)",
2108 0,0,0,0);
2109 goto notfound;
2110 }
2111 }
2112 }
2113
2114 found:
2115 SAVE_HINT(map, map->hint, entry);
2116 *result = hint;
2117 UVMHIST_LOG(maphist,"<- got it! (result=%#jx)", hint, 0,0,0);
2118 KASSERTMSG( topdown || hint >= orig_hint, "hint: %#jx, orig_hint: %#jx",
2119 (uintmax_t)hint, (uintmax_t)orig_hint);
2120 KASSERTMSG(!topdown || hint <= orig_hint, "hint: %#jx, orig_hint: %#jx",
2121 (uintmax_t)hint, (uintmax_t)orig_hint);
2122 KASSERT(entry->end <= hint);
2123 KASSERT(hint + length <= entry->next->start);
2124 return (entry);
2125
2126 wraparound:
2127 UVMHIST_LOG(maphist, "<- failed (wrap around)", 0,0,0,0);
2128
2129 return (NULL);
2130
2131 notfound:
2132 UVMHIST_LOG(maphist, "<- failed (notfound)", 0,0,0,0);
2133
2134 return (NULL);
2135 }
2136
2137 /*
2138 * U N M A P - m a i n h e l p e r f u n c t i o n s
2139 */
2140
2141 /*
2142 * uvm_unmap_remove: remove mappings from a vm_map (from "start" up to "stop")
2143 *
2144 * => caller must check alignment and size
2145 * => map must be locked by caller
2146 * => we return a list of map entries that we've remove from the map
2147 * in "entry_list"
2148 */
2149
2150 void
2151 uvm_unmap_remove(struct vm_map *map, vaddr_t start, vaddr_t end,
2152 struct vm_map_entry **entry_list /* OUT */, int flags)
2153 {
2154 struct vm_map_entry *entry, *first_entry, *next;
2155 vaddr_t len;
2156 UVMHIST_FUNC(__func__);
2157 UVMHIST_CALLARGS(maphist,"(map=%#jx, start=%#jx, end=%#jx)",
2158 (uintptr_t)map, start, end, 0);
2159 VM_MAP_RANGE_CHECK(map, start, end);
2160
2161 uvm_map_check(map, "unmap_remove entry");
2162
2163 /*
2164 * find first entry
2165 */
2166
2167 if (uvm_map_lookup_entry(map, start, &first_entry) == true) {
2168 /* clip and go... */
2169 entry = first_entry;
2170 UVM_MAP_CLIP_START(map, entry, start);
2171 /* critical! prevents stale hint */
2172 SAVE_HINT(map, entry, entry->prev);
2173 } else {
2174 entry = first_entry->next;
2175 }
2176
2177 /*
2178 * save the free space hint
2179 */
2180
2181 if (map->first_free != &map->header && map->first_free->start >= start)
2182 map->first_free = entry->prev;
2183
2184 /*
2185 * note: we now re-use first_entry for a different task. we remove
2186 * a number of map entries from the map and save them in a linked
2187 * list headed by "first_entry". once we remove them from the map
2188 * the caller should unlock the map and drop the references to the
2189 * backing objects [c.f. uvm_unmap_detach]. the object is to
2190 * separate unmapping from reference dropping. why?
2191 * [1] the map has to be locked for unmapping
2192 * [2] the map need not be locked for reference dropping
2193 * [3] dropping references may trigger pager I/O, and if we hit
2194 * a pager that does synchronous I/O we may have to wait for it.
2195 * [4] we would like all waiting for I/O to occur with maps unlocked
2196 * so that we don't block other threads.
2197 */
2198
2199 first_entry = NULL;
2200 *entry_list = NULL;
2201
2202 /*
2203 * break up the area into map entry sized regions and unmap. note
2204 * that all mappings have to be removed before we can even consider
2205 * dropping references to amaps or VM objects (otherwise we could end
2206 * up with a mapping to a page on the free list which would be very bad)
2207 */
2208
2209 while ((entry != &map->header) && (entry->start < end)) {
2210 KASSERT((entry->flags & UVM_MAP_STATIC) == 0);
2211
2212 UVM_MAP_CLIP_END(map, entry, end);
2213 next = entry->next;
2214 len = entry->end - entry->start;
2215
2216 /*
2217 * unwire before removing addresses from the pmap; otherwise
2218 * unwiring will put the entries back into the pmap (XXX).
2219 */
2220
2221 if (VM_MAPENT_ISWIRED(entry)) {
2222 uvm_map_entry_unwire(map, entry);
2223 }
2224 if (flags & UVM_FLAG_VAONLY) {
2225
2226 /* nothing */
2227
2228 } else if ((map->flags & VM_MAP_PAGEABLE) == 0) {
2229
2230 /*
2231 * if the map is non-pageable, any pages mapped there
2232 * must be wired and entered with pmap_kenter_pa(),
2233 * and we should free any such pages immediately.
2234 * this is mostly used for kmem_map.
2235 */
2236 KASSERT(vm_map_pmap(map) == pmap_kernel());
2237
2238 uvm_km_pgremove_intrsafe(map, entry->start, entry->end);
2239 } else if (UVM_ET_ISOBJ(entry) &&
2240 UVM_OBJ_IS_KERN_OBJECT(entry->object.uvm_obj)) {
2241 panic("%s: kernel object %p %p\n",
2242 __func__, map, entry);
2243 } else if (UVM_ET_ISOBJ(entry) || entry->aref.ar_amap) {
2244 /*
2245 * remove mappings the standard way. lock object
2246 * and/or amap to ensure vm_page state does not
2247 * change while in pmap_remove().
2248 */
2249
2250 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
2251 uvm_map_lock_entry(entry, RW_WRITER);
2252 #else
2253 uvm_map_lock_entry(entry, RW_READER);
2254 #endif
2255 pmap_remove(map->pmap, entry->start, entry->end);
2256
2257 /*
2258 * note: if map is dying, leave pmap_update() for
2259 * later. if the map is to be reused (exec) then
2260 * pmap_update() will be called. if the map is
2261 * being disposed of (exit) then pmap_destroy()
2262 * will be called.
2263 */
2264
2265 if ((map->flags & VM_MAP_DYING) == 0) {
2266 pmap_update(vm_map_pmap(map));
2267 } else {
2268 KASSERT(vm_map_pmap(map) != pmap_kernel());
2269 }
2270
2271 uvm_map_unlock_entry(entry);
2272 }
2273
2274 #if defined(UVMDEBUG)
2275 /*
2276 * check if there's remaining mapping,
2277 * which is a bug in caller.
2278 */
2279
2280 vaddr_t va;
2281 for (va = entry->start; va < entry->end;
2282 va += PAGE_SIZE) {
2283 if (pmap_extract(vm_map_pmap(map), va, NULL)) {
2284 panic("%s: %#"PRIxVADDR" has mapping",
2285 __func__, va);
2286 }
2287 }
2288
2289 if (VM_MAP_IS_KERNEL(map) && (flags & UVM_FLAG_NOWAIT) == 0) {
2290 uvm_km_check_empty(map, entry->start,
2291 entry->end);
2292 }
2293 #endif /* defined(UVMDEBUG) */
2294
2295 /*
2296 * remove entry from map and put it on our list of entries
2297 * that we've nuked. then go to next entry.
2298 */
2299
2300 UVMHIST_LOG(maphist, " removed map entry %#jx",
2301 (uintptr_t)entry, 0, 0, 0);
2302
2303 /* critical! prevents stale hint */
2304 SAVE_HINT(map, entry, entry->prev);
2305
2306 uvm_map_entry_unlink(map, entry);
2307 KASSERT(map->size >= len);
2308 map->size -= len;
2309 entry->prev = NULL;
2310 entry->next = first_entry;
2311 first_entry = entry;
2312 entry = next;
2313 }
2314
2315 uvm_map_check(map, "unmap_remove leave");
2316
2317 /*
2318 * now we've cleaned up the map and are ready for the caller to drop
2319 * references to the mapped objects.
2320 */
2321
2322 *entry_list = first_entry;
2323 UVMHIST_LOG(maphist,"<- done!", 0, 0, 0, 0);
2324
2325 if (map->flags & VM_MAP_WANTVA) {
2326 mutex_enter(&map->misc_lock);
2327 map->flags &= ~VM_MAP_WANTVA;
2328 cv_broadcast(&map->cv);
2329 mutex_exit(&map->misc_lock);
2330 }
2331 }
2332
2333 /*
2334 * uvm_unmap_detach: drop references in a chain of map entries
2335 *
2336 * => we will free the map entries as we traverse the list.
2337 */
2338
2339 void
2340 uvm_unmap_detach(struct vm_map_entry *first_entry, int flags)
2341 {
2342 struct vm_map_entry *next_entry;
2343 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2344
2345 while (first_entry) {
2346 KASSERT(!VM_MAPENT_ISWIRED(first_entry));
2347 UVMHIST_LOG(maphist,
2348 " detach %#jx: amap=%#jx, obj=%#jx, submap?=%jd",
2349 (uintptr_t)first_entry,
2350 (uintptr_t)first_entry->aref.ar_amap,
2351 (uintptr_t)first_entry->object.uvm_obj,
2352 UVM_ET_ISSUBMAP(first_entry));
2353
2354 /*
2355 * drop reference to amap, if we've got one
2356 */
2357
2358 if (first_entry->aref.ar_amap)
2359 uvm_map_unreference_amap(first_entry, flags);
2360
2361 /*
2362 * drop reference to our backing object, if we've got one
2363 */
2364
2365 KASSERT(!UVM_ET_ISSUBMAP(first_entry));
2366 if (UVM_ET_ISOBJ(first_entry) &&
2367 first_entry->object.uvm_obj->pgops->pgo_detach) {
2368 (*first_entry->object.uvm_obj->pgops->pgo_detach)
2369 (first_entry->object.uvm_obj);
2370 }
2371 next_entry = first_entry->next;
2372 uvm_mapent_free(first_entry);
2373 first_entry = next_entry;
2374 }
2375 UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
2376 }
2377
2378 /*
2379 * E X T R A C T I O N F U N C T I O N S
2380 */
2381
2382 /*
2383 * uvm_map_reserve: reserve space in a vm_map for future use.
2384 *
2385 * => we reserve space in a map by putting a dummy map entry in the
2386 * map (dummy means obj=NULL, amap=NULL, prot=VM_PROT_NONE)
2387 * => map should be unlocked (we will write lock it)
2388 * => we return true if we were able to reserve space
2389 * => XXXCDC: should be inline?
2390 */
2391
2392 int
2393 uvm_map_reserve(struct vm_map *map, vsize_t size,
2394 vaddr_t offset /* hint for pmap_prefer */,
2395 vsize_t align /* alignment */,
2396 vaddr_t *raddr /* IN:hint, OUT: reserved VA */,
2397 uvm_flag_t flags /* UVM_FLAG_FIXED or UVM_FLAG_COLORMATCH or 0 */)
2398 {
2399 UVMHIST_FUNC(__func__);
2400 UVMHIST_CALLARGS(maphist, "(map=%#jx, size=%#jx, offset=%#jx, addr=%#jx)",
2401 (uintptr_t)map, size, offset, (uintptr_t)raddr);
2402
2403 size = round_page(size);
2404
2405 /*
2406 * reserve some virtual space.
2407 */
2408
2409 if (uvm_map(map, raddr, size, NULL, offset, align,
2410 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
2411 UVM_ADV_RANDOM, UVM_FLAG_NOMERGE|flags)) != 0) {
2412 UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
2413 return (false);
2414 }
2415
2416 UVMHIST_LOG(maphist, "<- done (*raddr=%#jx)", *raddr,0,0,0);
2417 return (true);
2418 }
2419
2420 /*
2421 * uvm_map_replace: replace a reserved (blank) area of memory with
2422 * real mappings.
2423 *
2424 * => caller must WRITE-LOCK the map
2425 * => we return true if replacement was a success
2426 * => we expect the newents chain to have nnewents entrys on it and
2427 * we expect newents->prev to point to the last entry on the list
2428 * => note newents is allowed to be NULL
2429 */
2430
2431 static int
2432 uvm_map_replace(struct vm_map *map, vaddr_t start, vaddr_t end,
2433 struct vm_map_entry *newents, int nnewents, vsize_t nsize,
2434 struct vm_map_entry **oldentryp)
2435 {
2436 struct vm_map_entry *oldent, *last;
2437
2438 uvm_map_check(map, "map_replace entry");
2439
2440 /*
2441 * first find the blank map entry at the specified address
2442 */
2443
2444 if (!uvm_map_lookup_entry(map, start, &oldent)) {
2445 return (false);
2446 }
2447
2448 /*
2449 * check to make sure we have a proper blank entry
2450 */
2451
2452 if (end < oldent->end) {
2453 UVM_MAP_CLIP_END(map, oldent, end);
2454 }
2455 if (oldent->start != start || oldent->end != end ||
2456 oldent->object.uvm_obj != NULL || oldent->aref.ar_amap != NULL) {
2457 return (false);
2458 }
2459
2460 #ifdef DIAGNOSTIC
2461
2462 /*
2463 * sanity check the newents chain
2464 */
2465
2466 {
2467 struct vm_map_entry *tmpent = newents;
2468 int nent = 0;
2469 vsize_t sz = 0;
2470 vaddr_t cur = start;
2471
2472 while (tmpent) {
2473 nent++;
2474 sz += tmpent->end - tmpent->start;
2475 if (tmpent->start < cur)
2476 panic("uvm_map_replace1");
2477 if (tmpent->start >= tmpent->end || tmpent->end > end) {
2478 panic("uvm_map_replace2: "
2479 "tmpent->start=%#"PRIxVADDR
2480 ", tmpent->end=%#"PRIxVADDR
2481 ", end=%#"PRIxVADDR,
2482 tmpent->start, tmpent->end, end);
2483 }
2484 cur = tmpent->end;
2485 if (tmpent->next) {
2486 if (tmpent->next->prev != tmpent)
2487 panic("uvm_map_replace3");
2488 } else {
2489 if (newents->prev != tmpent)
2490 panic("uvm_map_replace4");
2491 }
2492 tmpent = tmpent->next;
2493 }
2494 if (nent != nnewents)
2495 panic("uvm_map_replace5");
2496 if (sz != nsize)
2497 panic("uvm_map_replace6");
2498 }
2499 #endif
2500
2501 /*
2502 * map entry is a valid blank! replace it. (this does all the
2503 * work of map entry link/unlink...).
2504 */
2505
2506 if (newents) {
2507 last = newents->prev;
2508
2509 /* critical: flush stale hints out of map */
2510 SAVE_HINT(map, map->hint, newents);
2511 if (map->first_free == oldent)
2512 map->first_free = last;
2513
2514 last->next = oldent->next;
2515 last->next->prev = last;
2516
2517 /* Fix RB tree */
2518 uvm_rb_remove(map, oldent);
2519
2520 newents->prev = oldent->prev;
2521 newents->prev->next = newents;
2522 map->nentries = map->nentries + (nnewents - 1);
2523
2524 /* Fixup the RB tree */
2525 {
2526 int i;
2527 struct vm_map_entry *tmp;
2528
2529 tmp = newents;
2530 for (i = 0; i < nnewents && tmp; i++) {
2531 uvm_rb_insert(map, tmp);
2532 tmp = tmp->next;
2533 }
2534 }
2535 } else {
2536 /* NULL list of new entries: just remove the old one */
2537 clear_hints(map, oldent);
2538 uvm_map_entry_unlink(map, oldent);
2539 }
2540 map->size -= end - start - nsize;
2541
2542 uvm_map_check(map, "map_replace leave");
2543
2544 /*
2545 * now we can free the old blank entry and return.
2546 */
2547
2548 *oldentryp = oldent;
2549 return (true);
2550 }
2551
2552 /*
2553 * uvm_map_extract: extract a mapping from a map and put it somewhere
2554 * (maybe removing the old mapping)
2555 *
2556 * => maps should be unlocked (we will write lock them)
2557 * => returns 0 on success, error code otherwise
2558 * => start must be page aligned
2559 * => len must be page sized
2560 * => flags:
2561 * UVM_EXTRACT_REMOVE: remove mappings from srcmap
2562 * UVM_EXTRACT_CONTIG: abort if unmapped area (advisory only)
2563 * UVM_EXTRACT_QREF: for a temporary extraction do quick obj refs
2564 * UVM_EXTRACT_FIXPROT: set prot to maxprot as we go
2565 * UVM_EXTRACT_PROT_ALL: set prot to UVM_PROT_ALL as we go
2566 * >>>NOTE: if you set REMOVE, you are not allowed to use CONTIG or QREF!<<<
2567 * >>>NOTE: QREF's must be unmapped via the QREF path, thus should only
2568 * be used from within the kernel in a kernel level map <<<
2569 */
2570
2571 int
2572 uvm_map_extract(struct vm_map *srcmap, vaddr_t start, vsize_t len,
2573 struct vm_map *dstmap, vaddr_t *dstaddrp, int flags)
2574 {
2575 vaddr_t dstaddr, end, newend, oldoffset, fudge, orig_fudge;
2576 struct vm_map_entry *chain, *endchain, *entry, *orig_entry, *newentry,
2577 *deadentry, *oldentry;
2578 struct vm_map_entry *resentry = NULL; /* a dummy reservation entry */
2579 vsize_t elen __unused;
2580 int nchain, error, copy_ok;
2581 vsize_t nsize;
2582 UVMHIST_FUNC(__func__);
2583 UVMHIST_CALLARGS(maphist,"(srcmap=%#jx,start=%#jx, len=%#jx",
2584 (uintptr_t)srcmap, start, len, 0);
2585 UVMHIST_LOG(maphist," ...,dstmap=%#jx, flags=%#jx)",
2586 (uintptr_t)dstmap, flags, 0, 0);
2587
2588 /*
2589 * step 0: sanity check: start must be on a page boundary, length
2590 * must be page sized. can't ask for CONTIG/QREF if you asked for
2591 * REMOVE.
2592 */
2593
2594 KASSERT((start & PAGE_MASK) == 0 && (len & PAGE_MASK) == 0);
2595 KASSERT((flags & UVM_EXTRACT_REMOVE) == 0 ||
2596 (flags & (UVM_EXTRACT_CONTIG|UVM_EXTRACT_QREF)) == 0);
2597
2598 /*
2599 * step 1: reserve space in the target map for the extracted area
2600 */
2601
2602 if ((flags & UVM_EXTRACT_RESERVED) == 0) {
2603 dstaddr = vm_map_min(dstmap);
2604 if (!uvm_map_reserve(dstmap, len, start,
2605 atop(start) & uvmexp.colormask, &dstaddr,
2606 UVM_FLAG_COLORMATCH))
2607 return (ENOMEM);
2608 KASSERT((atop(start ^ dstaddr) & uvmexp.colormask) == 0);
2609 *dstaddrp = dstaddr; /* pass address back to caller */
2610 UVMHIST_LOG(maphist, " dstaddr=%#jx", dstaddr,0,0,0);
2611 } else {
2612 dstaddr = *dstaddrp;
2613 }
2614
2615 /*
2616 * step 2: setup for the extraction process loop by init'ing the
2617 * map entry chain, locking src map, and looking up the first useful
2618 * entry in the map.
2619 */
2620
2621 end = start + len;
2622 newend = dstaddr + len;
2623 chain = endchain = NULL;
2624 nchain = 0;
2625 nsize = 0;
2626 vm_map_lock(srcmap);
2627
2628 if (uvm_map_lookup_entry(srcmap, start, &entry)) {
2629
2630 /* "start" is within an entry */
2631 if (flags & UVM_EXTRACT_QREF) {
2632
2633 /*
2634 * for quick references we don't clip the entry, so
2635 * the entry may map space "before" the starting
2636 * virtual address... this is the "fudge" factor
2637 * (which can be non-zero only the first time
2638 * through the "while" loop in step 3).
2639 */
2640
2641 fudge = start - entry->start;
2642 } else {
2643
2644 /*
2645 * normal reference: we clip the map to fit (thus
2646 * fudge is zero)
2647 */
2648
2649 UVM_MAP_CLIP_START(srcmap, entry, start);
2650 SAVE_HINT(srcmap, srcmap->hint, entry->prev);
2651 fudge = 0;
2652 }
2653 } else {
2654
2655 /* "start" is not within an entry ... skip to next entry */
2656 if (flags & UVM_EXTRACT_CONTIG) {
2657 error = EINVAL;
2658 goto bad; /* definite hole here ... */
2659 }
2660
2661 entry = entry->next;
2662 fudge = 0;
2663 }
2664
2665 /* save values from srcmap for step 6 */
2666 orig_entry = entry;
2667 orig_fudge = fudge;
2668
2669 /*
2670 * step 3: now start looping through the map entries, extracting
2671 * as we go.
2672 */
2673
2674 while (entry->start < end && entry != &srcmap->header) {
2675
2676 /* if we are not doing a quick reference, clip it */
2677 if ((flags & UVM_EXTRACT_QREF) == 0)
2678 UVM_MAP_CLIP_END(srcmap, entry, end);
2679
2680 /* clear needs_copy (allow chunking) */
2681 if (UVM_ET_ISNEEDSCOPY(entry)) {
2682 amap_copy(srcmap, entry,
2683 AMAP_COPY_NOWAIT|AMAP_COPY_NOMERGE, start, end);
2684 if (UVM_ET_ISNEEDSCOPY(entry)) { /* failed? */
2685 error = ENOMEM;
2686 goto bad;
2687 }
2688
2689 /* amap_copy could clip (during chunk)! update fudge */
2690 if (fudge) {
2691 fudge = start - entry->start;
2692 orig_fudge = fudge;
2693 }
2694 }
2695
2696 /* calculate the offset of this from "start" */
2697 oldoffset = (entry->start + fudge) - start;
2698
2699 /* allocate a new map entry */
2700 newentry = uvm_mapent_alloc(dstmap, 0);
2701 if (newentry == NULL) {
2702 error = ENOMEM;
2703 goto bad;
2704 }
2705
2706 /* set up new map entry */
2707 newentry->next = NULL;
2708 newentry->prev = endchain;
2709 newentry->start = dstaddr + oldoffset;
2710 newentry->end =
2711 newentry->start + (entry->end - (entry->start + fudge));
2712 if (newentry->end > newend || newentry->end < newentry->start)
2713 newentry->end = newend;
2714 newentry->object.uvm_obj = entry->object.uvm_obj;
2715 if (newentry->object.uvm_obj) {
2716 if (newentry->object.uvm_obj->pgops->pgo_reference)
2717 newentry->object.uvm_obj->pgops->
2718 pgo_reference(newentry->object.uvm_obj);
2719 newentry->offset = entry->offset + fudge;
2720 } else {
2721 newentry->offset = 0;
2722 }
2723 newentry->etype = entry->etype;
2724 if (flags & UVM_EXTRACT_PROT_ALL) {
2725 newentry->protection = newentry->max_protection =
2726 UVM_PROT_ALL;
2727 } else {
2728 newentry->protection = (flags & UVM_EXTRACT_FIXPROT) ?
2729 entry->max_protection : entry->protection;
2730 newentry->max_protection = entry->max_protection;
2731 }
2732 newentry->inheritance = entry->inheritance;
2733 newentry->wired_count = 0;
2734 newentry->aref.ar_amap = entry->aref.ar_amap;
2735 if (newentry->aref.ar_amap) {
2736 newentry->aref.ar_pageoff =
2737 entry->aref.ar_pageoff + (fudge >> PAGE_SHIFT);
2738 uvm_map_reference_amap(newentry, AMAP_SHARED |
2739 ((flags & UVM_EXTRACT_QREF) ? AMAP_REFALL : 0));
2740 } else {
2741 newentry->aref.ar_pageoff = 0;
2742 }
2743 newentry->advice = entry->advice;
2744 if ((flags & UVM_EXTRACT_QREF) != 0) {
2745 newentry->flags |= UVM_MAP_NOMERGE;
2746 }
2747
2748 /* now link it on the chain */
2749 nchain++;
2750 nsize += newentry->end - newentry->start;
2751 if (endchain == NULL) {
2752 chain = endchain = newentry;
2753 } else {
2754 endchain->next = newentry;
2755 endchain = newentry;
2756 }
2757
2758 /* end of 'while' loop! */
2759 if ((flags & UVM_EXTRACT_CONTIG) && entry->end < end &&
2760 (entry->next == &srcmap->header ||
2761 entry->next->start != entry->end)) {
2762 error = EINVAL;
2763 goto bad;
2764 }
2765 entry = entry->next;
2766 fudge = 0;
2767 }
2768
2769 /*
2770 * step 4: close off chain (in format expected by uvm_map_replace)
2771 */
2772
2773 if (chain)
2774 chain->prev = endchain;
2775
2776 /*
2777 * step 5: attempt to lock the dest map so we can pmap_copy.
2778 * note usage of copy_ok:
2779 * 1 => dstmap locked, pmap_copy ok, and we "replace" here (step 5)
2780 * 0 => dstmap unlocked, NO pmap_copy, and we will "replace" in step 7
2781 */
2782
2783 if (srcmap == dstmap || vm_map_lock_try(dstmap) == true) {
2784 copy_ok = 1;
2785 if (!uvm_map_replace(dstmap, dstaddr, dstaddr+len, chain,
2786 nchain, nsize, &resentry)) {
2787 if (srcmap != dstmap)
2788 vm_map_unlock(dstmap);
2789 error = EIO;
2790 goto bad;
2791 }
2792 } else {
2793 copy_ok = 0;
2794 /* replace defered until step 7 */
2795 }
2796
2797 /*
2798 * step 6: traverse the srcmap a second time to do the following:
2799 * - if we got a lock on the dstmap do pmap_copy
2800 * - if UVM_EXTRACT_REMOVE remove the entries
2801 * we make use of orig_entry and orig_fudge (saved in step 2)
2802 */
2803
2804 if (copy_ok || (flags & UVM_EXTRACT_REMOVE)) {
2805
2806 /* purge possible stale hints from srcmap */
2807 if (flags & UVM_EXTRACT_REMOVE) {
2808 SAVE_HINT(srcmap, srcmap->hint, orig_entry->prev);
2809 if (srcmap->first_free != &srcmap->header &&
2810 srcmap->first_free->start >= start)
2811 srcmap->first_free = orig_entry->prev;
2812 }
2813
2814 entry = orig_entry;
2815 fudge = orig_fudge;
2816 deadentry = NULL; /* for UVM_EXTRACT_REMOVE */
2817
2818 while (entry->start < end && entry != &srcmap->header) {
2819 if (copy_ok) {
2820 oldoffset = (entry->start + fudge) - start;
2821 elen = MIN(end, entry->end) -
2822 (entry->start + fudge);
2823 pmap_copy(dstmap->pmap, srcmap->pmap,
2824 dstaddr + oldoffset, elen,
2825 entry->start + fudge);
2826 }
2827
2828 /* we advance "entry" in the following if statement */
2829 if (flags & UVM_EXTRACT_REMOVE) {
2830 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
2831 uvm_map_lock_entry(entry, RW_WRITER);
2832 #else
2833 uvm_map_lock_entry(entry, RW_READER);
2834 #endif
2835 pmap_remove(srcmap->pmap, entry->start,
2836 entry->end);
2837 uvm_map_unlock_entry(entry);
2838 oldentry = entry; /* save entry */
2839 entry = entry->next; /* advance */
2840 uvm_map_entry_unlink(srcmap, oldentry);
2841 /* add to dead list */
2842 oldentry->next = deadentry;
2843 deadentry = oldentry;
2844 } else {
2845 entry = entry->next; /* advance */
2846 }
2847
2848 /* end of 'while' loop */
2849 fudge = 0;
2850 }
2851 pmap_update(srcmap->pmap);
2852
2853 /*
2854 * unlock dstmap. we will dispose of deadentry in
2855 * step 7 if needed
2856 */
2857
2858 if (copy_ok && srcmap != dstmap)
2859 vm_map_unlock(dstmap);
2860
2861 } else {
2862 deadentry = NULL;
2863 }
2864
2865 /*
2866 * step 7: we are done with the source map, unlock. if copy_ok
2867 * is 0 then we have not replaced the dummy mapping in dstmap yet
2868 * and we need to do so now.
2869 */
2870
2871 vm_map_unlock(srcmap);
2872 if ((flags & UVM_EXTRACT_REMOVE) && deadentry)
2873 uvm_unmap_detach(deadentry, 0); /* dispose of old entries */
2874
2875 /* now do the replacement if we didn't do it in step 5 */
2876 if (copy_ok == 0) {
2877 vm_map_lock(dstmap);
2878 error = uvm_map_replace(dstmap, dstaddr, dstaddr+len, chain,
2879 nchain, nsize, &resentry);
2880 vm_map_unlock(dstmap);
2881
2882 if (error == false) {
2883 error = EIO;
2884 goto bad2;
2885 }
2886 }
2887
2888 if (resentry != NULL)
2889 uvm_mapent_free(resentry);
2890
2891 return (0);
2892
2893 /*
2894 * bad: failure recovery
2895 */
2896 bad:
2897 vm_map_unlock(srcmap);
2898 bad2: /* src already unlocked */
2899 if (chain)
2900 uvm_unmap_detach(chain,
2901 (flags & UVM_EXTRACT_QREF) ? AMAP_REFALL : 0);
2902
2903 if (resentry != NULL)
2904 uvm_mapent_free(resentry);
2905
2906 if ((flags & UVM_EXTRACT_RESERVED) == 0) {
2907 uvm_unmap(dstmap, dstaddr, dstaddr+len); /* ??? */
2908 }
2909 return (error);
2910 }
2911
2912 /* end of extraction functions */
2913
2914 /*
2915 * uvm_map_submap: punch down part of a map into a submap
2916 *
2917 * => only the kernel_map is allowed to be submapped
2918 * => the purpose of submapping is to break up the locking granularity
2919 * of a larger map
2920 * => the range specified must have been mapped previously with a uvm_map()
2921 * call [with uobj==NULL] to create a blank map entry in the main map.
2922 * [And it had better still be blank!]
2923 * => maps which contain submaps should never be copied or forked.
2924 * => to remove a submap, use uvm_unmap() on the main map
2925 * and then uvm_map_deallocate() the submap.
2926 * => main map must be unlocked.
2927 * => submap must have been init'd and have a zero reference count.
2928 * [need not be locked as we don't actually reference it]
2929 */
2930
2931 int
2932 uvm_map_submap(struct vm_map *map, vaddr_t start, vaddr_t end,
2933 struct vm_map *submap)
2934 {
2935 struct vm_map_entry *entry;
2936 int error;
2937
2938 vm_map_lock(map);
2939 VM_MAP_RANGE_CHECK(map, start, end);
2940
2941 if (uvm_map_lookup_entry(map, start, &entry)) {
2942 UVM_MAP_CLIP_START(map, entry, start);
2943 UVM_MAP_CLIP_END(map, entry, end); /* to be safe */
2944 } else {
2945 entry = NULL;
2946 }
2947
2948 if (entry != NULL &&
2949 entry->start == start && entry->end == end &&
2950 entry->object.uvm_obj == NULL && entry->aref.ar_amap == NULL &&
2951 !UVM_ET_ISCOPYONWRITE(entry) && !UVM_ET_ISNEEDSCOPY(entry)) {
2952 entry->etype |= UVM_ET_SUBMAP;
2953 entry->object.sub_map = submap;
2954 entry->offset = 0;
2955 uvm_map_reference(submap);
2956 error = 0;
2957 } else {
2958 error = EINVAL;
2959 }
2960 vm_map_unlock(map);
2961
2962 return error;
2963 }
2964
2965 /*
2966 * uvm_map_protect_user: change map protection on behalf of the user.
2967 * Enforces PAX settings as necessary.
2968 */
2969 int
2970 uvm_map_protect_user(struct lwp *l, vaddr_t start, vaddr_t end,
2971 vm_prot_t new_prot)
2972 {
2973 int error;
2974
2975 if ((error = PAX_MPROTECT_VALIDATE(l, new_prot)))
2976 return error;
2977
2978 return uvm_map_protect(&l->l_proc->p_vmspace->vm_map, start, end,
2979 new_prot, false);
2980 }
2981
2982
2983 /*
2984 * uvm_map_protect: change map protection
2985 *
2986 * => set_max means set max_protection.
2987 * => map must be unlocked.
2988 */
2989
2990 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
2991 ~VM_PROT_WRITE : VM_PROT_ALL)
2992
2993 int
2994 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
2995 vm_prot_t new_prot, bool set_max)
2996 {
2997 struct vm_map_entry *current, *entry;
2998 int error = 0;
2999 UVMHIST_FUNC(__func__);
3000 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,new_prot=%#jx)",
3001 (uintptr_t)map, start, end, new_prot);
3002
3003 vm_map_lock(map);
3004 VM_MAP_RANGE_CHECK(map, start, end);
3005 if (uvm_map_lookup_entry(map, start, &entry)) {
3006 UVM_MAP_CLIP_START(map, entry, start);
3007 } else {
3008 entry = entry->next;
3009 }
3010
3011 /*
3012 * make a first pass to check for protection violations.
3013 */
3014
3015 current = entry;
3016 while ((current != &map->header) && (current->start < end)) {
3017 if (UVM_ET_ISSUBMAP(current)) {
3018 error = EINVAL;
3019 goto out;
3020 }
3021 if ((new_prot & current->max_protection) != new_prot) {
3022 error = EACCES;
3023 goto out;
3024 }
3025 /*
3026 * Don't allow VM_PROT_EXECUTE to be set on entries that
3027 * point to vnodes that are associated with a NOEXEC file
3028 * system.
3029 */
3030 if (UVM_ET_ISOBJ(current) &&
3031 UVM_OBJ_IS_VNODE(current->object.uvm_obj)) {
3032 struct vnode *vp =
3033 (struct vnode *) current->object.uvm_obj;
3034
3035 if ((new_prot & VM_PROT_EXECUTE) != 0 &&
3036 (vp->v_mount->mnt_flag & MNT_NOEXEC) != 0) {
3037 error = EACCES;
3038 goto out;
3039 }
3040 }
3041
3042 current = current->next;
3043 }
3044
3045 /* go back and fix up protections (no need to clip this time). */
3046
3047 current = entry;
3048 while ((current != &map->header) && (current->start < end)) {
3049 vm_prot_t old_prot;
3050
3051 UVM_MAP_CLIP_END(map, current, end);
3052 old_prot = current->protection;
3053 if (set_max)
3054 current->protection =
3055 (current->max_protection = new_prot) & old_prot;
3056 else
3057 current->protection = new_prot;
3058
3059 /*
3060 * update physical map if necessary. worry about copy-on-write
3061 * here -- CHECK THIS XXX
3062 */
3063
3064 if (current->protection != old_prot) {
3065 /* update pmap! */
3066 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
3067 uvm_map_lock_entry(current, RW_WRITER);
3068 #else
3069 uvm_map_lock_entry(current, RW_READER);
3070 #endif
3071 pmap_protect(map->pmap, current->start, current->end,
3072 current->protection & MASK(current));
3073 uvm_map_unlock_entry(current);
3074
3075 /*
3076 * If this entry points at a vnode, and the
3077 * protection includes VM_PROT_EXECUTE, mark
3078 * the vnode as VEXECMAP.
3079 */
3080 if (UVM_ET_ISOBJ(current)) {
3081 struct uvm_object *uobj =
3082 current->object.uvm_obj;
3083
3084 if (UVM_OBJ_IS_VNODE(uobj) &&
3085 (current->protection & VM_PROT_EXECUTE)) {
3086 vn_markexec((struct vnode *) uobj);
3087 }
3088 }
3089 }
3090
3091 /*
3092 * If the map is configured to lock any future mappings,
3093 * wire this entry now if the old protection was VM_PROT_NONE
3094 * and the new protection is not VM_PROT_NONE.
3095 */
3096
3097 if ((map->flags & VM_MAP_WIREFUTURE) != 0 &&
3098 VM_MAPENT_ISWIRED(current) == 0 &&
3099 old_prot == VM_PROT_NONE &&
3100 new_prot != VM_PROT_NONE) {
3101
3102 /*
3103 * We must call pmap_update() here because the
3104 * pmap_protect() call above might have removed some
3105 * pmap entries and uvm_map_pageable() might create
3106 * some new pmap entries that rely on the prior
3107 * removals being completely finished.
3108 */
3109
3110 pmap_update(map->pmap);
3111
3112 if (uvm_map_pageable(map, current->start,
3113 current->end, false,
3114 UVM_LK_ENTER|UVM_LK_EXIT) != 0) {
3115
3116 /*
3117 * If locking the entry fails, remember the
3118 * error if it's the first one. Note we
3119 * still continue setting the protection in
3120 * the map, but will return the error
3121 * condition regardless.
3122 *
3123 * XXX Ignore what the actual error is,
3124 * XXX just call it a resource shortage
3125 * XXX so that it doesn't get confused
3126 * XXX what uvm_map_protect() itself would
3127 * XXX normally return.
3128 */
3129
3130 error = ENOMEM;
3131 }
3132 }
3133 current = current->next;
3134 }
3135 pmap_update(map->pmap);
3136
3137 out:
3138 vm_map_unlock(map);
3139
3140 UVMHIST_LOG(maphist, "<- done, error=%jd",error,0,0,0);
3141 return error;
3142 }
3143
3144 #undef MASK
3145
3146 /*
3147 * uvm_map_inherit: set inheritance code for range of addrs in map.
3148 *
3149 * => map must be unlocked
3150 * => note that the inherit code is used during a "fork". see fork
3151 * code for details.
3152 */
3153
3154 int
3155 uvm_map_inherit(struct vm_map *map, vaddr_t start, vaddr_t end,
3156 vm_inherit_t new_inheritance)
3157 {
3158 struct vm_map_entry *entry, *temp_entry;
3159 UVMHIST_FUNC(__func__);
3160 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,new_inh=%#jx)",
3161 (uintptr_t)map, start, end, new_inheritance);
3162
3163 switch (new_inheritance) {
3164 case MAP_INHERIT_NONE:
3165 case MAP_INHERIT_COPY:
3166 case MAP_INHERIT_SHARE:
3167 case MAP_INHERIT_ZERO:
3168 break;
3169 default:
3170 UVMHIST_LOG(maphist,"<- done (INVALID ARG)",0,0,0,0);
3171 return EINVAL;
3172 }
3173
3174 vm_map_lock(map);
3175 VM_MAP_RANGE_CHECK(map, start, end);
3176 if (uvm_map_lookup_entry(map, start, &temp_entry)) {
3177 entry = temp_entry;
3178 UVM_MAP_CLIP_START(map, entry, start);
3179 } else {
3180 entry = temp_entry->next;
3181 }
3182 while ((entry != &map->header) && (entry->start < end)) {
3183 UVM_MAP_CLIP_END(map, entry, end);
3184 entry->inheritance = new_inheritance;
3185 entry = entry->next;
3186 }
3187 vm_map_unlock(map);
3188 UVMHIST_LOG(maphist,"<- done (OK)",0,0,0,0);
3189 return 0;
3190 }
3191
3192 /*
3193 * uvm_map_advice: set advice code for range of addrs in map.
3194 *
3195 * => map must be unlocked
3196 */
3197
3198 int
3199 uvm_map_advice(struct vm_map *map, vaddr_t start, vaddr_t end, int new_advice)
3200 {
3201 struct vm_map_entry *entry, *temp_entry;
3202 UVMHIST_FUNC(__func__);
3203 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,new_adv=%#jx)",
3204 (uintptr_t)map, start, end, new_advice);
3205
3206 vm_map_lock(map);
3207 VM_MAP_RANGE_CHECK(map, start, end);
3208 if (uvm_map_lookup_entry(map, start, &temp_entry)) {
3209 entry = temp_entry;
3210 UVM_MAP_CLIP_START(map, entry, start);
3211 } else {
3212 entry = temp_entry->next;
3213 }
3214
3215 /*
3216 * XXXJRT: disallow holes?
3217 */
3218
3219 while ((entry != &map->header) && (entry->start < end)) {
3220 UVM_MAP_CLIP_END(map, entry, end);
3221
3222 switch (new_advice) {
3223 case MADV_NORMAL:
3224 case MADV_RANDOM:
3225 case MADV_SEQUENTIAL:
3226 /* nothing special here */
3227 break;
3228
3229 default:
3230 vm_map_unlock(map);
3231 UVMHIST_LOG(maphist,"<- done (INVALID ARG)",0,0,0,0);
3232 return EINVAL;
3233 }
3234 entry->advice = new_advice;
3235 entry = entry->next;
3236 }
3237
3238 vm_map_unlock(map);
3239 UVMHIST_LOG(maphist,"<- done (OK)",0,0,0,0);
3240 return 0;
3241 }
3242
3243 /*
3244 * uvm_map_willneed: apply MADV_WILLNEED
3245 */
3246
3247 int
3248 uvm_map_willneed(struct vm_map *map, vaddr_t start, vaddr_t end)
3249 {
3250 struct vm_map_entry *entry;
3251 UVMHIST_FUNC(__func__);
3252 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx)",
3253 (uintptr_t)map, start, end, 0);
3254
3255 vm_map_lock_read(map);
3256 VM_MAP_RANGE_CHECK(map, start, end);
3257 if (!uvm_map_lookup_entry(map, start, &entry)) {
3258 entry = entry->next;
3259 }
3260 while (entry->start < end) {
3261 struct vm_amap * const amap = entry->aref.ar_amap;
3262 struct uvm_object * const uobj = entry->object.uvm_obj;
3263
3264 KASSERT(entry != &map->header);
3265 KASSERT(start < entry->end);
3266 /*
3267 * For now, we handle only the easy but commonly-requested case.
3268 * ie. start prefetching of backing uobj pages.
3269 *
3270 * XXX It might be useful to pmap_enter() the already-in-core
3271 * pages by inventing a "weak" mode for uvm_fault() which would
3272 * only do the PGO_LOCKED pgo_get().
3273 */
3274 if (UVM_ET_ISOBJ(entry) && amap == NULL && uobj != NULL) {
3275 off_t offset;
3276 off_t size;
3277
3278 offset = entry->offset;
3279 if (start < entry->start) {
3280 offset += entry->start - start;
3281 }
3282 size = entry->offset + (entry->end - entry->start);
3283 if (entry->end < end) {
3284 size -= end - entry->end;
3285 }
3286 uvm_readahead(uobj, offset, size);
3287 }
3288 entry = entry->next;
3289 }
3290 vm_map_unlock_read(map);
3291 UVMHIST_LOG(maphist,"<- done (OK)",0,0,0,0);
3292 return 0;
3293 }
3294
3295 /*
3296 * uvm_map_pageable: sets the pageability of a range in a map.
3297 *
3298 * => wires map entries. should not be used for transient page locking.
3299 * for that, use uvm_fault_wire()/uvm_fault_unwire() (see uvm_vslock()).
3300 * => regions specified as not pageable require lock-down (wired) memory
3301 * and page tables.
3302 * => map must never be read-locked
3303 * => if islocked is true, map is already write-locked
3304 * => we always unlock the map, since we must downgrade to a read-lock
3305 * to call uvm_fault_wire()
3306 * => XXXCDC: check this and try and clean it up.
3307 */
3308
3309 int
3310 uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end,
3311 bool new_pageable, int lockflags)
3312 {
3313 struct vm_map_entry *entry, *start_entry, *failed_entry;
3314 int rv;
3315 #ifdef DIAGNOSTIC
3316 u_int timestamp_save;
3317 #endif
3318 UVMHIST_FUNC(__func__);
3319 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,new_pageable=%ju)",
3320 (uintptr_t)map, start, end, new_pageable);
3321 KASSERT(map->flags & VM_MAP_PAGEABLE);
3322
3323 if ((lockflags & UVM_LK_ENTER) == 0)
3324 vm_map_lock(map);
3325 VM_MAP_RANGE_CHECK(map, start, end);
3326
3327 /*
3328 * only one pageability change may take place at one time, since
3329 * uvm_fault_wire assumes it will be called only once for each
3330 * wiring/unwiring. therefore, we have to make sure we're actually
3331 * changing the pageability for the entire region. we do so before
3332 * making any changes.
3333 */
3334
3335 if (uvm_map_lookup_entry(map, start, &start_entry) == false) {
3336 if ((lockflags & UVM_LK_EXIT) == 0)
3337 vm_map_unlock(map);
3338
3339 UVMHIST_LOG(maphist,"<- done (fault)",0,0,0,0);
3340 return EFAULT;
3341 }
3342 entry = start_entry;
3343
3344 if (start == end) { /* nothing required */
3345 if ((lockflags & UVM_LK_EXIT) == 0)
3346 vm_map_unlock(map);
3347
3348 UVMHIST_LOG(maphist,"<- done (nothing)",0,0,0,0);
3349 return 0;
3350 }
3351
3352 /*
3353 * handle wiring and unwiring separately.
3354 */
3355
3356 if (new_pageable) { /* unwire */
3357 UVM_MAP_CLIP_START(map, entry, start);
3358
3359 /*
3360 * unwiring. first ensure that the range to be unwired is
3361 * really wired down and that there are no holes.
3362 */
3363
3364 while ((entry != &map->header) && (entry->start < end)) {
3365 if (entry->wired_count == 0 ||
3366 (entry->end < end &&
3367 (entry->next == &map->header ||
3368 entry->next->start > entry->end))) {
3369 if ((lockflags & UVM_LK_EXIT) == 0)
3370 vm_map_unlock(map);
3371 UVMHIST_LOG(maphist, "<- done (INVAL)",0,0,0,0);
3372 return EINVAL;
3373 }
3374 entry = entry->next;
3375 }
3376
3377 /*
3378 * POSIX 1003.1b - a single munlock call unlocks a region,
3379 * regardless of the number of mlock calls made on that
3380 * region.
3381 */
3382
3383 entry = start_entry;
3384 while ((entry != &map->header) && (entry->start < end)) {
3385 UVM_MAP_CLIP_END(map, entry, end);
3386 if (VM_MAPENT_ISWIRED(entry))
3387 uvm_map_entry_unwire(map, entry);
3388 entry = entry->next;
3389 }
3390 if ((lockflags & UVM_LK_EXIT) == 0)
3391 vm_map_unlock(map);
3392 UVMHIST_LOG(maphist,"<- done (OK UNWIRE)",0,0,0,0);
3393 return 0;
3394 }
3395
3396 /*
3397 * wire case: in two passes [XXXCDC: ugly block of code here]
3398 *
3399 * 1: holding the write lock, we create any anonymous maps that need
3400 * to be created. then we clip each map entry to the region to
3401 * be wired and increment its wiring count.
3402 *
3403 * 2: we downgrade to a read lock, and call uvm_fault_wire to fault
3404 * in the pages for any newly wired area (wired_count == 1).
3405 *
3406 * downgrading to a read lock for uvm_fault_wire avoids a possible
3407 * deadlock with another thread that may have faulted on one of
3408 * the pages to be wired (it would mark the page busy, blocking
3409 * us, then in turn block on the map lock that we hold). because
3410 * of problems in the recursive lock package, we cannot upgrade
3411 * to a write lock in vm_map_lookup. thus, any actions that
3412 * require the write lock must be done beforehand. because we
3413 * keep the read lock on the map, the copy-on-write status of the
3414 * entries we modify here cannot change.
3415 */
3416
3417 while ((entry != &map->header) && (entry->start < end)) {
3418 if (VM_MAPENT_ISWIRED(entry) == 0) { /* not already wired? */
3419
3420 /*
3421 * perform actions of vm_map_lookup that need the
3422 * write lock on the map: create an anonymous map
3423 * for a copy-on-write region, or an anonymous map
3424 * for a zero-fill region. (XXXCDC: submap case
3425 * ok?)
3426 */
3427
3428 if (!UVM_ET_ISSUBMAP(entry)) { /* not submap */
3429 if (UVM_ET_ISNEEDSCOPY(entry) &&
3430 ((entry->max_protection & VM_PROT_WRITE) ||
3431 (entry->object.uvm_obj == NULL))) {
3432 amap_copy(map, entry, 0, start, end);
3433 /* XXXCDC: wait OK? */
3434 }
3435 }
3436 }
3437 UVM_MAP_CLIP_START(map, entry, start);
3438 UVM_MAP_CLIP_END(map, entry, end);
3439 entry->wired_count++;
3440
3441 /*
3442 * Check for holes
3443 */
3444
3445 if (entry->protection == VM_PROT_NONE ||
3446 (entry->end < end &&
3447 (entry->next == &map->header ||
3448 entry->next->start > entry->end))) {
3449
3450 /*
3451 * found one. amap creation actions do not need to
3452 * be undone, but the wired counts need to be restored.
3453 */
3454
3455 while (entry != &map->header && entry->end > start) {
3456 entry->wired_count--;
3457 entry = entry->prev;
3458 }
3459 if ((lockflags & UVM_LK_EXIT) == 0)
3460 vm_map_unlock(map);
3461 UVMHIST_LOG(maphist,"<- done (INVALID WIRE)",0,0,0,0);
3462 return EINVAL;
3463 }
3464 entry = entry->next;
3465 }
3466
3467 /*
3468 * Pass 2.
3469 */
3470
3471 #ifdef DIAGNOSTIC
3472 timestamp_save = map->timestamp;
3473 #endif
3474 vm_map_busy(map);
3475 vm_map_unlock(map);
3476
3477 rv = 0;
3478 entry = start_entry;
3479 while (entry != &map->header && entry->start < end) {
3480 if (entry->wired_count == 1) {
3481 rv = uvm_fault_wire(map, entry->start, entry->end,
3482 entry->max_protection, 1);
3483 if (rv) {
3484
3485 /*
3486 * wiring failed. break out of the loop.
3487 * we'll clean up the map below, once we
3488 * have a write lock again.
3489 */
3490
3491 break;
3492 }
3493 }
3494 entry = entry->next;
3495 }
3496
3497 if (rv) { /* failed? */
3498
3499 /*
3500 * Get back to an exclusive (write) lock.
3501 */
3502
3503 vm_map_lock(map);
3504 vm_map_unbusy(map);
3505
3506 #ifdef DIAGNOSTIC
3507 if (timestamp_save + 1 != map->timestamp)
3508 panic("uvm_map_pageable: stale map");
3509 #endif
3510
3511 /*
3512 * first drop the wiring count on all the entries
3513 * which haven't actually been wired yet.
3514 */
3515
3516 failed_entry = entry;
3517 while (entry != &map->header && entry->start < end) {
3518 entry->wired_count--;
3519 entry = entry->next;
3520 }
3521
3522 /*
3523 * now, unwire all the entries that were successfully
3524 * wired above.
3525 */
3526
3527 entry = start_entry;
3528 while (entry != failed_entry) {
3529 entry->wired_count--;
3530 if (VM_MAPENT_ISWIRED(entry) == 0)
3531 uvm_map_entry_unwire(map, entry);
3532 entry = entry->next;
3533 }
3534 if ((lockflags & UVM_LK_EXIT) == 0)
3535 vm_map_unlock(map);
3536 UVMHIST_LOG(maphist, "<- done (RV=%jd)", rv,0,0,0);
3537 return (rv);
3538 }
3539
3540 if ((lockflags & UVM_LK_EXIT) == 0) {
3541 vm_map_unbusy(map);
3542 } else {
3543
3544 /*
3545 * Get back to an exclusive (write) lock.
3546 */
3547
3548 vm_map_lock(map);
3549 vm_map_unbusy(map);
3550 }
3551
3552 UVMHIST_LOG(maphist,"<- done (OK WIRE)",0,0,0,0);
3553 return 0;
3554 }
3555
3556 /*
3557 * uvm_map_pageable_all: special case of uvm_map_pageable - affects
3558 * all mapped regions.
3559 *
3560 * => map must not be locked.
3561 * => if no flags are specified, all regions are unwired.
3562 * => XXXJRT: has some of the same problems as uvm_map_pageable() above.
3563 */
3564
3565 int
3566 uvm_map_pageable_all(struct vm_map *map, int flags, vsize_t limit)
3567 {
3568 struct vm_map_entry *entry, *failed_entry;
3569 vsize_t size;
3570 int rv;
3571 #ifdef DIAGNOSTIC
3572 u_int timestamp_save;
3573 #endif
3574 UVMHIST_FUNC(__func__);
3575 UVMHIST_CALLARGS(maphist,"(map=%#jx,flags=%#jx)", (uintptr_t)map, flags,
3576 0, 0);
3577
3578 KASSERT(map->flags & VM_MAP_PAGEABLE);
3579
3580 vm_map_lock(map);
3581
3582 /*
3583 * handle wiring and unwiring separately.
3584 */
3585
3586 if (flags == 0) { /* unwire */
3587
3588 /*
3589 * POSIX 1003.1b -- munlockall unlocks all regions,
3590 * regardless of how many times mlockall has been called.
3591 */
3592
3593 for (entry = map->header.next; entry != &map->header;
3594 entry = entry->next) {
3595 if (VM_MAPENT_ISWIRED(entry))
3596 uvm_map_entry_unwire(map, entry);
3597 }
3598 map->flags &= ~VM_MAP_WIREFUTURE;
3599 vm_map_unlock(map);
3600 UVMHIST_LOG(maphist,"<- done (OK UNWIRE)",0,0,0,0);
3601 return 0;
3602 }
3603
3604 if (flags & MCL_FUTURE) {
3605
3606 /*
3607 * must wire all future mappings; remember this.
3608 */
3609
3610 map->flags |= VM_MAP_WIREFUTURE;
3611 }
3612
3613 if ((flags & MCL_CURRENT) == 0) {
3614
3615 /*
3616 * no more work to do!
3617 */
3618
3619 UVMHIST_LOG(maphist,"<- done (OK no wire)",0,0,0,0);
3620 vm_map_unlock(map);
3621 return 0;
3622 }
3623
3624 /*
3625 * wire case: in three passes [XXXCDC: ugly block of code here]
3626 *
3627 * 1: holding the write lock, count all pages mapped by non-wired
3628 * entries. if this would cause us to go over our limit, we fail.
3629 *
3630 * 2: still holding the write lock, we create any anonymous maps that
3631 * need to be created. then we increment its wiring count.
3632 *
3633 * 3: we downgrade to a read lock, and call uvm_fault_wire to fault
3634 * in the pages for any newly wired area (wired_count == 1).
3635 *
3636 * downgrading to a read lock for uvm_fault_wire avoids a possible
3637 * deadlock with another thread that may have faulted on one of
3638 * the pages to be wired (it would mark the page busy, blocking
3639 * us, then in turn block on the map lock that we hold). because
3640 * of problems in the recursive lock package, we cannot upgrade
3641 * to a write lock in vm_map_lookup. thus, any actions that
3642 * require the write lock must be done beforehand. because we
3643 * keep the read lock on the map, the copy-on-write status of the
3644 * entries we modify here cannot change.
3645 */
3646
3647 for (size = 0, entry = map->header.next; entry != &map->header;
3648 entry = entry->next) {
3649 if (entry->protection != VM_PROT_NONE &&
3650 VM_MAPENT_ISWIRED(entry) == 0) { /* not already wired? */
3651 size += entry->end - entry->start;
3652 }
3653 }
3654
3655 if (atop(size) + uvmexp.wired > uvmexp.wiredmax) {
3656 vm_map_unlock(map);
3657 return ENOMEM;
3658 }
3659
3660 if (limit != 0 &&
3661 (size + ptoa(pmap_wired_count(vm_map_pmap(map))) > limit)) {
3662 vm_map_unlock(map);
3663 return ENOMEM;
3664 }
3665
3666 /*
3667 * Pass 2.
3668 */
3669
3670 for (entry = map->header.next; entry != &map->header;
3671 entry = entry->next) {
3672 if (entry->protection == VM_PROT_NONE)
3673 continue;
3674 if (VM_MAPENT_ISWIRED(entry) == 0) { /* not already wired? */
3675
3676 /*
3677 * perform actions of vm_map_lookup that need the
3678 * write lock on the map: create an anonymous map
3679 * for a copy-on-write region, or an anonymous map
3680 * for a zero-fill region. (XXXCDC: submap case
3681 * ok?)
3682 */
3683
3684 if (!UVM_ET_ISSUBMAP(entry)) { /* not submap */
3685 if (UVM_ET_ISNEEDSCOPY(entry) &&
3686 ((entry->max_protection & VM_PROT_WRITE) ||
3687 (entry->object.uvm_obj == NULL))) {
3688 amap_copy(map, entry, 0, entry->start,
3689 entry->end);
3690 /* XXXCDC: wait OK? */
3691 }
3692 }
3693 }
3694 entry->wired_count++;
3695 }
3696
3697 /*
3698 * Pass 3.
3699 */
3700
3701 #ifdef DIAGNOSTIC
3702 timestamp_save = map->timestamp;
3703 #endif
3704 vm_map_busy(map);
3705 vm_map_unlock(map);
3706
3707 rv = 0;
3708 for (entry = map->header.next; entry != &map->header;
3709 entry = entry->next) {
3710 if (entry->wired_count == 1) {
3711 rv = uvm_fault_wire(map, entry->start, entry->end,
3712 entry->max_protection, 1);
3713 if (rv) {
3714
3715 /*
3716 * wiring failed. break out of the loop.
3717 * we'll clean up the map below, once we
3718 * have a write lock again.
3719 */
3720
3721 break;
3722 }
3723 }
3724 }
3725
3726 if (rv) {
3727
3728 /*
3729 * Get back an exclusive (write) lock.
3730 */
3731
3732 vm_map_lock(map);
3733 vm_map_unbusy(map);
3734
3735 #ifdef DIAGNOSTIC
3736 if (timestamp_save + 1 != map->timestamp)
3737 panic("uvm_map_pageable_all: stale map");
3738 #endif
3739
3740 /*
3741 * first drop the wiring count on all the entries
3742 * which haven't actually been wired yet.
3743 *
3744 * Skip VM_PROT_NONE entries like we did above.
3745 */
3746
3747 failed_entry = entry;
3748 for (/* nothing */; entry != &map->header;
3749 entry = entry->next) {
3750 if (entry->protection == VM_PROT_NONE)
3751 continue;
3752 entry->wired_count--;
3753 }
3754
3755 /*
3756 * now, unwire all the entries that were successfully
3757 * wired above.
3758 *
3759 * Skip VM_PROT_NONE entries like we did above.
3760 */
3761
3762 for (entry = map->header.next; entry != failed_entry;
3763 entry = entry->next) {
3764 if (entry->protection == VM_PROT_NONE)
3765 continue;
3766 entry->wired_count--;
3767 if (VM_MAPENT_ISWIRED(entry))
3768 uvm_map_entry_unwire(map, entry);
3769 }
3770 vm_map_unlock(map);
3771 UVMHIST_LOG(maphist,"<- done (RV=%jd)", rv,0,0,0);
3772 return (rv);
3773 }
3774
3775 vm_map_unbusy(map);
3776
3777 UVMHIST_LOG(maphist,"<- done (OK WIRE)",0,0,0,0);
3778 return 0;
3779 }
3780
3781 /*
3782 * uvm_map_clean: clean out a map range
3783 *
3784 * => valid flags:
3785 * if (flags & PGO_CLEANIT): dirty pages are cleaned first
3786 * if (flags & PGO_SYNCIO): dirty pages are written synchronously
3787 * if (flags & PGO_DEACTIVATE): any cached pages are deactivated after clean
3788 * if (flags & PGO_FREE): any cached pages are freed after clean
3789 * => returns an error if any part of the specified range isn't mapped
3790 * => never a need to flush amap layer since the anonymous memory has
3791 * no permanent home, but may deactivate pages there
3792 * => called from sys_msync() and sys_madvise()
3793 * => caller must not write-lock map (read OK).
3794 * => we may sleep while cleaning if SYNCIO [with map read-locked]
3795 */
3796
3797 int
3798 uvm_map_clean(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
3799 {
3800 struct vm_map_entry *current, *entry;
3801 struct uvm_object *uobj;
3802 struct vm_amap *amap;
3803 struct vm_anon *anon;
3804 struct vm_page *pg;
3805 vaddr_t offset;
3806 vsize_t size;
3807 voff_t uoff;
3808 int error, refs;
3809 UVMHIST_FUNC(__func__);
3810 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,flags=%#jx)",
3811 (uintptr_t)map, start, end, flags);
3812
3813 KASSERT((flags & (PGO_FREE|PGO_DEACTIVATE)) !=
3814 (PGO_FREE|PGO_DEACTIVATE));
3815
3816 vm_map_lock_read(map);
3817 VM_MAP_RANGE_CHECK(map, start, end);
3818 if (uvm_map_lookup_entry(map, start, &entry) == false) {
3819 vm_map_unlock_read(map);
3820 return EFAULT;
3821 }
3822
3823 /*
3824 * Make a first pass to check for holes and wiring problems.
3825 */
3826
3827 for (current = entry; current->start < end; current = current->next) {
3828 if (UVM_ET_ISSUBMAP(current)) {
3829 vm_map_unlock_read(map);
3830 return EINVAL;
3831 }
3832 if ((flags & PGO_FREE) != 0 && VM_MAPENT_ISWIRED(entry)) {
3833 vm_map_unlock_read(map);
3834 return EBUSY;
3835 }
3836 if (end <= current->end) {
3837 break;
3838 }
3839 if (current->end != current->next->start) {
3840 vm_map_unlock_read(map);
3841 return EFAULT;
3842 }
3843 }
3844
3845 error = 0;
3846 for (current = entry; start < end; current = current->next) {
3847 amap = current->aref.ar_amap; /* upper layer */
3848 uobj = current->object.uvm_obj; /* lower layer */
3849 KASSERT(start >= current->start);
3850
3851 /*
3852 * No amap cleaning necessary if:
3853 *
3854 * (1) There's no amap.
3855 *
3856 * (2) We're not deactivating or freeing pages.
3857 */
3858
3859 if (amap == NULL || (flags & (PGO_DEACTIVATE|PGO_FREE)) == 0)
3860 goto flush_object;
3861
3862 offset = start - current->start;
3863 size = MIN(end, current->end) - start;
3864
3865 amap_lock(amap, RW_WRITER);
3866 for ( ; size != 0; size -= PAGE_SIZE, offset += PAGE_SIZE) {
3867 anon = amap_lookup(¤t->aref, offset);
3868 if (anon == NULL)
3869 continue;
3870
3871 KASSERT(anon->an_lock == amap->am_lock);
3872 pg = anon->an_page;
3873 if (pg == NULL) {
3874 continue;
3875 }
3876 if (pg->flags & PG_BUSY) {
3877 continue;
3878 }
3879
3880 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
3881
3882 /*
3883 * In these first 3 cases, we just deactivate the page.
3884 */
3885
3886 case PGO_CLEANIT|PGO_FREE:
3887 case PGO_CLEANIT|PGO_DEACTIVATE:
3888 case PGO_DEACTIVATE:
3889 deactivate_it:
3890 /*
3891 * skip the page if it's loaned or wired,
3892 * since it shouldn't be on a paging queue
3893 * at all in these cases.
3894 */
3895
3896 if (pg->loan_count != 0 ||
3897 pg->wire_count != 0) {
3898 continue;
3899 }
3900 KASSERT(pg->uanon == anon);
3901 uvm_pagelock(pg);
3902 uvm_pagedeactivate(pg);
3903 uvm_pageunlock(pg);
3904 continue;
3905
3906 case PGO_FREE:
3907
3908 /*
3909 * If there are multiple references to
3910 * the amap, just deactivate the page.
3911 */
3912
3913 if (amap_refs(amap) > 1)
3914 goto deactivate_it;
3915
3916 /* skip the page if it's wired */
3917 if (pg->wire_count != 0) {
3918 continue;
3919 }
3920 amap_unadd(¤t->aref, offset);
3921 refs = --anon->an_ref;
3922 if (refs == 0) {
3923 uvm_anfree(anon);
3924 }
3925 continue;
3926 }
3927 }
3928 amap_unlock(amap);
3929
3930 flush_object:
3931 /*
3932 * flush pages if we've got a valid backing object.
3933 * note that we must always clean object pages before
3934 * freeing them since otherwise we could reveal stale
3935 * data from files.
3936 */
3937
3938 uoff = current->offset + (start - current->start);
3939 size = MIN(end, current->end) - start;
3940 if (uobj != NULL) {
3941 rw_enter(uobj->vmobjlock, RW_WRITER);
3942 if (uobj->pgops->pgo_put != NULL)
3943 error = (uobj->pgops->pgo_put)(uobj, uoff,
3944 uoff + size, flags | PGO_CLEANIT);
3945 else
3946 error = 0;
3947 }
3948 start += size;
3949 }
3950 vm_map_unlock_read(map);
3951 return (error);
3952 }
3953
3954
3955 /*
3956 * uvm_map_checkprot: check protection in map
3957 *
3958 * => must allow specified protection in a fully allocated region.
3959 * => map must be read or write locked by caller.
3960 */
3961
3962 bool
3963 uvm_map_checkprot(struct vm_map *map, vaddr_t start, vaddr_t end,
3964 vm_prot_t protection)
3965 {
3966 struct vm_map_entry *entry;
3967 struct vm_map_entry *tmp_entry;
3968
3969 if (!uvm_map_lookup_entry(map, start, &tmp_entry)) {
3970 return (false);
3971 }
3972 entry = tmp_entry;
3973 while (start < end) {
3974 if (entry == &map->header) {
3975 return (false);
3976 }
3977
3978 /*
3979 * no holes allowed
3980 */
3981
3982 if (start < entry->start) {
3983 return (false);
3984 }
3985
3986 /*
3987 * check protection associated with entry
3988 */
3989
3990 if ((entry->protection & protection) != protection) {
3991 return (false);
3992 }
3993 start = entry->end;
3994 entry = entry->next;
3995 }
3996 return (true);
3997 }
3998
3999 /*
4000 * uvmspace_alloc: allocate a vmspace structure.
4001 *
4002 * - structure includes vm_map and pmap
4003 * - XXX: no locking on this structure
4004 * - refcnt set to 1, rest must be init'd by caller
4005 */
4006 struct vmspace *
4007 uvmspace_alloc(vaddr_t vmin, vaddr_t vmax, bool topdown)
4008 {
4009 struct vmspace *vm;
4010 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4011
4012 vm = pool_cache_get(&uvm_vmspace_cache, PR_WAITOK);
4013 uvmspace_init(vm, NULL, vmin, vmax, topdown);
4014 UVMHIST_LOG(maphist,"<- done (vm=%#jx)", (uintptr_t)vm, 0, 0, 0);
4015 return (vm);
4016 }
4017
4018 /*
4019 * uvmspace_init: initialize a vmspace structure.
4020 *
4021 * - XXX: no locking on this structure
4022 * - refcnt set to 1, rest must be init'd by caller
4023 */
4024 void
4025 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin,
4026 vaddr_t vmax, bool topdown)
4027 {
4028 UVMHIST_FUNC(__func__);
4029 UVMHIST_CALLARGS(maphist, "(vm=%#jx, pmap=%#jx, vmin=%#jx, vmax=%#jx",
4030 (uintptr_t)vm, (uintptr_t)pmap, vmin, vmax);
4031 UVMHIST_LOG(maphist, " topdown=%ju)", topdown, 0, 0, 0);
4032
4033 memset(vm, 0, sizeof(*vm));
4034 uvm_map_setup(&vm->vm_map, vmin, vmax, VM_MAP_PAGEABLE
4035 | (topdown ? VM_MAP_TOPDOWN : 0)
4036 );
4037 if (pmap)
4038 pmap_reference(pmap);
4039 else
4040 pmap = pmap_create();
4041 vm->vm_map.pmap = pmap;
4042 vm->vm_refcnt = 1;
4043 UVMHIST_LOG(maphist,"<- done",0,0,0,0);
4044 }
4045
4046 /*
4047 * uvmspace_share: share a vmspace between two processes
4048 *
4049 * - used for vfork, threads(?)
4050 */
4051
4052 void
4053 uvmspace_share(struct proc *p1, struct proc *p2)
4054 {
4055
4056 uvmspace_addref(p1->p_vmspace);
4057 p2->p_vmspace = p1->p_vmspace;
4058 }
4059
4060 #if 0
4061
4062 /*
4063 * uvmspace_unshare: ensure that process "p" has its own, unshared, vmspace
4064 *
4065 * - XXX: no locking on vmspace
4066 */
4067
4068 void
4069 uvmspace_unshare(struct lwp *l)
4070 {
4071 struct proc *p = l->l_proc;
4072 struct vmspace *nvm, *ovm = p->p_vmspace;
4073
4074 if (ovm->vm_refcnt == 1)
4075 /* nothing to do: vmspace isn't shared in the first place */
4076 return;
4077
4078 /* make a new vmspace, still holding old one */
4079 nvm = uvmspace_fork(ovm);
4080
4081 kpreempt_disable();
4082 pmap_deactivate(l); /* unbind old vmspace */
4083 p->p_vmspace = nvm;
4084 pmap_activate(l); /* switch to new vmspace */
4085 kpreempt_enable();
4086
4087 uvmspace_free(ovm); /* drop reference to old vmspace */
4088 }
4089
4090 #endif
4091
4092
4093 /*
4094 * uvmspace_spawn: a new process has been spawned and needs a vmspace
4095 */
4096
4097 void
4098 uvmspace_spawn(struct lwp *l, vaddr_t start, vaddr_t end, bool topdown)
4099 {
4100 struct proc *p = l->l_proc;
4101 struct vmspace *nvm;
4102
4103 #ifdef __HAVE_CPU_VMSPACE_EXEC
4104 cpu_vmspace_exec(l, start, end);
4105 #endif
4106
4107 nvm = uvmspace_alloc(start, end, topdown);
4108 kpreempt_disable();
4109 p->p_vmspace = nvm;
4110 pmap_activate(l);
4111 kpreempt_enable();
4112 }
4113
4114 /*
4115 * uvmspace_exec: the process wants to exec a new program
4116 */
4117
4118 void
4119 uvmspace_exec(struct lwp *l, vaddr_t start, vaddr_t end, bool topdown)
4120 {
4121 struct proc *p = l->l_proc;
4122 struct vmspace *nvm, *ovm = p->p_vmspace;
4123 struct vm_map *map;
4124 int flags;
4125
4126 KASSERT(ovm != NULL);
4127 #ifdef __HAVE_CPU_VMSPACE_EXEC
4128 cpu_vmspace_exec(l, start, end);
4129 #endif
4130
4131 map = &ovm->vm_map;
4132 /*
4133 * see if more than one process is using this vmspace...
4134 */
4135
4136 if (ovm->vm_refcnt == 1
4137 && topdown == ((ovm->vm_map.flags & VM_MAP_TOPDOWN) != 0)) {
4138
4139 /*
4140 * if p is the only process using its vmspace then we can safely
4141 * recycle that vmspace for the program that is being exec'd.
4142 * But only if TOPDOWN matches the requested value for the new
4143 * vm space!
4144 */
4145
4146 /*
4147 * SYSV SHM semantics require us to kill all segments on an exec
4148 */
4149 if (uvm_shmexit && ovm->vm_shm)
4150 (*uvm_shmexit)(ovm);
4151
4152 /*
4153 * POSIX 1003.1b -- "lock future mappings" is revoked
4154 * when a process execs another program image.
4155 */
4156
4157 map->flags &= ~VM_MAP_WIREFUTURE;
4158
4159 /*
4160 * now unmap the old program.
4161 *
4162 * XXX set VM_MAP_DYING for the duration, so pmap_update()
4163 * is not called until the pmap has been totally cleared out
4164 * after pmap_remove_all(), or it can confuse some pmap
4165 * implementations. it would be nice to handle this by
4166 * deferring the pmap_update() while it is known the address
4167 * space is not visible to any user LWP other than curlwp,
4168 * but there isn't an elegant way of inferring that right
4169 * now.
4170 */
4171
4172 flags = pmap_remove_all(map->pmap) ? UVM_FLAG_VAONLY : 0;
4173 map->flags |= VM_MAP_DYING;
4174 uvm_unmap1(map, vm_map_min(map), vm_map_max(map), flags);
4175 map->flags &= ~VM_MAP_DYING;
4176 pmap_update(map->pmap);
4177 KASSERT(map->header.prev == &map->header);
4178 KASSERT(map->nentries == 0);
4179
4180 /*
4181 * resize the map
4182 */
4183
4184 vm_map_setmin(map, start);
4185 vm_map_setmax(map, end);
4186 } else {
4187
4188 /*
4189 * p's vmspace is being shared, so we can't reuse it for p since
4190 * it is still being used for others. allocate a new vmspace
4191 * for p
4192 */
4193
4194 nvm = uvmspace_alloc(start, end, topdown);
4195
4196 /*
4197 * install new vmspace and drop our ref to the old one.
4198 */
4199
4200 kpreempt_disable();
4201 pmap_deactivate(l);
4202 p->p_vmspace = nvm;
4203 pmap_activate(l);
4204 kpreempt_enable();
4205
4206 uvmspace_free(ovm);
4207 }
4208 }
4209
4210 /*
4211 * uvmspace_addref: add a reference to a vmspace.
4212 */
4213
4214 void
4215 uvmspace_addref(struct vmspace *vm)
4216 {
4217
4218 KASSERT((vm->vm_map.flags & VM_MAP_DYING) == 0);
4219 KASSERT(vm->vm_refcnt > 0);
4220 atomic_inc_uint(&vm->vm_refcnt);
4221 }
4222
4223 /*
4224 * uvmspace_free: free a vmspace data structure
4225 */
4226
4227 void
4228 uvmspace_free(struct vmspace *vm)
4229 {
4230 struct vm_map_entry *dead_entries;
4231 struct vm_map *map = &vm->vm_map;
4232 int flags;
4233
4234 UVMHIST_FUNC(__func__);
4235 UVMHIST_CALLARGS(maphist,"(vm=%#jx) ref=%jd", (uintptr_t)vm,
4236 vm->vm_refcnt, 0, 0);
4237 if (atomic_dec_uint_nv(&vm->vm_refcnt) > 0)
4238 return;
4239
4240 /*
4241 * at this point, there should be no other references to the map.
4242 * delete all of the mappings, then destroy the pmap.
4243 */
4244
4245 map->flags |= VM_MAP_DYING;
4246 flags = pmap_remove_all(map->pmap) ? UVM_FLAG_VAONLY : 0;
4247
4248 /* Get rid of any SYSV shared memory segments. */
4249 if (uvm_shmexit && vm->vm_shm != NULL)
4250 (*uvm_shmexit)(vm);
4251
4252 if (map->nentries) {
4253 uvm_unmap_remove(map, vm_map_min(map), vm_map_max(map),
4254 &dead_entries, flags);
4255 if (dead_entries != NULL)
4256 uvm_unmap_detach(dead_entries, 0);
4257 }
4258 KASSERT(map->nentries == 0);
4259 KASSERT(map->size == 0);
4260
4261 mutex_destroy(&map->misc_lock);
4262 rw_destroy(&map->lock);
4263 cv_destroy(&map->cv);
4264 pmap_destroy(map->pmap);
4265 pool_cache_put(&uvm_vmspace_cache, vm);
4266 }
4267
4268 static struct vm_map_entry *
4269 uvm_mapent_clone(struct vm_map *new_map, struct vm_map_entry *old_entry,
4270 int flags)
4271 {
4272 struct vm_map_entry *new_entry;
4273
4274 new_entry = uvm_mapent_alloc(new_map, 0);
4275 /* old_entry -> new_entry */
4276 uvm_mapent_copy(old_entry, new_entry);
4277
4278 /* new pmap has nothing wired in it */
4279 new_entry->wired_count = 0;
4280
4281 /*
4282 * gain reference to object backing the map (can't
4283 * be a submap, already checked this case).
4284 */
4285
4286 if (new_entry->aref.ar_amap)
4287 uvm_map_reference_amap(new_entry, flags);
4288
4289 if (new_entry->object.uvm_obj &&
4290 new_entry->object.uvm_obj->pgops->pgo_reference)
4291 new_entry->object.uvm_obj->pgops->pgo_reference(
4292 new_entry->object.uvm_obj);
4293
4294 /* insert entry at end of new_map's entry list */
4295 uvm_map_entry_link(new_map, new_map->header.prev,
4296 new_entry);
4297
4298 return new_entry;
4299 }
4300
4301 /*
4302 * share the mapping: this means we want the old and
4303 * new entries to share amaps and backing objects.
4304 */
4305 static void
4306 uvm_mapent_forkshared(struct vm_map *new_map, struct vm_map *old_map,
4307 struct vm_map_entry *old_entry)
4308 {
4309 /*
4310 * if the old_entry needs a new amap (due to prev fork)
4311 * then we need to allocate it now so that we have
4312 * something we own to share with the new_entry. [in
4313 * other words, we need to clear needs_copy]
4314 */
4315
4316 if (UVM_ET_ISNEEDSCOPY(old_entry)) {
4317 /* get our own amap, clears needs_copy */
4318 amap_copy(old_map, old_entry, AMAP_COPY_NOCHUNK,
4319 0, 0);
4320 /* XXXCDC: WAITOK??? */
4321 }
4322
4323 uvm_mapent_clone(new_map, old_entry, AMAP_SHARED);
4324 }
4325
4326
4327 static void
4328 uvm_mapent_forkcopy(struct vm_map *new_map, struct vm_map *old_map,
4329 struct vm_map_entry *old_entry)
4330 {
4331 struct vm_map_entry *new_entry;
4332
4333 /*
4334 * copy-on-write the mapping (using mmap's
4335 * MAP_PRIVATE semantics)
4336 *
4337 * allocate new_entry, adjust reference counts.
4338 * (note that new references are read-only).
4339 */
4340
4341 new_entry = uvm_mapent_clone(new_map, old_entry, 0);
4342
4343 new_entry->etype |=
4344 (UVM_ET_COPYONWRITE|UVM_ET_NEEDSCOPY);
4345
4346 /*
4347 * the new entry will need an amap. it will either
4348 * need to be copied from the old entry or created
4349 * from scratch (if the old entry does not have an
4350 * amap). can we defer this process until later
4351 * (by setting "needs_copy") or do we need to copy
4352 * the amap now?
4353 *
4354 * we must copy the amap now if any of the following
4355 * conditions hold:
4356 * 1. the old entry has an amap and that amap is
4357 * being shared. this means that the old (parent)
4358 * process is sharing the amap with another
4359 * process. if we do not clear needs_copy here
4360 * we will end up in a situation where both the
4361 * parent and child process are refering to the
4362 * same amap with "needs_copy" set. if the
4363 * parent write-faults, the fault routine will
4364 * clear "needs_copy" in the parent by allocating
4365 * a new amap. this is wrong because the
4366 * parent is supposed to be sharing the old amap
4367 * and the new amap will break that.
4368 *
4369 * 2. if the old entry has an amap and a non-zero
4370 * wire count then we are going to have to call
4371 * amap_cow_now to avoid page faults in the
4372 * parent process. since amap_cow_now requires
4373 * "needs_copy" to be clear we might as well
4374 * clear it here as well.
4375 *
4376 */
4377
4378 if (old_entry->aref.ar_amap != NULL) {
4379 if ((amap_flags(old_entry->aref.ar_amap) & AMAP_SHARED) != 0 ||
4380 VM_MAPENT_ISWIRED(old_entry)) {
4381
4382 amap_copy(new_map, new_entry,
4383 AMAP_COPY_NOCHUNK, 0, 0);
4384 /* XXXCDC: M_WAITOK ... ok? */
4385 }
4386 }
4387
4388 /*
4389 * if the parent's entry is wired down, then the
4390 * parent process does not want page faults on
4391 * access to that memory. this means that we
4392 * cannot do copy-on-write because we can't write
4393 * protect the old entry. in this case we
4394 * resolve all copy-on-write faults now, using
4395 * amap_cow_now. note that we have already
4396 * allocated any needed amap (above).
4397 */
4398
4399 if (VM_MAPENT_ISWIRED(old_entry)) {
4400
4401 /*
4402 * resolve all copy-on-write faults now
4403 * (note that there is nothing to do if
4404 * the old mapping does not have an amap).
4405 */
4406 if (old_entry->aref.ar_amap)
4407 amap_cow_now(new_map, new_entry);
4408
4409 } else {
4410 /*
4411 * setup mappings to trigger copy-on-write faults
4412 * we must write-protect the parent if it has
4413 * an amap and it is not already "needs_copy"...
4414 * if it is already "needs_copy" then the parent
4415 * has already been write-protected by a previous
4416 * fork operation.
4417 */
4418 if (old_entry->aref.ar_amap &&
4419 !UVM_ET_ISNEEDSCOPY(old_entry)) {
4420 if (old_entry->max_protection & VM_PROT_WRITE) {
4421 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
4422 uvm_map_lock_entry(old_entry, RW_WRITER);
4423 #else
4424 uvm_map_lock_entry(old_entry, RW_READER);
4425 #endif
4426 pmap_protect(old_map->pmap,
4427 old_entry->start, old_entry->end,
4428 old_entry->protection & ~VM_PROT_WRITE);
4429 uvm_map_unlock_entry(old_entry);
4430 }
4431 old_entry->etype |= UVM_ET_NEEDSCOPY;
4432 }
4433 }
4434 }
4435
4436 /*
4437 * zero the mapping: the new entry will be zero initialized
4438 */
4439 static void
4440 uvm_mapent_forkzero(struct vm_map *new_map, struct vm_map *old_map,
4441 struct vm_map_entry *old_entry)
4442 {
4443 struct vm_map_entry *new_entry;
4444
4445 new_entry = uvm_mapent_clone(new_map, old_entry, 0);
4446
4447 new_entry->etype |=
4448 (UVM_ET_COPYONWRITE|UVM_ET_NEEDSCOPY);
4449
4450 if (new_entry->aref.ar_amap) {
4451 uvm_map_unreference_amap(new_entry, 0);
4452 new_entry->aref.ar_pageoff = 0;
4453 new_entry->aref.ar_amap = NULL;
4454 }
4455
4456 if (UVM_ET_ISOBJ(new_entry)) {
4457 if (new_entry->object.uvm_obj->pgops->pgo_detach)
4458 new_entry->object.uvm_obj->pgops->pgo_detach(
4459 new_entry->object.uvm_obj);
4460 new_entry->object.uvm_obj = NULL;
4461 new_entry->offset = 0;
4462 new_entry->etype &= ~UVM_ET_OBJ;
4463 }
4464 }
4465
4466 /*
4467 * F O R K - m a i n e n t r y p o i n t
4468 */
4469 /*
4470 * uvmspace_fork: fork a process' main map
4471 *
4472 * => create a new vmspace for child process from parent.
4473 * => parent's map must not be locked.
4474 */
4475
4476 struct vmspace *
4477 uvmspace_fork(struct vmspace *vm1)
4478 {
4479 struct vmspace *vm2;
4480 struct vm_map *old_map = &vm1->vm_map;
4481 struct vm_map *new_map;
4482 struct vm_map_entry *old_entry;
4483 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4484
4485 vm_map_lock(old_map);
4486
4487 vm2 = uvmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4488 vm1->vm_map.flags & VM_MAP_TOPDOWN);
4489 memcpy(&vm2->vm_startcopy, &vm1->vm_startcopy,
4490 (char *) (vm1 + 1) - (char *) &vm1->vm_startcopy);
4491 new_map = &vm2->vm_map; /* XXX */
4492
4493 old_entry = old_map->header.next;
4494 new_map->size = old_map->size;
4495
4496 /*
4497 * go entry-by-entry
4498 */
4499
4500 while (old_entry != &old_map->header) {
4501
4502 /*
4503 * first, some sanity checks on the old entry
4504 */
4505
4506 KASSERT(!UVM_ET_ISSUBMAP(old_entry));
4507 KASSERT(UVM_ET_ISCOPYONWRITE(old_entry) ||
4508 !UVM_ET_ISNEEDSCOPY(old_entry));
4509
4510 switch (old_entry->inheritance) {
4511 case MAP_INHERIT_NONE:
4512 /*
4513 * drop the mapping, modify size
4514 */
4515 new_map->size -= old_entry->end - old_entry->start;
4516 break;
4517
4518 case MAP_INHERIT_SHARE:
4519 uvm_mapent_forkshared(new_map, old_map, old_entry);
4520 break;
4521
4522 case MAP_INHERIT_COPY:
4523 uvm_mapent_forkcopy(new_map, old_map, old_entry);
4524 break;
4525
4526 case MAP_INHERIT_ZERO:
4527 uvm_mapent_forkzero(new_map, old_map, old_entry);
4528 break;
4529 default:
4530 KASSERT(0);
4531 break;
4532 }
4533 old_entry = old_entry->next;
4534 }
4535
4536 pmap_update(old_map->pmap);
4537 vm_map_unlock(old_map);
4538
4539 if (uvm_shmfork && vm1->vm_shm)
4540 (*uvm_shmfork)(vm1, vm2);
4541
4542 #ifdef PMAP_FORK
4543 pmap_fork(vm1->vm_map.pmap, vm2->vm_map.pmap);
4544 #endif
4545
4546 UVMHIST_LOG(maphist,"<- done",0,0,0,0);
4547 return (vm2);
4548 }
4549
4550
4551 /*
4552 * uvm_mapent_trymerge: try to merge an entry with its neighbors.
4553 *
4554 * => called with map locked.
4555 * => return non zero if successfully merged.
4556 */
4557
4558 int
4559 uvm_mapent_trymerge(struct vm_map *map, struct vm_map_entry *entry, int flags)
4560 {
4561 struct uvm_object *uobj;
4562 struct vm_map_entry *next;
4563 struct vm_map_entry *prev;
4564 vsize_t size;
4565 int merged = 0;
4566 bool copying;
4567 int newetype;
4568
4569 if (entry->aref.ar_amap != NULL) {
4570 return 0;
4571 }
4572 if ((entry->flags & UVM_MAP_NOMERGE) != 0) {
4573 return 0;
4574 }
4575
4576 uobj = entry->object.uvm_obj;
4577 size = entry->end - entry->start;
4578 copying = (flags & UVM_MERGE_COPYING) != 0;
4579 newetype = copying ? (entry->etype & ~UVM_ET_NEEDSCOPY) : entry->etype;
4580
4581 next = entry->next;
4582 if (next != &map->header &&
4583 next->start == entry->end &&
4584 ((copying && next->aref.ar_amap != NULL &&
4585 amap_refs(next->aref.ar_amap) == 1) ||
4586 (!copying && next->aref.ar_amap == NULL)) &&
4587 UVM_ET_ISCOMPATIBLE(next, newetype,
4588 uobj, entry->flags, entry->protection,
4589 entry->max_protection, entry->inheritance, entry->advice,
4590 entry->wired_count) &&
4591 (uobj == NULL || entry->offset + size == next->offset)) {
4592 int error;
4593
4594 if (copying) {
4595 error = amap_extend(next, size,
4596 AMAP_EXTEND_NOWAIT|AMAP_EXTEND_BACKWARDS);
4597 } else {
4598 error = 0;
4599 }
4600 if (error == 0) {
4601 if (uobj) {
4602 if (uobj->pgops->pgo_detach) {
4603 uobj->pgops->pgo_detach(uobj);
4604 }
4605 }
4606
4607 entry->end = next->end;
4608 clear_hints(map, next);
4609 uvm_map_entry_unlink(map, next);
4610 if (copying) {
4611 entry->aref = next->aref;
4612 entry->etype &= ~UVM_ET_NEEDSCOPY;
4613 }
4614 uvm_map_check(map, "trymerge forwardmerge");
4615 uvm_mapent_free(next);
4616 merged++;
4617 }
4618 }
4619
4620 prev = entry->prev;
4621 if (prev != &map->header &&
4622 prev->end == entry->start &&
4623 ((copying && !merged && prev->aref.ar_amap != NULL &&
4624 amap_refs(prev->aref.ar_amap) == 1) ||
4625 (!copying && prev->aref.ar_amap == NULL)) &&
4626 UVM_ET_ISCOMPATIBLE(prev, newetype,
4627 uobj, entry->flags, entry->protection,
4628 entry->max_protection, entry->inheritance, entry->advice,
4629 entry->wired_count) &&
4630 (uobj == NULL ||
4631 prev->offset + prev->end - prev->start == entry->offset)) {
4632 int error;
4633
4634 if (copying) {
4635 error = amap_extend(prev, size,
4636 AMAP_EXTEND_NOWAIT|AMAP_EXTEND_FORWARDS);
4637 } else {
4638 error = 0;
4639 }
4640 if (error == 0) {
4641 if (uobj) {
4642 if (uobj->pgops->pgo_detach) {
4643 uobj->pgops->pgo_detach(uobj);
4644 }
4645 entry->offset = prev->offset;
4646 }
4647
4648 entry->start = prev->start;
4649 clear_hints(map, prev);
4650 uvm_map_entry_unlink(map, prev);
4651 if (copying) {
4652 entry->aref = prev->aref;
4653 entry->etype &= ~UVM_ET_NEEDSCOPY;
4654 }
4655 uvm_map_check(map, "trymerge backmerge");
4656 uvm_mapent_free(prev);
4657 merged++;
4658 }
4659 }
4660
4661 return merged;
4662 }
4663
4664 /*
4665 * uvm_map_setup: init map
4666 *
4667 * => map must not be in service yet.
4668 */
4669
4670 void
4671 uvm_map_setup(struct vm_map *map, vaddr_t vmin, vaddr_t vmax, int flags)
4672 {
4673
4674 rb_tree_init(&map->rb_tree, &uvm_map_tree_ops);
4675 map->header.next = map->header.prev = &map->header;
4676 map->nentries = 0;
4677 map->size = 0;
4678 map->ref_count = 1;
4679 vm_map_setmin(map, vmin);
4680 vm_map_setmax(map, vmax);
4681 map->flags = flags;
4682 map->first_free = &map->header;
4683 map->hint = &map->header;
4684 map->timestamp = 0;
4685 map->busy = NULL;
4686
4687 rw_init(&map->lock);
4688 cv_init(&map->cv, "vm_map");
4689 mutex_init(&map->misc_lock, MUTEX_DRIVER, IPL_NONE);
4690 }
4691
4692 /*
4693 * U N M A P - m a i n e n t r y p o i n t
4694 */
4695
4696 /*
4697 * uvm_unmap1: remove mappings from a vm_map (from "start" up to "stop")
4698 *
4699 * => caller must check alignment and size
4700 * => map must be unlocked (we will lock it)
4701 * => flags is UVM_FLAG_QUANTUM or 0.
4702 */
4703
4704 void
4705 uvm_unmap1(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
4706 {
4707 struct vm_map_entry *dead_entries;
4708 UVMHIST_FUNC(__func__);
4709 UVMHIST_CALLARGS(maphist, " (map=%#jx, start=%#jx, end=%#jx)",
4710 (uintptr_t)map, start, end, 0);
4711
4712 KASSERTMSG(start < end,
4713 "%s: map %p: start %#jx < end %#jx", __func__, map,
4714 (uintmax_t)start, (uintmax_t)end);
4715 if (map == kernel_map) {
4716 LOCKDEBUG_MEM_CHECK((void *)start, end - start);
4717 }
4718
4719 /*
4720 * work now done by helper functions. wipe the pmap's and then
4721 * detach from the dead entries...
4722 */
4723 vm_map_lock(map);
4724 uvm_unmap_remove(map, start, end, &dead_entries, flags);
4725 vm_map_unlock(map);
4726
4727 if (dead_entries != NULL)
4728 uvm_unmap_detach(dead_entries, 0);
4729
4730 UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
4731 }
4732
4733
4734 /*
4735 * uvm_map_reference: add reference to a map
4736 *
4737 * => map need not be locked
4738 */
4739
4740 void
4741 uvm_map_reference(struct vm_map *map)
4742 {
4743
4744 atomic_inc_uint(&map->ref_count);
4745 }
4746
4747 void
4748 uvm_map_lock_entry(struct vm_map_entry *entry, krw_t op)
4749 {
4750
4751 if (entry->aref.ar_amap != NULL) {
4752 amap_lock(entry->aref.ar_amap, op);
4753 }
4754 if (UVM_ET_ISOBJ(entry)) {
4755 rw_enter(entry->object.uvm_obj->vmobjlock, op);
4756 }
4757 }
4758
4759 void
4760 uvm_map_unlock_entry(struct vm_map_entry *entry)
4761 {
4762
4763 if (UVM_ET_ISOBJ(entry)) {
4764 rw_exit(entry->object.uvm_obj->vmobjlock);
4765 }
4766 if (entry->aref.ar_amap != NULL) {
4767 amap_unlock(entry->aref.ar_amap);
4768 }
4769 }
4770
4771 #define UVM_VOADDR_TYPE_MASK 0x3UL
4772 #define UVM_VOADDR_TYPE_UOBJ 0x1UL
4773 #define UVM_VOADDR_TYPE_ANON 0x2UL
4774 #define UVM_VOADDR_OBJECT_MASK ~UVM_VOADDR_TYPE_MASK
4775
4776 #define UVM_VOADDR_GET_TYPE(voa) \
4777 ((voa)->object & UVM_VOADDR_TYPE_MASK)
4778 #define UVM_VOADDR_GET_OBJECT(voa) \
4779 ((voa)->object & UVM_VOADDR_OBJECT_MASK)
4780 #define UVM_VOADDR_SET_OBJECT(voa, obj, type) \
4781 do { \
4782 KASSERT(((uintptr_t)(obj) & UVM_VOADDR_TYPE_MASK) == 0); \
4783 (voa)->object = ((uintptr_t)(obj)) | (type); \
4784 } while (/*CONSTCOND*/0)
4785
4786 #define UVM_VOADDR_GET_UOBJ(voa) \
4787 ((struct uvm_object *)UVM_VOADDR_GET_OBJECT(voa))
4788 #define UVM_VOADDR_SET_UOBJ(voa, uobj) \
4789 UVM_VOADDR_SET_OBJECT(voa, uobj, UVM_VOADDR_TYPE_UOBJ)
4790
4791 #define UVM_VOADDR_GET_ANON(voa) \
4792 ((struct vm_anon *)UVM_VOADDR_GET_OBJECT(voa))
4793 #define UVM_VOADDR_SET_ANON(voa, anon) \
4794 UVM_VOADDR_SET_OBJECT(voa, anon, UVM_VOADDR_TYPE_ANON)
4795
4796 /*
4797 * uvm_voaddr_acquire: returns the virtual object address corresponding
4798 * to the specified virtual address.
4799 *
4800 * => resolves COW so the true page identity is tracked.
4801 *
4802 * => acquires a reference on the page's owner (uvm_object or vm_anon)
4803 */
4804 bool
4805 uvm_voaddr_acquire(struct vm_map * const map, vaddr_t const va,
4806 struct uvm_voaddr * const voaddr)
4807 {
4808 struct vm_map_entry *entry;
4809 struct vm_anon *anon = NULL;
4810 bool result = false;
4811 bool exclusive = false;
4812 void (*unlock_fn)(struct vm_map *);
4813
4814 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4815 UVMHIST_LOG(maphist,"(map=%#jx,va=%#jx)", (uintptr_t)map, va, 0, 0);
4816
4817 const vaddr_t start = trunc_page(va);
4818 const vaddr_t end = round_page(va+1);
4819
4820 lookup_again:
4821 if (__predict_false(exclusive)) {
4822 vm_map_lock(map);
4823 unlock_fn = vm_map_unlock;
4824 } else {
4825 vm_map_lock_read(map);
4826 unlock_fn = vm_map_unlock_read;
4827 }
4828
4829 if (__predict_false(!uvm_map_lookup_entry(map, start, &entry))) {
4830 unlock_fn(map);
4831 UVMHIST_LOG(maphist,"<- done (no entry)",0,0,0,0);
4832 return false;
4833 }
4834
4835 if (__predict_false(entry->protection == VM_PROT_NONE)) {
4836 unlock_fn(map);
4837 UVMHIST_LOG(maphist,"<- done (PROT_NONE)",0,0,0,0);
4838 return false;
4839 }
4840
4841 /*
4842 * We have a fast path for the common case of "no COW resolution
4843 * needed" whereby we have taken a read lock on the map and if
4844 * we don't encounter any need to create a vm_anon then great!
4845 * But if we do, we loop around again, instead taking an exclusive
4846 * lock so that we can perform the fault.
4847 *
4848 * In the event that we have to resolve the fault, we do nearly the
4849 * same work as uvm_map_pageable() does:
4850 *
4851 * 1: holding the write lock, we create any anonymous maps that need
4852 * to be created. however, we do NOT need to clip the map entries
4853 * in this case.
4854 *
4855 * 2: we downgrade to a read lock, and call uvm_fault_wire to fault
4856 * in the page (assuming the entry is not already wired). this
4857 * is done because we need the vm_anon to be present.
4858 */
4859 if (__predict_true(!VM_MAPENT_ISWIRED(entry))) {
4860
4861 bool need_fault = false;
4862
4863 /*
4864 * perform the action of vm_map_lookup that need the
4865 * write lock on the map: create an anonymous map for
4866 * a copy-on-write region, or an anonymous map for
4867 * a zero-fill region.
4868 */
4869 if (__predict_false(UVM_ET_ISSUBMAP(entry))) {
4870 unlock_fn(map);
4871 UVMHIST_LOG(maphist,"<- done (submap)",0,0,0,0);
4872 return false;
4873 }
4874 if (__predict_false(UVM_ET_ISNEEDSCOPY(entry) &&
4875 ((entry->max_protection & VM_PROT_WRITE) ||
4876 (entry->object.uvm_obj == NULL)))) {
4877 if (!exclusive) {
4878 /* need to take the slow path */
4879 KASSERT(unlock_fn == vm_map_unlock_read);
4880 vm_map_unlock_read(map);
4881 exclusive = true;
4882 goto lookup_again;
4883 }
4884 need_fault = true;
4885 amap_copy(map, entry, 0, start, end);
4886 /* XXXCDC: wait OK? */
4887 }
4888
4889 /*
4890 * do a quick check to see if the fault has already
4891 * been resolved to the upper layer.
4892 */
4893 if (__predict_true(entry->aref.ar_amap != NULL &&
4894 need_fault == false)) {
4895 amap_lock(entry->aref.ar_amap, RW_WRITER);
4896 anon = amap_lookup(&entry->aref, start - entry->start);
4897 if (__predict_true(anon != NULL)) {
4898 /* amap unlocked below */
4899 goto found_anon;
4900 }
4901 amap_unlock(entry->aref.ar_amap);
4902 need_fault = true;
4903 }
4904
4905 /*
4906 * we predict this test as false because if we reach
4907 * this point, then we are likely dealing with a
4908 * shared memory region backed by a uvm_object, in
4909 * which case a fault to create the vm_anon is not
4910 * necessary.
4911 */
4912 if (__predict_false(need_fault)) {
4913 if (exclusive) {
4914 vm_map_busy(map);
4915 vm_map_unlock(map);
4916 unlock_fn = vm_map_unbusy;
4917 }
4918
4919 if (uvm_fault_wire(map, start, end,
4920 entry->max_protection, 1)) {
4921 /* wiring failed */
4922 unlock_fn(map);
4923 UVMHIST_LOG(maphist,"<- done (wire failed)",
4924 0,0,0,0);
4925 return false;
4926 }
4927
4928 /*
4929 * now that we have resolved the fault, we can unwire
4930 * the page.
4931 */
4932 if (exclusive) {
4933 vm_map_lock(map);
4934 vm_map_unbusy(map);
4935 unlock_fn = vm_map_unlock;
4936 }
4937
4938 uvm_fault_unwire_locked(map, start, end);
4939 }
4940 }
4941
4942 /* check the upper layer */
4943 if (entry->aref.ar_amap) {
4944 amap_lock(entry->aref.ar_amap, RW_WRITER);
4945 anon = amap_lookup(&entry->aref, start - entry->start);
4946 if (anon) {
4947 found_anon: KASSERT(anon->an_lock == entry->aref.ar_amap->am_lock);
4948 anon->an_ref++;
4949 rw_obj_hold(anon->an_lock);
4950 KASSERT(anon->an_ref != 0);
4951 UVM_VOADDR_SET_ANON(voaddr, anon);
4952 voaddr->offset = va & PAGE_MASK;
4953 result = true;
4954 }
4955 amap_unlock(entry->aref.ar_amap);
4956 }
4957
4958 /* check the lower layer */
4959 if (!result && UVM_ET_ISOBJ(entry)) {
4960 struct uvm_object *uobj = entry->object.uvm_obj;
4961
4962 KASSERT(uobj != NULL);
4963 (*uobj->pgops->pgo_reference)(uobj);
4964 UVM_VOADDR_SET_UOBJ(voaddr, uobj);
4965 voaddr->offset = entry->offset + (va - entry->start);
4966 result = true;
4967 }
4968
4969 unlock_fn(map);
4970
4971 if (result) {
4972 UVMHIST_LOG(maphist,
4973 "<- done OK (type=%jd,owner=%#jx,offset=%#jx)",
4974 UVM_VOADDR_GET_TYPE(voaddr),
4975 UVM_VOADDR_GET_OBJECT(voaddr),
4976 voaddr->offset, 0);
4977 } else {
4978 UVMHIST_LOG(maphist,"<- done (failed)",0,0,0,0);
4979 }
4980
4981 return result;
4982 }
4983
4984 /*
4985 * uvm_voaddr_release: release the references held by the
4986 * vitual object address.
4987 */
4988 void
4989 uvm_voaddr_release(struct uvm_voaddr * const voaddr)
4990 {
4991
4992 switch (UVM_VOADDR_GET_TYPE(voaddr)) {
4993 case UVM_VOADDR_TYPE_UOBJ: {
4994 struct uvm_object * const uobj = UVM_VOADDR_GET_UOBJ(voaddr);
4995
4996 KASSERT(uobj != NULL);
4997 KASSERT(uobj->pgops->pgo_detach != NULL);
4998 (*uobj->pgops->pgo_detach)(uobj);
4999 break;
5000 }
5001 case UVM_VOADDR_TYPE_ANON: {
5002 struct vm_anon * const anon = UVM_VOADDR_GET_ANON(voaddr);
5003 krwlock_t *lock;
5004
5005 KASSERT(anon != NULL);
5006 rw_enter((lock = anon->an_lock), RW_WRITER);
5007 KASSERT(anon->an_ref > 0);
5008 if (--anon->an_ref == 0) {
5009 uvm_anfree(anon);
5010 }
5011 rw_exit(lock);
5012 rw_obj_free(lock);
5013 break;
5014 }
5015 default:
5016 panic("uvm_voaddr_release: bad type");
5017 }
5018 memset(voaddr, 0, sizeof(*voaddr));
5019 }
5020
5021 /*
5022 * uvm_voaddr_compare: compare two uvm_voaddr objects.
5023 *
5024 * => memcmp() semantics
5025 */
5026 int
5027 uvm_voaddr_compare(const struct uvm_voaddr * const voaddr1,
5028 const struct uvm_voaddr * const voaddr2)
5029 {
5030 const uintptr_t type1 = UVM_VOADDR_GET_TYPE(voaddr1);
5031 const uintptr_t type2 = UVM_VOADDR_GET_TYPE(voaddr2);
5032
5033 KASSERT(type1 == UVM_VOADDR_TYPE_UOBJ ||
5034 type1 == UVM_VOADDR_TYPE_ANON);
5035
5036 KASSERT(type2 == UVM_VOADDR_TYPE_UOBJ ||
5037 type2 == UVM_VOADDR_TYPE_ANON);
5038
5039 if (type1 < type2)
5040 return -1;
5041 if (type1 > type2)
5042 return 1;
5043
5044 const uintptr_t addr1 = UVM_VOADDR_GET_OBJECT(voaddr1);
5045 const uintptr_t addr2 = UVM_VOADDR_GET_OBJECT(voaddr2);
5046
5047 if (addr1 < addr2)
5048 return -1;
5049 if (addr1 > addr2)
5050 return 1;
5051
5052 if (voaddr1->offset < voaddr2->offset)
5053 return -1;
5054 if (voaddr1->offset > voaddr2->offset)
5055 return 1;
5056
5057 return 0;
5058 }
5059
5060 #if defined(DDB) || defined(DEBUGPRINT)
5061
5062 /*
5063 * uvm_map_printit: actually prints the map
5064 */
5065
5066 void
5067 uvm_map_printit(struct vm_map *map, bool full,
5068 void (*pr)(const char *, ...))
5069 {
5070 struct vm_map_entry *entry;
5071
5072 (*pr)("MAP %p: [%#lx->%#lx]\n", map, vm_map_min(map),
5073 vm_map_max(map));
5074 (*pr)("\t#ent=%d, sz=%d, ref=%d, version=%d, flags=%#x\n",
5075 map->nentries, map->size, map->ref_count, map->timestamp,
5076 map->flags);
5077 (*pr)("\tpmap=%p(resident=%ld, wired=%ld)\n", map->pmap,
5078 pmap_resident_count(map->pmap), pmap_wired_count(map->pmap));
5079 if (!full)
5080 return;
5081 for (entry = map->header.next; entry != &map->header;
5082 entry = entry->next) {
5083 (*pr)(" - %p: %#lx->%#lx: obj=%p/%#llx, amap=%p/%d\n",
5084 entry, entry->start, entry->end, entry->object.uvm_obj,
5085 (long long)entry->offset, entry->aref.ar_amap,
5086 entry->aref.ar_pageoff);
5087 (*pr)(
5088 "\tsubmap=%c, cow=%c, nc=%c, prot(max)=%d/%d, inh=%d, "
5089 "wc=%d, adv=%d\n",
5090 (entry->etype & UVM_ET_SUBMAP) ? 'T' : 'F',
5091 (entry->etype & UVM_ET_COPYONWRITE) ? 'T' : 'F',
5092 (entry->etype & UVM_ET_NEEDSCOPY) ? 'T' : 'F',
5093 entry->protection, entry->max_protection,
5094 entry->inheritance, entry->wired_count, entry->advice);
5095 }
5096 }
5097
5098 void
5099 uvm_whatis(uintptr_t addr, void (*pr)(const char *, ...))
5100 {
5101 struct vm_map *map;
5102
5103 for (map = kernel_map;;) {
5104 struct vm_map_entry *entry;
5105
5106 if (!uvm_map_lookup_entry_bytree(map, (vaddr_t)addr, &entry)) {
5107 break;
5108 }
5109 (*pr)("%p is %p+%zu from VMMAP %p\n",
5110 (void *)addr, (void *)entry->start,
5111 (size_t)(addr - (uintptr_t)entry->start), map);
5112 if (!UVM_ET_ISSUBMAP(entry)) {
5113 break;
5114 }
5115 map = entry->object.sub_map;
5116 }
5117 }
5118
5119 #endif /* DDB || DEBUGPRINT */
5120
5121 #ifndef __USER_VA0_IS_SAFE
5122 static int
5123 sysctl_user_va0_disable(SYSCTLFN_ARGS)
5124 {
5125 struct sysctlnode node;
5126 int t, error;
5127
5128 node = *rnode;
5129 node.sysctl_data = &t;
5130 t = user_va0_disable;
5131 error = sysctl_lookup(SYSCTLFN_CALL(&node));
5132 if (error || newp == NULL)
5133 return (error);
5134
5135 if (!t && user_va0_disable &&
5136 kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_MAP_VA_ZERO, 0,
5137 NULL, NULL, NULL))
5138 return EPERM;
5139
5140 user_va0_disable = !!t;
5141 return 0;
5142 }
5143 #endif
5144
5145 static int
5146 fill_vmentry(struct lwp *l, struct proc *p, struct kinfo_vmentry *kve,
5147 struct vm_map *m, struct vm_map_entry *e)
5148 {
5149 #ifndef _RUMPKERNEL
5150 int error;
5151
5152 memset(kve, 0, sizeof(*kve));
5153 KASSERT(e != NULL);
5154 if (UVM_ET_ISOBJ(e)) {
5155 struct uvm_object *uobj = e->object.uvm_obj;
5156 KASSERT(uobj != NULL);
5157 kve->kve_ref_count = uobj->uo_refs;
5158 kve->kve_count = uobj->uo_npages;
5159 if (UVM_OBJ_IS_VNODE(uobj)) {
5160 struct vattr va;
5161 struct vnode *vp = (struct vnode *)uobj;
5162 vn_lock(vp, LK_SHARED | LK_RETRY);
5163 error = VOP_GETATTR(vp, &va, l->l_cred);
5164 VOP_UNLOCK(vp);
5165 kve->kve_type = KVME_TYPE_VNODE;
5166 if (error == 0) {
5167 kve->kve_vn_size = vp->v_size;
5168 kve->kve_vn_type = (int)vp->v_type;
5169 kve->kve_vn_mode = va.va_mode;
5170 kve->kve_vn_rdev = va.va_rdev;
5171 kve->kve_vn_fileid = va.va_fileid;
5172 kve->kve_vn_fsid = va.va_fsid;
5173 error = vnode_to_path(kve->kve_path,
5174 sizeof(kve->kve_path) / 2, vp, l, p);
5175 }
5176 } else if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
5177 kve->kve_type = KVME_TYPE_KERN;
5178 } else if (UVM_OBJ_IS_DEVICE(uobj)) {
5179 kve->kve_type = KVME_TYPE_DEVICE;
5180 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
5181 kve->kve_type = KVME_TYPE_ANON;
5182 } else {
5183 kve->kve_type = KVME_TYPE_OBJECT;
5184 }
5185 } else if (UVM_ET_ISSUBMAP(e)) {
5186 struct vm_map *map = e->object.sub_map;
5187 KASSERT(map != NULL);
5188 kve->kve_ref_count = map->ref_count;
5189 kve->kve_count = map->nentries;
5190 kve->kve_type = KVME_TYPE_SUBMAP;
5191 } else
5192 kve->kve_type = KVME_TYPE_UNKNOWN;
5193
5194 kve->kve_start = e->start;
5195 kve->kve_end = e->end;
5196 kve->kve_offset = e->offset;
5197 kve->kve_wired_count = e->wired_count;
5198 kve->kve_inheritance = e->inheritance;
5199 kve->kve_attributes = 0; /* unused */
5200 kve->kve_advice = e->advice;
5201 #define PROT(p) (((p) & VM_PROT_READ) ? KVME_PROT_READ : 0) | \
5202 (((p) & VM_PROT_WRITE) ? KVME_PROT_WRITE : 0) | \
5203 (((p) & VM_PROT_EXECUTE) ? KVME_PROT_EXEC : 0)
5204 kve->kve_protection = PROT(e->protection);
5205 kve->kve_max_protection = PROT(e->max_protection);
5206 kve->kve_flags |= (e->etype & UVM_ET_COPYONWRITE)
5207 ? KVME_FLAG_COW : 0;
5208 kve->kve_flags |= (e->etype & UVM_ET_NEEDSCOPY)
5209 ? KVME_FLAG_NEEDS_COPY : 0;
5210 kve->kve_flags |= (m->flags & VM_MAP_TOPDOWN)
5211 ? KVME_FLAG_GROWS_DOWN : KVME_FLAG_GROWS_UP;
5212 kve->kve_flags |= (m->flags & VM_MAP_PAGEABLE)
5213 ? KVME_FLAG_PAGEABLE : 0;
5214 #endif
5215 return 0;
5216 }
5217
5218 static int
5219 fill_vmentries(struct lwp *l, pid_t pid, u_int elem_size, void *oldp,
5220 size_t *oldlenp)
5221 {
5222 int error;
5223 struct proc *p;
5224 struct kinfo_vmentry *vme;
5225 struct vmspace *vm;
5226 struct vm_map *map;
5227 struct vm_map_entry *entry;
5228 char *dp;
5229 size_t count, vmesize;
5230
5231 if (elem_size == 0 || elem_size > 2 * sizeof(*vme))
5232 return EINVAL;
5233
5234 if (oldp) {
5235 if (*oldlenp > 10UL * 1024UL * 1024UL)
5236 return E2BIG;
5237 count = *oldlenp / elem_size;
5238 if (count == 0)
5239 return ENOMEM;
5240 vmesize = count * sizeof(*vme);
5241 } else
5242 vmesize = 0;
5243
5244 if ((error = proc_find_locked(l, &p, pid)) != 0)
5245 return error;
5246
5247 vme = NULL;
5248 count = 0;
5249
5250 if ((error = proc_vmspace_getref(p, &vm)) != 0)
5251 goto out;
5252
5253 map = &vm->vm_map;
5254 vm_map_lock_read(map);
5255
5256 dp = oldp;
5257 if (oldp)
5258 vme = kmem_alloc(vmesize, KM_SLEEP);
5259 for (entry = map->header.next; entry != &map->header;
5260 entry = entry->next) {
5261 if (oldp && (dp - (char *)oldp) < vmesize) {
5262 error = fill_vmentry(l, p, &vme[count], map, entry);
5263 if (error)
5264 goto out;
5265 dp += elem_size;
5266 }
5267 count++;
5268 }
5269 vm_map_unlock_read(map);
5270 uvmspace_free(vm);
5271
5272 out:
5273 if (pid != -1)
5274 mutex_exit(p->p_lock);
5275 if (error == 0) {
5276 const u_int esize = uimin(sizeof(*vme), elem_size);
5277 dp = oldp;
5278 for (size_t i = 0; i < count; i++) {
5279 if (oldp && (dp - (char *)oldp) < vmesize) {
5280 error = sysctl_copyout(l, &vme[i], dp, esize);
5281 if (error)
5282 break;
5283 dp += elem_size;
5284 } else
5285 break;
5286 }
5287 count *= elem_size;
5288 if (oldp != NULL && *oldlenp < count)
5289 error = ENOSPC;
5290 *oldlenp = count;
5291 }
5292 if (vme)
5293 kmem_free(vme, vmesize);
5294 return error;
5295 }
5296
5297 static int
5298 sysctl_vmproc(SYSCTLFN_ARGS)
5299 {
5300 int error;
5301
5302 if (namelen == 1 && name[0] == CTL_QUERY)
5303 return (sysctl_query(SYSCTLFN_CALL(rnode)));
5304
5305 if (namelen == 0)
5306 return EINVAL;
5307
5308 switch (name[0]) {
5309 case VM_PROC_MAP:
5310 if (namelen != 3)
5311 return EINVAL;
5312 sysctl_unlock();
5313 error = fill_vmentries(l, name[1], name[2], oldp, oldlenp);
5314 sysctl_relock();
5315 return error;
5316 default:
5317 return EINVAL;
5318 }
5319 }
5320
5321 SYSCTL_SETUP(sysctl_uvmmap_setup, "sysctl uvmmap setup")
5322 {
5323
5324 sysctl_createv(clog, 0, NULL, NULL,
5325 CTLFLAG_PERMANENT,
5326 CTLTYPE_STRUCT, "proc",
5327 SYSCTL_DESCR("Process vm information"),
5328 sysctl_vmproc, 0, NULL, 0,
5329 CTL_VM, VM_PROC, CTL_EOL);
5330 #ifndef __USER_VA0_IS_SAFE
5331 sysctl_createv(clog, 0, NULL, NULL,
5332 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5333 CTLTYPE_INT, "user_va0_disable",
5334 SYSCTL_DESCR("Disable VA 0"),
5335 sysctl_user_va0_disable, 0, &user_va0_disable, 0,
5336 CTL_VM, CTL_CREATE, CTL_EOL);
5337 #endif
5338 }
5339