uvm_map.c revision 1.395 1 /* $NetBSD: uvm_map.c,v 1.395 2022/06/04 20:54:24 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vm_map.c 8.3 (Berkeley) 1/12/94
37 * from: Id: uvm_map.c,v 1.1.2.27 1998/02/07 01:16:54 chs Exp
38 *
39 *
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
48 *
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 *
53 * Carnegie Mellon requests users of this software to return to
54 *
55 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 * School of Computer Science
57 * Carnegie Mellon University
58 * Pittsburgh PA 15213-3890
59 *
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
62 */
63
64 /*
65 * uvm_map.c: uvm map operations
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: uvm_map.c,v 1.395 2022/06/04 20:54:24 riastradh Exp $");
70
71 #include "opt_ddb.h"
72 #include "opt_pax.h"
73 #include "opt_uvmhist.h"
74 #include "opt_uvm.h"
75 #include "opt_sysv.h"
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/mman.h>
80 #include <sys/proc.h>
81 #include <sys/pool.h>
82 #include <sys/kernel.h>
83 #include <sys/mount.h>
84 #include <sys/pax.h>
85 #include <sys/vnode.h>
86 #include <sys/filedesc.h>
87 #include <sys/lockdebug.h>
88 #include <sys/atomic.h>
89 #include <sys/sysctl.h>
90 #ifndef __USER_VA0_IS_SAFE
91 #include <sys/kauth.h>
92 #include "opt_user_va0_disable_default.h"
93 #endif
94
95 #include <sys/shm.h>
96
97 #include <uvm/uvm.h>
98 #include <uvm/uvm_readahead.h>
99
100 #if defined(DDB) || defined(DEBUGPRINT)
101 #include <uvm/uvm_ddb.h>
102 #endif
103
104 #ifdef UVMHIST
105 #ifndef UVMHIST_MAPHIST_SIZE
106 #define UVMHIST_MAPHIST_SIZE 100
107 #endif
108 static struct kern_history_ent maphistbuf[UVMHIST_MAPHIST_SIZE];
109 UVMHIST_DEFINE(maphist) = UVMHIST_INITIALIZER(maphist, maphistbuf);
110 #endif
111
112 #if !defined(UVMMAP_COUNTERS)
113
114 #define UVMMAP_EVCNT_DEFINE(name) /* nothing */
115 #define UVMMAP_EVCNT_INCR(ev) /* nothing */
116 #define UVMMAP_EVCNT_DECR(ev) /* nothing */
117
118 #else /* defined(UVMMAP_NOCOUNTERS) */
119
120 #include <sys/evcnt.h>
121 #define UVMMAP_EVCNT_DEFINE(name) \
122 struct evcnt uvmmap_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
123 "uvmmap", #name); \
124 EVCNT_ATTACH_STATIC(uvmmap_evcnt_##name);
125 #define UVMMAP_EVCNT_INCR(ev) uvmmap_evcnt_##ev.ev_count++
126 #define UVMMAP_EVCNT_DECR(ev) uvmmap_evcnt_##ev.ev_count--
127
128 #endif /* defined(UVMMAP_NOCOUNTERS) */
129
130 UVMMAP_EVCNT_DEFINE(ubackmerge)
131 UVMMAP_EVCNT_DEFINE(uforwmerge)
132 UVMMAP_EVCNT_DEFINE(ubimerge)
133 UVMMAP_EVCNT_DEFINE(unomerge)
134 UVMMAP_EVCNT_DEFINE(kbackmerge)
135 UVMMAP_EVCNT_DEFINE(kforwmerge)
136 UVMMAP_EVCNT_DEFINE(kbimerge)
137 UVMMAP_EVCNT_DEFINE(knomerge)
138 UVMMAP_EVCNT_DEFINE(map_call)
139 UVMMAP_EVCNT_DEFINE(mlk_call)
140 UVMMAP_EVCNT_DEFINE(mlk_hint)
141 UVMMAP_EVCNT_DEFINE(mlk_tree)
142 UVMMAP_EVCNT_DEFINE(mlk_treeloop)
143
144 const char vmmapbsy[] = "vmmapbsy";
145
146 /*
147 * cache for vmspace structures.
148 */
149
150 static struct pool_cache uvm_vmspace_cache;
151
152 /*
153 * cache for dynamically-allocated map entries.
154 */
155
156 static struct pool_cache uvm_map_entry_cache;
157
158 #ifdef PMAP_GROWKERNEL
159 /*
160 * This global represents the end of the kernel virtual address
161 * space. If we want to exceed this, we must grow the kernel
162 * virtual address space dynamically.
163 *
164 * Note, this variable is locked by kernel_map's lock.
165 */
166 vaddr_t uvm_maxkaddr;
167 #endif
168
169 #ifndef __USER_VA0_IS_SAFE
170 #ifndef __USER_VA0_DISABLE_DEFAULT
171 #define __USER_VA0_DISABLE_DEFAULT 1
172 #endif
173 #ifdef USER_VA0_DISABLE_DEFAULT /* kernel config option overrides */
174 #undef __USER_VA0_DISABLE_DEFAULT
175 #define __USER_VA0_DISABLE_DEFAULT USER_VA0_DISABLE_DEFAULT
176 #endif
177 int user_va0_disable = __USER_VA0_DISABLE_DEFAULT;
178 #endif
179
180 /*
181 * macros
182 */
183
184 /*
185 * uvm_map_align_va: round down or up virtual address
186 */
187 static __inline void
188 uvm_map_align_va(vaddr_t *vap, vsize_t align, int topdown)
189 {
190
191 KASSERT(powerof2(align));
192
193 if (align != 0 && (*vap & (align - 1)) != 0) {
194 if (topdown)
195 *vap = rounddown2(*vap, align);
196 else
197 *vap = roundup2(*vap, align);
198 }
199 }
200
201 /*
202 * UVM_ET_ISCOMPATIBLE: check some requirements for map entry merging
203 */
204 extern struct vm_map *pager_map;
205
206 #define UVM_ET_ISCOMPATIBLE(ent, type, uobj, meflags, \
207 prot, maxprot, inh, adv, wire) \
208 ((ent)->etype == (type) && \
209 (((ent)->flags ^ (meflags)) & (UVM_MAP_NOMERGE)) == 0 && \
210 (ent)->object.uvm_obj == (uobj) && \
211 (ent)->protection == (prot) && \
212 (ent)->max_protection == (maxprot) && \
213 (ent)->inheritance == (inh) && \
214 (ent)->advice == (adv) && \
215 (ent)->wired_count == (wire))
216
217 /*
218 * uvm_map_entry_link: insert entry into a map
219 *
220 * => map must be locked
221 */
222 #define uvm_map_entry_link(map, after_where, entry) do { \
223 uvm_mapent_check(entry); \
224 (map)->nentries++; \
225 (entry)->prev = (after_where); \
226 (entry)->next = (after_where)->next; \
227 (entry)->prev->next = (entry); \
228 (entry)->next->prev = (entry); \
229 uvm_rb_insert((map), (entry)); \
230 } while (/*CONSTCOND*/ 0)
231
232 /*
233 * uvm_map_entry_unlink: remove entry from a map
234 *
235 * => map must be locked
236 */
237 #define uvm_map_entry_unlink(map, entry) do { \
238 KASSERT((entry) != (map)->first_free); \
239 KASSERT((entry) != (map)->hint); \
240 uvm_mapent_check(entry); \
241 (map)->nentries--; \
242 (entry)->next->prev = (entry)->prev; \
243 (entry)->prev->next = (entry)->next; \
244 uvm_rb_remove((map), (entry)); \
245 } while (/*CONSTCOND*/ 0)
246
247 /*
248 * SAVE_HINT: saves the specified entry as the hint for future lookups.
249 *
250 * => map need not be locked.
251 */
252 #define SAVE_HINT(map, check, value) do { \
253 if ((map)->hint == (check)) \
254 (map)->hint = (value); \
255 } while (/*CONSTCOND*/ 0)
256
257 /*
258 * clear_hints: ensure that hints don't point to the entry.
259 *
260 * => map must be write-locked.
261 */
262 static void
263 clear_hints(struct vm_map *map, struct vm_map_entry *ent)
264 {
265
266 SAVE_HINT(map, ent, ent->prev);
267 if (map->first_free == ent) {
268 map->first_free = ent->prev;
269 }
270 }
271
272 /*
273 * VM_MAP_RANGE_CHECK: check and correct range
274 *
275 * => map must at least be read locked
276 */
277
278 #define VM_MAP_RANGE_CHECK(map, start, end) do { \
279 if (start < vm_map_min(map)) \
280 start = vm_map_min(map); \
281 if (end > vm_map_max(map)) \
282 end = vm_map_max(map); \
283 if (start > end) \
284 start = end; \
285 } while (/*CONSTCOND*/ 0)
286
287 /*
288 * local prototypes
289 */
290
291 static struct vm_map_entry *
292 uvm_mapent_alloc(struct vm_map *, int);
293 static void uvm_mapent_copy(struct vm_map_entry *, struct vm_map_entry *);
294 static void uvm_mapent_free(struct vm_map_entry *);
295 #if defined(DEBUG)
296 static void _uvm_mapent_check(const struct vm_map_entry *, int);
297 #define uvm_mapent_check(map) _uvm_mapent_check(map, __LINE__)
298 #else /* defined(DEBUG) */
299 #define uvm_mapent_check(e) /* nothing */
300 #endif /* defined(DEBUG) */
301
302 static void uvm_map_entry_unwire(struct vm_map *, struct vm_map_entry *);
303 static void uvm_map_reference_amap(struct vm_map_entry *, int);
304 static int uvm_map_space_avail(vaddr_t *, vsize_t, voff_t, vsize_t, int,
305 int, struct vm_map_entry *);
306 static void uvm_map_unreference_amap(struct vm_map_entry *, int);
307
308 int _uvm_map_sanity(struct vm_map *);
309 int _uvm_tree_sanity(struct vm_map *);
310 static vsize_t uvm_rb_maxgap(const struct vm_map_entry *);
311
312 #define ROOT_ENTRY(map) ((struct vm_map_entry *)(map)->rb_tree.rbt_root)
313 #define LEFT_ENTRY(entry) ((struct vm_map_entry *)(entry)->rb_node.rb_left)
314 #define RIGHT_ENTRY(entry) ((struct vm_map_entry *)(entry)->rb_node.rb_right)
315 #define PARENT_ENTRY(map, entry) \
316 (ROOT_ENTRY(map) == (entry) \
317 ? NULL : (struct vm_map_entry *)RB_FATHER(&(entry)->rb_node))
318
319 /*
320 * These get filled in if/when SYSVSHM shared memory code is loaded
321 *
322 * We do this with function pointers rather the #ifdef SYSVSHM so the
323 * SYSVSHM code can be loaded and unloaded
324 */
325 void (*uvm_shmexit)(struct vmspace *) = NULL;
326 void (*uvm_shmfork)(struct vmspace *, struct vmspace *) = NULL;
327
328 static int
329 uvm_map_compare_nodes(void *ctx, const void *nparent, const void *nkey)
330 {
331 const struct vm_map_entry *eparent = nparent;
332 const struct vm_map_entry *ekey = nkey;
333
334 KASSERT(eparent->start < ekey->start || eparent->start >= ekey->end);
335 KASSERT(ekey->start < eparent->start || ekey->start >= eparent->end);
336
337 if (eparent->start < ekey->start)
338 return -1;
339 if (eparent->end >= ekey->start)
340 return 1;
341 return 0;
342 }
343
344 static int
345 uvm_map_compare_key(void *ctx, const void *nparent, const void *vkey)
346 {
347 const struct vm_map_entry *eparent = nparent;
348 const vaddr_t va = *(const vaddr_t *) vkey;
349
350 if (eparent->start < va)
351 return -1;
352 if (eparent->end >= va)
353 return 1;
354 return 0;
355 }
356
357 static const rb_tree_ops_t uvm_map_tree_ops = {
358 .rbto_compare_nodes = uvm_map_compare_nodes,
359 .rbto_compare_key = uvm_map_compare_key,
360 .rbto_node_offset = offsetof(struct vm_map_entry, rb_node),
361 .rbto_context = NULL
362 };
363
364 /*
365 * uvm_rb_gap: return the gap size between our entry and next entry.
366 */
367 static inline vsize_t
368 uvm_rb_gap(const struct vm_map_entry *entry)
369 {
370
371 KASSERT(entry->next != NULL);
372 return entry->next->start - entry->end;
373 }
374
375 static vsize_t
376 uvm_rb_maxgap(const struct vm_map_entry *entry)
377 {
378 struct vm_map_entry *child;
379 vsize_t maxgap = entry->gap;
380
381 /*
382 * We need maxgap to be the largest gap of us or any of our
383 * descendents. Since each of our children's maxgap is the
384 * cached value of their largest gap of themselves or their
385 * descendents, we can just use that value and avoid recursing
386 * down the tree to calculate it.
387 */
388 if ((child = LEFT_ENTRY(entry)) != NULL && maxgap < child->maxgap)
389 maxgap = child->maxgap;
390
391 if ((child = RIGHT_ENTRY(entry)) != NULL && maxgap < child->maxgap)
392 maxgap = child->maxgap;
393
394 return maxgap;
395 }
396
397 static void
398 uvm_rb_fixup(struct vm_map *map, struct vm_map_entry *entry)
399 {
400 struct vm_map_entry *parent;
401
402 KASSERT(entry->gap == uvm_rb_gap(entry));
403 entry->maxgap = uvm_rb_maxgap(entry);
404
405 while ((parent = PARENT_ENTRY(map, entry)) != NULL) {
406 struct vm_map_entry *brother;
407 vsize_t maxgap = parent->gap;
408 unsigned int which;
409
410 KDASSERT(parent->gap == uvm_rb_gap(parent));
411 if (maxgap < entry->maxgap)
412 maxgap = entry->maxgap;
413 /*
414 * Since we work towards the root, we know entry's maxgap
415 * value is OK, but its brothers may now be out-of-date due
416 * to rebalancing. So refresh it.
417 */
418 which = RB_POSITION(&entry->rb_node) ^ RB_DIR_OTHER;
419 brother = (struct vm_map_entry *)parent->rb_node.rb_nodes[which];
420 if (brother != NULL) {
421 KDASSERT(brother->gap == uvm_rb_gap(brother));
422 brother->maxgap = uvm_rb_maxgap(brother);
423 if (maxgap < brother->maxgap)
424 maxgap = brother->maxgap;
425 }
426
427 parent->maxgap = maxgap;
428 entry = parent;
429 }
430 }
431
432 static void
433 uvm_rb_insert(struct vm_map *map, struct vm_map_entry *entry)
434 {
435 struct vm_map_entry *ret __diagused;
436
437 entry->gap = entry->maxgap = uvm_rb_gap(entry);
438 if (entry->prev != &map->header)
439 entry->prev->gap = uvm_rb_gap(entry->prev);
440
441 ret = rb_tree_insert_node(&map->rb_tree, entry);
442 KASSERTMSG(ret == entry,
443 "uvm_rb_insert: map %p: duplicate entry %p", map, ret);
444
445 /*
446 * If the previous entry is not our immediate left child, then it's an
447 * ancestor and will be fixed up on the way to the root. We don't
448 * have to check entry->prev against &map->header since &map->header
449 * will never be in the tree.
450 */
451 uvm_rb_fixup(map,
452 LEFT_ENTRY(entry) == entry->prev ? entry->prev : entry);
453 }
454
455 static void
456 uvm_rb_remove(struct vm_map *map, struct vm_map_entry *entry)
457 {
458 struct vm_map_entry *prev_parent = NULL, *next_parent = NULL;
459
460 /*
461 * If we are removing an interior node, then an adjacent node will
462 * be used to replace its position in the tree. Therefore we will
463 * need to fixup the tree starting at the parent of the replacement
464 * node. So record their parents for later use.
465 */
466 if (entry->prev != &map->header)
467 prev_parent = PARENT_ENTRY(map, entry->prev);
468 if (entry->next != &map->header)
469 next_parent = PARENT_ENTRY(map, entry->next);
470
471 rb_tree_remove_node(&map->rb_tree, entry);
472
473 /*
474 * If the previous node has a new parent, fixup the tree starting
475 * at the previous node's old parent.
476 */
477 if (entry->prev != &map->header) {
478 /*
479 * Update the previous entry's gap due to our absence.
480 */
481 entry->prev->gap = uvm_rb_gap(entry->prev);
482 uvm_rb_fixup(map, entry->prev);
483 if (prev_parent != NULL
484 && prev_parent != entry
485 && prev_parent != PARENT_ENTRY(map, entry->prev))
486 uvm_rb_fixup(map, prev_parent);
487 }
488
489 /*
490 * If the next node has a new parent, fixup the tree starting
491 * at the next node's old parent.
492 */
493 if (entry->next != &map->header) {
494 uvm_rb_fixup(map, entry->next);
495 if (next_parent != NULL
496 && next_parent != entry
497 && next_parent != PARENT_ENTRY(map, entry->next))
498 uvm_rb_fixup(map, next_parent);
499 }
500 }
501
502 #if defined(DEBUG)
503 int uvm_debug_check_map = 0;
504 int uvm_debug_check_rbtree = 0;
505 #define uvm_map_check(map, name) \
506 _uvm_map_check((map), (name), __FILE__, __LINE__)
507 static void
508 _uvm_map_check(struct vm_map *map, const char *name,
509 const char *file, int line)
510 {
511
512 if ((uvm_debug_check_map && _uvm_map_sanity(map)) ||
513 (uvm_debug_check_rbtree && _uvm_tree_sanity(map))) {
514 panic("uvm_map_check failed: \"%s\" map=%p (%s:%d)",
515 name, map, file, line);
516 }
517 }
518 #else /* defined(DEBUG) */
519 #define uvm_map_check(map, name) /* nothing */
520 #endif /* defined(DEBUG) */
521
522 #if defined(DEBUG) || defined(DDB)
523 int
524 _uvm_map_sanity(struct vm_map *map)
525 {
526 bool first_free_found = false;
527 bool hint_found = false;
528 const struct vm_map_entry *e;
529 struct vm_map_entry *hint = map->hint;
530
531 e = &map->header;
532 for (;;) {
533 if (map->first_free == e) {
534 first_free_found = true;
535 } else if (!first_free_found && e->next->start > e->end) {
536 printf("first_free %p should be %p\n",
537 map->first_free, e);
538 return -1;
539 }
540 if (hint == e) {
541 hint_found = true;
542 }
543
544 e = e->next;
545 if (e == &map->header) {
546 break;
547 }
548 }
549 if (!first_free_found) {
550 printf("stale first_free\n");
551 return -1;
552 }
553 if (!hint_found) {
554 printf("stale hint\n");
555 return -1;
556 }
557 return 0;
558 }
559
560 int
561 _uvm_tree_sanity(struct vm_map *map)
562 {
563 struct vm_map_entry *tmp, *trtmp;
564 int n = 0, i = 1;
565
566 for (tmp = map->header.next; tmp != &map->header; tmp = tmp->next) {
567 if (tmp->gap != uvm_rb_gap(tmp)) {
568 printf("%d/%d gap %#lx != %#lx %s\n",
569 n + 1, map->nentries,
570 (ulong)tmp->gap, (ulong)uvm_rb_gap(tmp),
571 tmp->next == &map->header ? "(last)" : "");
572 goto error;
573 }
574 /*
575 * If any entries are out of order, tmp->gap will be unsigned
576 * and will likely exceed the size of the map.
577 */
578 if (tmp->gap >= vm_map_max(map) - vm_map_min(map)) {
579 printf("too large gap %zu\n", (size_t)tmp->gap);
580 goto error;
581 }
582 n++;
583 }
584
585 if (n != map->nentries) {
586 printf("nentries: %d vs %d\n", n, map->nentries);
587 goto error;
588 }
589
590 trtmp = NULL;
591 for (tmp = map->header.next; tmp != &map->header; tmp = tmp->next) {
592 if (tmp->maxgap != uvm_rb_maxgap(tmp)) {
593 printf("maxgap %#lx != %#lx\n",
594 (ulong)tmp->maxgap,
595 (ulong)uvm_rb_maxgap(tmp));
596 goto error;
597 }
598 if (trtmp != NULL && trtmp->start >= tmp->start) {
599 printf("corrupt: 0x%"PRIxVADDR"x >= 0x%"PRIxVADDR"x\n",
600 trtmp->start, tmp->start);
601 goto error;
602 }
603
604 trtmp = tmp;
605 }
606
607 for (tmp = map->header.next; tmp != &map->header;
608 tmp = tmp->next, i++) {
609 trtmp = rb_tree_iterate(&map->rb_tree, tmp, RB_DIR_LEFT);
610 if (trtmp == NULL)
611 trtmp = &map->header;
612 if (tmp->prev != trtmp) {
613 printf("lookup: %d: %p->prev=%p: %p\n",
614 i, tmp, tmp->prev, trtmp);
615 goto error;
616 }
617 trtmp = rb_tree_iterate(&map->rb_tree, tmp, RB_DIR_RIGHT);
618 if (trtmp == NULL)
619 trtmp = &map->header;
620 if (tmp->next != trtmp) {
621 printf("lookup: %d: %p->next=%p: %p\n",
622 i, tmp, tmp->next, trtmp);
623 goto error;
624 }
625 trtmp = rb_tree_find_node(&map->rb_tree, &tmp->start);
626 if (trtmp != tmp) {
627 printf("lookup: %d: %p - %p: %p\n", i, tmp, trtmp,
628 PARENT_ENTRY(map, tmp));
629 goto error;
630 }
631 }
632
633 return (0);
634 error:
635 return (-1);
636 }
637 #endif /* defined(DEBUG) || defined(DDB) */
638
639 /*
640 * vm_map_lock: acquire an exclusive (write) lock on a map.
641 *
642 * => The locking protocol provides for guaranteed upgrade from shared ->
643 * exclusive by whichever thread currently has the map marked busy.
644 * See "LOCKING PROTOCOL NOTES" in uvm_map.h. This is horrible; among
645 * other problems, it defeats any fairness guarantees provided by RW
646 * locks.
647 */
648
649 void
650 vm_map_lock(struct vm_map *map)
651 {
652
653 for (;;) {
654 rw_enter(&map->lock, RW_WRITER);
655 if (map->busy == NULL || map->busy == curlwp) {
656 break;
657 }
658 mutex_enter(&map->misc_lock);
659 rw_exit(&map->lock);
660 if (map->busy != NULL) {
661 cv_wait(&map->cv, &map->misc_lock);
662 }
663 mutex_exit(&map->misc_lock);
664 }
665 map->timestamp++;
666 }
667
668 /*
669 * vm_map_lock_try: try to lock a map, failing if it is already locked.
670 */
671
672 bool
673 vm_map_lock_try(struct vm_map *map)
674 {
675
676 if (!rw_tryenter(&map->lock, RW_WRITER)) {
677 return false;
678 }
679 if (map->busy != NULL) {
680 rw_exit(&map->lock);
681 return false;
682 }
683 map->timestamp++;
684 return true;
685 }
686
687 /*
688 * vm_map_unlock: release an exclusive lock on a map.
689 */
690
691 void
692 vm_map_unlock(struct vm_map *map)
693 {
694
695 KASSERT(rw_write_held(&map->lock));
696 KASSERT(map->busy == NULL || map->busy == curlwp);
697 rw_exit(&map->lock);
698 }
699
700 /*
701 * vm_map_unbusy: mark the map as unbusy, and wake any waiters that
702 * want an exclusive lock.
703 */
704
705 void
706 vm_map_unbusy(struct vm_map *map)
707 {
708
709 KASSERT(map->busy == curlwp);
710
711 /*
712 * Safe to clear 'busy' and 'waiters' with only a read lock held:
713 *
714 * o they can only be set with a write lock held
715 * o writers are blocked out with a read or write hold
716 * o at any time, only one thread owns the set of values
717 */
718 mutex_enter(&map->misc_lock);
719 map->busy = NULL;
720 cv_broadcast(&map->cv);
721 mutex_exit(&map->misc_lock);
722 }
723
724 /*
725 * vm_map_lock_read: acquire a shared (read) lock on a map.
726 */
727
728 void
729 vm_map_lock_read(struct vm_map *map)
730 {
731
732 rw_enter(&map->lock, RW_READER);
733 }
734
735 /*
736 * vm_map_unlock_read: release a shared lock on a map.
737 */
738
739 void
740 vm_map_unlock_read(struct vm_map *map)
741 {
742
743 rw_exit(&map->lock);
744 }
745
746 /*
747 * vm_map_busy: mark a map as busy.
748 *
749 * => the caller must hold the map write locked
750 */
751
752 void
753 vm_map_busy(struct vm_map *map)
754 {
755
756 KASSERT(rw_write_held(&map->lock));
757 KASSERT(map->busy == NULL);
758
759 map->busy = curlwp;
760 }
761
762 /*
763 * vm_map_locked_p: return true if the map is write locked.
764 *
765 * => only for debug purposes like KASSERTs.
766 * => should not be used to verify that a map is not locked.
767 */
768
769 bool
770 vm_map_locked_p(struct vm_map *map)
771 {
772
773 return rw_write_held(&map->lock);
774 }
775
776 /*
777 * uvm_mapent_alloc: allocate a map entry
778 */
779
780 static struct vm_map_entry *
781 uvm_mapent_alloc(struct vm_map *map, int flags)
782 {
783 struct vm_map_entry *me;
784 int pflags = (flags & UVM_FLAG_NOWAIT) ? PR_NOWAIT : PR_WAITOK;
785 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
786
787 me = pool_cache_get(&uvm_map_entry_cache, pflags);
788 if (__predict_false(me == NULL)) {
789 return NULL;
790 }
791 me->flags = 0;
792
793 UVMHIST_LOG(maphist, "<- new entry=%#jx [kentry=%jd]", (uintptr_t)me,
794 (map == kernel_map), 0, 0);
795 return me;
796 }
797
798 /*
799 * uvm_mapent_free: free map entry
800 */
801
802 static void
803 uvm_mapent_free(struct vm_map_entry *me)
804 {
805 UVMHIST_FUNC(__func__);
806 UVMHIST_CALLARGS(maphist,"<- freeing map entry=%#jx [flags=%#jx]",
807 (uintptr_t)me, me->flags, 0, 0);
808 pool_cache_put(&uvm_map_entry_cache, me);
809 }
810
811 /*
812 * uvm_mapent_copy: copy a map entry, preserving flags
813 */
814
815 static inline void
816 uvm_mapent_copy(struct vm_map_entry *src, struct vm_map_entry *dst)
817 {
818
819 memcpy(dst, src, sizeof(*dst));
820 dst->flags = 0;
821 }
822
823 #if defined(DEBUG)
824 static void
825 _uvm_mapent_check(const struct vm_map_entry *entry, int line)
826 {
827
828 if (entry->start >= entry->end) {
829 goto bad;
830 }
831 if (UVM_ET_ISOBJ(entry)) {
832 if (entry->object.uvm_obj == NULL) {
833 goto bad;
834 }
835 } else if (UVM_ET_ISSUBMAP(entry)) {
836 if (entry->object.sub_map == NULL) {
837 goto bad;
838 }
839 } else {
840 if (entry->object.uvm_obj != NULL ||
841 entry->object.sub_map != NULL) {
842 goto bad;
843 }
844 }
845 if (!UVM_ET_ISOBJ(entry)) {
846 if (entry->offset != 0) {
847 goto bad;
848 }
849 }
850
851 return;
852
853 bad:
854 panic("%s: bad entry %p, line %d", __func__, entry, line);
855 }
856 #endif /* defined(DEBUG) */
857
858 /*
859 * uvm_map_entry_unwire: unwire a map entry
860 *
861 * => map should be locked by caller
862 */
863
864 static inline void
865 uvm_map_entry_unwire(struct vm_map *map, struct vm_map_entry *entry)
866 {
867
868 entry->wired_count = 0;
869 uvm_fault_unwire_locked(map, entry->start, entry->end);
870 }
871
872
873 /*
874 * wrapper for calling amap_ref()
875 */
876 static inline void
877 uvm_map_reference_amap(struct vm_map_entry *entry, int flags)
878 {
879
880 amap_ref(entry->aref.ar_amap, entry->aref.ar_pageoff,
881 (entry->end - entry->start) >> PAGE_SHIFT, flags);
882 }
883
884
885 /*
886 * wrapper for calling amap_unref()
887 */
888 static inline void
889 uvm_map_unreference_amap(struct vm_map_entry *entry, int flags)
890 {
891
892 amap_unref(entry->aref.ar_amap, entry->aref.ar_pageoff,
893 (entry->end - entry->start) >> PAGE_SHIFT, flags);
894 }
895
896
897 /*
898 * uvm_map_init: init mapping system at boot time.
899 */
900
901 void
902 uvm_map_init(void)
903 {
904 /*
905 * first, init logging system.
906 */
907
908 UVMHIST_FUNC(__func__);
909 UVMHIST_LINK_STATIC(maphist);
910 UVMHIST_LINK_STATIC(pdhist);
911 UVMHIST_CALLED(maphist);
912 UVMHIST_LOG(maphist,"<starting uvm map system>", 0, 0, 0, 0);
913
914 /*
915 * initialize the global lock for kernel map entry.
916 */
917
918 mutex_init(&uvm_kentry_lock, MUTEX_DRIVER, IPL_VM);
919 }
920
921 /*
922 * uvm_map_init_caches: init mapping system caches.
923 */
924 void
925 uvm_map_init_caches(void)
926 {
927 /*
928 * initialize caches.
929 */
930
931 pool_cache_bootstrap(&uvm_map_entry_cache, sizeof(struct vm_map_entry),
932 coherency_unit, 0, PR_LARGECACHE, "vmmpepl", NULL, IPL_NONE, NULL,
933 NULL, NULL);
934 pool_cache_bootstrap(&uvm_vmspace_cache, sizeof(struct vmspace),
935 0, 0, 0, "vmsppl", NULL, IPL_NONE, NULL, NULL, NULL);
936 }
937
938 /*
939 * clippers
940 */
941
942 /*
943 * uvm_mapent_splitadj: adjust map entries for splitting, after uvm_mapent_copy.
944 */
945
946 static void
947 uvm_mapent_splitadj(struct vm_map_entry *entry1, struct vm_map_entry *entry2,
948 vaddr_t splitat)
949 {
950 vaddr_t adj;
951
952 KASSERT(entry1->start < splitat);
953 KASSERT(splitat < entry1->end);
954
955 adj = splitat - entry1->start;
956 entry1->end = entry2->start = splitat;
957
958 if (entry1->aref.ar_amap) {
959 amap_splitref(&entry1->aref, &entry2->aref, adj);
960 }
961 if (UVM_ET_ISSUBMAP(entry1)) {
962 /* ... unlikely to happen, but play it safe */
963 uvm_map_reference(entry1->object.sub_map);
964 } else if (UVM_ET_ISOBJ(entry1)) {
965 KASSERT(entry1->object.uvm_obj != NULL); /* suppress coverity */
966 entry2->offset += adj;
967 if (entry1->object.uvm_obj->pgops &&
968 entry1->object.uvm_obj->pgops->pgo_reference)
969 entry1->object.uvm_obj->pgops->pgo_reference(
970 entry1->object.uvm_obj);
971 }
972 }
973
974 /*
975 * uvm_map_clip_start: ensure that the entry begins at or after
976 * the starting address, if it doesn't we split the entry.
977 *
978 * => caller should use UVM_MAP_CLIP_START macro rather than calling
979 * this directly
980 * => map must be locked by caller
981 */
982
983 void
984 uvm_map_clip_start(struct vm_map *map, struct vm_map_entry *entry,
985 vaddr_t start)
986 {
987 struct vm_map_entry *new_entry;
988
989 /* uvm_map_simplify_entry(map, entry); */ /* XXX */
990
991 uvm_map_check(map, "clip_start entry");
992 uvm_mapent_check(entry);
993
994 /*
995 * Split off the front portion. note that we must insert the new
996 * entry BEFORE this one, so that this entry has the specified
997 * starting address.
998 */
999 new_entry = uvm_mapent_alloc(map, 0);
1000 uvm_mapent_copy(entry, new_entry); /* entry -> new_entry */
1001 uvm_mapent_splitadj(new_entry, entry, start);
1002 uvm_map_entry_link(map, entry->prev, new_entry);
1003
1004 uvm_map_check(map, "clip_start leave");
1005 }
1006
1007 /*
1008 * uvm_map_clip_end: ensure that the entry ends at or before
1009 * the ending address, if it does't we split the reference
1010 *
1011 * => caller should use UVM_MAP_CLIP_END macro rather than calling
1012 * this directly
1013 * => map must be locked by caller
1014 */
1015
1016 void
1017 uvm_map_clip_end(struct vm_map *map, struct vm_map_entry *entry, vaddr_t end)
1018 {
1019 struct vm_map_entry *new_entry;
1020
1021 uvm_map_check(map, "clip_end entry");
1022 uvm_mapent_check(entry);
1023
1024 /*
1025 * Create a new entry and insert it
1026 * AFTER the specified entry
1027 */
1028 new_entry = uvm_mapent_alloc(map, 0);
1029 uvm_mapent_copy(entry, new_entry); /* entry -> new_entry */
1030 uvm_mapent_splitadj(entry, new_entry, end);
1031 uvm_map_entry_link(map, entry, new_entry);
1032
1033 uvm_map_check(map, "clip_end leave");
1034 }
1035
1036 /*
1037 * M A P - m a i n e n t r y p o i n t
1038 */
1039 /*
1040 * uvm_map: establish a valid mapping in a map
1041 *
1042 * => assume startp is page aligned.
1043 * => assume size is a multiple of PAGE_SIZE.
1044 * => assume sys_mmap provides enough of a "hint" to have us skip
1045 * over text/data/bss area.
1046 * => map must be unlocked (we will lock it)
1047 * => <uobj,uoffset> value meanings (4 cases):
1048 * [1] <NULL,uoffset> == uoffset is a hint for PMAP_PREFER
1049 * [2] <NULL,UVM_UNKNOWN_OFFSET> == don't PMAP_PREFER
1050 * [3] <uobj,uoffset> == normal mapping
1051 * [4] <uobj,UVM_UNKNOWN_OFFSET> == uvm_map finds offset based on VA
1052 *
1053 * case [4] is for kernel mappings where we don't know the offset until
1054 * we've found a virtual address. note that kernel object offsets are
1055 * always relative to vm_map_min(kernel_map).
1056 *
1057 * => if `align' is non-zero, we align the virtual address to the specified
1058 * alignment.
1059 * this is provided as a mechanism for large pages.
1060 *
1061 * => XXXCDC: need way to map in external amap?
1062 */
1063
1064 int
1065 uvm_map(struct vm_map *map, vaddr_t *startp /* IN/OUT */, vsize_t size,
1066 struct uvm_object *uobj, voff_t uoffset, vsize_t align, uvm_flag_t flags)
1067 {
1068 struct uvm_map_args args;
1069 struct vm_map_entry *new_entry;
1070 int error;
1071
1072 KASSERT((size & PAGE_MASK) == 0);
1073 KASSERT((flags & UVM_FLAG_FIXED) == 0 || align == 0);
1074
1075 /*
1076 * for pager_map, allocate the new entry first to avoid sleeping
1077 * for memory while we have the map locked.
1078 */
1079
1080 new_entry = NULL;
1081 if (map == pager_map) {
1082 new_entry = uvm_mapent_alloc(map, (flags & UVM_FLAG_NOWAIT));
1083 if (__predict_false(new_entry == NULL))
1084 return ENOMEM;
1085 }
1086 if (map == pager_map)
1087 flags |= UVM_FLAG_NOMERGE;
1088
1089 error = uvm_map_prepare(map, *startp, size, uobj, uoffset, align,
1090 flags, &args);
1091 if (!error) {
1092 error = uvm_map_enter(map, &args, new_entry);
1093 *startp = args.uma_start;
1094 } else if (new_entry) {
1095 uvm_mapent_free(new_entry);
1096 }
1097
1098 #if defined(DEBUG)
1099 if (!error && VM_MAP_IS_KERNEL(map) && (flags & UVM_FLAG_NOWAIT) == 0) {
1100 uvm_km_check_empty(map, *startp, *startp + size);
1101 }
1102 #endif /* defined(DEBUG) */
1103
1104 return error;
1105 }
1106
1107 /*
1108 * uvm_map_prepare:
1109 *
1110 * called with map unlocked.
1111 * on success, returns the map locked.
1112 */
1113
1114 int
1115 uvm_map_prepare(struct vm_map *map, vaddr_t start, vsize_t size,
1116 struct uvm_object *uobj, voff_t uoffset, vsize_t align, uvm_flag_t flags,
1117 struct uvm_map_args *args)
1118 {
1119 struct vm_map_entry *prev_entry;
1120 vm_prot_t prot = UVM_PROTECTION(flags);
1121 vm_prot_t maxprot = UVM_MAXPROTECTION(flags);
1122
1123 UVMHIST_FUNC(__func__);
1124 UVMHIST_CALLARGS(maphist, "(map=%#jx, start=%#jx, size=%jx, flags=%#jx)",
1125 (uintptr_t)map, start, size, flags);
1126 UVMHIST_LOG(maphist, " uobj/offset %#jx/%jd", (uintptr_t)uobj,
1127 uoffset,0,0);
1128
1129 /*
1130 * detect a popular device driver bug.
1131 */
1132
1133 KASSERT(doing_shutdown || curlwp != NULL);
1134
1135 /*
1136 * zero-sized mapping doesn't make any sense.
1137 */
1138 KASSERT(size > 0);
1139
1140 KASSERT((~flags & (UVM_FLAG_NOWAIT | UVM_FLAG_WAITVA)) != 0);
1141
1142 uvm_map_check(map, "map entry");
1143
1144 /*
1145 * check sanity of protection code
1146 */
1147
1148 if ((prot & maxprot) != prot) {
1149 UVMHIST_LOG(maphist, "<- prot. failure: prot=%#jx, max=%#jx",
1150 prot, maxprot,0,0);
1151 return EACCES;
1152 }
1153
1154 /*
1155 * figure out where to put new VM range
1156 */
1157 retry:
1158 if (vm_map_lock_try(map) == false) {
1159 if ((flags & UVM_FLAG_TRYLOCK) != 0) {
1160 return EAGAIN;
1161 }
1162 vm_map_lock(map); /* could sleep here */
1163 }
1164 if (flags & UVM_FLAG_UNMAP) {
1165 KASSERT(flags & UVM_FLAG_FIXED);
1166 KASSERT((flags & UVM_FLAG_NOWAIT) == 0);
1167
1168 /*
1169 * Set prev_entry to what it will need to be after any existing
1170 * entries are removed later in uvm_map_enter().
1171 */
1172
1173 if (uvm_map_lookup_entry(map, start, &prev_entry)) {
1174 if (start == prev_entry->start)
1175 prev_entry = prev_entry->prev;
1176 else
1177 UVM_MAP_CLIP_END(map, prev_entry, start);
1178 SAVE_HINT(map, map->hint, prev_entry);
1179 }
1180 } else {
1181 prev_entry = uvm_map_findspace(map, start, size, &start,
1182 uobj, uoffset, align, flags);
1183 }
1184 if (prev_entry == NULL) {
1185 unsigned int timestamp;
1186
1187 timestamp = map->timestamp;
1188 UVMHIST_LOG(maphist,"waiting va timestamp=%#jx",
1189 timestamp,0,0,0);
1190 map->flags |= VM_MAP_WANTVA;
1191 vm_map_unlock(map);
1192
1193 /*
1194 * try to reclaim kva and wait until someone does unmap.
1195 * fragile locking here, so we awaken every second to
1196 * recheck the condition.
1197 */
1198
1199 mutex_enter(&map->misc_lock);
1200 while ((map->flags & VM_MAP_WANTVA) != 0 &&
1201 map->timestamp == timestamp) {
1202 if ((flags & UVM_FLAG_WAITVA) == 0) {
1203 mutex_exit(&map->misc_lock);
1204 UVMHIST_LOG(maphist,
1205 "<- uvm_map_findspace failed!", 0,0,0,0);
1206 return ENOMEM;
1207 } else {
1208 cv_timedwait(&map->cv, &map->misc_lock, hz);
1209 }
1210 }
1211 mutex_exit(&map->misc_lock);
1212 goto retry;
1213 }
1214
1215 #ifdef PMAP_GROWKERNEL
1216 /*
1217 * If the kernel pmap can't map the requested space,
1218 * then allocate more resources for it.
1219 */
1220 if (map == kernel_map && uvm_maxkaddr < (start + size))
1221 uvm_maxkaddr = pmap_growkernel(start + size);
1222 #endif
1223
1224 UVMMAP_EVCNT_INCR(map_call);
1225
1226 /*
1227 * if uobj is null, then uoffset is either a VAC hint for PMAP_PREFER
1228 * [typically from uvm_map_reserve] or it is UVM_UNKNOWN_OFFSET. in
1229 * either case we want to zero it before storing it in the map entry
1230 * (because it looks strange and confusing when debugging...)
1231 *
1232 * if uobj is not null
1233 * if uoffset is not UVM_UNKNOWN_OFFSET then we have a normal mapping
1234 * and we do not need to change uoffset.
1235 * if uoffset is UVM_UNKNOWN_OFFSET then we need to find the offset
1236 * now (based on the starting address of the map). this case is
1237 * for kernel object mappings where we don't know the offset until
1238 * the virtual address is found (with uvm_map_findspace). the
1239 * offset is the distance we are from the start of the map.
1240 */
1241
1242 if (uobj == NULL) {
1243 uoffset = 0;
1244 } else {
1245 if (uoffset == UVM_UNKNOWN_OFFSET) {
1246 KASSERT(UVM_OBJ_IS_KERN_OBJECT(uobj));
1247 uoffset = start - vm_map_min(kernel_map);
1248 }
1249 }
1250
1251 args->uma_flags = flags;
1252 args->uma_prev = prev_entry;
1253 args->uma_start = start;
1254 args->uma_size = size;
1255 args->uma_uobj = uobj;
1256 args->uma_uoffset = uoffset;
1257
1258 UVMHIST_LOG(maphist, "<- done!", 0,0,0,0);
1259 return 0;
1260 }
1261
1262 /*
1263 * uvm_map_enter:
1264 *
1265 * called with map locked.
1266 * unlock the map before returning.
1267 */
1268
1269 int
1270 uvm_map_enter(struct vm_map *map, const struct uvm_map_args *args,
1271 struct vm_map_entry *new_entry)
1272 {
1273 struct vm_map_entry *prev_entry = args->uma_prev;
1274 struct vm_map_entry *dead = NULL, *dead_entries = NULL;
1275
1276 const uvm_flag_t flags = args->uma_flags;
1277 const vm_prot_t prot = UVM_PROTECTION(flags);
1278 const vm_prot_t maxprot = UVM_MAXPROTECTION(flags);
1279 const vm_inherit_t inherit = UVM_INHERIT(flags);
1280 const int amapwaitflag = (flags & UVM_FLAG_NOWAIT) ?
1281 AMAP_EXTEND_NOWAIT : 0;
1282 const int advice = UVM_ADVICE(flags);
1283
1284 vaddr_t start = args->uma_start;
1285 vsize_t size = args->uma_size;
1286 struct uvm_object *uobj = args->uma_uobj;
1287 voff_t uoffset = args->uma_uoffset;
1288
1289 const int kmap = (vm_map_pmap(map) == pmap_kernel());
1290 int merged = 0;
1291 int error;
1292 int newetype;
1293
1294 UVMHIST_FUNC(__func__);
1295 UVMHIST_CALLARGS(maphist, "(map=%#jx, start=%#jx, size=%ju, flags=%#jx)",
1296 (uintptr_t)map, start, size, flags);
1297 UVMHIST_LOG(maphist, " uobj/offset %#jx/%jd", (uintptr_t)uobj,
1298 uoffset,0,0);
1299
1300 KASSERT(map->hint == prev_entry); /* bimerge case assumes this */
1301 KASSERT(vm_map_locked_p(map));
1302 KASSERT((flags & (UVM_FLAG_NOWAIT | UVM_FLAG_UNMAP)) !=
1303 (UVM_FLAG_NOWAIT | UVM_FLAG_UNMAP));
1304
1305 if (uobj)
1306 newetype = UVM_ET_OBJ;
1307 else
1308 newetype = 0;
1309
1310 if (flags & UVM_FLAG_COPYONW) {
1311 newetype |= UVM_ET_COPYONWRITE;
1312 if ((flags & UVM_FLAG_OVERLAY) == 0)
1313 newetype |= UVM_ET_NEEDSCOPY;
1314 }
1315
1316 /*
1317 * For mappings with unmap, remove any old entries now. Adding the new
1318 * entry cannot fail because that can only happen if UVM_FLAG_NOWAIT
1319 * is set, and we do not support nowait and unmap together.
1320 */
1321
1322 if (flags & UVM_FLAG_UNMAP) {
1323 KASSERT(flags & UVM_FLAG_FIXED);
1324 uvm_unmap_remove(map, start, start + size, &dead_entries, 0);
1325 #ifdef DEBUG
1326 struct vm_map_entry *tmp_entry __diagused;
1327 bool rv __diagused;
1328
1329 rv = uvm_map_lookup_entry(map, start, &tmp_entry);
1330 KASSERT(!rv);
1331 KASSERTMSG(prev_entry == tmp_entry,
1332 "args %p prev_entry %p tmp_entry %p",
1333 args, prev_entry, tmp_entry);
1334 #endif
1335 SAVE_HINT(map, map->hint, prev_entry);
1336 }
1337
1338 /*
1339 * try and insert in map by extending previous entry, if possible.
1340 * XXX: we don't try and pull back the next entry. might be useful
1341 * for a stack, but we are currently allocating our stack in advance.
1342 */
1343
1344 if (flags & UVM_FLAG_NOMERGE)
1345 goto nomerge;
1346
1347 if (prev_entry->end == start &&
1348 prev_entry != &map->header &&
1349 UVM_ET_ISCOMPATIBLE(prev_entry, newetype, uobj, 0,
1350 prot, maxprot, inherit, advice, 0)) {
1351
1352 if (uobj && prev_entry->offset +
1353 (prev_entry->end - prev_entry->start) != uoffset)
1354 goto forwardmerge;
1355
1356 /*
1357 * can't extend a shared amap. note: no need to lock amap to
1358 * look at refs since we don't care about its exact value.
1359 * if it is one (i.e. we have only reference) it will stay there
1360 */
1361
1362 if (prev_entry->aref.ar_amap &&
1363 amap_refs(prev_entry->aref.ar_amap) != 1) {
1364 goto forwardmerge;
1365 }
1366
1367 if (prev_entry->aref.ar_amap) {
1368 error = amap_extend(prev_entry, size,
1369 amapwaitflag | AMAP_EXTEND_FORWARDS);
1370 if (error)
1371 goto nomerge;
1372 }
1373
1374 if (kmap) {
1375 UVMMAP_EVCNT_INCR(kbackmerge);
1376 } else {
1377 UVMMAP_EVCNT_INCR(ubackmerge);
1378 }
1379 UVMHIST_LOG(maphist," starting back merge", 0, 0, 0, 0);
1380
1381 /*
1382 * drop our reference to uobj since we are extending a reference
1383 * that we already have (the ref count can not drop to zero).
1384 */
1385
1386 if (uobj && uobj->pgops->pgo_detach)
1387 uobj->pgops->pgo_detach(uobj);
1388
1389 /*
1390 * Now that we've merged the entries, note that we've grown
1391 * and our gap has shrunk. Then fix the tree.
1392 */
1393 prev_entry->end += size;
1394 prev_entry->gap -= size;
1395 uvm_rb_fixup(map, prev_entry);
1396
1397 uvm_map_check(map, "map backmerged");
1398
1399 UVMHIST_LOG(maphist,"<- done (via backmerge)!", 0, 0, 0, 0);
1400 merged++;
1401 }
1402
1403 forwardmerge:
1404 if (prev_entry->next->start == (start + size) &&
1405 prev_entry->next != &map->header &&
1406 UVM_ET_ISCOMPATIBLE(prev_entry->next, newetype, uobj, 0,
1407 prot, maxprot, inherit, advice, 0)) {
1408
1409 if (uobj && prev_entry->next->offset != uoffset + size)
1410 goto nomerge;
1411
1412 /*
1413 * can't extend a shared amap. note: no need to lock amap to
1414 * look at refs since we don't care about its exact value.
1415 * if it is one (i.e. we have only reference) it will stay there.
1416 *
1417 * note that we also can't merge two amaps, so if we
1418 * merged with the previous entry which has an amap,
1419 * and the next entry also has an amap, we give up.
1420 *
1421 * Interesting cases:
1422 * amap, new, amap -> give up second merge (single fwd extend)
1423 * amap, new, none -> double forward extend (extend again here)
1424 * none, new, amap -> double backward extend (done here)
1425 * uobj, new, amap -> single backward extend (done here)
1426 *
1427 * XXX should we attempt to deal with someone refilling
1428 * the deallocated region between two entries that are
1429 * backed by the same amap (ie, arefs is 2, "prev" and
1430 * "next" refer to it, and adding this allocation will
1431 * close the hole, thus restoring arefs to 1 and
1432 * deallocating the "next" vm_map_entry)? -- @@@
1433 */
1434
1435 if (prev_entry->next->aref.ar_amap &&
1436 (amap_refs(prev_entry->next->aref.ar_amap) != 1 ||
1437 (merged && prev_entry->aref.ar_amap))) {
1438 goto nomerge;
1439 }
1440
1441 if (merged) {
1442 /*
1443 * Try to extend the amap of the previous entry to
1444 * cover the next entry as well. If it doesn't work
1445 * just skip on, don't actually give up, since we've
1446 * already completed the back merge.
1447 */
1448 if (prev_entry->aref.ar_amap) {
1449 if (amap_extend(prev_entry,
1450 prev_entry->next->end -
1451 prev_entry->next->start,
1452 amapwaitflag | AMAP_EXTEND_FORWARDS))
1453 goto nomerge;
1454 }
1455
1456 /*
1457 * Try to extend the amap of the *next* entry
1458 * back to cover the new allocation *and* the
1459 * previous entry as well (the previous merge
1460 * didn't have an amap already otherwise we
1461 * wouldn't be checking here for an amap). If
1462 * it doesn't work just skip on, again, don't
1463 * actually give up, since we've already
1464 * completed the back merge.
1465 */
1466 else if (prev_entry->next->aref.ar_amap) {
1467 if (amap_extend(prev_entry->next,
1468 prev_entry->end -
1469 prev_entry->start,
1470 amapwaitflag | AMAP_EXTEND_BACKWARDS))
1471 goto nomerge;
1472 }
1473 } else {
1474 /*
1475 * Pull the next entry's amap backwards to cover this
1476 * new allocation.
1477 */
1478 if (prev_entry->next->aref.ar_amap) {
1479 error = amap_extend(prev_entry->next, size,
1480 amapwaitflag | AMAP_EXTEND_BACKWARDS);
1481 if (error)
1482 goto nomerge;
1483 }
1484 }
1485
1486 if (merged) {
1487 if (kmap) {
1488 UVMMAP_EVCNT_DECR(kbackmerge);
1489 UVMMAP_EVCNT_INCR(kbimerge);
1490 } else {
1491 UVMMAP_EVCNT_DECR(ubackmerge);
1492 UVMMAP_EVCNT_INCR(ubimerge);
1493 }
1494 } else {
1495 if (kmap) {
1496 UVMMAP_EVCNT_INCR(kforwmerge);
1497 } else {
1498 UVMMAP_EVCNT_INCR(uforwmerge);
1499 }
1500 }
1501 UVMHIST_LOG(maphist," starting forward merge", 0, 0, 0, 0);
1502
1503 /*
1504 * drop our reference to uobj since we are extending a reference
1505 * that we already have (the ref count can not drop to zero).
1506 */
1507 if (uobj && uobj->pgops->pgo_detach)
1508 uobj->pgops->pgo_detach(uobj);
1509
1510 if (merged) {
1511 dead = prev_entry->next;
1512 prev_entry->end = dead->end;
1513 uvm_map_entry_unlink(map, dead);
1514 if (dead->aref.ar_amap != NULL) {
1515 prev_entry->aref = dead->aref;
1516 dead->aref.ar_amap = NULL;
1517 }
1518 } else {
1519 prev_entry->next->start -= size;
1520 if (prev_entry != &map->header) {
1521 prev_entry->gap -= size;
1522 KASSERT(prev_entry->gap == uvm_rb_gap(prev_entry));
1523 uvm_rb_fixup(map, prev_entry);
1524 }
1525 if (uobj)
1526 prev_entry->next->offset = uoffset;
1527 }
1528
1529 uvm_map_check(map, "map forwardmerged");
1530
1531 UVMHIST_LOG(maphist,"<- done forwardmerge", 0, 0, 0, 0);
1532 merged++;
1533 }
1534
1535 nomerge:
1536 if (!merged) {
1537 UVMHIST_LOG(maphist," allocating new map entry", 0, 0, 0, 0);
1538 if (kmap) {
1539 UVMMAP_EVCNT_INCR(knomerge);
1540 } else {
1541 UVMMAP_EVCNT_INCR(unomerge);
1542 }
1543
1544 /*
1545 * allocate new entry and link it in.
1546 */
1547
1548 if (new_entry == NULL) {
1549 new_entry = uvm_mapent_alloc(map,
1550 (flags & UVM_FLAG_NOWAIT));
1551 if (__predict_false(new_entry == NULL)) {
1552 error = ENOMEM;
1553 goto done;
1554 }
1555 }
1556 new_entry->start = start;
1557 new_entry->end = new_entry->start + size;
1558 new_entry->object.uvm_obj = uobj;
1559 new_entry->offset = uoffset;
1560
1561 new_entry->etype = newetype;
1562
1563 if (flags & UVM_FLAG_NOMERGE) {
1564 new_entry->flags |= UVM_MAP_NOMERGE;
1565 }
1566
1567 new_entry->protection = prot;
1568 new_entry->max_protection = maxprot;
1569 new_entry->inheritance = inherit;
1570 new_entry->wired_count = 0;
1571 new_entry->advice = advice;
1572 if (flags & UVM_FLAG_OVERLAY) {
1573
1574 /*
1575 * to_add: for BSS we overallocate a little since we
1576 * are likely to extend
1577 */
1578
1579 vaddr_t to_add = (flags & UVM_FLAG_AMAPPAD) ?
1580 UVM_AMAP_CHUNK << PAGE_SHIFT : 0;
1581 struct vm_amap *amap = amap_alloc(size, to_add,
1582 (flags & UVM_FLAG_NOWAIT));
1583 if (__predict_false(amap == NULL)) {
1584 error = ENOMEM;
1585 goto done;
1586 }
1587 new_entry->aref.ar_pageoff = 0;
1588 new_entry->aref.ar_amap = amap;
1589 } else {
1590 new_entry->aref.ar_pageoff = 0;
1591 new_entry->aref.ar_amap = NULL;
1592 }
1593 uvm_map_entry_link(map, prev_entry, new_entry);
1594
1595 /*
1596 * Update the free space hint
1597 */
1598
1599 if ((map->first_free == prev_entry) &&
1600 (prev_entry->end >= new_entry->start))
1601 map->first_free = new_entry;
1602
1603 new_entry = NULL;
1604 }
1605
1606 map->size += size;
1607
1608 UVMHIST_LOG(maphist,"<- done!", 0, 0, 0, 0);
1609
1610 error = 0;
1611
1612 done:
1613 vm_map_unlock(map);
1614
1615 if (new_entry) {
1616 uvm_mapent_free(new_entry);
1617 }
1618 if (dead) {
1619 KDASSERT(merged);
1620 uvm_mapent_free(dead);
1621 }
1622 if (dead_entries)
1623 uvm_unmap_detach(dead_entries, 0);
1624
1625 return error;
1626 }
1627
1628 /*
1629 * uvm_map_lookup_entry_bytree: lookup an entry in tree
1630 */
1631
1632 static inline bool
1633 uvm_map_lookup_entry_bytree(struct vm_map *map, vaddr_t address,
1634 struct vm_map_entry **entry /* OUT */)
1635 {
1636 struct vm_map_entry *prev = &map->header;
1637 struct vm_map_entry *cur = ROOT_ENTRY(map);
1638
1639 while (cur) {
1640 UVMMAP_EVCNT_INCR(mlk_treeloop);
1641 if (address >= cur->start) {
1642 if (address < cur->end) {
1643 *entry = cur;
1644 return true;
1645 }
1646 prev = cur;
1647 cur = RIGHT_ENTRY(cur);
1648 } else
1649 cur = LEFT_ENTRY(cur);
1650 }
1651 *entry = prev;
1652 return false;
1653 }
1654
1655 /*
1656 * uvm_map_lookup_entry: find map entry at or before an address
1657 *
1658 * => map must at least be read-locked by caller
1659 * => entry is returned in "entry"
1660 * => return value is true if address is in the returned entry
1661 */
1662
1663 bool
1664 uvm_map_lookup_entry(struct vm_map *map, vaddr_t address,
1665 struct vm_map_entry **entry /* OUT */)
1666 {
1667 struct vm_map_entry *cur;
1668 UVMHIST_FUNC(__func__);
1669 UVMHIST_CALLARGS(maphist,"(map=%#jx,addr=%#jx,ent=%#jx)",
1670 (uintptr_t)map, address, (uintptr_t)entry, 0);
1671
1672 /*
1673 * make a quick check to see if we are already looking at
1674 * the entry we want (which is usually the case). note also
1675 * that we don't need to save the hint here... it is the
1676 * same hint (unless we are at the header, in which case the
1677 * hint didn't buy us anything anyway).
1678 */
1679
1680 cur = map->hint;
1681 UVMMAP_EVCNT_INCR(mlk_call);
1682 if (cur != &map->header &&
1683 address >= cur->start && cur->end > address) {
1684 UVMMAP_EVCNT_INCR(mlk_hint);
1685 *entry = cur;
1686 UVMHIST_LOG(maphist,"<- got it via hint (%#jx)",
1687 (uintptr_t)cur, 0, 0, 0);
1688 uvm_mapent_check(*entry);
1689 return (true);
1690 }
1691 uvm_map_check(map, __func__);
1692
1693 /*
1694 * lookup in the tree.
1695 */
1696
1697 UVMMAP_EVCNT_INCR(mlk_tree);
1698 if (__predict_true(uvm_map_lookup_entry_bytree(map, address, entry))) {
1699 SAVE_HINT(map, map->hint, *entry);
1700 UVMHIST_LOG(maphist,"<- search got it (%#jx)",
1701 (uintptr_t)cur, 0, 0, 0);
1702 KDASSERT((*entry)->start <= address);
1703 KDASSERT(address < (*entry)->end);
1704 uvm_mapent_check(*entry);
1705 return (true);
1706 }
1707
1708 SAVE_HINT(map, map->hint, *entry);
1709 UVMHIST_LOG(maphist,"<- failed!",0,0,0,0);
1710 KDASSERT((*entry) == &map->header || (*entry)->end <= address);
1711 KDASSERT((*entry)->next == &map->header ||
1712 address < (*entry)->next->start);
1713 return (false);
1714 }
1715
1716 /*
1717 * See if the range between start and start + length fits in the gap
1718 * entry->next->start and entry->end. Returns 1 if fits, 0 if doesn't
1719 * fit, and -1 address wraps around.
1720 */
1721 static int
1722 uvm_map_space_avail(vaddr_t *start, vsize_t length, voff_t uoffset,
1723 vsize_t align, int flags, int topdown, struct vm_map_entry *entry)
1724 {
1725 vaddr_t end;
1726
1727 #ifdef PMAP_PREFER
1728 /*
1729 * push start address forward as needed to avoid VAC alias problems.
1730 * we only do this if a valid offset is specified.
1731 */
1732
1733 if (uoffset != UVM_UNKNOWN_OFFSET)
1734 PMAP_PREFER(uoffset, start, length, topdown);
1735 #endif
1736 if ((flags & UVM_FLAG_COLORMATCH) != 0) {
1737 KASSERT(align < uvmexp.ncolors);
1738 if (uvmexp.ncolors > 1) {
1739 const u_int colormask = uvmexp.colormask;
1740 const u_int colorsize = colormask + 1;
1741 vaddr_t hint = atop(*start);
1742 const u_int color = hint & colormask;
1743 if (color != align) {
1744 hint -= color; /* adjust to color boundary */
1745 KASSERT((hint & colormask) == 0);
1746 if (topdown) {
1747 if (align > color)
1748 hint -= colorsize;
1749 } else {
1750 if (align < color)
1751 hint += colorsize;
1752 }
1753 *start = ptoa(hint + align); /* adjust to color */
1754 }
1755 }
1756 } else {
1757 KASSERT(powerof2(align));
1758 uvm_map_align_va(start, align, topdown);
1759 /*
1760 * XXX Should we PMAP_PREFER() here again?
1761 * eh...i think we're okay
1762 */
1763 }
1764
1765 /*
1766 * Find the end of the proposed new region. Be sure we didn't
1767 * wrap around the address; if so, we lose. Otherwise, if the
1768 * proposed new region fits before the next entry, we win.
1769 */
1770
1771 end = *start + length;
1772 if (end < *start)
1773 return (-1);
1774
1775 if (entry->next->start >= end && *start >= entry->end)
1776 return (1);
1777
1778 return (0);
1779 }
1780
1781 /*
1782 * uvm_map_findspace: find "length" sized space in "map".
1783 *
1784 * => "hint" is a hint about where we want it, unless UVM_FLAG_FIXED is
1785 * set in "flags" (in which case we insist on using "hint").
1786 * => "result" is VA returned
1787 * => uobj/uoffset are to be used to handle VAC alignment, if required
1788 * => if "align" is non-zero, we attempt to align to that value.
1789 * => caller must at least have read-locked map
1790 * => returns NULL on failure, or pointer to prev. map entry if success
1791 * => note this is a cross between the old vm_map_findspace and vm_map_find
1792 */
1793
1794 struct vm_map_entry *
1795 uvm_map_findspace(struct vm_map *map, vaddr_t hint, vsize_t length,
1796 vaddr_t *result /* OUT */, struct uvm_object *uobj, voff_t uoffset,
1797 vsize_t align, int flags)
1798 {
1799 struct vm_map_entry *entry;
1800 struct vm_map_entry *child, *prev, *tmp;
1801 vaddr_t orig_hint __diagused;
1802 const int topdown = map->flags & VM_MAP_TOPDOWN;
1803 UVMHIST_FUNC(__func__);
1804 UVMHIST_CALLARGS(maphist, "(map=%#jx, hint=%#jx, len=%ju, flags=%#jx...",
1805 (uintptr_t)map, hint, length, flags);
1806 UVMHIST_LOG(maphist, " uobj=%#jx, uoffset=%#jx, align=%#jx)",
1807 (uintptr_t)uobj, uoffset, align, 0);
1808
1809 KASSERT((flags & UVM_FLAG_COLORMATCH) != 0 || powerof2(align));
1810 KASSERT((flags & UVM_FLAG_COLORMATCH) == 0 || align < uvmexp.ncolors);
1811 KASSERT((flags & UVM_FLAG_FIXED) == 0 || align == 0);
1812
1813 uvm_map_check(map, "map_findspace entry");
1814
1815 /*
1816 * Clamp the hint to the VM map's min/max address, and remmeber
1817 * the clamped original hint. Remember the original hint,
1818 * clamped to the min/max address. If we are aligning, then we
1819 * may have to try again with no alignment constraint if we
1820 * fail the first time.
1821 *
1822 * We use the original hint to verify later that the search has
1823 * been monotonic -- that is, nonincreasing or nondecreasing,
1824 * according to topdown or !topdown respectively. But the
1825 * clamping is not monotonic.
1826 */
1827 if (hint < vm_map_min(map)) { /* check ranges ... */
1828 if (flags & UVM_FLAG_FIXED) {
1829 UVMHIST_LOG(maphist,"<- VA below map range",0,0,0,0);
1830 return (NULL);
1831 }
1832 hint = vm_map_min(map);
1833 }
1834 if (hint > vm_map_max(map)) {
1835 UVMHIST_LOG(maphist,"<- VA %#jx > range [%#jx->%#jx]",
1836 hint, vm_map_min(map), vm_map_max(map), 0);
1837 return (NULL);
1838 }
1839 orig_hint = hint;
1840
1841 UVMHIST_LOG(maphist,"<- VA %#jx vs range [%#jx->%#jx]",
1842 hint, vm_map_min(map), vm_map_max(map), 0);
1843
1844 /*
1845 * hint may not be aligned properly; we need round up or down it
1846 * before proceeding further.
1847 */
1848 if ((flags & UVM_FLAG_COLORMATCH) == 0)
1849 uvm_map_align_va(&hint, align, topdown);
1850
1851 UVMHIST_LOG(maphist,"<- VA %#jx vs range [%#jx->%#jx]",
1852 hint, vm_map_min(map), vm_map_max(map), 0);
1853 /*
1854 * Look for the first possible address; if there's already
1855 * something at this address, we have to start after it.
1856 */
1857
1858 /*
1859 * @@@: there are four, no, eight cases to consider.
1860 *
1861 * 0: found, fixed, bottom up -> fail
1862 * 1: found, fixed, top down -> fail
1863 * 2: found, not fixed, bottom up -> start after entry->end,
1864 * loop up
1865 * 3: found, not fixed, top down -> start before entry->start,
1866 * loop down
1867 * 4: not found, fixed, bottom up -> check entry->next->start, fail
1868 * 5: not found, fixed, top down -> check entry->next->start, fail
1869 * 6: not found, not fixed, bottom up -> check entry->next->start,
1870 * loop up
1871 * 7: not found, not fixed, top down -> check entry->next->start,
1872 * loop down
1873 *
1874 * as you can see, it reduces to roughly five cases, and that
1875 * adding top down mapping only adds one unique case (without
1876 * it, there would be four cases).
1877 */
1878
1879 if ((flags & UVM_FLAG_FIXED) == 0 && hint == vm_map_min(map)) {
1880 entry = map->first_free;
1881 } else {
1882 if (uvm_map_lookup_entry(map, hint, &entry)) {
1883 /* "hint" address already in use ... */
1884 if (flags & UVM_FLAG_FIXED) {
1885 UVMHIST_LOG(maphist, "<- fixed & VA in use",
1886 0, 0, 0, 0);
1887 return (NULL);
1888 }
1889 if (topdown)
1890 /* Start from lower gap. */
1891 entry = entry->prev;
1892 } else if (flags & UVM_FLAG_FIXED) {
1893 if (entry->next->start >= hint + length &&
1894 hint + length > hint)
1895 goto found;
1896
1897 /* "hint" address is gap but too small */
1898 UVMHIST_LOG(maphist, "<- fixed mapping failed",
1899 0, 0, 0, 0);
1900 return (NULL); /* only one shot at it ... */
1901 } else {
1902 /*
1903 * See if given hint fits in this gap.
1904 */
1905 switch (uvm_map_space_avail(&hint, length,
1906 uoffset, align, flags, topdown, entry)) {
1907 case 1:
1908 goto found;
1909 case -1:
1910 goto wraparound;
1911 }
1912
1913 if (topdown) {
1914 /*
1915 * Still there is a chance to fit
1916 * if hint > entry->end.
1917 */
1918 } else {
1919 /* Start from higher gap. */
1920 entry = entry->next;
1921 if (entry == &map->header)
1922 goto notfound;
1923 goto nextgap;
1924 }
1925 }
1926 }
1927
1928 /*
1929 * Note that all UVM_FLAGS_FIXED case is already handled.
1930 */
1931 KDASSERT((flags & UVM_FLAG_FIXED) == 0);
1932
1933 /* Try to find the space in the red-black tree */
1934
1935 /* Check slot before any entry */
1936 hint = topdown ? entry->next->start - length : entry->end;
1937 switch (uvm_map_space_avail(&hint, length, uoffset, align, flags,
1938 topdown, entry)) {
1939 case 1:
1940 goto found;
1941 case -1:
1942 goto wraparound;
1943 }
1944
1945 nextgap:
1946 KDASSERT((flags & UVM_FLAG_FIXED) == 0);
1947 /* If there is not enough space in the whole tree, we fail */
1948 tmp = ROOT_ENTRY(map);
1949 if (tmp == NULL || tmp->maxgap < length)
1950 goto notfound;
1951
1952 prev = NULL; /* previous candidate */
1953
1954 /* Find an entry close to hint that has enough space */
1955 for (; tmp;) {
1956 KASSERT(tmp->next->start == tmp->end + tmp->gap);
1957 if (topdown) {
1958 if (tmp->next->start < hint + length &&
1959 (prev == NULL || tmp->end > prev->end)) {
1960 if (tmp->gap >= length)
1961 prev = tmp;
1962 else if ((child = LEFT_ENTRY(tmp)) != NULL
1963 && child->maxgap >= length)
1964 prev = tmp;
1965 }
1966 } else {
1967 if (tmp->end >= hint &&
1968 (prev == NULL || tmp->end < prev->end)) {
1969 if (tmp->gap >= length)
1970 prev = tmp;
1971 else if ((child = RIGHT_ENTRY(tmp)) != NULL
1972 && child->maxgap >= length)
1973 prev = tmp;
1974 }
1975 }
1976 if (tmp->next->start < hint + length)
1977 child = RIGHT_ENTRY(tmp);
1978 else if (tmp->end > hint)
1979 child = LEFT_ENTRY(tmp);
1980 else {
1981 if (tmp->gap >= length)
1982 break;
1983 if (topdown)
1984 child = LEFT_ENTRY(tmp);
1985 else
1986 child = RIGHT_ENTRY(tmp);
1987 }
1988 if (child == NULL || child->maxgap < length)
1989 break;
1990 tmp = child;
1991 }
1992
1993 if (tmp != NULL && tmp->start < hint && hint < tmp->next->start) {
1994 /*
1995 * Check if the entry that we found satifies the
1996 * space requirement
1997 */
1998 if (topdown) {
1999 if (hint > tmp->next->start - length)
2000 hint = tmp->next->start - length;
2001 } else {
2002 if (hint < tmp->end)
2003 hint = tmp->end;
2004 }
2005 switch (uvm_map_space_avail(&hint, length, uoffset, align,
2006 flags, topdown, tmp)) {
2007 case 1:
2008 entry = tmp;
2009 goto found;
2010 case -1:
2011 goto wraparound;
2012 }
2013 if (tmp->gap >= length)
2014 goto listsearch;
2015 }
2016 if (prev == NULL)
2017 goto notfound;
2018
2019 if (topdown) {
2020 KASSERT(orig_hint >= prev->next->start - length ||
2021 prev->next->start - length > prev->next->start);
2022 hint = prev->next->start - length;
2023 } else {
2024 KASSERT(orig_hint <= prev->end);
2025 hint = prev->end;
2026 }
2027 switch (uvm_map_space_avail(&hint, length, uoffset, align,
2028 flags, topdown, prev)) {
2029 case 1:
2030 entry = prev;
2031 goto found;
2032 case -1:
2033 goto wraparound;
2034 }
2035 if (prev->gap >= length)
2036 goto listsearch;
2037
2038 if (topdown)
2039 tmp = LEFT_ENTRY(prev);
2040 else
2041 tmp = RIGHT_ENTRY(prev);
2042 for (;;) {
2043 KASSERT(tmp && tmp->maxgap >= length);
2044 if (topdown)
2045 child = RIGHT_ENTRY(tmp);
2046 else
2047 child = LEFT_ENTRY(tmp);
2048 if (child && child->maxgap >= length) {
2049 tmp = child;
2050 continue;
2051 }
2052 if (tmp->gap >= length)
2053 break;
2054 if (topdown)
2055 tmp = LEFT_ENTRY(tmp);
2056 else
2057 tmp = RIGHT_ENTRY(tmp);
2058 }
2059
2060 if (topdown) {
2061 KASSERT(orig_hint >= tmp->next->start - length ||
2062 tmp->next->start - length > tmp->next->start);
2063 hint = tmp->next->start - length;
2064 } else {
2065 KASSERT(orig_hint <= tmp->end);
2066 hint = tmp->end;
2067 }
2068 switch (uvm_map_space_avail(&hint, length, uoffset, align,
2069 flags, topdown, tmp)) {
2070 case 1:
2071 entry = tmp;
2072 goto found;
2073 case -1:
2074 goto wraparound;
2075 }
2076
2077 /*
2078 * The tree fails to find an entry because of offset or alignment
2079 * restrictions. Search the list instead.
2080 */
2081 listsearch:
2082 /*
2083 * Look through the rest of the map, trying to fit a new region in
2084 * the gap between existing regions, or after the very last region.
2085 * note: entry->end = base VA of current gap,
2086 * entry->next->start = VA of end of current gap
2087 */
2088
2089 for (;;) {
2090 /* Update hint for current gap. */
2091 hint = topdown ? entry->next->start - length : entry->end;
2092
2093 /* See if it fits. */
2094 switch (uvm_map_space_avail(&hint, length, uoffset, align,
2095 flags, topdown, entry)) {
2096 case 1:
2097 goto found;
2098 case -1:
2099 goto wraparound;
2100 }
2101
2102 /* Advance to next/previous gap */
2103 if (topdown) {
2104 if (entry == &map->header) {
2105 UVMHIST_LOG(maphist, "<- failed (off start)",
2106 0,0,0,0);
2107 goto notfound;
2108 }
2109 entry = entry->prev;
2110 } else {
2111 entry = entry->next;
2112 if (entry == &map->header) {
2113 UVMHIST_LOG(maphist, "<- failed (off end)",
2114 0,0,0,0);
2115 goto notfound;
2116 }
2117 }
2118 }
2119
2120 found:
2121 SAVE_HINT(map, map->hint, entry);
2122 *result = hint;
2123 UVMHIST_LOG(maphist,"<- got it! (result=%#jx)", hint, 0,0,0);
2124 KASSERTMSG( topdown || hint >= orig_hint, "hint: %#jx, orig_hint: %#jx",
2125 (uintmax_t)hint, (uintmax_t)orig_hint);
2126 KASSERTMSG(!topdown || hint <= orig_hint, "hint: %#jx, orig_hint: %#jx",
2127 (uintmax_t)hint, (uintmax_t)orig_hint);
2128 KASSERT(entry->end <= hint);
2129 KASSERT(hint + length <= entry->next->start);
2130 return (entry);
2131
2132 wraparound:
2133 UVMHIST_LOG(maphist, "<- failed (wrap around)", 0,0,0,0);
2134
2135 return (NULL);
2136
2137 notfound:
2138 UVMHIST_LOG(maphist, "<- failed (notfound)", 0,0,0,0);
2139
2140 return (NULL);
2141 }
2142
2143 /*
2144 * U N M A P - m a i n h e l p e r f u n c t i o n s
2145 */
2146
2147 /*
2148 * uvm_unmap_remove: remove mappings from a vm_map (from "start" up to "stop")
2149 *
2150 * => caller must check alignment and size
2151 * => map must be locked by caller
2152 * => we return a list of map entries that we've remove from the map
2153 * in "entry_list"
2154 */
2155
2156 void
2157 uvm_unmap_remove(struct vm_map *map, vaddr_t start, vaddr_t end,
2158 struct vm_map_entry **entry_list /* OUT */, int flags)
2159 {
2160 struct vm_map_entry *entry, *first_entry, *next;
2161 vaddr_t len;
2162 UVMHIST_FUNC(__func__);
2163 UVMHIST_CALLARGS(maphist,"(map=%#jx, start=%#jx, end=%#jx)",
2164 (uintptr_t)map, start, end, 0);
2165 VM_MAP_RANGE_CHECK(map, start, end);
2166
2167 uvm_map_check(map, "unmap_remove entry");
2168
2169 /*
2170 * find first entry
2171 */
2172
2173 if (uvm_map_lookup_entry(map, start, &first_entry) == true) {
2174 /* clip and go... */
2175 entry = first_entry;
2176 UVM_MAP_CLIP_START(map, entry, start);
2177 /* critical! prevents stale hint */
2178 SAVE_HINT(map, entry, entry->prev);
2179 } else {
2180 entry = first_entry->next;
2181 }
2182
2183 /*
2184 * save the free space hint
2185 */
2186
2187 if (map->first_free != &map->header && map->first_free->start >= start)
2188 map->first_free = entry->prev;
2189
2190 /*
2191 * note: we now re-use first_entry for a different task. we remove
2192 * a number of map entries from the map and save them in a linked
2193 * list headed by "first_entry". once we remove them from the map
2194 * the caller should unlock the map and drop the references to the
2195 * backing objects [c.f. uvm_unmap_detach]. the object is to
2196 * separate unmapping from reference dropping. why?
2197 * [1] the map has to be locked for unmapping
2198 * [2] the map need not be locked for reference dropping
2199 * [3] dropping references may trigger pager I/O, and if we hit
2200 * a pager that does synchronous I/O we may have to wait for it.
2201 * [4] we would like all waiting for I/O to occur with maps unlocked
2202 * so that we don't block other threads.
2203 */
2204
2205 first_entry = NULL;
2206 *entry_list = NULL;
2207
2208 /*
2209 * break up the area into map entry sized regions and unmap. note
2210 * that all mappings have to be removed before we can even consider
2211 * dropping references to amaps or VM objects (otherwise we could end
2212 * up with a mapping to a page on the free list which would be very bad)
2213 */
2214
2215 while ((entry != &map->header) && (entry->start < end)) {
2216 KASSERT((entry->flags & UVM_MAP_STATIC) == 0);
2217
2218 UVM_MAP_CLIP_END(map, entry, end);
2219 next = entry->next;
2220 len = entry->end - entry->start;
2221
2222 /*
2223 * unwire before removing addresses from the pmap; otherwise
2224 * unwiring will put the entries back into the pmap (XXX).
2225 */
2226
2227 if (VM_MAPENT_ISWIRED(entry)) {
2228 uvm_map_entry_unwire(map, entry);
2229 }
2230 if (flags & UVM_FLAG_VAONLY) {
2231
2232 /* nothing */
2233
2234 } else if ((map->flags & VM_MAP_PAGEABLE) == 0) {
2235
2236 /*
2237 * if the map is non-pageable, any pages mapped there
2238 * must be wired and entered with pmap_kenter_pa(),
2239 * and we should free any such pages immediately.
2240 * this is mostly used for kmem_map.
2241 */
2242 KASSERT(vm_map_pmap(map) == pmap_kernel());
2243
2244 uvm_km_pgremove_intrsafe(map, entry->start, entry->end);
2245 } else if (UVM_ET_ISOBJ(entry) &&
2246 UVM_OBJ_IS_KERN_OBJECT(entry->object.uvm_obj)) {
2247 panic("%s: kernel object %p %p\n",
2248 __func__, map, entry);
2249 } else if (UVM_ET_ISOBJ(entry) || entry->aref.ar_amap) {
2250 /*
2251 * remove mappings the standard way. lock object
2252 * and/or amap to ensure vm_page state does not
2253 * change while in pmap_remove().
2254 */
2255
2256 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
2257 uvm_map_lock_entry(entry, RW_WRITER);
2258 #else
2259 uvm_map_lock_entry(entry, RW_READER);
2260 #endif
2261 pmap_remove(map->pmap, entry->start, entry->end);
2262
2263 /*
2264 * note: if map is dying, leave pmap_update() for
2265 * later. if the map is to be reused (exec) then
2266 * pmap_update() will be called. if the map is
2267 * being disposed of (exit) then pmap_destroy()
2268 * will be called.
2269 */
2270
2271 if ((map->flags & VM_MAP_DYING) == 0) {
2272 pmap_update(vm_map_pmap(map));
2273 } else {
2274 KASSERT(vm_map_pmap(map) != pmap_kernel());
2275 }
2276
2277 uvm_map_unlock_entry(entry);
2278 }
2279
2280 #if defined(UVMDEBUG)
2281 /*
2282 * check if there's remaining mapping,
2283 * which is a bug in caller.
2284 */
2285
2286 vaddr_t va;
2287 for (va = entry->start; va < entry->end;
2288 va += PAGE_SIZE) {
2289 if (pmap_extract(vm_map_pmap(map), va, NULL)) {
2290 panic("%s: %#"PRIxVADDR" has mapping",
2291 __func__, va);
2292 }
2293 }
2294
2295 if (VM_MAP_IS_KERNEL(map) && (flags & UVM_FLAG_NOWAIT) == 0) {
2296 uvm_km_check_empty(map, entry->start,
2297 entry->end);
2298 }
2299 #endif /* defined(UVMDEBUG) */
2300
2301 /*
2302 * remove entry from map and put it on our list of entries
2303 * that we've nuked. then go to next entry.
2304 */
2305
2306 UVMHIST_LOG(maphist, " removed map entry %#jx",
2307 (uintptr_t)entry, 0, 0, 0);
2308
2309 /* critical! prevents stale hint */
2310 SAVE_HINT(map, entry, entry->prev);
2311
2312 uvm_map_entry_unlink(map, entry);
2313 KASSERT(map->size >= len);
2314 map->size -= len;
2315 entry->prev = NULL;
2316 entry->next = first_entry;
2317 first_entry = entry;
2318 entry = next;
2319 }
2320
2321 uvm_map_check(map, "unmap_remove leave");
2322
2323 /*
2324 * now we've cleaned up the map and are ready for the caller to drop
2325 * references to the mapped objects.
2326 */
2327
2328 *entry_list = first_entry;
2329 UVMHIST_LOG(maphist,"<- done!", 0, 0, 0, 0);
2330
2331 if (map->flags & VM_MAP_WANTVA) {
2332 mutex_enter(&map->misc_lock);
2333 map->flags &= ~VM_MAP_WANTVA;
2334 cv_broadcast(&map->cv);
2335 mutex_exit(&map->misc_lock);
2336 }
2337 }
2338
2339 /*
2340 * uvm_unmap_detach: drop references in a chain of map entries
2341 *
2342 * => we will free the map entries as we traverse the list.
2343 */
2344
2345 void
2346 uvm_unmap_detach(struct vm_map_entry *first_entry, int flags)
2347 {
2348 struct vm_map_entry *next_entry;
2349 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2350
2351 while (first_entry) {
2352 KASSERT(!VM_MAPENT_ISWIRED(first_entry));
2353 UVMHIST_LOG(maphist,
2354 " detach %#jx: amap=%#jx, obj=%#jx, submap?=%jd",
2355 (uintptr_t)first_entry,
2356 (uintptr_t)first_entry->aref.ar_amap,
2357 (uintptr_t)first_entry->object.uvm_obj,
2358 UVM_ET_ISSUBMAP(first_entry));
2359
2360 /*
2361 * drop reference to amap, if we've got one
2362 */
2363
2364 if (first_entry->aref.ar_amap)
2365 uvm_map_unreference_amap(first_entry, flags);
2366
2367 /*
2368 * drop reference to our backing object, if we've got one
2369 */
2370
2371 KASSERT(!UVM_ET_ISSUBMAP(first_entry));
2372 if (UVM_ET_ISOBJ(first_entry) &&
2373 first_entry->object.uvm_obj->pgops->pgo_detach) {
2374 (*first_entry->object.uvm_obj->pgops->pgo_detach)
2375 (first_entry->object.uvm_obj);
2376 }
2377 next_entry = first_entry->next;
2378 uvm_mapent_free(first_entry);
2379 first_entry = next_entry;
2380 }
2381 UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
2382 }
2383
2384 /*
2385 * E X T R A C T I O N F U N C T I O N S
2386 */
2387
2388 /*
2389 * uvm_map_reserve: reserve space in a vm_map for future use.
2390 *
2391 * => we reserve space in a map by putting a dummy map entry in the
2392 * map (dummy means obj=NULL, amap=NULL, prot=VM_PROT_NONE)
2393 * => map should be unlocked (we will write lock it)
2394 * => we return true if we were able to reserve space
2395 * => XXXCDC: should be inline?
2396 */
2397
2398 int
2399 uvm_map_reserve(struct vm_map *map, vsize_t size,
2400 vaddr_t offset /* hint for pmap_prefer */,
2401 vsize_t align /* alignment */,
2402 vaddr_t *raddr /* IN:hint, OUT: reserved VA */,
2403 uvm_flag_t flags /* UVM_FLAG_FIXED or UVM_FLAG_COLORMATCH or 0 */)
2404 {
2405 UVMHIST_FUNC(__func__);
2406 UVMHIST_CALLARGS(maphist, "(map=%#jx, size=%#jx, offset=%#jx, addr=%#jx)",
2407 (uintptr_t)map, size, offset, (uintptr_t)raddr);
2408
2409 size = round_page(size);
2410
2411 /*
2412 * reserve some virtual space.
2413 */
2414
2415 if (uvm_map(map, raddr, size, NULL, offset, align,
2416 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
2417 UVM_ADV_RANDOM, UVM_FLAG_NOMERGE|flags)) != 0) {
2418 UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
2419 return (false);
2420 }
2421
2422 UVMHIST_LOG(maphist, "<- done (*raddr=%#jx)", *raddr,0,0,0);
2423 return (true);
2424 }
2425
2426 /*
2427 * uvm_map_replace: replace a reserved (blank) area of memory with
2428 * real mappings.
2429 *
2430 * => caller must WRITE-LOCK the map
2431 * => we return true if replacement was a success
2432 * => we expect the newents chain to have nnewents entrys on it and
2433 * we expect newents->prev to point to the last entry on the list
2434 * => note newents is allowed to be NULL
2435 */
2436
2437 static int
2438 uvm_map_replace(struct vm_map *map, vaddr_t start, vaddr_t end,
2439 struct vm_map_entry *newents, int nnewents, vsize_t nsize,
2440 struct vm_map_entry **oldentryp)
2441 {
2442 struct vm_map_entry *oldent, *last;
2443
2444 uvm_map_check(map, "map_replace entry");
2445
2446 /*
2447 * first find the blank map entry at the specified address
2448 */
2449
2450 if (!uvm_map_lookup_entry(map, start, &oldent)) {
2451 return (false);
2452 }
2453
2454 /*
2455 * check to make sure we have a proper blank entry
2456 */
2457
2458 if (end < oldent->end) {
2459 UVM_MAP_CLIP_END(map, oldent, end);
2460 }
2461 if (oldent->start != start || oldent->end != end ||
2462 oldent->object.uvm_obj != NULL || oldent->aref.ar_amap != NULL) {
2463 return (false);
2464 }
2465
2466 #ifdef DIAGNOSTIC
2467
2468 /*
2469 * sanity check the newents chain
2470 */
2471
2472 {
2473 struct vm_map_entry *tmpent = newents;
2474 int nent = 0;
2475 vsize_t sz = 0;
2476 vaddr_t cur = start;
2477
2478 while (tmpent) {
2479 nent++;
2480 sz += tmpent->end - tmpent->start;
2481 if (tmpent->start < cur)
2482 panic("uvm_map_replace1");
2483 if (tmpent->start >= tmpent->end || tmpent->end > end) {
2484 panic("uvm_map_replace2: "
2485 "tmpent->start=%#"PRIxVADDR
2486 ", tmpent->end=%#"PRIxVADDR
2487 ", end=%#"PRIxVADDR,
2488 tmpent->start, tmpent->end, end);
2489 }
2490 cur = tmpent->end;
2491 if (tmpent->next) {
2492 if (tmpent->next->prev != tmpent)
2493 panic("uvm_map_replace3");
2494 } else {
2495 if (newents->prev != tmpent)
2496 panic("uvm_map_replace4");
2497 }
2498 tmpent = tmpent->next;
2499 }
2500 if (nent != nnewents)
2501 panic("uvm_map_replace5");
2502 if (sz != nsize)
2503 panic("uvm_map_replace6");
2504 }
2505 #endif
2506
2507 /*
2508 * map entry is a valid blank! replace it. (this does all the
2509 * work of map entry link/unlink...).
2510 */
2511
2512 if (newents) {
2513 last = newents->prev;
2514
2515 /* critical: flush stale hints out of map */
2516 SAVE_HINT(map, map->hint, newents);
2517 if (map->first_free == oldent)
2518 map->first_free = last;
2519
2520 last->next = oldent->next;
2521 last->next->prev = last;
2522
2523 /* Fix RB tree */
2524 uvm_rb_remove(map, oldent);
2525
2526 newents->prev = oldent->prev;
2527 newents->prev->next = newents;
2528 map->nentries = map->nentries + (nnewents - 1);
2529
2530 /* Fixup the RB tree */
2531 {
2532 int i;
2533 struct vm_map_entry *tmp;
2534
2535 tmp = newents;
2536 for (i = 0; i < nnewents && tmp; i++) {
2537 uvm_rb_insert(map, tmp);
2538 tmp = tmp->next;
2539 }
2540 }
2541 } else {
2542 /* NULL list of new entries: just remove the old one */
2543 clear_hints(map, oldent);
2544 uvm_map_entry_unlink(map, oldent);
2545 }
2546 map->size -= end - start - nsize;
2547
2548 uvm_map_check(map, "map_replace leave");
2549
2550 /*
2551 * now we can free the old blank entry and return.
2552 */
2553
2554 *oldentryp = oldent;
2555 return (true);
2556 }
2557
2558 /*
2559 * uvm_map_extract: extract a mapping from a map and put it somewhere
2560 * (maybe removing the old mapping)
2561 *
2562 * => maps should be unlocked (we will write lock them)
2563 * => returns 0 on success, error code otherwise
2564 * => start must be page aligned
2565 * => len must be page sized
2566 * => flags:
2567 * UVM_EXTRACT_REMOVE: remove mappings from srcmap
2568 * UVM_EXTRACT_CONTIG: abort if unmapped area (advisory only)
2569 * UVM_EXTRACT_QREF: for a temporary extraction do quick obj refs
2570 * UVM_EXTRACT_FIXPROT: set prot to maxprot as we go
2571 * UVM_EXTRACT_PROT_ALL: set prot to UVM_PROT_ALL as we go
2572 * >>>NOTE: if you set REMOVE, you are not allowed to use CONTIG or QREF!<<<
2573 * >>>NOTE: QREF's must be unmapped via the QREF path, thus should only
2574 * be used from within the kernel in a kernel level map <<<
2575 */
2576
2577 int
2578 uvm_map_extract(struct vm_map *srcmap, vaddr_t start, vsize_t len,
2579 struct vm_map *dstmap, vaddr_t *dstaddrp, int flags)
2580 {
2581 vaddr_t dstaddr, end, newend, oldoffset, fudge, orig_fudge;
2582 struct vm_map_entry *chain, *endchain, *entry, *orig_entry, *newentry,
2583 *deadentry, *oldentry;
2584 struct vm_map_entry *resentry = NULL; /* a dummy reservation entry */
2585 vsize_t elen __unused;
2586 int nchain, error, copy_ok;
2587 vsize_t nsize;
2588 UVMHIST_FUNC(__func__);
2589 UVMHIST_CALLARGS(maphist,"(srcmap=%#jx,start=%#jx, len=%#jx",
2590 (uintptr_t)srcmap, start, len, 0);
2591 UVMHIST_LOG(maphist," ...,dstmap=%#jx, flags=%#jx)",
2592 (uintptr_t)dstmap, flags, 0, 0);
2593
2594 /*
2595 * step 0: sanity check: start must be on a page boundary, length
2596 * must be page sized. can't ask for CONTIG/QREF if you asked for
2597 * REMOVE.
2598 */
2599
2600 KASSERT((start & PAGE_MASK) == 0 && (len & PAGE_MASK) == 0);
2601 KASSERT((flags & UVM_EXTRACT_REMOVE) == 0 ||
2602 (flags & (UVM_EXTRACT_CONTIG|UVM_EXTRACT_QREF)) == 0);
2603
2604 /*
2605 * step 1: reserve space in the target map for the extracted area
2606 */
2607
2608 if ((flags & UVM_EXTRACT_RESERVED) == 0) {
2609 dstaddr = vm_map_min(dstmap);
2610 if (!uvm_map_reserve(dstmap, len, start,
2611 atop(start) & uvmexp.colormask, &dstaddr,
2612 UVM_FLAG_COLORMATCH))
2613 return (ENOMEM);
2614 KASSERT((atop(start ^ dstaddr) & uvmexp.colormask) == 0);
2615 *dstaddrp = dstaddr; /* pass address back to caller */
2616 UVMHIST_LOG(maphist, " dstaddr=%#jx", dstaddr,0,0,0);
2617 } else {
2618 dstaddr = *dstaddrp;
2619 }
2620
2621 /*
2622 * step 2: setup for the extraction process loop by init'ing the
2623 * map entry chain, locking src map, and looking up the first useful
2624 * entry in the map.
2625 */
2626
2627 end = start + len;
2628 newend = dstaddr + len;
2629 chain = endchain = NULL;
2630 nchain = 0;
2631 nsize = 0;
2632 vm_map_lock(srcmap);
2633
2634 if (uvm_map_lookup_entry(srcmap, start, &entry)) {
2635
2636 /* "start" is within an entry */
2637 if (flags & UVM_EXTRACT_QREF) {
2638
2639 /*
2640 * for quick references we don't clip the entry, so
2641 * the entry may map space "before" the starting
2642 * virtual address... this is the "fudge" factor
2643 * (which can be non-zero only the first time
2644 * through the "while" loop in step 3).
2645 */
2646
2647 fudge = start - entry->start;
2648 } else {
2649
2650 /*
2651 * normal reference: we clip the map to fit (thus
2652 * fudge is zero)
2653 */
2654
2655 UVM_MAP_CLIP_START(srcmap, entry, start);
2656 SAVE_HINT(srcmap, srcmap->hint, entry->prev);
2657 fudge = 0;
2658 }
2659 } else {
2660
2661 /* "start" is not within an entry ... skip to next entry */
2662 if (flags & UVM_EXTRACT_CONTIG) {
2663 error = EINVAL;
2664 goto bad; /* definite hole here ... */
2665 }
2666
2667 entry = entry->next;
2668 fudge = 0;
2669 }
2670
2671 /* save values from srcmap for step 6 */
2672 orig_entry = entry;
2673 orig_fudge = fudge;
2674
2675 /*
2676 * step 3: now start looping through the map entries, extracting
2677 * as we go.
2678 */
2679
2680 while (entry->start < end && entry != &srcmap->header) {
2681
2682 /* if we are not doing a quick reference, clip it */
2683 if ((flags & UVM_EXTRACT_QREF) == 0)
2684 UVM_MAP_CLIP_END(srcmap, entry, end);
2685
2686 /* clear needs_copy (allow chunking) */
2687 if (UVM_ET_ISNEEDSCOPY(entry)) {
2688 amap_copy(srcmap, entry,
2689 AMAP_COPY_NOWAIT|AMAP_COPY_NOMERGE, start, end);
2690 if (UVM_ET_ISNEEDSCOPY(entry)) { /* failed? */
2691 error = ENOMEM;
2692 goto bad;
2693 }
2694
2695 /* amap_copy could clip (during chunk)! update fudge */
2696 if (fudge) {
2697 fudge = start - entry->start;
2698 orig_fudge = fudge;
2699 }
2700 }
2701
2702 /* calculate the offset of this from "start" */
2703 oldoffset = (entry->start + fudge) - start;
2704
2705 /* allocate a new map entry */
2706 newentry = uvm_mapent_alloc(dstmap, 0);
2707 if (newentry == NULL) {
2708 error = ENOMEM;
2709 goto bad;
2710 }
2711
2712 /* set up new map entry */
2713 newentry->next = NULL;
2714 newentry->prev = endchain;
2715 newentry->start = dstaddr + oldoffset;
2716 newentry->end =
2717 newentry->start + (entry->end - (entry->start + fudge));
2718 if (newentry->end > newend || newentry->end < newentry->start)
2719 newentry->end = newend;
2720 newentry->object.uvm_obj = entry->object.uvm_obj;
2721 if (newentry->object.uvm_obj) {
2722 if (newentry->object.uvm_obj->pgops->pgo_reference)
2723 newentry->object.uvm_obj->pgops->
2724 pgo_reference(newentry->object.uvm_obj);
2725 newentry->offset = entry->offset + fudge;
2726 } else {
2727 newentry->offset = 0;
2728 }
2729 newentry->etype = entry->etype;
2730 if (flags & UVM_EXTRACT_PROT_ALL) {
2731 newentry->protection = newentry->max_protection =
2732 UVM_PROT_ALL;
2733 } else {
2734 newentry->protection = (flags & UVM_EXTRACT_FIXPROT) ?
2735 entry->max_protection : entry->protection;
2736 newentry->max_protection = entry->max_protection;
2737 }
2738 newentry->inheritance = entry->inheritance;
2739 newentry->wired_count = 0;
2740 newentry->aref.ar_amap = entry->aref.ar_amap;
2741 if (newentry->aref.ar_amap) {
2742 newentry->aref.ar_pageoff =
2743 entry->aref.ar_pageoff + (fudge >> PAGE_SHIFT);
2744 uvm_map_reference_amap(newentry, AMAP_SHARED |
2745 ((flags & UVM_EXTRACT_QREF) ? AMAP_REFALL : 0));
2746 } else {
2747 newentry->aref.ar_pageoff = 0;
2748 }
2749 newentry->advice = entry->advice;
2750 if ((flags & UVM_EXTRACT_QREF) != 0) {
2751 newentry->flags |= UVM_MAP_NOMERGE;
2752 }
2753
2754 /* now link it on the chain */
2755 nchain++;
2756 nsize += newentry->end - newentry->start;
2757 if (endchain == NULL) {
2758 chain = endchain = newentry;
2759 } else {
2760 endchain->next = newentry;
2761 endchain = newentry;
2762 }
2763
2764 /* end of 'while' loop! */
2765 if ((flags & UVM_EXTRACT_CONTIG) && entry->end < end &&
2766 (entry->next == &srcmap->header ||
2767 entry->next->start != entry->end)) {
2768 error = EINVAL;
2769 goto bad;
2770 }
2771 entry = entry->next;
2772 fudge = 0;
2773 }
2774
2775 /*
2776 * step 4: close off chain (in format expected by uvm_map_replace)
2777 */
2778
2779 if (chain)
2780 chain->prev = endchain;
2781
2782 /*
2783 * step 5: attempt to lock the dest map so we can pmap_copy.
2784 * note usage of copy_ok:
2785 * 1 => dstmap locked, pmap_copy ok, and we "replace" here (step 5)
2786 * 0 => dstmap unlocked, NO pmap_copy, and we will "replace" in step 7
2787 */
2788
2789 if (srcmap == dstmap || vm_map_lock_try(dstmap) == true) {
2790 copy_ok = 1;
2791 if (!uvm_map_replace(dstmap, dstaddr, dstaddr+len, chain,
2792 nchain, nsize, &resentry)) {
2793 if (srcmap != dstmap)
2794 vm_map_unlock(dstmap);
2795 error = EIO;
2796 goto bad;
2797 }
2798 } else {
2799 copy_ok = 0;
2800 /* replace defered until step 7 */
2801 }
2802
2803 /*
2804 * step 6: traverse the srcmap a second time to do the following:
2805 * - if we got a lock on the dstmap do pmap_copy
2806 * - if UVM_EXTRACT_REMOVE remove the entries
2807 * we make use of orig_entry and orig_fudge (saved in step 2)
2808 */
2809
2810 if (copy_ok || (flags & UVM_EXTRACT_REMOVE)) {
2811
2812 /* purge possible stale hints from srcmap */
2813 if (flags & UVM_EXTRACT_REMOVE) {
2814 SAVE_HINT(srcmap, srcmap->hint, orig_entry->prev);
2815 if (srcmap->first_free != &srcmap->header &&
2816 srcmap->first_free->start >= start)
2817 srcmap->first_free = orig_entry->prev;
2818 }
2819
2820 entry = orig_entry;
2821 fudge = orig_fudge;
2822 deadentry = NULL; /* for UVM_EXTRACT_REMOVE */
2823
2824 while (entry->start < end && entry != &srcmap->header) {
2825 if (copy_ok) {
2826 oldoffset = (entry->start + fudge) - start;
2827 elen = MIN(end, entry->end) -
2828 (entry->start + fudge);
2829 pmap_copy(dstmap->pmap, srcmap->pmap,
2830 dstaddr + oldoffset, elen,
2831 entry->start + fudge);
2832 }
2833
2834 /* we advance "entry" in the following if statement */
2835 if (flags & UVM_EXTRACT_REMOVE) {
2836 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
2837 uvm_map_lock_entry(entry, RW_WRITER);
2838 #else
2839 uvm_map_lock_entry(entry, RW_READER);
2840 #endif
2841 pmap_remove(srcmap->pmap, entry->start,
2842 entry->end);
2843 uvm_map_unlock_entry(entry);
2844 oldentry = entry; /* save entry */
2845 entry = entry->next; /* advance */
2846 uvm_map_entry_unlink(srcmap, oldentry);
2847 /* add to dead list */
2848 oldentry->next = deadentry;
2849 deadentry = oldentry;
2850 } else {
2851 entry = entry->next; /* advance */
2852 }
2853
2854 /* end of 'while' loop */
2855 fudge = 0;
2856 }
2857 pmap_update(srcmap->pmap);
2858
2859 /*
2860 * unlock dstmap. we will dispose of deadentry in
2861 * step 7 if needed
2862 */
2863
2864 if (copy_ok && srcmap != dstmap)
2865 vm_map_unlock(dstmap);
2866
2867 } else {
2868 deadentry = NULL;
2869 }
2870
2871 /*
2872 * step 7: we are done with the source map, unlock. if copy_ok
2873 * is 0 then we have not replaced the dummy mapping in dstmap yet
2874 * and we need to do so now.
2875 */
2876
2877 vm_map_unlock(srcmap);
2878 if ((flags & UVM_EXTRACT_REMOVE) && deadentry)
2879 uvm_unmap_detach(deadentry, 0); /* dispose of old entries */
2880
2881 /* now do the replacement if we didn't do it in step 5 */
2882 if (copy_ok == 0) {
2883 vm_map_lock(dstmap);
2884 error = uvm_map_replace(dstmap, dstaddr, dstaddr+len, chain,
2885 nchain, nsize, &resentry);
2886 vm_map_unlock(dstmap);
2887
2888 if (error == false) {
2889 error = EIO;
2890 goto bad2;
2891 }
2892 }
2893
2894 if (resentry != NULL)
2895 uvm_mapent_free(resentry);
2896
2897 return (0);
2898
2899 /*
2900 * bad: failure recovery
2901 */
2902 bad:
2903 vm_map_unlock(srcmap);
2904 bad2: /* src already unlocked */
2905 if (chain)
2906 uvm_unmap_detach(chain,
2907 (flags & UVM_EXTRACT_QREF) ? AMAP_REFALL : 0);
2908
2909 if (resentry != NULL)
2910 uvm_mapent_free(resentry);
2911
2912 if ((flags & UVM_EXTRACT_RESERVED) == 0) {
2913 uvm_unmap(dstmap, dstaddr, dstaddr+len); /* ??? */
2914 }
2915 return (error);
2916 }
2917
2918 /* end of extraction functions */
2919
2920 /*
2921 * uvm_map_submap: punch down part of a map into a submap
2922 *
2923 * => only the kernel_map is allowed to be submapped
2924 * => the purpose of submapping is to break up the locking granularity
2925 * of a larger map
2926 * => the range specified must have been mapped previously with a uvm_map()
2927 * call [with uobj==NULL] to create a blank map entry in the main map.
2928 * [And it had better still be blank!]
2929 * => maps which contain submaps should never be copied or forked.
2930 * => to remove a submap, use uvm_unmap() on the main map
2931 * and then uvm_map_deallocate() the submap.
2932 * => main map must be unlocked.
2933 * => submap must have been init'd and have a zero reference count.
2934 * [need not be locked as we don't actually reference it]
2935 */
2936
2937 int
2938 uvm_map_submap(struct vm_map *map, vaddr_t start, vaddr_t end,
2939 struct vm_map *submap)
2940 {
2941 struct vm_map_entry *entry;
2942 int error;
2943
2944 vm_map_lock(map);
2945 VM_MAP_RANGE_CHECK(map, start, end);
2946
2947 if (uvm_map_lookup_entry(map, start, &entry)) {
2948 UVM_MAP_CLIP_START(map, entry, start);
2949 UVM_MAP_CLIP_END(map, entry, end); /* to be safe */
2950 } else {
2951 entry = NULL;
2952 }
2953
2954 if (entry != NULL &&
2955 entry->start == start && entry->end == end &&
2956 entry->object.uvm_obj == NULL && entry->aref.ar_amap == NULL &&
2957 !UVM_ET_ISCOPYONWRITE(entry) && !UVM_ET_ISNEEDSCOPY(entry)) {
2958 entry->etype |= UVM_ET_SUBMAP;
2959 entry->object.sub_map = submap;
2960 entry->offset = 0;
2961 uvm_map_reference(submap);
2962 error = 0;
2963 } else {
2964 error = EINVAL;
2965 }
2966 vm_map_unlock(map);
2967
2968 return error;
2969 }
2970
2971 /*
2972 * uvm_map_protect_user: change map protection on behalf of the user.
2973 * Enforces PAX settings as necessary.
2974 */
2975 int
2976 uvm_map_protect_user(struct lwp *l, vaddr_t start, vaddr_t end,
2977 vm_prot_t new_prot)
2978 {
2979 int error;
2980
2981 if ((error = PAX_MPROTECT_VALIDATE(l, new_prot)))
2982 return error;
2983
2984 return uvm_map_protect(&l->l_proc->p_vmspace->vm_map, start, end,
2985 new_prot, false);
2986 }
2987
2988
2989 /*
2990 * uvm_map_protect: change map protection
2991 *
2992 * => set_max means set max_protection.
2993 * => map must be unlocked.
2994 */
2995
2996 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
2997 ~VM_PROT_WRITE : VM_PROT_ALL)
2998
2999 int
3000 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
3001 vm_prot_t new_prot, bool set_max)
3002 {
3003 struct vm_map_entry *current, *entry;
3004 int error = 0;
3005 UVMHIST_FUNC(__func__);
3006 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,new_prot=%#jx)",
3007 (uintptr_t)map, start, end, new_prot);
3008
3009 vm_map_lock(map);
3010 VM_MAP_RANGE_CHECK(map, start, end);
3011 if (uvm_map_lookup_entry(map, start, &entry)) {
3012 UVM_MAP_CLIP_START(map, entry, start);
3013 } else {
3014 entry = entry->next;
3015 }
3016
3017 /*
3018 * make a first pass to check for protection violations.
3019 */
3020
3021 current = entry;
3022 while ((current != &map->header) && (current->start < end)) {
3023 if (UVM_ET_ISSUBMAP(current)) {
3024 error = EINVAL;
3025 goto out;
3026 }
3027 if ((new_prot & current->max_protection) != new_prot) {
3028 error = EACCES;
3029 goto out;
3030 }
3031 /*
3032 * Don't allow VM_PROT_EXECUTE to be set on entries that
3033 * point to vnodes that are associated with a NOEXEC file
3034 * system.
3035 */
3036 if (UVM_ET_ISOBJ(current) &&
3037 UVM_OBJ_IS_VNODE(current->object.uvm_obj)) {
3038 struct vnode *vp =
3039 (struct vnode *) current->object.uvm_obj;
3040
3041 if ((new_prot & VM_PROT_EXECUTE) != 0 &&
3042 (vp->v_mount->mnt_flag & MNT_NOEXEC) != 0) {
3043 error = EACCES;
3044 goto out;
3045 }
3046 }
3047
3048 current = current->next;
3049 }
3050
3051 /* go back and fix up protections (no need to clip this time). */
3052
3053 current = entry;
3054 while ((current != &map->header) && (current->start < end)) {
3055 vm_prot_t old_prot;
3056
3057 UVM_MAP_CLIP_END(map, current, end);
3058 old_prot = current->protection;
3059 if (set_max)
3060 current->protection =
3061 (current->max_protection = new_prot) & old_prot;
3062 else
3063 current->protection = new_prot;
3064
3065 /*
3066 * update physical map if necessary. worry about copy-on-write
3067 * here -- CHECK THIS XXX
3068 */
3069
3070 if (current->protection != old_prot) {
3071 /* update pmap! */
3072 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
3073 uvm_map_lock_entry(current, RW_WRITER);
3074 #else
3075 uvm_map_lock_entry(current, RW_READER);
3076 #endif
3077 pmap_protect(map->pmap, current->start, current->end,
3078 current->protection & MASK(current));
3079 uvm_map_unlock_entry(current);
3080
3081 /*
3082 * If this entry points at a vnode, and the
3083 * protection includes VM_PROT_EXECUTE, mark
3084 * the vnode as VEXECMAP.
3085 */
3086 if (UVM_ET_ISOBJ(current)) {
3087 struct uvm_object *uobj =
3088 current->object.uvm_obj;
3089
3090 if (UVM_OBJ_IS_VNODE(uobj) &&
3091 (current->protection & VM_PROT_EXECUTE)) {
3092 vn_markexec((struct vnode *) uobj);
3093 }
3094 }
3095 }
3096
3097 /*
3098 * If the map is configured to lock any future mappings,
3099 * wire this entry now if the old protection was VM_PROT_NONE
3100 * and the new protection is not VM_PROT_NONE.
3101 */
3102
3103 if ((map->flags & VM_MAP_WIREFUTURE) != 0 &&
3104 VM_MAPENT_ISWIRED(current) == 0 &&
3105 old_prot == VM_PROT_NONE &&
3106 new_prot != VM_PROT_NONE) {
3107
3108 /*
3109 * We must call pmap_update() here because the
3110 * pmap_protect() call above might have removed some
3111 * pmap entries and uvm_map_pageable() might create
3112 * some new pmap entries that rely on the prior
3113 * removals being completely finished.
3114 */
3115
3116 pmap_update(map->pmap);
3117
3118 if (uvm_map_pageable(map, current->start,
3119 current->end, false,
3120 UVM_LK_ENTER|UVM_LK_EXIT) != 0) {
3121
3122 /*
3123 * If locking the entry fails, remember the
3124 * error if it's the first one. Note we
3125 * still continue setting the protection in
3126 * the map, but will return the error
3127 * condition regardless.
3128 *
3129 * XXX Ignore what the actual error is,
3130 * XXX just call it a resource shortage
3131 * XXX so that it doesn't get confused
3132 * XXX what uvm_map_protect() itself would
3133 * XXX normally return.
3134 */
3135
3136 error = ENOMEM;
3137 }
3138 }
3139 current = current->next;
3140 }
3141 pmap_update(map->pmap);
3142
3143 out:
3144 vm_map_unlock(map);
3145
3146 UVMHIST_LOG(maphist, "<- done, error=%jd",error,0,0,0);
3147 return error;
3148 }
3149
3150 #undef MASK
3151
3152 /*
3153 * uvm_map_inherit: set inheritance code for range of addrs in map.
3154 *
3155 * => map must be unlocked
3156 * => note that the inherit code is used during a "fork". see fork
3157 * code for details.
3158 */
3159
3160 int
3161 uvm_map_inherit(struct vm_map *map, vaddr_t start, vaddr_t end,
3162 vm_inherit_t new_inheritance)
3163 {
3164 struct vm_map_entry *entry, *temp_entry;
3165 UVMHIST_FUNC(__func__);
3166 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,new_inh=%#jx)",
3167 (uintptr_t)map, start, end, new_inheritance);
3168
3169 switch (new_inheritance) {
3170 case MAP_INHERIT_NONE:
3171 case MAP_INHERIT_COPY:
3172 case MAP_INHERIT_SHARE:
3173 case MAP_INHERIT_ZERO:
3174 break;
3175 default:
3176 UVMHIST_LOG(maphist,"<- done (INVALID ARG)",0,0,0,0);
3177 return EINVAL;
3178 }
3179
3180 vm_map_lock(map);
3181 VM_MAP_RANGE_CHECK(map, start, end);
3182 if (uvm_map_lookup_entry(map, start, &temp_entry)) {
3183 entry = temp_entry;
3184 UVM_MAP_CLIP_START(map, entry, start);
3185 } else {
3186 entry = temp_entry->next;
3187 }
3188 while ((entry != &map->header) && (entry->start < end)) {
3189 UVM_MAP_CLIP_END(map, entry, end);
3190 entry->inheritance = new_inheritance;
3191 entry = entry->next;
3192 }
3193 vm_map_unlock(map);
3194 UVMHIST_LOG(maphist,"<- done (OK)",0,0,0,0);
3195 return 0;
3196 }
3197
3198 /*
3199 * uvm_map_advice: set advice code for range of addrs in map.
3200 *
3201 * => map must be unlocked
3202 */
3203
3204 int
3205 uvm_map_advice(struct vm_map *map, vaddr_t start, vaddr_t end, int new_advice)
3206 {
3207 struct vm_map_entry *entry, *temp_entry;
3208 UVMHIST_FUNC(__func__);
3209 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,new_adv=%#jx)",
3210 (uintptr_t)map, start, end, new_advice);
3211
3212 vm_map_lock(map);
3213 VM_MAP_RANGE_CHECK(map, start, end);
3214 if (uvm_map_lookup_entry(map, start, &temp_entry)) {
3215 entry = temp_entry;
3216 UVM_MAP_CLIP_START(map, entry, start);
3217 } else {
3218 entry = temp_entry->next;
3219 }
3220
3221 /*
3222 * XXXJRT: disallow holes?
3223 */
3224
3225 while ((entry != &map->header) && (entry->start < end)) {
3226 UVM_MAP_CLIP_END(map, entry, end);
3227
3228 switch (new_advice) {
3229 case MADV_NORMAL:
3230 case MADV_RANDOM:
3231 case MADV_SEQUENTIAL:
3232 /* nothing special here */
3233 break;
3234
3235 default:
3236 vm_map_unlock(map);
3237 UVMHIST_LOG(maphist,"<- done (INVALID ARG)",0,0,0,0);
3238 return EINVAL;
3239 }
3240 entry->advice = new_advice;
3241 entry = entry->next;
3242 }
3243
3244 vm_map_unlock(map);
3245 UVMHIST_LOG(maphist,"<- done (OK)",0,0,0,0);
3246 return 0;
3247 }
3248
3249 /*
3250 * uvm_map_willneed: apply MADV_WILLNEED
3251 */
3252
3253 int
3254 uvm_map_willneed(struct vm_map *map, vaddr_t start, vaddr_t end)
3255 {
3256 struct vm_map_entry *entry;
3257 UVMHIST_FUNC(__func__);
3258 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx)",
3259 (uintptr_t)map, start, end, 0);
3260
3261 vm_map_lock_read(map);
3262 VM_MAP_RANGE_CHECK(map, start, end);
3263 if (!uvm_map_lookup_entry(map, start, &entry)) {
3264 entry = entry->next;
3265 }
3266 while (entry->start < end) {
3267 struct vm_amap * const amap = entry->aref.ar_amap;
3268 struct uvm_object * const uobj = entry->object.uvm_obj;
3269
3270 KASSERT(entry != &map->header);
3271 KASSERT(start < entry->end);
3272 /*
3273 * For now, we handle only the easy but commonly-requested case.
3274 * ie. start prefetching of backing uobj pages.
3275 *
3276 * XXX It might be useful to pmap_enter() the already-in-core
3277 * pages by inventing a "weak" mode for uvm_fault() which would
3278 * only do the PGO_LOCKED pgo_get().
3279 */
3280 if (UVM_ET_ISOBJ(entry) && amap == NULL && uobj != NULL) {
3281 off_t offset;
3282 off_t size;
3283
3284 offset = entry->offset;
3285 if (start < entry->start) {
3286 offset += entry->start - start;
3287 }
3288 size = entry->offset + (entry->end - entry->start);
3289 if (entry->end < end) {
3290 size -= end - entry->end;
3291 }
3292 uvm_readahead(uobj, offset, size);
3293 }
3294 entry = entry->next;
3295 }
3296 vm_map_unlock_read(map);
3297 UVMHIST_LOG(maphist,"<- done (OK)",0,0,0,0);
3298 return 0;
3299 }
3300
3301 /*
3302 * uvm_map_pageable: sets the pageability of a range in a map.
3303 *
3304 * => wires map entries. should not be used for transient page locking.
3305 * for that, use uvm_fault_wire()/uvm_fault_unwire() (see uvm_vslock()).
3306 * => regions specified as not pageable require lock-down (wired) memory
3307 * and page tables.
3308 * => map must never be read-locked
3309 * => if islocked is true, map is already write-locked
3310 * => we always unlock the map, since we must downgrade to a read-lock
3311 * to call uvm_fault_wire()
3312 * => XXXCDC: check this and try and clean it up.
3313 */
3314
3315 int
3316 uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end,
3317 bool new_pageable, int lockflags)
3318 {
3319 struct vm_map_entry *entry, *start_entry, *failed_entry;
3320 int rv;
3321 #ifdef DIAGNOSTIC
3322 u_int timestamp_save;
3323 #endif
3324 UVMHIST_FUNC(__func__);
3325 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,new_pageable=%ju)",
3326 (uintptr_t)map, start, end, new_pageable);
3327 KASSERT(map->flags & VM_MAP_PAGEABLE);
3328
3329 if ((lockflags & UVM_LK_ENTER) == 0)
3330 vm_map_lock(map);
3331 VM_MAP_RANGE_CHECK(map, start, end);
3332
3333 /*
3334 * only one pageability change may take place at one time, since
3335 * uvm_fault_wire assumes it will be called only once for each
3336 * wiring/unwiring. therefore, we have to make sure we're actually
3337 * changing the pageability for the entire region. we do so before
3338 * making any changes.
3339 */
3340
3341 if (uvm_map_lookup_entry(map, start, &start_entry) == false) {
3342 if ((lockflags & UVM_LK_EXIT) == 0)
3343 vm_map_unlock(map);
3344
3345 UVMHIST_LOG(maphist,"<- done (fault)",0,0,0,0);
3346 return EFAULT;
3347 }
3348 entry = start_entry;
3349
3350 if (start == end) { /* nothing required */
3351 if ((lockflags & UVM_LK_EXIT) == 0)
3352 vm_map_unlock(map);
3353
3354 UVMHIST_LOG(maphist,"<- done (nothing)",0,0,0,0);
3355 return 0;
3356 }
3357
3358 /*
3359 * handle wiring and unwiring separately.
3360 */
3361
3362 if (new_pageable) { /* unwire */
3363 UVM_MAP_CLIP_START(map, entry, start);
3364
3365 /*
3366 * unwiring. first ensure that the range to be unwired is
3367 * really wired down and that there are no holes.
3368 */
3369
3370 while ((entry != &map->header) && (entry->start < end)) {
3371 if (entry->wired_count == 0 ||
3372 (entry->end < end &&
3373 (entry->next == &map->header ||
3374 entry->next->start > entry->end))) {
3375 if ((lockflags & UVM_LK_EXIT) == 0)
3376 vm_map_unlock(map);
3377 UVMHIST_LOG(maphist, "<- done (INVAL)",0,0,0,0);
3378 return EINVAL;
3379 }
3380 entry = entry->next;
3381 }
3382
3383 /*
3384 * POSIX 1003.1b - a single munlock call unlocks a region,
3385 * regardless of the number of mlock calls made on that
3386 * region.
3387 */
3388
3389 entry = start_entry;
3390 while ((entry != &map->header) && (entry->start < end)) {
3391 UVM_MAP_CLIP_END(map, entry, end);
3392 if (VM_MAPENT_ISWIRED(entry))
3393 uvm_map_entry_unwire(map, entry);
3394 entry = entry->next;
3395 }
3396 if ((lockflags & UVM_LK_EXIT) == 0)
3397 vm_map_unlock(map);
3398 UVMHIST_LOG(maphist,"<- done (OK UNWIRE)",0,0,0,0);
3399 return 0;
3400 }
3401
3402 /*
3403 * wire case: in two passes [XXXCDC: ugly block of code here]
3404 *
3405 * 1: holding the write lock, we create any anonymous maps that need
3406 * to be created. then we clip each map entry to the region to
3407 * be wired and increment its wiring count.
3408 *
3409 * 2: we downgrade to a read lock, and call uvm_fault_wire to fault
3410 * in the pages for any newly wired area (wired_count == 1).
3411 *
3412 * downgrading to a read lock for uvm_fault_wire avoids a possible
3413 * deadlock with another thread that may have faulted on one of
3414 * the pages to be wired (it would mark the page busy, blocking
3415 * us, then in turn block on the map lock that we hold). because
3416 * of problems in the recursive lock package, we cannot upgrade
3417 * to a write lock in vm_map_lookup. thus, any actions that
3418 * require the write lock must be done beforehand. because we
3419 * keep the read lock on the map, the copy-on-write status of the
3420 * entries we modify here cannot change.
3421 */
3422
3423 while ((entry != &map->header) && (entry->start < end)) {
3424 if (VM_MAPENT_ISWIRED(entry) == 0) { /* not already wired? */
3425
3426 /*
3427 * perform actions of vm_map_lookup that need the
3428 * write lock on the map: create an anonymous map
3429 * for a copy-on-write region, or an anonymous map
3430 * for a zero-fill region. (XXXCDC: submap case
3431 * ok?)
3432 */
3433
3434 if (!UVM_ET_ISSUBMAP(entry)) { /* not submap */
3435 if (UVM_ET_ISNEEDSCOPY(entry) &&
3436 ((entry->max_protection & VM_PROT_WRITE) ||
3437 (entry->object.uvm_obj == NULL))) {
3438 amap_copy(map, entry, 0, start, end);
3439 /* XXXCDC: wait OK? */
3440 }
3441 }
3442 }
3443 UVM_MAP_CLIP_START(map, entry, start);
3444 UVM_MAP_CLIP_END(map, entry, end);
3445 entry->wired_count++;
3446
3447 /*
3448 * Check for holes
3449 */
3450
3451 if (entry->protection == VM_PROT_NONE ||
3452 (entry->end < end &&
3453 (entry->next == &map->header ||
3454 entry->next->start > entry->end))) {
3455
3456 /*
3457 * found one. amap creation actions do not need to
3458 * be undone, but the wired counts need to be restored.
3459 */
3460
3461 while (entry != &map->header && entry->end > start) {
3462 entry->wired_count--;
3463 entry = entry->prev;
3464 }
3465 if ((lockflags & UVM_LK_EXIT) == 0)
3466 vm_map_unlock(map);
3467 UVMHIST_LOG(maphist,"<- done (INVALID WIRE)",0,0,0,0);
3468 return EINVAL;
3469 }
3470 entry = entry->next;
3471 }
3472
3473 /*
3474 * Pass 2.
3475 */
3476
3477 #ifdef DIAGNOSTIC
3478 timestamp_save = map->timestamp;
3479 #endif
3480 vm_map_busy(map);
3481 vm_map_unlock(map);
3482
3483 rv = 0;
3484 entry = start_entry;
3485 while (entry != &map->header && entry->start < end) {
3486 if (entry->wired_count == 1) {
3487 rv = uvm_fault_wire(map, entry->start, entry->end,
3488 entry->max_protection, 1);
3489 if (rv) {
3490
3491 /*
3492 * wiring failed. break out of the loop.
3493 * we'll clean up the map below, once we
3494 * have a write lock again.
3495 */
3496
3497 break;
3498 }
3499 }
3500 entry = entry->next;
3501 }
3502
3503 if (rv) { /* failed? */
3504
3505 /*
3506 * Get back to an exclusive (write) lock.
3507 */
3508
3509 vm_map_lock(map);
3510 vm_map_unbusy(map);
3511
3512 #ifdef DIAGNOSTIC
3513 if (timestamp_save + 1 != map->timestamp)
3514 panic("uvm_map_pageable: stale map");
3515 #endif
3516
3517 /*
3518 * first drop the wiring count on all the entries
3519 * which haven't actually been wired yet.
3520 */
3521
3522 failed_entry = entry;
3523 while (entry != &map->header && entry->start < end) {
3524 entry->wired_count--;
3525 entry = entry->next;
3526 }
3527
3528 /*
3529 * now, unwire all the entries that were successfully
3530 * wired above.
3531 */
3532
3533 entry = start_entry;
3534 while (entry != failed_entry) {
3535 entry->wired_count--;
3536 if (VM_MAPENT_ISWIRED(entry) == 0)
3537 uvm_map_entry_unwire(map, entry);
3538 entry = entry->next;
3539 }
3540 if ((lockflags & UVM_LK_EXIT) == 0)
3541 vm_map_unlock(map);
3542 UVMHIST_LOG(maphist, "<- done (RV=%jd)", rv,0,0,0);
3543 return (rv);
3544 }
3545
3546 if ((lockflags & UVM_LK_EXIT) == 0) {
3547 vm_map_unbusy(map);
3548 } else {
3549
3550 /*
3551 * Get back to an exclusive (write) lock.
3552 */
3553
3554 vm_map_lock(map);
3555 vm_map_unbusy(map);
3556 }
3557
3558 UVMHIST_LOG(maphist,"<- done (OK WIRE)",0,0,0,0);
3559 return 0;
3560 }
3561
3562 /*
3563 * uvm_map_pageable_all: special case of uvm_map_pageable - affects
3564 * all mapped regions.
3565 *
3566 * => map must not be locked.
3567 * => if no flags are specified, all regions are unwired.
3568 * => XXXJRT: has some of the same problems as uvm_map_pageable() above.
3569 */
3570
3571 int
3572 uvm_map_pageable_all(struct vm_map *map, int flags, vsize_t limit)
3573 {
3574 struct vm_map_entry *entry, *failed_entry;
3575 vsize_t size;
3576 int rv;
3577 #ifdef DIAGNOSTIC
3578 u_int timestamp_save;
3579 #endif
3580 UVMHIST_FUNC(__func__);
3581 UVMHIST_CALLARGS(maphist,"(map=%#jx,flags=%#jx)", (uintptr_t)map, flags,
3582 0, 0);
3583
3584 KASSERT(map->flags & VM_MAP_PAGEABLE);
3585
3586 vm_map_lock(map);
3587
3588 /*
3589 * handle wiring and unwiring separately.
3590 */
3591
3592 if (flags == 0) { /* unwire */
3593
3594 /*
3595 * POSIX 1003.1b -- munlockall unlocks all regions,
3596 * regardless of how many times mlockall has been called.
3597 */
3598
3599 for (entry = map->header.next; entry != &map->header;
3600 entry = entry->next) {
3601 if (VM_MAPENT_ISWIRED(entry))
3602 uvm_map_entry_unwire(map, entry);
3603 }
3604 map->flags &= ~VM_MAP_WIREFUTURE;
3605 vm_map_unlock(map);
3606 UVMHIST_LOG(maphist,"<- done (OK UNWIRE)",0,0,0,0);
3607 return 0;
3608 }
3609
3610 if (flags & MCL_FUTURE) {
3611
3612 /*
3613 * must wire all future mappings; remember this.
3614 */
3615
3616 map->flags |= VM_MAP_WIREFUTURE;
3617 }
3618
3619 if ((flags & MCL_CURRENT) == 0) {
3620
3621 /*
3622 * no more work to do!
3623 */
3624
3625 UVMHIST_LOG(maphist,"<- done (OK no wire)",0,0,0,0);
3626 vm_map_unlock(map);
3627 return 0;
3628 }
3629
3630 /*
3631 * wire case: in three passes [XXXCDC: ugly block of code here]
3632 *
3633 * 1: holding the write lock, count all pages mapped by non-wired
3634 * entries. if this would cause us to go over our limit, we fail.
3635 *
3636 * 2: still holding the write lock, we create any anonymous maps that
3637 * need to be created. then we increment its wiring count.
3638 *
3639 * 3: we downgrade to a read lock, and call uvm_fault_wire to fault
3640 * in the pages for any newly wired area (wired_count == 1).
3641 *
3642 * downgrading to a read lock for uvm_fault_wire avoids a possible
3643 * deadlock with another thread that may have faulted on one of
3644 * the pages to be wired (it would mark the page busy, blocking
3645 * us, then in turn block on the map lock that we hold). because
3646 * of problems in the recursive lock package, we cannot upgrade
3647 * to a write lock in vm_map_lookup. thus, any actions that
3648 * require the write lock must be done beforehand. because we
3649 * keep the read lock on the map, the copy-on-write status of the
3650 * entries we modify here cannot change.
3651 */
3652
3653 for (size = 0, entry = map->header.next; entry != &map->header;
3654 entry = entry->next) {
3655 if (entry->protection != VM_PROT_NONE &&
3656 VM_MAPENT_ISWIRED(entry) == 0) { /* not already wired? */
3657 size += entry->end - entry->start;
3658 }
3659 }
3660
3661 if (atop(size) + uvmexp.wired > uvmexp.wiredmax) {
3662 vm_map_unlock(map);
3663 return ENOMEM;
3664 }
3665
3666 if (limit != 0 &&
3667 (size + ptoa(pmap_wired_count(vm_map_pmap(map))) > limit)) {
3668 vm_map_unlock(map);
3669 return ENOMEM;
3670 }
3671
3672 /*
3673 * Pass 2.
3674 */
3675
3676 for (entry = map->header.next; entry != &map->header;
3677 entry = entry->next) {
3678 if (entry->protection == VM_PROT_NONE)
3679 continue;
3680 if (VM_MAPENT_ISWIRED(entry) == 0) { /* not already wired? */
3681
3682 /*
3683 * perform actions of vm_map_lookup that need the
3684 * write lock on the map: create an anonymous map
3685 * for a copy-on-write region, or an anonymous map
3686 * for a zero-fill region. (XXXCDC: submap case
3687 * ok?)
3688 */
3689
3690 if (!UVM_ET_ISSUBMAP(entry)) { /* not submap */
3691 if (UVM_ET_ISNEEDSCOPY(entry) &&
3692 ((entry->max_protection & VM_PROT_WRITE) ||
3693 (entry->object.uvm_obj == NULL))) {
3694 amap_copy(map, entry, 0, entry->start,
3695 entry->end);
3696 /* XXXCDC: wait OK? */
3697 }
3698 }
3699 }
3700 entry->wired_count++;
3701 }
3702
3703 /*
3704 * Pass 3.
3705 */
3706
3707 #ifdef DIAGNOSTIC
3708 timestamp_save = map->timestamp;
3709 #endif
3710 vm_map_busy(map);
3711 vm_map_unlock(map);
3712
3713 rv = 0;
3714 for (entry = map->header.next; entry != &map->header;
3715 entry = entry->next) {
3716 if (entry->wired_count == 1) {
3717 rv = uvm_fault_wire(map, entry->start, entry->end,
3718 entry->max_protection, 1);
3719 if (rv) {
3720
3721 /*
3722 * wiring failed. break out of the loop.
3723 * we'll clean up the map below, once we
3724 * have a write lock again.
3725 */
3726
3727 break;
3728 }
3729 }
3730 }
3731
3732 if (rv) {
3733
3734 /*
3735 * Get back an exclusive (write) lock.
3736 */
3737
3738 vm_map_lock(map);
3739 vm_map_unbusy(map);
3740
3741 #ifdef DIAGNOSTIC
3742 if (timestamp_save + 1 != map->timestamp)
3743 panic("uvm_map_pageable_all: stale map");
3744 #endif
3745
3746 /*
3747 * first drop the wiring count on all the entries
3748 * which haven't actually been wired yet.
3749 *
3750 * Skip VM_PROT_NONE entries like we did above.
3751 */
3752
3753 failed_entry = entry;
3754 for (/* nothing */; entry != &map->header;
3755 entry = entry->next) {
3756 if (entry->protection == VM_PROT_NONE)
3757 continue;
3758 entry->wired_count--;
3759 }
3760
3761 /*
3762 * now, unwire all the entries that were successfully
3763 * wired above.
3764 *
3765 * Skip VM_PROT_NONE entries like we did above.
3766 */
3767
3768 for (entry = map->header.next; entry != failed_entry;
3769 entry = entry->next) {
3770 if (entry->protection == VM_PROT_NONE)
3771 continue;
3772 entry->wired_count--;
3773 if (VM_MAPENT_ISWIRED(entry))
3774 uvm_map_entry_unwire(map, entry);
3775 }
3776 vm_map_unlock(map);
3777 UVMHIST_LOG(maphist,"<- done (RV=%jd)", rv,0,0,0);
3778 return (rv);
3779 }
3780
3781 vm_map_unbusy(map);
3782
3783 UVMHIST_LOG(maphist,"<- done (OK WIRE)",0,0,0,0);
3784 return 0;
3785 }
3786
3787 /*
3788 * uvm_map_clean: clean out a map range
3789 *
3790 * => valid flags:
3791 * if (flags & PGO_CLEANIT): dirty pages are cleaned first
3792 * if (flags & PGO_SYNCIO): dirty pages are written synchronously
3793 * if (flags & PGO_DEACTIVATE): any cached pages are deactivated after clean
3794 * if (flags & PGO_FREE): any cached pages are freed after clean
3795 * => returns an error if any part of the specified range isn't mapped
3796 * => never a need to flush amap layer since the anonymous memory has
3797 * no permanent home, but may deactivate pages there
3798 * => called from sys_msync() and sys_madvise()
3799 * => caller must not write-lock map (read OK).
3800 * => we may sleep while cleaning if SYNCIO [with map read-locked]
3801 */
3802
3803 int
3804 uvm_map_clean(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
3805 {
3806 struct vm_map_entry *current, *entry;
3807 struct uvm_object *uobj;
3808 struct vm_amap *amap;
3809 struct vm_anon *anon;
3810 struct vm_page *pg;
3811 vaddr_t offset;
3812 vsize_t size;
3813 voff_t uoff;
3814 int error, refs;
3815 UVMHIST_FUNC(__func__);
3816 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,flags=%#jx)",
3817 (uintptr_t)map, start, end, flags);
3818
3819 KASSERT((flags & (PGO_FREE|PGO_DEACTIVATE)) !=
3820 (PGO_FREE|PGO_DEACTIVATE));
3821
3822 vm_map_lock_read(map);
3823 VM_MAP_RANGE_CHECK(map, start, end);
3824 if (uvm_map_lookup_entry(map, start, &entry) == false) {
3825 vm_map_unlock_read(map);
3826 return EFAULT;
3827 }
3828
3829 /*
3830 * Make a first pass to check for holes and wiring problems.
3831 */
3832
3833 for (current = entry; current->start < end; current = current->next) {
3834 if (UVM_ET_ISSUBMAP(current)) {
3835 vm_map_unlock_read(map);
3836 return EINVAL;
3837 }
3838 if ((flags & PGO_FREE) != 0 && VM_MAPENT_ISWIRED(entry)) {
3839 vm_map_unlock_read(map);
3840 return EBUSY;
3841 }
3842 if (end <= current->end) {
3843 break;
3844 }
3845 if (current->end != current->next->start) {
3846 vm_map_unlock_read(map);
3847 return EFAULT;
3848 }
3849 }
3850
3851 error = 0;
3852 for (current = entry; start < end; current = current->next) {
3853 amap = current->aref.ar_amap; /* upper layer */
3854 uobj = current->object.uvm_obj; /* lower layer */
3855 KASSERT(start >= current->start);
3856
3857 /*
3858 * No amap cleaning necessary if:
3859 *
3860 * (1) There's no amap.
3861 *
3862 * (2) We're not deactivating or freeing pages.
3863 */
3864
3865 if (amap == NULL || (flags & (PGO_DEACTIVATE|PGO_FREE)) == 0)
3866 goto flush_object;
3867
3868 offset = start - current->start;
3869 size = MIN(end, current->end) - start;
3870
3871 amap_lock(amap, RW_WRITER);
3872 for ( ; size != 0; size -= PAGE_SIZE, offset += PAGE_SIZE) {
3873 anon = amap_lookup(¤t->aref, offset);
3874 if (anon == NULL)
3875 continue;
3876
3877 KASSERT(anon->an_lock == amap->am_lock);
3878 pg = anon->an_page;
3879 if (pg == NULL) {
3880 continue;
3881 }
3882 if (pg->flags & PG_BUSY) {
3883 continue;
3884 }
3885
3886 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
3887
3888 /*
3889 * In these first 3 cases, we just deactivate the page.
3890 */
3891
3892 case PGO_CLEANIT|PGO_FREE:
3893 case PGO_CLEANIT|PGO_DEACTIVATE:
3894 case PGO_DEACTIVATE:
3895 deactivate_it:
3896 /*
3897 * skip the page if it's loaned or wired,
3898 * since it shouldn't be on a paging queue
3899 * at all in these cases.
3900 */
3901
3902 if (pg->loan_count != 0 ||
3903 pg->wire_count != 0) {
3904 continue;
3905 }
3906 KASSERT(pg->uanon == anon);
3907 uvm_pagelock(pg);
3908 uvm_pagedeactivate(pg);
3909 uvm_pageunlock(pg);
3910 continue;
3911
3912 case PGO_FREE:
3913
3914 /*
3915 * If there are multiple references to
3916 * the amap, just deactivate the page.
3917 */
3918
3919 if (amap_refs(amap) > 1)
3920 goto deactivate_it;
3921
3922 /* skip the page if it's wired */
3923 if (pg->wire_count != 0) {
3924 continue;
3925 }
3926 amap_unadd(¤t->aref, offset);
3927 refs = --anon->an_ref;
3928 if (refs == 0) {
3929 uvm_anfree(anon);
3930 }
3931 continue;
3932 }
3933 }
3934 amap_unlock(amap);
3935
3936 flush_object:
3937 /*
3938 * flush pages if we've got a valid backing object.
3939 * note that we must always clean object pages before
3940 * freeing them since otherwise we could reveal stale
3941 * data from files.
3942 */
3943
3944 uoff = current->offset + (start - current->start);
3945 size = MIN(end, current->end) - start;
3946 if (uobj != NULL) {
3947 rw_enter(uobj->vmobjlock, RW_WRITER);
3948 if (uobj->pgops->pgo_put != NULL)
3949 error = (uobj->pgops->pgo_put)(uobj, uoff,
3950 uoff + size, flags | PGO_CLEANIT);
3951 else
3952 error = 0;
3953 }
3954 start += size;
3955 }
3956 vm_map_unlock_read(map);
3957 return (error);
3958 }
3959
3960
3961 /*
3962 * uvm_map_checkprot: check protection in map
3963 *
3964 * => must allow specified protection in a fully allocated region.
3965 * => map must be read or write locked by caller.
3966 */
3967
3968 bool
3969 uvm_map_checkprot(struct vm_map *map, vaddr_t start, vaddr_t end,
3970 vm_prot_t protection)
3971 {
3972 struct vm_map_entry *entry;
3973 struct vm_map_entry *tmp_entry;
3974
3975 if (!uvm_map_lookup_entry(map, start, &tmp_entry)) {
3976 return (false);
3977 }
3978 entry = tmp_entry;
3979 while (start < end) {
3980 if (entry == &map->header) {
3981 return (false);
3982 }
3983
3984 /*
3985 * no holes allowed
3986 */
3987
3988 if (start < entry->start) {
3989 return (false);
3990 }
3991
3992 /*
3993 * check protection associated with entry
3994 */
3995
3996 if ((entry->protection & protection) != protection) {
3997 return (false);
3998 }
3999 start = entry->end;
4000 entry = entry->next;
4001 }
4002 return (true);
4003 }
4004
4005 /*
4006 * uvmspace_alloc: allocate a vmspace structure.
4007 *
4008 * - structure includes vm_map and pmap
4009 * - XXX: no locking on this structure
4010 * - refcnt set to 1, rest must be init'd by caller
4011 */
4012 struct vmspace *
4013 uvmspace_alloc(vaddr_t vmin, vaddr_t vmax, bool topdown)
4014 {
4015 struct vmspace *vm;
4016 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4017
4018 vm = pool_cache_get(&uvm_vmspace_cache, PR_WAITOK);
4019 uvmspace_init(vm, NULL, vmin, vmax, topdown);
4020 UVMHIST_LOG(maphist,"<- done (vm=%#jx)", (uintptr_t)vm, 0, 0, 0);
4021 return (vm);
4022 }
4023
4024 /*
4025 * uvmspace_init: initialize a vmspace structure.
4026 *
4027 * - XXX: no locking on this structure
4028 * - refcnt set to 1, rest must be init'd by caller
4029 */
4030 void
4031 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin,
4032 vaddr_t vmax, bool topdown)
4033 {
4034 UVMHIST_FUNC(__func__);
4035 UVMHIST_CALLARGS(maphist, "(vm=%#jx, pmap=%#jx, vmin=%#jx, vmax=%#jx",
4036 (uintptr_t)vm, (uintptr_t)pmap, vmin, vmax);
4037 UVMHIST_LOG(maphist, " topdown=%ju)", topdown, 0, 0, 0);
4038
4039 memset(vm, 0, sizeof(*vm));
4040 uvm_map_setup(&vm->vm_map, vmin, vmax, VM_MAP_PAGEABLE
4041 | (topdown ? VM_MAP_TOPDOWN : 0)
4042 );
4043 if (pmap)
4044 pmap_reference(pmap);
4045 else
4046 pmap = pmap_create();
4047 vm->vm_map.pmap = pmap;
4048 vm->vm_refcnt = 1;
4049 UVMHIST_LOG(maphist,"<- done",0,0,0,0);
4050 }
4051
4052 /*
4053 * uvmspace_share: share a vmspace between two processes
4054 *
4055 * - used for vfork, threads(?)
4056 */
4057
4058 void
4059 uvmspace_share(struct proc *p1, struct proc *p2)
4060 {
4061
4062 uvmspace_addref(p1->p_vmspace);
4063 p2->p_vmspace = p1->p_vmspace;
4064 }
4065
4066 #if 0
4067
4068 /*
4069 * uvmspace_unshare: ensure that process "p" has its own, unshared, vmspace
4070 *
4071 * - XXX: no locking on vmspace
4072 */
4073
4074 void
4075 uvmspace_unshare(struct lwp *l)
4076 {
4077 struct proc *p = l->l_proc;
4078 struct vmspace *nvm, *ovm = p->p_vmspace;
4079
4080 if (ovm->vm_refcnt == 1)
4081 /* nothing to do: vmspace isn't shared in the first place */
4082 return;
4083
4084 /* make a new vmspace, still holding old one */
4085 nvm = uvmspace_fork(ovm);
4086
4087 kpreempt_disable();
4088 pmap_deactivate(l); /* unbind old vmspace */
4089 p->p_vmspace = nvm;
4090 pmap_activate(l); /* switch to new vmspace */
4091 kpreempt_enable();
4092
4093 uvmspace_free(ovm); /* drop reference to old vmspace */
4094 }
4095
4096 #endif
4097
4098
4099 /*
4100 * uvmspace_spawn: a new process has been spawned and needs a vmspace
4101 */
4102
4103 void
4104 uvmspace_spawn(struct lwp *l, vaddr_t start, vaddr_t end, bool topdown)
4105 {
4106 struct proc *p = l->l_proc;
4107 struct vmspace *nvm;
4108
4109 #ifdef __HAVE_CPU_VMSPACE_EXEC
4110 cpu_vmspace_exec(l, start, end);
4111 #endif
4112
4113 nvm = uvmspace_alloc(start, end, topdown);
4114 kpreempt_disable();
4115 p->p_vmspace = nvm;
4116 pmap_activate(l);
4117 kpreempt_enable();
4118 }
4119
4120 /*
4121 * uvmspace_exec: the process wants to exec a new program
4122 */
4123
4124 void
4125 uvmspace_exec(struct lwp *l, vaddr_t start, vaddr_t end, bool topdown)
4126 {
4127 struct proc *p = l->l_proc;
4128 struct vmspace *nvm, *ovm = p->p_vmspace;
4129 struct vm_map *map;
4130 int flags;
4131
4132 KASSERT(ovm != NULL);
4133 #ifdef __HAVE_CPU_VMSPACE_EXEC
4134 cpu_vmspace_exec(l, start, end);
4135 #endif
4136
4137 map = &ovm->vm_map;
4138 /*
4139 * see if more than one process is using this vmspace...
4140 */
4141
4142 if (ovm->vm_refcnt == 1
4143 && topdown == ((ovm->vm_map.flags & VM_MAP_TOPDOWN) != 0)) {
4144
4145 /*
4146 * if p is the only process using its vmspace then we can safely
4147 * recycle that vmspace for the program that is being exec'd.
4148 * But only if TOPDOWN matches the requested value for the new
4149 * vm space!
4150 */
4151
4152 /*
4153 * SYSV SHM semantics require us to kill all segments on an exec
4154 */
4155 if (uvm_shmexit && ovm->vm_shm)
4156 (*uvm_shmexit)(ovm);
4157
4158 /*
4159 * POSIX 1003.1b -- "lock future mappings" is revoked
4160 * when a process execs another program image.
4161 */
4162
4163 map->flags &= ~VM_MAP_WIREFUTURE;
4164
4165 /*
4166 * now unmap the old program.
4167 *
4168 * XXX set VM_MAP_DYING for the duration, so pmap_update()
4169 * is not called until the pmap has been totally cleared out
4170 * after pmap_remove_all(), or it can confuse some pmap
4171 * implementations. it would be nice to handle this by
4172 * deferring the pmap_update() while it is known the address
4173 * space is not visible to any user LWP other than curlwp,
4174 * but there isn't an elegant way of inferring that right
4175 * now.
4176 */
4177
4178 flags = pmap_remove_all(map->pmap) ? UVM_FLAG_VAONLY : 0;
4179 map->flags |= VM_MAP_DYING;
4180 uvm_unmap1(map, vm_map_min(map), vm_map_max(map), flags);
4181 map->flags &= ~VM_MAP_DYING;
4182 pmap_update(map->pmap);
4183 KASSERT(map->header.prev == &map->header);
4184 KASSERT(map->nentries == 0);
4185
4186 /*
4187 * resize the map
4188 */
4189
4190 vm_map_setmin(map, start);
4191 vm_map_setmax(map, end);
4192 } else {
4193
4194 /*
4195 * p's vmspace is being shared, so we can't reuse it for p since
4196 * it is still being used for others. allocate a new vmspace
4197 * for p
4198 */
4199
4200 nvm = uvmspace_alloc(start, end, topdown);
4201
4202 /*
4203 * install new vmspace and drop our ref to the old one.
4204 */
4205
4206 kpreempt_disable();
4207 pmap_deactivate(l);
4208 p->p_vmspace = nvm;
4209 pmap_activate(l);
4210 kpreempt_enable();
4211
4212 uvmspace_free(ovm);
4213 }
4214 }
4215
4216 /*
4217 * uvmspace_addref: add a reference to a vmspace.
4218 */
4219
4220 void
4221 uvmspace_addref(struct vmspace *vm)
4222 {
4223
4224 KASSERT((vm->vm_map.flags & VM_MAP_DYING) == 0);
4225 KASSERT(vm->vm_refcnt > 0);
4226 atomic_inc_uint(&vm->vm_refcnt);
4227 }
4228
4229 /*
4230 * uvmspace_free: free a vmspace data structure
4231 */
4232
4233 void
4234 uvmspace_free(struct vmspace *vm)
4235 {
4236 struct vm_map_entry *dead_entries;
4237 struct vm_map *map = &vm->vm_map;
4238 int flags;
4239
4240 UVMHIST_FUNC(__func__);
4241 UVMHIST_CALLARGS(maphist,"(vm=%#jx) ref=%jd", (uintptr_t)vm,
4242 vm->vm_refcnt, 0, 0);
4243
4244 membar_release();
4245 if (atomic_dec_uint_nv(&vm->vm_refcnt) > 0)
4246 return;
4247 membar_acquire();
4248
4249 /*
4250 * at this point, there should be no other references to the map.
4251 * delete all of the mappings, then destroy the pmap.
4252 */
4253
4254 map->flags |= VM_MAP_DYING;
4255 flags = pmap_remove_all(map->pmap) ? UVM_FLAG_VAONLY : 0;
4256
4257 /* Get rid of any SYSV shared memory segments. */
4258 if (uvm_shmexit && vm->vm_shm != NULL)
4259 (*uvm_shmexit)(vm);
4260
4261 if (map->nentries) {
4262 uvm_unmap_remove(map, vm_map_min(map), vm_map_max(map),
4263 &dead_entries, flags);
4264 if (dead_entries != NULL)
4265 uvm_unmap_detach(dead_entries, 0);
4266 }
4267 KASSERT(map->nentries == 0);
4268 KASSERT(map->size == 0);
4269
4270 mutex_destroy(&map->misc_lock);
4271 rw_destroy(&map->lock);
4272 cv_destroy(&map->cv);
4273 pmap_destroy(map->pmap);
4274 pool_cache_put(&uvm_vmspace_cache, vm);
4275 }
4276
4277 static struct vm_map_entry *
4278 uvm_mapent_clone(struct vm_map *new_map, struct vm_map_entry *old_entry,
4279 int flags)
4280 {
4281 struct vm_map_entry *new_entry;
4282
4283 new_entry = uvm_mapent_alloc(new_map, 0);
4284 /* old_entry -> new_entry */
4285 uvm_mapent_copy(old_entry, new_entry);
4286
4287 /* new pmap has nothing wired in it */
4288 new_entry->wired_count = 0;
4289
4290 /*
4291 * gain reference to object backing the map (can't
4292 * be a submap, already checked this case).
4293 */
4294
4295 if (new_entry->aref.ar_amap)
4296 uvm_map_reference_amap(new_entry, flags);
4297
4298 if (new_entry->object.uvm_obj &&
4299 new_entry->object.uvm_obj->pgops->pgo_reference)
4300 new_entry->object.uvm_obj->pgops->pgo_reference(
4301 new_entry->object.uvm_obj);
4302
4303 /* insert entry at end of new_map's entry list */
4304 uvm_map_entry_link(new_map, new_map->header.prev,
4305 new_entry);
4306
4307 return new_entry;
4308 }
4309
4310 /*
4311 * share the mapping: this means we want the old and
4312 * new entries to share amaps and backing objects.
4313 */
4314 static void
4315 uvm_mapent_forkshared(struct vm_map *new_map, struct vm_map *old_map,
4316 struct vm_map_entry *old_entry)
4317 {
4318 /*
4319 * if the old_entry needs a new amap (due to prev fork)
4320 * then we need to allocate it now so that we have
4321 * something we own to share with the new_entry. [in
4322 * other words, we need to clear needs_copy]
4323 */
4324
4325 if (UVM_ET_ISNEEDSCOPY(old_entry)) {
4326 /* get our own amap, clears needs_copy */
4327 amap_copy(old_map, old_entry, AMAP_COPY_NOCHUNK,
4328 0, 0);
4329 /* XXXCDC: WAITOK??? */
4330 }
4331
4332 uvm_mapent_clone(new_map, old_entry, AMAP_SHARED);
4333 }
4334
4335
4336 static void
4337 uvm_mapent_forkcopy(struct vm_map *new_map, struct vm_map *old_map,
4338 struct vm_map_entry *old_entry)
4339 {
4340 struct vm_map_entry *new_entry;
4341
4342 /*
4343 * copy-on-write the mapping (using mmap's
4344 * MAP_PRIVATE semantics)
4345 *
4346 * allocate new_entry, adjust reference counts.
4347 * (note that new references are read-only).
4348 */
4349
4350 new_entry = uvm_mapent_clone(new_map, old_entry, 0);
4351
4352 new_entry->etype |=
4353 (UVM_ET_COPYONWRITE|UVM_ET_NEEDSCOPY);
4354
4355 /*
4356 * the new entry will need an amap. it will either
4357 * need to be copied from the old entry or created
4358 * from scratch (if the old entry does not have an
4359 * amap). can we defer this process until later
4360 * (by setting "needs_copy") or do we need to copy
4361 * the amap now?
4362 *
4363 * we must copy the amap now if any of the following
4364 * conditions hold:
4365 * 1. the old entry has an amap and that amap is
4366 * being shared. this means that the old (parent)
4367 * process is sharing the amap with another
4368 * process. if we do not clear needs_copy here
4369 * we will end up in a situation where both the
4370 * parent and child process are referring to the
4371 * same amap with "needs_copy" set. if the
4372 * parent write-faults, the fault routine will
4373 * clear "needs_copy" in the parent by allocating
4374 * a new amap. this is wrong because the
4375 * parent is supposed to be sharing the old amap
4376 * and the new amap will break that.
4377 *
4378 * 2. if the old entry has an amap and a non-zero
4379 * wire count then we are going to have to call
4380 * amap_cow_now to avoid page faults in the
4381 * parent process. since amap_cow_now requires
4382 * "needs_copy" to be clear we might as well
4383 * clear it here as well.
4384 *
4385 */
4386
4387 if (old_entry->aref.ar_amap != NULL) {
4388 if ((amap_flags(old_entry->aref.ar_amap) & AMAP_SHARED) != 0 ||
4389 VM_MAPENT_ISWIRED(old_entry)) {
4390
4391 amap_copy(new_map, new_entry,
4392 AMAP_COPY_NOCHUNK, 0, 0);
4393 /* XXXCDC: M_WAITOK ... ok? */
4394 }
4395 }
4396
4397 /*
4398 * if the parent's entry is wired down, then the
4399 * parent process does not want page faults on
4400 * access to that memory. this means that we
4401 * cannot do copy-on-write because we can't write
4402 * protect the old entry. in this case we
4403 * resolve all copy-on-write faults now, using
4404 * amap_cow_now. note that we have already
4405 * allocated any needed amap (above).
4406 */
4407
4408 if (VM_MAPENT_ISWIRED(old_entry)) {
4409
4410 /*
4411 * resolve all copy-on-write faults now
4412 * (note that there is nothing to do if
4413 * the old mapping does not have an amap).
4414 */
4415 if (old_entry->aref.ar_amap)
4416 amap_cow_now(new_map, new_entry);
4417
4418 } else {
4419 /*
4420 * setup mappings to trigger copy-on-write faults
4421 * we must write-protect the parent if it has
4422 * an amap and it is not already "needs_copy"...
4423 * if it is already "needs_copy" then the parent
4424 * has already been write-protected by a previous
4425 * fork operation.
4426 */
4427 if (old_entry->aref.ar_amap &&
4428 !UVM_ET_ISNEEDSCOPY(old_entry)) {
4429 if (old_entry->max_protection & VM_PROT_WRITE) {
4430 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
4431 uvm_map_lock_entry(old_entry, RW_WRITER);
4432 #else
4433 uvm_map_lock_entry(old_entry, RW_READER);
4434 #endif
4435 pmap_protect(old_map->pmap,
4436 old_entry->start, old_entry->end,
4437 old_entry->protection & ~VM_PROT_WRITE);
4438 uvm_map_unlock_entry(old_entry);
4439 }
4440 old_entry->etype |= UVM_ET_NEEDSCOPY;
4441 }
4442 }
4443 }
4444
4445 /*
4446 * zero the mapping: the new entry will be zero initialized
4447 */
4448 static void
4449 uvm_mapent_forkzero(struct vm_map *new_map, struct vm_map *old_map,
4450 struct vm_map_entry *old_entry)
4451 {
4452 struct vm_map_entry *new_entry;
4453
4454 new_entry = uvm_mapent_clone(new_map, old_entry, 0);
4455
4456 new_entry->etype |=
4457 (UVM_ET_COPYONWRITE|UVM_ET_NEEDSCOPY);
4458
4459 if (new_entry->aref.ar_amap) {
4460 uvm_map_unreference_amap(new_entry, 0);
4461 new_entry->aref.ar_pageoff = 0;
4462 new_entry->aref.ar_amap = NULL;
4463 }
4464
4465 if (UVM_ET_ISOBJ(new_entry)) {
4466 if (new_entry->object.uvm_obj->pgops->pgo_detach)
4467 new_entry->object.uvm_obj->pgops->pgo_detach(
4468 new_entry->object.uvm_obj);
4469 new_entry->object.uvm_obj = NULL;
4470 new_entry->offset = 0;
4471 new_entry->etype &= ~UVM_ET_OBJ;
4472 }
4473 }
4474
4475 /*
4476 * F O R K - m a i n e n t r y p o i n t
4477 */
4478 /*
4479 * uvmspace_fork: fork a process' main map
4480 *
4481 * => create a new vmspace for child process from parent.
4482 * => parent's map must not be locked.
4483 */
4484
4485 struct vmspace *
4486 uvmspace_fork(struct vmspace *vm1)
4487 {
4488 struct vmspace *vm2;
4489 struct vm_map *old_map = &vm1->vm_map;
4490 struct vm_map *new_map;
4491 struct vm_map_entry *old_entry;
4492 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4493
4494 vm_map_lock(old_map);
4495
4496 vm2 = uvmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4497 vm1->vm_map.flags & VM_MAP_TOPDOWN);
4498 memcpy(&vm2->vm_startcopy, &vm1->vm_startcopy,
4499 (char *) (vm1 + 1) - (char *) &vm1->vm_startcopy);
4500 new_map = &vm2->vm_map; /* XXX */
4501
4502 old_entry = old_map->header.next;
4503 new_map->size = old_map->size;
4504
4505 /*
4506 * go entry-by-entry
4507 */
4508
4509 while (old_entry != &old_map->header) {
4510
4511 /*
4512 * first, some sanity checks on the old entry
4513 */
4514
4515 KASSERT(!UVM_ET_ISSUBMAP(old_entry));
4516 KASSERT(UVM_ET_ISCOPYONWRITE(old_entry) ||
4517 !UVM_ET_ISNEEDSCOPY(old_entry));
4518
4519 switch (old_entry->inheritance) {
4520 case MAP_INHERIT_NONE:
4521 /*
4522 * drop the mapping, modify size
4523 */
4524 new_map->size -= old_entry->end - old_entry->start;
4525 break;
4526
4527 case MAP_INHERIT_SHARE:
4528 uvm_mapent_forkshared(new_map, old_map, old_entry);
4529 break;
4530
4531 case MAP_INHERIT_COPY:
4532 uvm_mapent_forkcopy(new_map, old_map, old_entry);
4533 break;
4534
4535 case MAP_INHERIT_ZERO:
4536 uvm_mapent_forkzero(new_map, old_map, old_entry);
4537 break;
4538 default:
4539 KASSERT(0);
4540 break;
4541 }
4542 old_entry = old_entry->next;
4543 }
4544
4545 pmap_update(old_map->pmap);
4546 vm_map_unlock(old_map);
4547
4548 if (uvm_shmfork && vm1->vm_shm)
4549 (*uvm_shmfork)(vm1, vm2);
4550
4551 #ifdef PMAP_FORK
4552 pmap_fork(vm1->vm_map.pmap, vm2->vm_map.pmap);
4553 #endif
4554
4555 UVMHIST_LOG(maphist,"<- done",0,0,0,0);
4556 return (vm2);
4557 }
4558
4559
4560 /*
4561 * uvm_mapent_trymerge: try to merge an entry with its neighbors.
4562 *
4563 * => called with map locked.
4564 * => return non zero if successfully merged.
4565 */
4566
4567 int
4568 uvm_mapent_trymerge(struct vm_map *map, struct vm_map_entry *entry, int flags)
4569 {
4570 struct uvm_object *uobj;
4571 struct vm_map_entry *next;
4572 struct vm_map_entry *prev;
4573 vsize_t size;
4574 int merged = 0;
4575 bool copying;
4576 int newetype;
4577
4578 if (entry->aref.ar_amap != NULL) {
4579 return 0;
4580 }
4581 if ((entry->flags & UVM_MAP_NOMERGE) != 0) {
4582 return 0;
4583 }
4584
4585 uobj = entry->object.uvm_obj;
4586 size = entry->end - entry->start;
4587 copying = (flags & UVM_MERGE_COPYING) != 0;
4588 newetype = copying ? (entry->etype & ~UVM_ET_NEEDSCOPY) : entry->etype;
4589
4590 next = entry->next;
4591 if (next != &map->header &&
4592 next->start == entry->end &&
4593 ((copying && next->aref.ar_amap != NULL &&
4594 amap_refs(next->aref.ar_amap) == 1) ||
4595 (!copying && next->aref.ar_amap == NULL)) &&
4596 UVM_ET_ISCOMPATIBLE(next, newetype,
4597 uobj, entry->flags, entry->protection,
4598 entry->max_protection, entry->inheritance, entry->advice,
4599 entry->wired_count) &&
4600 (uobj == NULL || entry->offset + size == next->offset)) {
4601 int error;
4602
4603 if (copying) {
4604 error = amap_extend(next, size,
4605 AMAP_EXTEND_NOWAIT|AMAP_EXTEND_BACKWARDS);
4606 } else {
4607 error = 0;
4608 }
4609 if (error == 0) {
4610 if (uobj) {
4611 if (uobj->pgops->pgo_detach) {
4612 uobj->pgops->pgo_detach(uobj);
4613 }
4614 }
4615
4616 entry->end = next->end;
4617 clear_hints(map, next);
4618 uvm_map_entry_unlink(map, next);
4619 if (copying) {
4620 entry->aref = next->aref;
4621 entry->etype &= ~UVM_ET_NEEDSCOPY;
4622 }
4623 uvm_map_check(map, "trymerge forwardmerge");
4624 uvm_mapent_free(next);
4625 merged++;
4626 }
4627 }
4628
4629 prev = entry->prev;
4630 if (prev != &map->header &&
4631 prev->end == entry->start &&
4632 ((copying && !merged && prev->aref.ar_amap != NULL &&
4633 amap_refs(prev->aref.ar_amap) == 1) ||
4634 (!copying && prev->aref.ar_amap == NULL)) &&
4635 UVM_ET_ISCOMPATIBLE(prev, newetype,
4636 uobj, entry->flags, entry->protection,
4637 entry->max_protection, entry->inheritance, entry->advice,
4638 entry->wired_count) &&
4639 (uobj == NULL ||
4640 prev->offset + prev->end - prev->start == entry->offset)) {
4641 int error;
4642
4643 if (copying) {
4644 error = amap_extend(prev, size,
4645 AMAP_EXTEND_NOWAIT|AMAP_EXTEND_FORWARDS);
4646 } else {
4647 error = 0;
4648 }
4649 if (error == 0) {
4650 if (uobj) {
4651 if (uobj->pgops->pgo_detach) {
4652 uobj->pgops->pgo_detach(uobj);
4653 }
4654 entry->offset = prev->offset;
4655 }
4656
4657 entry->start = prev->start;
4658 clear_hints(map, prev);
4659 uvm_map_entry_unlink(map, prev);
4660 if (copying) {
4661 entry->aref = prev->aref;
4662 entry->etype &= ~UVM_ET_NEEDSCOPY;
4663 }
4664 uvm_map_check(map, "trymerge backmerge");
4665 uvm_mapent_free(prev);
4666 merged++;
4667 }
4668 }
4669
4670 return merged;
4671 }
4672
4673 /*
4674 * uvm_map_setup: init map
4675 *
4676 * => map must not be in service yet.
4677 */
4678
4679 void
4680 uvm_map_setup(struct vm_map *map, vaddr_t vmin, vaddr_t vmax, int flags)
4681 {
4682
4683 rb_tree_init(&map->rb_tree, &uvm_map_tree_ops);
4684 map->header.next = map->header.prev = &map->header;
4685 map->nentries = 0;
4686 map->size = 0;
4687 map->ref_count = 1;
4688 vm_map_setmin(map, vmin);
4689 vm_map_setmax(map, vmax);
4690 map->flags = flags;
4691 map->first_free = &map->header;
4692 map->hint = &map->header;
4693 map->timestamp = 0;
4694 map->busy = NULL;
4695
4696 rw_init(&map->lock);
4697 cv_init(&map->cv, "vm_map");
4698 mutex_init(&map->misc_lock, MUTEX_DRIVER, IPL_NONE);
4699 }
4700
4701 /*
4702 * U N M A P - m a i n e n t r y p o i n t
4703 */
4704
4705 /*
4706 * uvm_unmap1: remove mappings from a vm_map (from "start" up to "stop")
4707 *
4708 * => caller must check alignment and size
4709 * => map must be unlocked (we will lock it)
4710 * => flags is UVM_FLAG_QUANTUM or 0.
4711 */
4712
4713 void
4714 uvm_unmap1(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
4715 {
4716 struct vm_map_entry *dead_entries;
4717 UVMHIST_FUNC(__func__);
4718 UVMHIST_CALLARGS(maphist, " (map=%#jx, start=%#jx, end=%#jx)",
4719 (uintptr_t)map, start, end, 0);
4720
4721 KASSERTMSG(start < end,
4722 "%s: map %p: start %#jx < end %#jx", __func__, map,
4723 (uintmax_t)start, (uintmax_t)end);
4724 if (map == kernel_map) {
4725 LOCKDEBUG_MEM_CHECK((void *)start, end - start);
4726 }
4727
4728 /*
4729 * work now done by helper functions. wipe the pmap's and then
4730 * detach from the dead entries...
4731 */
4732 vm_map_lock(map);
4733 uvm_unmap_remove(map, start, end, &dead_entries, flags);
4734 vm_map_unlock(map);
4735
4736 if (dead_entries != NULL)
4737 uvm_unmap_detach(dead_entries, 0);
4738
4739 UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
4740 }
4741
4742
4743 /*
4744 * uvm_map_reference: add reference to a map
4745 *
4746 * => map need not be locked
4747 */
4748
4749 void
4750 uvm_map_reference(struct vm_map *map)
4751 {
4752
4753 atomic_inc_uint(&map->ref_count);
4754 }
4755
4756 void
4757 uvm_map_lock_entry(struct vm_map_entry *entry, krw_t op)
4758 {
4759
4760 if (entry->aref.ar_amap != NULL) {
4761 amap_lock(entry->aref.ar_amap, op);
4762 }
4763 if (UVM_ET_ISOBJ(entry)) {
4764 rw_enter(entry->object.uvm_obj->vmobjlock, op);
4765 }
4766 }
4767
4768 void
4769 uvm_map_unlock_entry(struct vm_map_entry *entry)
4770 {
4771
4772 if (UVM_ET_ISOBJ(entry)) {
4773 rw_exit(entry->object.uvm_obj->vmobjlock);
4774 }
4775 if (entry->aref.ar_amap != NULL) {
4776 amap_unlock(entry->aref.ar_amap);
4777 }
4778 }
4779
4780 #define UVM_VOADDR_TYPE_MASK 0x3UL
4781 #define UVM_VOADDR_TYPE_UOBJ 0x1UL
4782 #define UVM_VOADDR_TYPE_ANON 0x2UL
4783 #define UVM_VOADDR_OBJECT_MASK ~UVM_VOADDR_TYPE_MASK
4784
4785 #define UVM_VOADDR_GET_TYPE(voa) \
4786 ((voa)->object & UVM_VOADDR_TYPE_MASK)
4787 #define UVM_VOADDR_GET_OBJECT(voa) \
4788 ((voa)->object & UVM_VOADDR_OBJECT_MASK)
4789 #define UVM_VOADDR_SET_OBJECT(voa, obj, type) \
4790 do { \
4791 KASSERT(((uintptr_t)(obj) & UVM_VOADDR_TYPE_MASK) == 0); \
4792 (voa)->object = ((uintptr_t)(obj)) | (type); \
4793 } while (/*CONSTCOND*/0)
4794
4795 #define UVM_VOADDR_GET_UOBJ(voa) \
4796 ((struct uvm_object *)UVM_VOADDR_GET_OBJECT(voa))
4797 #define UVM_VOADDR_SET_UOBJ(voa, uobj) \
4798 UVM_VOADDR_SET_OBJECT(voa, uobj, UVM_VOADDR_TYPE_UOBJ)
4799
4800 #define UVM_VOADDR_GET_ANON(voa) \
4801 ((struct vm_anon *)UVM_VOADDR_GET_OBJECT(voa))
4802 #define UVM_VOADDR_SET_ANON(voa, anon) \
4803 UVM_VOADDR_SET_OBJECT(voa, anon, UVM_VOADDR_TYPE_ANON)
4804
4805 /*
4806 * uvm_voaddr_acquire: returns the virtual object address corresponding
4807 * to the specified virtual address.
4808 *
4809 * => resolves COW so the true page identity is tracked.
4810 *
4811 * => acquires a reference on the page's owner (uvm_object or vm_anon)
4812 */
4813 bool
4814 uvm_voaddr_acquire(struct vm_map * const map, vaddr_t const va,
4815 struct uvm_voaddr * const voaddr)
4816 {
4817 struct vm_map_entry *entry;
4818 struct vm_anon *anon = NULL;
4819 bool result = false;
4820 bool exclusive = false;
4821 void (*unlock_fn)(struct vm_map *);
4822
4823 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4824 UVMHIST_LOG(maphist,"(map=%#jx,va=%#jx)", (uintptr_t)map, va, 0, 0);
4825
4826 const vaddr_t start = trunc_page(va);
4827 const vaddr_t end = round_page(va+1);
4828
4829 lookup_again:
4830 if (__predict_false(exclusive)) {
4831 vm_map_lock(map);
4832 unlock_fn = vm_map_unlock;
4833 } else {
4834 vm_map_lock_read(map);
4835 unlock_fn = vm_map_unlock_read;
4836 }
4837
4838 if (__predict_false(!uvm_map_lookup_entry(map, start, &entry))) {
4839 unlock_fn(map);
4840 UVMHIST_LOG(maphist,"<- done (no entry)",0,0,0,0);
4841 return false;
4842 }
4843
4844 if (__predict_false(entry->protection == VM_PROT_NONE)) {
4845 unlock_fn(map);
4846 UVMHIST_LOG(maphist,"<- done (PROT_NONE)",0,0,0,0);
4847 return false;
4848 }
4849
4850 /*
4851 * We have a fast path for the common case of "no COW resolution
4852 * needed" whereby we have taken a read lock on the map and if
4853 * we don't encounter any need to create a vm_anon then great!
4854 * But if we do, we loop around again, instead taking an exclusive
4855 * lock so that we can perform the fault.
4856 *
4857 * In the event that we have to resolve the fault, we do nearly the
4858 * same work as uvm_map_pageable() does:
4859 *
4860 * 1: holding the write lock, we create any anonymous maps that need
4861 * to be created. however, we do NOT need to clip the map entries
4862 * in this case.
4863 *
4864 * 2: we downgrade to a read lock, and call uvm_fault_wire to fault
4865 * in the page (assuming the entry is not already wired). this
4866 * is done because we need the vm_anon to be present.
4867 */
4868 if (__predict_true(!VM_MAPENT_ISWIRED(entry))) {
4869
4870 bool need_fault = false;
4871
4872 /*
4873 * perform the action of vm_map_lookup that need the
4874 * write lock on the map: create an anonymous map for
4875 * a copy-on-write region, or an anonymous map for
4876 * a zero-fill region.
4877 */
4878 if (__predict_false(UVM_ET_ISSUBMAP(entry))) {
4879 unlock_fn(map);
4880 UVMHIST_LOG(maphist,"<- done (submap)",0,0,0,0);
4881 return false;
4882 }
4883 if (__predict_false(UVM_ET_ISNEEDSCOPY(entry) &&
4884 ((entry->max_protection & VM_PROT_WRITE) ||
4885 (entry->object.uvm_obj == NULL)))) {
4886 if (!exclusive) {
4887 /* need to take the slow path */
4888 KASSERT(unlock_fn == vm_map_unlock_read);
4889 vm_map_unlock_read(map);
4890 exclusive = true;
4891 goto lookup_again;
4892 }
4893 need_fault = true;
4894 amap_copy(map, entry, 0, start, end);
4895 /* XXXCDC: wait OK? */
4896 }
4897
4898 /*
4899 * do a quick check to see if the fault has already
4900 * been resolved to the upper layer.
4901 */
4902 if (__predict_true(entry->aref.ar_amap != NULL &&
4903 need_fault == false)) {
4904 amap_lock(entry->aref.ar_amap, RW_WRITER);
4905 anon = amap_lookup(&entry->aref, start - entry->start);
4906 if (__predict_true(anon != NULL)) {
4907 /* amap unlocked below */
4908 goto found_anon;
4909 }
4910 amap_unlock(entry->aref.ar_amap);
4911 need_fault = true;
4912 }
4913
4914 /*
4915 * we predict this test as false because if we reach
4916 * this point, then we are likely dealing with a
4917 * shared memory region backed by a uvm_object, in
4918 * which case a fault to create the vm_anon is not
4919 * necessary.
4920 */
4921 if (__predict_false(need_fault)) {
4922 if (exclusive) {
4923 vm_map_busy(map);
4924 vm_map_unlock(map);
4925 unlock_fn = vm_map_unbusy;
4926 }
4927
4928 if (uvm_fault_wire(map, start, end,
4929 entry->max_protection, 1)) {
4930 /* wiring failed */
4931 unlock_fn(map);
4932 UVMHIST_LOG(maphist,"<- done (wire failed)",
4933 0,0,0,0);
4934 return false;
4935 }
4936
4937 /*
4938 * now that we have resolved the fault, we can unwire
4939 * the page.
4940 */
4941 if (exclusive) {
4942 vm_map_lock(map);
4943 vm_map_unbusy(map);
4944 unlock_fn = vm_map_unlock;
4945 }
4946
4947 uvm_fault_unwire_locked(map, start, end);
4948 }
4949 }
4950
4951 /* check the upper layer */
4952 if (entry->aref.ar_amap) {
4953 amap_lock(entry->aref.ar_amap, RW_WRITER);
4954 anon = amap_lookup(&entry->aref, start - entry->start);
4955 if (anon) {
4956 found_anon: KASSERT(anon->an_lock == entry->aref.ar_amap->am_lock);
4957 anon->an_ref++;
4958 rw_obj_hold(anon->an_lock);
4959 KASSERT(anon->an_ref != 0);
4960 UVM_VOADDR_SET_ANON(voaddr, anon);
4961 voaddr->offset = va & PAGE_MASK;
4962 result = true;
4963 }
4964 amap_unlock(entry->aref.ar_amap);
4965 }
4966
4967 /* check the lower layer */
4968 if (!result && UVM_ET_ISOBJ(entry)) {
4969 struct uvm_object *uobj = entry->object.uvm_obj;
4970
4971 KASSERT(uobj != NULL);
4972 (*uobj->pgops->pgo_reference)(uobj);
4973 UVM_VOADDR_SET_UOBJ(voaddr, uobj);
4974 voaddr->offset = entry->offset + (va - entry->start);
4975 result = true;
4976 }
4977
4978 unlock_fn(map);
4979
4980 if (result) {
4981 UVMHIST_LOG(maphist,
4982 "<- done OK (type=%jd,owner=%#jx,offset=%#jx)",
4983 UVM_VOADDR_GET_TYPE(voaddr),
4984 UVM_VOADDR_GET_OBJECT(voaddr),
4985 voaddr->offset, 0);
4986 } else {
4987 UVMHIST_LOG(maphist,"<- done (failed)",0,0,0,0);
4988 }
4989
4990 return result;
4991 }
4992
4993 /*
4994 * uvm_voaddr_release: release the references held by the
4995 * vitual object address.
4996 */
4997 void
4998 uvm_voaddr_release(struct uvm_voaddr * const voaddr)
4999 {
5000
5001 switch (UVM_VOADDR_GET_TYPE(voaddr)) {
5002 case UVM_VOADDR_TYPE_UOBJ: {
5003 struct uvm_object * const uobj = UVM_VOADDR_GET_UOBJ(voaddr);
5004
5005 KASSERT(uobj != NULL);
5006 KASSERT(uobj->pgops->pgo_detach != NULL);
5007 (*uobj->pgops->pgo_detach)(uobj);
5008 break;
5009 }
5010 case UVM_VOADDR_TYPE_ANON: {
5011 struct vm_anon * const anon = UVM_VOADDR_GET_ANON(voaddr);
5012 krwlock_t *lock;
5013
5014 KASSERT(anon != NULL);
5015 rw_enter((lock = anon->an_lock), RW_WRITER);
5016 KASSERT(anon->an_ref > 0);
5017 if (--anon->an_ref == 0) {
5018 uvm_anfree(anon);
5019 }
5020 rw_exit(lock);
5021 rw_obj_free(lock);
5022 break;
5023 }
5024 default:
5025 panic("uvm_voaddr_release: bad type");
5026 }
5027 memset(voaddr, 0, sizeof(*voaddr));
5028 }
5029
5030 /*
5031 * uvm_voaddr_compare: compare two uvm_voaddr objects.
5032 *
5033 * => memcmp() semantics
5034 */
5035 int
5036 uvm_voaddr_compare(const struct uvm_voaddr * const voaddr1,
5037 const struct uvm_voaddr * const voaddr2)
5038 {
5039 const uintptr_t type1 = UVM_VOADDR_GET_TYPE(voaddr1);
5040 const uintptr_t type2 = UVM_VOADDR_GET_TYPE(voaddr2);
5041
5042 KASSERT(type1 == UVM_VOADDR_TYPE_UOBJ ||
5043 type1 == UVM_VOADDR_TYPE_ANON);
5044
5045 KASSERT(type2 == UVM_VOADDR_TYPE_UOBJ ||
5046 type2 == UVM_VOADDR_TYPE_ANON);
5047
5048 if (type1 < type2)
5049 return -1;
5050 if (type1 > type2)
5051 return 1;
5052
5053 const uintptr_t addr1 = UVM_VOADDR_GET_OBJECT(voaddr1);
5054 const uintptr_t addr2 = UVM_VOADDR_GET_OBJECT(voaddr2);
5055
5056 if (addr1 < addr2)
5057 return -1;
5058 if (addr1 > addr2)
5059 return 1;
5060
5061 if (voaddr1->offset < voaddr2->offset)
5062 return -1;
5063 if (voaddr1->offset > voaddr2->offset)
5064 return 1;
5065
5066 return 0;
5067 }
5068
5069 #if defined(DDB) || defined(DEBUGPRINT)
5070
5071 /*
5072 * uvm_map_printit: actually prints the map
5073 */
5074
5075 void
5076 uvm_map_printit(struct vm_map *map, bool full,
5077 void (*pr)(const char *, ...))
5078 {
5079 struct vm_map_entry *entry;
5080
5081 (*pr)("MAP %p: [%#lx->%#lx]\n", map, vm_map_min(map),
5082 vm_map_max(map));
5083 (*pr)("\t#ent=%d, sz=%d, ref=%d, version=%d, flags=%#x\n",
5084 map->nentries, map->size, map->ref_count, map->timestamp,
5085 map->flags);
5086 (*pr)("\tpmap=%p(resident=%ld, wired=%ld)\n", map->pmap,
5087 pmap_resident_count(map->pmap), pmap_wired_count(map->pmap));
5088 if (!full)
5089 return;
5090 for (entry = map->header.next; entry != &map->header;
5091 entry = entry->next) {
5092 (*pr)(" - %p: %#lx->%#lx: obj=%p/%#llx, amap=%p/%d\n",
5093 entry, entry->start, entry->end, entry->object.uvm_obj,
5094 (long long)entry->offset, entry->aref.ar_amap,
5095 entry->aref.ar_pageoff);
5096 (*pr)(
5097 "\tsubmap=%c, cow=%c, nc=%c, prot(max)=%d/%d, inh=%d, "
5098 "wc=%d, adv=%d\n",
5099 (entry->etype & UVM_ET_SUBMAP) ? 'T' : 'F',
5100 (entry->etype & UVM_ET_COPYONWRITE) ? 'T' : 'F',
5101 (entry->etype & UVM_ET_NEEDSCOPY) ? 'T' : 'F',
5102 entry->protection, entry->max_protection,
5103 entry->inheritance, entry->wired_count, entry->advice);
5104 }
5105 }
5106
5107 void
5108 uvm_whatis(uintptr_t addr, void (*pr)(const char *, ...))
5109 {
5110 struct vm_map *map;
5111
5112 for (map = kernel_map;;) {
5113 struct vm_map_entry *entry;
5114
5115 if (!uvm_map_lookup_entry_bytree(map, (vaddr_t)addr, &entry)) {
5116 break;
5117 }
5118 (*pr)("%p is %p+%zu from VMMAP %p\n",
5119 (void *)addr, (void *)entry->start,
5120 (size_t)(addr - (uintptr_t)entry->start), map);
5121 if (!UVM_ET_ISSUBMAP(entry)) {
5122 break;
5123 }
5124 map = entry->object.sub_map;
5125 }
5126 }
5127
5128 #endif /* DDB || DEBUGPRINT */
5129
5130 #ifndef __USER_VA0_IS_SAFE
5131 static int
5132 sysctl_user_va0_disable(SYSCTLFN_ARGS)
5133 {
5134 struct sysctlnode node;
5135 int t, error;
5136
5137 node = *rnode;
5138 node.sysctl_data = &t;
5139 t = user_va0_disable;
5140 error = sysctl_lookup(SYSCTLFN_CALL(&node));
5141 if (error || newp == NULL)
5142 return (error);
5143
5144 if (!t && user_va0_disable &&
5145 kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_MAP_VA_ZERO, 0,
5146 NULL, NULL, NULL))
5147 return EPERM;
5148
5149 user_va0_disable = !!t;
5150 return 0;
5151 }
5152 #endif
5153
5154 static int
5155 fill_vmentry(struct lwp *l, struct proc *p, struct kinfo_vmentry *kve,
5156 struct vm_map *m, struct vm_map_entry *e)
5157 {
5158 #ifndef _RUMPKERNEL
5159 int error;
5160
5161 memset(kve, 0, sizeof(*kve));
5162 KASSERT(e != NULL);
5163 if (UVM_ET_ISOBJ(e)) {
5164 struct uvm_object *uobj = e->object.uvm_obj;
5165 KASSERT(uobj != NULL);
5166 kve->kve_ref_count = uobj->uo_refs;
5167 kve->kve_count = uobj->uo_npages;
5168 if (UVM_OBJ_IS_VNODE(uobj)) {
5169 struct vattr va;
5170 struct vnode *vp = (struct vnode *)uobj;
5171 vn_lock(vp, LK_SHARED | LK_RETRY);
5172 error = VOP_GETATTR(vp, &va, l->l_cred);
5173 VOP_UNLOCK(vp);
5174 kve->kve_type = KVME_TYPE_VNODE;
5175 if (error == 0) {
5176 kve->kve_vn_size = vp->v_size;
5177 kve->kve_vn_type = (int)vp->v_type;
5178 kve->kve_vn_mode = va.va_mode;
5179 kve->kve_vn_rdev = va.va_rdev;
5180 kve->kve_vn_fileid = va.va_fileid;
5181 kve->kve_vn_fsid = va.va_fsid;
5182 error = vnode_to_path(kve->kve_path,
5183 sizeof(kve->kve_path) / 2, vp, l, p);
5184 }
5185 } else if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
5186 kve->kve_type = KVME_TYPE_KERN;
5187 } else if (UVM_OBJ_IS_DEVICE(uobj)) {
5188 kve->kve_type = KVME_TYPE_DEVICE;
5189 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
5190 kve->kve_type = KVME_TYPE_ANON;
5191 } else {
5192 kve->kve_type = KVME_TYPE_OBJECT;
5193 }
5194 } else if (UVM_ET_ISSUBMAP(e)) {
5195 struct vm_map *map = e->object.sub_map;
5196 KASSERT(map != NULL);
5197 kve->kve_ref_count = map->ref_count;
5198 kve->kve_count = map->nentries;
5199 kve->kve_type = KVME_TYPE_SUBMAP;
5200 } else
5201 kve->kve_type = KVME_TYPE_UNKNOWN;
5202
5203 kve->kve_start = e->start;
5204 kve->kve_end = e->end;
5205 kve->kve_offset = e->offset;
5206 kve->kve_wired_count = e->wired_count;
5207 kve->kve_inheritance = e->inheritance;
5208 kve->kve_attributes = 0; /* unused */
5209 kve->kve_advice = e->advice;
5210 #define PROT(p) (((p) & VM_PROT_READ) ? KVME_PROT_READ : 0) | \
5211 (((p) & VM_PROT_WRITE) ? KVME_PROT_WRITE : 0) | \
5212 (((p) & VM_PROT_EXECUTE) ? KVME_PROT_EXEC : 0)
5213 kve->kve_protection = PROT(e->protection);
5214 kve->kve_max_protection = PROT(e->max_protection);
5215 kve->kve_flags |= (e->etype & UVM_ET_COPYONWRITE)
5216 ? KVME_FLAG_COW : 0;
5217 kve->kve_flags |= (e->etype & UVM_ET_NEEDSCOPY)
5218 ? KVME_FLAG_NEEDS_COPY : 0;
5219 kve->kve_flags |= (m->flags & VM_MAP_TOPDOWN)
5220 ? KVME_FLAG_GROWS_DOWN : KVME_FLAG_GROWS_UP;
5221 kve->kve_flags |= (m->flags & VM_MAP_PAGEABLE)
5222 ? KVME_FLAG_PAGEABLE : 0;
5223 #endif
5224 return 0;
5225 }
5226
5227 static int
5228 fill_vmentries(struct lwp *l, pid_t pid, u_int elem_size, void *oldp,
5229 size_t *oldlenp)
5230 {
5231 int error;
5232 struct proc *p;
5233 struct kinfo_vmentry *vme;
5234 struct vmspace *vm;
5235 struct vm_map *map;
5236 struct vm_map_entry *entry;
5237 char *dp;
5238 size_t count, vmesize;
5239
5240 if (elem_size == 0 || elem_size > 2 * sizeof(*vme))
5241 return EINVAL;
5242
5243 if (oldp) {
5244 if (*oldlenp > 10UL * 1024UL * 1024UL)
5245 return E2BIG;
5246 count = *oldlenp / elem_size;
5247 if (count == 0)
5248 return ENOMEM;
5249 vmesize = count * sizeof(*vme);
5250 } else
5251 vmesize = 0;
5252
5253 if ((error = proc_find_locked(l, &p, pid)) != 0)
5254 return error;
5255
5256 vme = NULL;
5257 count = 0;
5258
5259 if ((error = proc_vmspace_getref(p, &vm)) != 0)
5260 goto out;
5261
5262 map = &vm->vm_map;
5263 vm_map_lock_read(map);
5264
5265 dp = oldp;
5266 if (oldp)
5267 vme = kmem_alloc(vmesize, KM_SLEEP);
5268 for (entry = map->header.next; entry != &map->header;
5269 entry = entry->next) {
5270 if (oldp && (dp - (char *)oldp) < vmesize) {
5271 error = fill_vmentry(l, p, &vme[count], map, entry);
5272 if (error)
5273 goto out;
5274 dp += elem_size;
5275 }
5276 count++;
5277 }
5278 vm_map_unlock_read(map);
5279 uvmspace_free(vm);
5280
5281 out:
5282 if (pid != -1)
5283 mutex_exit(p->p_lock);
5284 if (error == 0) {
5285 const u_int esize = uimin(sizeof(*vme), elem_size);
5286 dp = oldp;
5287 for (size_t i = 0; i < count; i++) {
5288 if (oldp && (dp - (char *)oldp) < vmesize) {
5289 error = sysctl_copyout(l, &vme[i], dp, esize);
5290 if (error)
5291 break;
5292 dp += elem_size;
5293 } else
5294 break;
5295 }
5296 count *= elem_size;
5297 if (oldp != NULL && *oldlenp < count)
5298 error = ENOSPC;
5299 *oldlenp = count;
5300 }
5301 if (vme)
5302 kmem_free(vme, vmesize);
5303 return error;
5304 }
5305
5306 static int
5307 sysctl_vmproc(SYSCTLFN_ARGS)
5308 {
5309 int error;
5310
5311 if (namelen == 1 && name[0] == CTL_QUERY)
5312 return (sysctl_query(SYSCTLFN_CALL(rnode)));
5313
5314 if (namelen == 0)
5315 return EINVAL;
5316
5317 switch (name[0]) {
5318 case VM_PROC_MAP:
5319 if (namelen != 3)
5320 return EINVAL;
5321 sysctl_unlock();
5322 error = fill_vmentries(l, name[1], name[2], oldp, oldlenp);
5323 sysctl_relock();
5324 return error;
5325 default:
5326 return EINVAL;
5327 }
5328 }
5329
5330 SYSCTL_SETUP(sysctl_uvmmap_setup, "sysctl uvmmap setup")
5331 {
5332
5333 sysctl_createv(clog, 0, NULL, NULL,
5334 CTLFLAG_PERMANENT,
5335 CTLTYPE_STRUCT, "proc",
5336 SYSCTL_DESCR("Process vm information"),
5337 sysctl_vmproc, 0, NULL, 0,
5338 CTL_VM, VM_PROC, CTL_EOL);
5339 #ifndef __USER_VA0_IS_SAFE
5340 sysctl_createv(clog, 0, NULL, NULL,
5341 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5342 CTLTYPE_INT, "user_va0_disable",
5343 SYSCTL_DESCR("Disable VA 0"),
5344 sysctl_user_va0_disable, 0, &user_va0_disable, 0,
5345 CTL_VM, CTL_CREATE, CTL_EOL);
5346 #endif
5347 }
5348