uvm_map.c revision 1.414 1 /* $NetBSD: uvm_map.c,v 1.414 2024/08/13 17:54:44 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vm_map.c 8.3 (Berkeley) 1/12/94
37 * from: Id: uvm_map.c,v 1.1.2.27 1998/02/07 01:16:54 chs Exp
38 *
39 *
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
48 *
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 *
53 * Carnegie Mellon requests users of this software to return to
54 *
55 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 * School of Computer Science
57 * Carnegie Mellon University
58 * Pittsburgh PA 15213-3890
59 *
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
62 */
63
64 /*
65 * uvm_map.c: uvm map operations
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: uvm_map.c,v 1.414 2024/08/13 17:54:44 riastradh Exp $");
70
71 #include "opt_ddb.h"
72 #include "opt_pax.h"
73 #include "opt_uvmhist.h"
74 #include "opt_uvm.h"
75 #include "opt_sysv.h"
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/mman.h>
80 #include <sys/proc.h>
81 #include <sys/pool.h>
82 #include <sys/kernel.h>
83 #include <sys/mount.h>
84 #include <sys/pax.h>
85 #include <sys/vnode.h>
86 #include <sys/filedesc.h>
87 #include <sys/lockdebug.h>
88 #include <sys/atomic.h>
89 #include <sys/sysctl.h>
90 #ifndef __USER_VA0_IS_SAFE
91 #include <sys/kauth.h>
92 #include "opt_user_va0_disable_default.h"
93 #endif
94
95 #include <sys/shm.h>
96
97 #include <uvm/uvm.h>
98 #include <uvm/uvm_readahead.h>
99
100 #if defined(DDB) || defined(DEBUGPRINT)
101 #include <uvm/uvm_ddb.h>
102 #endif
103
104 #ifdef UVMHIST
105 #ifndef UVMHIST_MAPHIST_SIZE
106 #define UVMHIST_MAPHIST_SIZE 100
107 #endif
108 static struct kern_history_ent maphistbuf[UVMHIST_MAPHIST_SIZE];
109 UVMHIST_DEFINE(maphist) = UVMHIST_INITIALIZER(maphist, maphistbuf);
110 #endif
111
112 #if !defined(UVMMAP_COUNTERS)
113
114 #define UVMMAP_EVCNT_DEFINE(name) /* nothing */
115 #define UVMMAP_EVCNT_INCR(ev) /* nothing */
116 #define UVMMAP_EVCNT_DECR(ev) /* nothing */
117
118 #else /* defined(UVMMAP_NOCOUNTERS) */
119
120 #include <sys/evcnt.h>
121 #define UVMMAP_EVCNT_DEFINE(name) \
122 struct evcnt uvmmap_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
123 "uvmmap", #name); \
124 EVCNT_ATTACH_STATIC(uvmmap_evcnt_##name);
125 #define UVMMAP_EVCNT_INCR(ev) uvmmap_evcnt_##ev.ev_count++
126 #define UVMMAP_EVCNT_DECR(ev) uvmmap_evcnt_##ev.ev_count--
127
128 #endif /* defined(UVMMAP_NOCOUNTERS) */
129
130 UVMMAP_EVCNT_DEFINE(ubackmerge)
131 UVMMAP_EVCNT_DEFINE(uforwmerge)
132 UVMMAP_EVCNT_DEFINE(ubimerge)
133 UVMMAP_EVCNT_DEFINE(unomerge)
134 UVMMAP_EVCNT_DEFINE(kbackmerge)
135 UVMMAP_EVCNT_DEFINE(kforwmerge)
136 UVMMAP_EVCNT_DEFINE(kbimerge)
137 UVMMAP_EVCNT_DEFINE(knomerge)
138 UVMMAP_EVCNT_DEFINE(map_call)
139 UVMMAP_EVCNT_DEFINE(mlk_call)
140 UVMMAP_EVCNT_DEFINE(mlk_hint)
141 UVMMAP_EVCNT_DEFINE(mlk_tree)
142 UVMMAP_EVCNT_DEFINE(mlk_treeloop)
143
144 const char vmmapbsy[] = "vmmapbsy";
145
146 /*
147 * cache for dynamically-allocated map entries.
148 */
149
150 static struct pool_cache uvm_map_entry_cache;
151
152 #ifdef PMAP_GROWKERNEL
153 /*
154 * This global represents the end of the kernel virtual address
155 * space. If we want to exceed this, we must grow the kernel
156 * virtual address space dynamically.
157 *
158 * Note, this variable is locked by kernel_map's lock.
159 */
160 vaddr_t uvm_maxkaddr;
161 #endif
162
163 #ifndef __USER_VA0_IS_SAFE
164 #ifndef __USER_VA0_DISABLE_DEFAULT
165 #define __USER_VA0_DISABLE_DEFAULT 1
166 #endif
167 #ifdef USER_VA0_DISABLE_DEFAULT /* kernel config option overrides */
168 #undef __USER_VA0_DISABLE_DEFAULT
169 #define __USER_VA0_DISABLE_DEFAULT USER_VA0_DISABLE_DEFAULT
170 #endif
171 int user_va0_disable = __USER_VA0_DISABLE_DEFAULT;
172 #endif
173
174 /*
175 * macros
176 */
177
178 /*
179 * uvm_map_align_va: round down or up virtual address
180 */
181 static __inline void
182 uvm_map_align_va(vaddr_t *vap, vsize_t align, int topdown)
183 {
184
185 KASSERT(powerof2(align));
186
187 if (align != 0 && (*vap & (align - 1)) != 0) {
188 if (topdown)
189 *vap = rounddown2(*vap, align);
190 else
191 *vap = roundup2(*vap, align);
192 }
193 }
194
195 /*
196 * UVM_ET_ISCOMPATIBLE: check some requirements for map entry merging
197 */
198 extern struct vm_map *pager_map;
199
200 #define UVM_ET_ISCOMPATIBLE(ent, type, uobj, meflags, \
201 prot, maxprot, inh, adv, wire) \
202 ((ent)->etype == (type) && \
203 (((ent)->flags ^ (meflags)) & (UVM_MAP_NOMERGE)) == 0 && \
204 (ent)->object.uvm_obj == (uobj) && \
205 (ent)->protection == (prot) && \
206 (ent)->max_protection == (maxprot) && \
207 (ent)->inheritance == (inh) && \
208 (ent)->advice == (adv) && \
209 (ent)->wired_count == (wire))
210
211 /*
212 * uvm_map_entry_link: insert entry into a map
213 *
214 * => map must be locked
215 */
216 #define uvm_map_entry_link(map, after_where, entry) do { \
217 uvm_mapent_check(entry); \
218 (map)->nentries++; \
219 (entry)->prev = (after_where); \
220 (entry)->next = (after_where)->next; \
221 (entry)->prev->next = (entry); \
222 (entry)->next->prev = (entry); \
223 uvm_rb_insert((map), (entry)); \
224 } while (/*CONSTCOND*/ 0)
225
226 /*
227 * uvm_map_entry_unlink: remove entry from a map
228 *
229 * => map must be locked
230 */
231 #define uvm_map_entry_unlink(map, entry) do { \
232 KASSERT((entry) != (map)->first_free); \
233 KASSERT((entry) != (map)->hint); \
234 uvm_mapent_check(entry); \
235 (map)->nentries--; \
236 (entry)->next->prev = (entry)->prev; \
237 (entry)->prev->next = (entry)->next; \
238 uvm_rb_remove((map), (entry)); \
239 } while (/*CONSTCOND*/ 0)
240
241 /*
242 * SAVE_HINT: saves the specified entry as the hint for future lookups.
243 *
244 * => map need not be locked.
245 */
246 #define SAVE_HINT(map, check, value) do { \
247 if ((map)->hint == (check)) \
248 (map)->hint = (value); \
249 } while (/*CONSTCOND*/ 0)
250
251 /*
252 * clear_hints: ensure that hints don't point to the entry.
253 *
254 * => map must be write-locked.
255 */
256 static void
257 clear_hints(struct vm_map *map, struct vm_map_entry *ent)
258 {
259
260 SAVE_HINT(map, ent, ent->prev);
261 if (map->first_free == ent) {
262 map->first_free = ent->prev;
263 }
264 }
265
266 /*
267 * VM_MAP_RANGE_CHECK: check and correct range
268 *
269 * => map must at least be read locked
270 */
271
272 #define VM_MAP_RANGE_CHECK(map, start, end) do { \
273 if (start < vm_map_min(map)) \
274 start = vm_map_min(map); \
275 if (end > vm_map_max(map)) \
276 end = vm_map_max(map); \
277 if (start > end) \
278 start = end; \
279 } while (/*CONSTCOND*/ 0)
280
281 /*
282 * local prototypes
283 */
284
285 static struct vm_map_entry *
286 uvm_mapent_alloc(struct vm_map *, int);
287 static void uvm_mapent_copy(struct vm_map_entry *, struct vm_map_entry *);
288 static void uvm_mapent_free(struct vm_map_entry *);
289 #if defined(DEBUG)
290 static void _uvm_mapent_check(const struct vm_map_entry *, int);
291 #define uvm_mapent_check(map) _uvm_mapent_check(map, __LINE__)
292 #else /* defined(DEBUG) */
293 #define uvm_mapent_check(e) /* nothing */
294 #endif /* defined(DEBUG) */
295
296 static void uvm_map_entry_unwire(struct vm_map *, struct vm_map_entry *);
297 static void uvm_map_reference_amap(struct vm_map_entry *, int);
298 static int uvm_map_space_avail(vaddr_t *, vsize_t, voff_t, vsize_t, int,
299 int, struct vm_map_entry *);
300 static void uvm_map_unreference_amap(struct vm_map_entry *, int);
301
302 int _uvm_map_sanity(struct vm_map *);
303 int _uvm_tree_sanity(struct vm_map *);
304 static vsize_t uvm_rb_maxgap(const struct vm_map_entry *);
305
306 /*
307 * Tree iteration. We violate the rbtree(9) abstraction for various
308 * things here. Entries are ascending left to right, so, provided the
309 * child entry in question exists:
310 *
311 * LEFT_ENTRY(entry)->end <= entry->start
312 * entry->end <= RIGHT_ENTRY(entry)->start
313 */
314 __CTASSERT(offsetof(struct vm_map_entry, rb_node) == 0);
315 #define ROOT_ENTRY(map) \
316 ((struct vm_map_entry *)(map)->rb_tree.rbt_root)
317 #define LEFT_ENTRY(entry) \
318 ((struct vm_map_entry *)(entry)->rb_node.rb_left)
319 #define RIGHT_ENTRY(entry) \
320 ((struct vm_map_entry *)(entry)->rb_node.rb_right)
321 #define PARENT_ENTRY(map, entry) \
322 (ROOT_ENTRY(map) == (entry) \
323 ? NULL : (struct vm_map_entry *)RB_FATHER(&(entry)->rb_node))
324
325 /*
326 * These get filled in if/when SYSVSHM shared memory code is loaded
327 *
328 * We do this with function pointers rather the #ifdef SYSVSHM so the
329 * SYSVSHM code can be loaded and unloaded
330 */
331 void (*uvm_shmexit)(struct vmspace *) = NULL;
332 void (*uvm_shmfork)(struct vmspace *, struct vmspace *) = NULL;
333
334 static int
335 uvm_map_compare_nodes(void *ctx, const void *nparent, const void *nkey)
336 {
337 const struct vm_map_entry *eparent = nparent;
338 const struct vm_map_entry *ekey = nkey;
339
340 KASSERT(eparent->start < ekey->start || eparent->start >= ekey->end);
341 KASSERT(ekey->start < eparent->start || ekey->start >= eparent->end);
342
343 if (eparent->start < ekey->start)
344 return -1;
345 if (eparent->end >= ekey->start)
346 return 1;
347 return 0;
348 }
349
350 static int
351 uvm_map_compare_key(void *ctx, const void *nparent, const void *vkey)
352 {
353 const struct vm_map_entry *eparent = nparent;
354 const vaddr_t va = *(const vaddr_t *) vkey;
355
356 if (eparent->start < va)
357 return -1;
358 if (eparent->end >= va)
359 return 1;
360 return 0;
361 }
362
363 static const rb_tree_ops_t uvm_map_tree_ops = {
364 .rbto_compare_nodes = uvm_map_compare_nodes,
365 .rbto_compare_key = uvm_map_compare_key,
366 .rbto_node_offset = offsetof(struct vm_map_entry, rb_node),
367 .rbto_context = NULL
368 };
369
370 /*
371 * uvm_rb_gap: return the gap size between our entry and next entry.
372 */
373 static inline vsize_t
374 uvm_rb_gap(const struct vm_map_entry *entry)
375 {
376
377 KASSERT(entry->next != NULL);
378 return entry->next->start - entry->end;
379 }
380
381 static vsize_t
382 uvm_rb_maxgap(const struct vm_map_entry *entry)
383 {
384 struct vm_map_entry *child;
385 vsize_t maxgap = entry->gap;
386
387 /*
388 * We need maxgap to be the largest gap of us or any of our
389 * descendents. Since each of our children's maxgap is the
390 * cached value of their largest gap of themselves or their
391 * descendents, we can just use that value and avoid recursing
392 * down the tree to calculate it.
393 */
394 if ((child = LEFT_ENTRY(entry)) != NULL && maxgap < child->maxgap)
395 maxgap = child->maxgap;
396
397 if ((child = RIGHT_ENTRY(entry)) != NULL && maxgap < child->maxgap)
398 maxgap = child->maxgap;
399
400 return maxgap;
401 }
402
403 static void
404 uvm_rb_fixup(struct vm_map *map, struct vm_map_entry *entry)
405 {
406 struct vm_map_entry *parent;
407
408 KASSERT(entry->gap == uvm_rb_gap(entry));
409 entry->maxgap = uvm_rb_maxgap(entry);
410
411 while ((parent = PARENT_ENTRY(map, entry)) != NULL) {
412 struct vm_map_entry *brother;
413 vsize_t maxgap = parent->gap;
414 unsigned int which;
415
416 KDASSERT(parent->gap == uvm_rb_gap(parent));
417 if (maxgap < entry->maxgap)
418 maxgap = entry->maxgap;
419 /*
420 * Since we work towards the root, we know entry's maxgap
421 * value is OK, but its brothers may now be out-of-date due
422 * to rebalancing. So refresh it.
423 */
424 which = RB_POSITION(&entry->rb_node) ^ RB_DIR_OTHER;
425 brother = (struct vm_map_entry *)parent->rb_node.rb_nodes[which];
426 if (brother != NULL) {
427 KDASSERT(brother->gap == uvm_rb_gap(brother));
428 brother->maxgap = uvm_rb_maxgap(brother);
429 if (maxgap < brother->maxgap)
430 maxgap = brother->maxgap;
431 }
432
433 parent->maxgap = maxgap;
434 entry = parent;
435 }
436 }
437
438 static void
439 uvm_rb_insert(struct vm_map *map, struct vm_map_entry *entry)
440 {
441 struct vm_map_entry *ret __diagused;
442
443 entry->gap = entry->maxgap = uvm_rb_gap(entry);
444 if (entry->prev != &map->header)
445 entry->prev->gap = uvm_rb_gap(entry->prev);
446
447 ret = rb_tree_insert_node(&map->rb_tree, entry);
448 KASSERTMSG(ret == entry,
449 "uvm_rb_insert: map %p: duplicate entry %p", map, ret);
450
451 /*
452 * If the previous entry is not our immediate left child, then it's an
453 * ancestor and will be fixed up on the way to the root. We don't
454 * have to check entry->prev against &map->header since &map->header
455 * will never be in the tree.
456 */
457 uvm_rb_fixup(map,
458 LEFT_ENTRY(entry) == entry->prev ? entry->prev : entry);
459 }
460
461 static void
462 uvm_rb_remove(struct vm_map *map, struct vm_map_entry *entry)
463 {
464 struct vm_map_entry *prev_parent = NULL, *next_parent = NULL;
465
466 /*
467 * If we are removing an interior node, then an adjacent node will
468 * be used to replace its position in the tree. Therefore we will
469 * need to fixup the tree starting at the parent of the replacement
470 * node. So record their parents for later use.
471 */
472 if (entry->prev != &map->header)
473 prev_parent = PARENT_ENTRY(map, entry->prev);
474 if (entry->next != &map->header)
475 next_parent = PARENT_ENTRY(map, entry->next);
476
477 rb_tree_remove_node(&map->rb_tree, entry);
478
479 /*
480 * If the previous node has a new parent, fixup the tree starting
481 * at the previous node's old parent.
482 */
483 if (entry->prev != &map->header) {
484 /*
485 * Update the previous entry's gap due to our absence.
486 */
487 entry->prev->gap = uvm_rb_gap(entry->prev);
488 uvm_rb_fixup(map, entry->prev);
489 if (prev_parent != NULL
490 && prev_parent != entry
491 && prev_parent != PARENT_ENTRY(map, entry->prev))
492 uvm_rb_fixup(map, prev_parent);
493 }
494
495 /*
496 * If the next node has a new parent, fixup the tree starting
497 * at the next node's old parent.
498 */
499 if (entry->next != &map->header) {
500 uvm_rb_fixup(map, entry->next);
501 if (next_parent != NULL
502 && next_parent != entry
503 && next_parent != PARENT_ENTRY(map, entry->next))
504 uvm_rb_fixup(map, next_parent);
505 }
506 }
507
508 #if defined(DEBUG)
509 int uvm_debug_check_map = 0;
510 int uvm_debug_check_rbtree = 0;
511 #define uvm_map_check(map, name) \
512 _uvm_map_check((map), (name), __FILE__, __LINE__)
513 static void
514 _uvm_map_check(struct vm_map *map, const char *name,
515 const char *file, int line)
516 {
517
518 if ((uvm_debug_check_map && _uvm_map_sanity(map)) ||
519 (uvm_debug_check_rbtree && _uvm_tree_sanity(map))) {
520 panic("uvm_map_check failed: \"%s\" map=%p (%s:%d)",
521 name, map, file, line);
522 }
523 }
524 #else /* defined(DEBUG) */
525 #define uvm_map_check(map, name) /* nothing */
526 #endif /* defined(DEBUG) */
527
528 #if defined(DEBUG) || defined(DDB)
529 int
530 _uvm_map_sanity(struct vm_map *map)
531 {
532 bool first_free_found = false;
533 bool hint_found = false;
534 const struct vm_map_entry *e;
535 struct vm_map_entry *hint = map->hint;
536
537 e = &map->header;
538 for (;;) {
539 if (map->first_free == e) {
540 first_free_found = true;
541 } else if (!first_free_found && e->next->start > e->end) {
542 printf("first_free %p should be %p\n",
543 map->first_free, e);
544 return -1;
545 }
546 if (hint == e) {
547 hint_found = true;
548 }
549
550 e = e->next;
551 if (e == &map->header) {
552 break;
553 }
554 }
555 if (!first_free_found) {
556 printf("stale first_free\n");
557 return -1;
558 }
559 if (!hint_found) {
560 printf("stale hint\n");
561 return -1;
562 }
563 return 0;
564 }
565
566 int
567 _uvm_tree_sanity(struct vm_map *map)
568 {
569 struct vm_map_entry *tmp, *trtmp;
570 int n = 0, i = 1;
571
572 for (tmp = map->header.next; tmp != &map->header; tmp = tmp->next) {
573 if (tmp->gap != uvm_rb_gap(tmp)) {
574 printf("%d/%d gap %#lx != %#lx %s\n",
575 n + 1, map->nentries,
576 (ulong)tmp->gap, (ulong)uvm_rb_gap(tmp),
577 tmp->next == &map->header ? "(last)" : "");
578 goto error;
579 }
580 /*
581 * If any entries are out of order, tmp->gap will be unsigned
582 * and will likely exceed the size of the map.
583 */
584 if (tmp->gap >= vm_map_max(map) - vm_map_min(map)) {
585 printf("too large gap %zu\n", (size_t)tmp->gap);
586 goto error;
587 }
588 n++;
589 }
590
591 if (n != map->nentries) {
592 printf("nentries: %d vs %d\n", n, map->nentries);
593 goto error;
594 }
595
596 trtmp = NULL;
597 for (tmp = map->header.next; tmp != &map->header; tmp = tmp->next) {
598 if (tmp->maxgap != uvm_rb_maxgap(tmp)) {
599 printf("maxgap %#lx != %#lx\n",
600 (ulong)tmp->maxgap,
601 (ulong)uvm_rb_maxgap(tmp));
602 goto error;
603 }
604 if (trtmp != NULL && trtmp->start >= tmp->start) {
605 printf("corrupt: 0x%"PRIxVADDR"x >= 0x%"PRIxVADDR"x\n",
606 trtmp->start, tmp->start);
607 goto error;
608 }
609
610 trtmp = tmp;
611 }
612
613 for (tmp = map->header.next; tmp != &map->header;
614 tmp = tmp->next, i++) {
615 trtmp = rb_tree_iterate(&map->rb_tree, tmp, RB_DIR_LEFT);
616 if (trtmp == NULL)
617 trtmp = &map->header;
618 if (tmp->prev != trtmp) {
619 printf("lookup: %d: %p->prev=%p: %p\n",
620 i, tmp, tmp->prev, trtmp);
621 goto error;
622 }
623 trtmp = rb_tree_iterate(&map->rb_tree, tmp, RB_DIR_RIGHT);
624 if (trtmp == NULL)
625 trtmp = &map->header;
626 if (tmp->next != trtmp) {
627 printf("lookup: %d: %p->next=%p: %p\n",
628 i, tmp, tmp->next, trtmp);
629 goto error;
630 }
631 trtmp = rb_tree_find_node(&map->rb_tree, &tmp->start);
632 if (trtmp != tmp) {
633 printf("lookup: %d: %p - %p: %p\n", i, tmp, trtmp,
634 PARENT_ENTRY(map, tmp));
635 goto error;
636 }
637 }
638
639 return (0);
640 error:
641 return (-1);
642 }
643 #endif /* defined(DEBUG) || defined(DDB) */
644
645 /*
646 * vm_map_lock: acquire an exclusive (write) lock on a map.
647 *
648 * => The locking protocol provides for guaranteed upgrade from shared ->
649 * exclusive by whichever thread currently has the map marked busy.
650 * See "LOCKING PROTOCOL NOTES" in uvm_map.h. This is horrible; among
651 * other problems, it defeats any fairness guarantees provided by RW
652 * locks.
653 */
654
655 void
656 vm_map_lock(struct vm_map *map)
657 {
658
659 for (;;) {
660 rw_enter(&map->lock, RW_WRITER);
661 if (map->busy == NULL || map->busy == curlwp) {
662 break;
663 }
664 mutex_enter(&map->misc_lock);
665 rw_exit(&map->lock);
666 if (map->busy != NULL) {
667 cv_wait(&map->cv, &map->misc_lock);
668 }
669 mutex_exit(&map->misc_lock);
670 }
671 map->timestamp++;
672 }
673
674 /*
675 * vm_map_lock_try: try to lock a map, failing if it is already locked.
676 */
677
678 bool
679 vm_map_lock_try(struct vm_map *map)
680 {
681
682 if (!rw_tryenter(&map->lock, RW_WRITER)) {
683 return false;
684 }
685 if (map->busy != NULL) {
686 rw_exit(&map->lock);
687 return false;
688 }
689 map->timestamp++;
690 return true;
691 }
692
693 /*
694 * vm_map_unlock: release an exclusive lock on a map.
695 */
696
697 void
698 vm_map_unlock(struct vm_map *map)
699 {
700
701 KASSERT(rw_write_held(&map->lock));
702 KASSERT(map->busy == NULL || map->busy == curlwp);
703 rw_exit(&map->lock);
704 }
705
706 /*
707 * vm_map_unbusy: mark the map as unbusy, and wake any waiters that
708 * want an exclusive lock.
709 */
710
711 void
712 vm_map_unbusy(struct vm_map *map)
713 {
714
715 KASSERT(map->busy == curlwp);
716
717 /*
718 * Safe to clear 'busy' and 'waiters' with only a read lock held:
719 *
720 * o they can only be set with a write lock held
721 * o writers are blocked out with a read or write hold
722 * o at any time, only one thread owns the set of values
723 */
724 mutex_enter(&map->misc_lock);
725 map->busy = NULL;
726 cv_broadcast(&map->cv);
727 mutex_exit(&map->misc_lock);
728 }
729
730 /*
731 * vm_map_lock_read: acquire a shared (read) lock on a map.
732 */
733
734 void
735 vm_map_lock_read(struct vm_map *map)
736 {
737
738 rw_enter(&map->lock, RW_READER);
739 }
740
741 /*
742 * vm_map_unlock_read: release a shared lock on a map.
743 */
744
745 void
746 vm_map_unlock_read(struct vm_map *map)
747 {
748
749 rw_exit(&map->lock);
750 }
751
752 /*
753 * vm_map_busy: mark a map as busy.
754 *
755 * => the caller must hold the map write locked
756 */
757
758 void
759 vm_map_busy(struct vm_map *map)
760 {
761
762 KASSERT(rw_write_held(&map->lock));
763 KASSERT(map->busy == NULL);
764
765 map->busy = curlwp;
766 }
767
768 /*
769 * vm_map_locked_p: return true if the map is write locked.
770 *
771 * => only for debug purposes like KASSERTs.
772 * => should not be used to verify that a map is not locked.
773 */
774
775 bool
776 vm_map_locked_p(struct vm_map *map)
777 {
778
779 return rw_write_held(&map->lock);
780 }
781
782 /*
783 * uvm_mapent_alloc: allocate a map entry
784 */
785
786 static struct vm_map_entry *
787 uvm_mapent_alloc(struct vm_map *map, int flags)
788 {
789 struct vm_map_entry *me;
790 int pflags = (flags & UVM_FLAG_NOWAIT) ? PR_NOWAIT : PR_WAITOK;
791 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
792
793 me = pool_cache_get(&uvm_map_entry_cache, pflags);
794 if (__predict_false(me == NULL)) {
795 return NULL;
796 }
797 me->flags = 0;
798
799 UVMHIST_LOG(maphist, "<- new entry=%#jx [kentry=%jd]", (uintptr_t)me,
800 (map == kernel_map), 0, 0);
801 return me;
802 }
803
804 /*
805 * uvm_mapent_free: free map entry
806 */
807
808 static void
809 uvm_mapent_free(struct vm_map_entry *me)
810 {
811 UVMHIST_FUNC(__func__);
812 UVMHIST_CALLARGS(maphist,"<- freeing map entry=%#jx [flags=%#jx]",
813 (uintptr_t)me, me->flags, 0, 0);
814 pool_cache_put(&uvm_map_entry_cache, me);
815 }
816
817 /*
818 * uvm_mapent_copy: copy a map entry, preserving flags
819 */
820
821 static inline void
822 uvm_mapent_copy(struct vm_map_entry *src, struct vm_map_entry *dst)
823 {
824
825 memcpy(dst, src, sizeof(*dst));
826 dst->flags = 0;
827 }
828
829 #if defined(DEBUG)
830 static void
831 _uvm_mapent_check(const struct vm_map_entry *entry, int line)
832 {
833
834 if (entry->start >= entry->end) {
835 goto bad;
836 }
837 if (UVM_ET_ISOBJ(entry)) {
838 if (entry->object.uvm_obj == NULL) {
839 goto bad;
840 }
841 } else if (UVM_ET_ISSUBMAP(entry)) {
842 if (entry->object.sub_map == NULL) {
843 goto bad;
844 }
845 } else {
846 if (entry->object.uvm_obj != NULL ||
847 entry->object.sub_map != NULL) {
848 goto bad;
849 }
850 }
851 if (!UVM_ET_ISOBJ(entry)) {
852 if (entry->offset != 0) {
853 goto bad;
854 }
855 }
856
857 return;
858
859 bad:
860 panic("%s: bad entry %p, line %d", __func__, entry, line);
861 }
862 #endif /* defined(DEBUG) */
863
864 /*
865 * uvm_map_entry_unwire: unwire a map entry
866 *
867 * => map should be locked by caller
868 */
869
870 static inline void
871 uvm_map_entry_unwire(struct vm_map *map, struct vm_map_entry *entry)
872 {
873
874 entry->wired_count = 0;
875 uvm_fault_unwire_locked(map, entry->start, entry->end);
876 }
877
878
879 /*
880 * wrapper for calling amap_ref()
881 */
882 static inline void
883 uvm_map_reference_amap(struct vm_map_entry *entry, int flags)
884 {
885
886 amap_ref(entry->aref.ar_amap, entry->aref.ar_pageoff,
887 (entry->end - entry->start) >> PAGE_SHIFT, flags);
888 }
889
890
891 /*
892 * wrapper for calling amap_unref()
893 */
894 static inline void
895 uvm_map_unreference_amap(struct vm_map_entry *entry, int flags)
896 {
897
898 amap_unref(entry->aref.ar_amap, entry->aref.ar_pageoff,
899 (entry->end - entry->start) >> PAGE_SHIFT, flags);
900 }
901
902
903 /*
904 * uvm_map_init: init mapping system at boot time.
905 */
906
907 void
908 uvm_map_init(void)
909 {
910 /*
911 * first, init logging system.
912 */
913
914 UVMHIST_FUNC(__func__);
915 UVMHIST_LINK_STATIC(maphist);
916 UVMHIST_LINK_STATIC(pdhist);
917 UVMHIST_CALLED(maphist);
918 UVMHIST_LOG(maphist,"<starting uvm map system>", 0, 0, 0, 0);
919
920 /*
921 * initialize the global lock for kernel map entry.
922 */
923
924 mutex_init(&uvm_kentry_lock, MUTEX_DRIVER, IPL_VM);
925 }
926
927 /*
928 * uvm_map_init_caches: init mapping system caches.
929 */
930 void
931 uvm_map_init_caches(void)
932 {
933 /*
934 * initialize caches.
935 */
936
937 pool_cache_bootstrap(&uvm_map_entry_cache, sizeof(struct vm_map_entry),
938 coherency_unit, 0, PR_LARGECACHE, "vmmpepl", NULL, IPL_NONE, NULL,
939 NULL, NULL);
940 }
941
942 /*
943 * clippers
944 */
945
946 /*
947 * uvm_mapent_splitadj: adjust map entries for splitting, after uvm_mapent_copy.
948 */
949
950 static void
951 uvm_mapent_splitadj(struct vm_map_entry *entry1, struct vm_map_entry *entry2,
952 vaddr_t splitat)
953 {
954 vaddr_t adj;
955
956 KASSERT(entry1->start < splitat);
957 KASSERT(splitat < entry1->end);
958
959 adj = splitat - entry1->start;
960 entry1->end = entry2->start = splitat;
961
962 if (entry1->aref.ar_amap) {
963 amap_splitref(&entry1->aref, &entry2->aref, adj);
964 }
965 if (UVM_ET_ISSUBMAP(entry1)) {
966 /* ... unlikely to happen, but play it safe */
967 uvm_map_reference(entry1->object.sub_map);
968 } else if (UVM_ET_ISOBJ(entry1)) {
969 KASSERT(entry1->object.uvm_obj != NULL); /* suppress coverity */
970 entry2->offset += adj;
971 if (entry1->object.uvm_obj->pgops &&
972 entry1->object.uvm_obj->pgops->pgo_reference)
973 entry1->object.uvm_obj->pgops->pgo_reference(
974 entry1->object.uvm_obj);
975 }
976 }
977
978 /*
979 * uvm_map_clip_start: ensure that the entry begins at or after
980 * the starting address, if it doesn't we split the entry.
981 *
982 * => caller should use UVM_MAP_CLIP_START macro rather than calling
983 * this directly
984 * => map must be locked by caller
985 */
986
987 void
988 uvm_map_clip_start(struct vm_map *map, struct vm_map_entry *entry,
989 vaddr_t start)
990 {
991 struct vm_map_entry *new_entry;
992
993 /* uvm_map_simplify_entry(map, entry); */ /* XXX */
994
995 uvm_map_check(map, "clip_start entry");
996 uvm_mapent_check(entry);
997
998 /*
999 * Split off the front portion. note that we must insert the new
1000 * entry BEFORE this one, so that this entry has the specified
1001 * starting address.
1002 */
1003 new_entry = uvm_mapent_alloc(map, 0);
1004 uvm_mapent_copy(entry, new_entry); /* entry -> new_entry */
1005 uvm_mapent_splitadj(new_entry, entry, start);
1006 uvm_map_entry_link(map, entry->prev, new_entry);
1007
1008 uvm_map_check(map, "clip_start leave");
1009 }
1010
1011 /*
1012 * uvm_map_clip_end: ensure that the entry ends at or before
1013 * the ending address, if it does't we split the reference
1014 *
1015 * => caller should use UVM_MAP_CLIP_END macro rather than calling
1016 * this directly
1017 * => map must be locked by caller
1018 */
1019
1020 void
1021 uvm_map_clip_end(struct vm_map *map, struct vm_map_entry *entry, vaddr_t end)
1022 {
1023 struct vm_map_entry *new_entry;
1024
1025 uvm_map_check(map, "clip_end entry");
1026 uvm_mapent_check(entry);
1027
1028 /*
1029 * Create a new entry and insert it
1030 * AFTER the specified entry
1031 */
1032 new_entry = uvm_mapent_alloc(map, 0);
1033 uvm_mapent_copy(entry, new_entry); /* entry -> new_entry */
1034 uvm_mapent_splitadj(entry, new_entry, end);
1035 uvm_map_entry_link(map, entry, new_entry);
1036
1037 uvm_map_check(map, "clip_end leave");
1038 }
1039
1040 /*
1041 * M A P - m a i n e n t r y p o i n t
1042 */
1043 /*
1044 * uvm_map: establish a valid mapping in a map
1045 *
1046 * => assume startp is page aligned.
1047 * => assume size is a multiple of PAGE_SIZE.
1048 * => assume sys_mmap provides enough of a "hint" to have us skip
1049 * over text/data/bss area.
1050 * => map must be unlocked (we will lock it)
1051 * => <uobj,uoffset> value meanings (4 cases):
1052 * [1] <NULL,uoffset> == uoffset is a hint for PMAP_PREFER
1053 * [2] <NULL,UVM_UNKNOWN_OFFSET> == don't PMAP_PREFER
1054 * [3] <uobj,uoffset> == normal mapping
1055 * [4] <uobj,UVM_UNKNOWN_OFFSET> == uvm_map finds offset based on VA
1056 *
1057 * case [4] is for kernel mappings where we don't know the offset until
1058 * we've found a virtual address. note that kernel object offsets are
1059 * always relative to vm_map_min(kernel_map).
1060 *
1061 * => if `align' is non-zero, we align the virtual address to the specified
1062 * alignment.
1063 * this is provided as a mechanism for large pages.
1064 *
1065 * => XXXCDC: need way to map in external amap?
1066 */
1067
1068 int
1069 uvm_map(struct vm_map *map, vaddr_t *startp /* IN/OUT */, vsize_t size,
1070 struct uvm_object *uobj, voff_t uoffset, vsize_t align, uvm_flag_t flags)
1071 {
1072 struct uvm_map_args args;
1073 struct vm_map_entry *new_entry;
1074 int error;
1075
1076 KASSERT((size & PAGE_MASK) == 0);
1077 KASSERT((flags & UVM_FLAG_FIXED) == 0 || align == 0);
1078
1079 /*
1080 * for pager_map, allocate the new entry first to avoid sleeping
1081 * for memory while we have the map locked.
1082 */
1083
1084 new_entry = NULL;
1085 if (map == pager_map) {
1086 new_entry = uvm_mapent_alloc(map, (flags & UVM_FLAG_NOWAIT));
1087 if (__predict_false(new_entry == NULL))
1088 return ENOMEM;
1089 }
1090 if (map == pager_map)
1091 flags |= UVM_FLAG_NOMERGE;
1092
1093 error = uvm_map_prepare(map, *startp, size, uobj, uoffset, align,
1094 flags, &args);
1095 if (!error) {
1096 error = uvm_map_enter(map, &args, new_entry);
1097 *startp = args.uma_start;
1098 } else if (new_entry) {
1099 uvm_mapent_free(new_entry);
1100 }
1101
1102 #if defined(DEBUG)
1103 if (!error && VM_MAP_IS_KERNEL(map) && (flags & UVM_FLAG_NOWAIT) == 0) {
1104 uvm_km_check_empty(map, *startp, *startp + size);
1105 }
1106 #endif /* defined(DEBUG) */
1107
1108 return error;
1109 }
1110
1111 /*
1112 * uvm_map_prepare:
1113 *
1114 * called with map unlocked.
1115 * on success, returns the map locked.
1116 */
1117
1118 int
1119 uvm_map_prepare(struct vm_map *map, vaddr_t start, vsize_t size,
1120 struct uvm_object *uobj, voff_t uoffset, vsize_t align, uvm_flag_t flags,
1121 struct uvm_map_args *args)
1122 {
1123 struct vm_map_entry *prev_entry;
1124 vm_prot_t prot = UVM_PROTECTION(flags);
1125 vm_prot_t maxprot = UVM_MAXPROTECTION(flags);
1126
1127 UVMHIST_FUNC(__func__);
1128 UVMHIST_CALLARGS(maphist, "(map=%#jx, start=%#jx, size=%jx, flags=%#jx)",
1129 (uintptr_t)map, start, size, flags);
1130 UVMHIST_LOG(maphist, " uobj/offset %#jx/%jd", (uintptr_t)uobj,
1131 uoffset,0,0);
1132
1133 /*
1134 * detect a popular device driver bug.
1135 */
1136
1137 KASSERT(doing_shutdown || curlwp != NULL);
1138
1139 /*
1140 * zero-sized mapping doesn't make any sense.
1141 */
1142 KASSERT(size > 0);
1143
1144 KASSERT((~flags & (UVM_FLAG_NOWAIT | UVM_FLAG_WAITVA)) != 0);
1145
1146 uvm_map_check(map, "map entry");
1147
1148 /*
1149 * check sanity of protection code
1150 */
1151
1152 if ((prot & maxprot) != prot) {
1153 UVMHIST_LOG(maphist, "<- prot. failure: prot=%#jx, max=%#jx",
1154 prot, maxprot,0,0);
1155 return EACCES;
1156 }
1157
1158 /*
1159 * figure out where to put new VM range
1160 */
1161 retry:
1162 if (vm_map_lock_try(map) == false) {
1163 if ((flags & UVM_FLAG_TRYLOCK) != 0) {
1164 return EAGAIN;
1165 }
1166 vm_map_lock(map); /* could sleep here */
1167 }
1168 if (flags & UVM_FLAG_UNMAP) {
1169 KASSERT(flags & UVM_FLAG_FIXED);
1170 KASSERT((flags & UVM_FLAG_NOWAIT) == 0);
1171
1172 /*
1173 * Set prev_entry to what it will need to be after any existing
1174 * entries are removed later in uvm_map_enter().
1175 */
1176
1177 if (uvm_map_lookup_entry(map, start, &prev_entry)) {
1178 if (start == prev_entry->start)
1179 prev_entry = prev_entry->prev;
1180 else
1181 UVM_MAP_CLIP_END(map, prev_entry, start);
1182 SAVE_HINT(map, map->hint, prev_entry);
1183 }
1184 } else {
1185 prev_entry = uvm_map_findspace(map, start, size, &start,
1186 uobj, uoffset, align, flags);
1187 }
1188 if (prev_entry == NULL) {
1189 unsigned int timestamp;
1190
1191 timestamp = map->timestamp;
1192 UVMHIST_LOG(maphist,"waiting va timestamp=%#jx",
1193 timestamp,0,0,0);
1194 map->flags |= VM_MAP_WANTVA;
1195 vm_map_unlock(map);
1196
1197 /*
1198 * try to reclaim kva and wait until someone does unmap.
1199 * fragile locking here, so we awaken every second to
1200 * recheck the condition.
1201 */
1202
1203 mutex_enter(&map->misc_lock);
1204 while ((map->flags & VM_MAP_WANTVA) != 0 &&
1205 map->timestamp == timestamp) {
1206 if ((flags & UVM_FLAG_WAITVA) == 0) {
1207 mutex_exit(&map->misc_lock);
1208 UVMHIST_LOG(maphist,
1209 "<- uvm_map_findspace failed!", 0,0,0,0);
1210 return ENOMEM;
1211 } else {
1212 cv_timedwait(&map->cv, &map->misc_lock, hz);
1213 }
1214 }
1215 mutex_exit(&map->misc_lock);
1216 goto retry;
1217 }
1218
1219 #ifdef PMAP_GROWKERNEL
1220 /*
1221 * If the kernel pmap can't map the requested space,
1222 * then allocate more resources for it.
1223 */
1224 if (map == kernel_map && uvm_maxkaddr < (start + size))
1225 uvm_maxkaddr = pmap_growkernel(start + size);
1226 #endif
1227
1228 UVMMAP_EVCNT_INCR(map_call);
1229
1230 /*
1231 * if uobj is null, then uoffset is either a VAC hint for PMAP_PREFER
1232 * [typically from uvm_map_reserve] or it is UVM_UNKNOWN_OFFSET. in
1233 * either case we want to zero it before storing it in the map entry
1234 * (because it looks strange and confusing when debugging...)
1235 *
1236 * if uobj is not null
1237 * if uoffset is not UVM_UNKNOWN_OFFSET then we have a normal mapping
1238 * and we do not need to change uoffset.
1239 * if uoffset is UVM_UNKNOWN_OFFSET then we need to find the offset
1240 * now (based on the starting address of the map). this case is
1241 * for kernel object mappings where we don't know the offset until
1242 * the virtual address is found (with uvm_map_findspace). the
1243 * offset is the distance we are from the start of the map.
1244 */
1245
1246 if (uobj == NULL) {
1247 uoffset = 0;
1248 } else {
1249 if (uoffset == UVM_UNKNOWN_OFFSET) {
1250 KASSERT(UVM_OBJ_IS_KERN_OBJECT(uobj));
1251 uoffset = start - vm_map_min(kernel_map);
1252 }
1253 }
1254
1255 args->uma_flags = flags;
1256 args->uma_prev = prev_entry;
1257 args->uma_start = start;
1258 args->uma_size = size;
1259 args->uma_uobj = uobj;
1260 args->uma_uoffset = uoffset;
1261
1262 UVMHIST_LOG(maphist, "<- done!", 0,0,0,0);
1263 return 0;
1264 }
1265
1266 /*
1267 * uvm_map_enter:
1268 *
1269 * called with map locked.
1270 * unlock the map before returning.
1271 */
1272
1273 int
1274 uvm_map_enter(struct vm_map *map, const struct uvm_map_args *args,
1275 struct vm_map_entry *new_entry)
1276 {
1277 struct vm_map_entry *prev_entry = args->uma_prev;
1278 struct vm_map_entry *dead = NULL, *dead_entries = NULL;
1279
1280 const uvm_flag_t flags = args->uma_flags;
1281 const vm_prot_t prot = UVM_PROTECTION(flags);
1282 const vm_prot_t maxprot = UVM_MAXPROTECTION(flags);
1283 const vm_inherit_t inherit = UVM_INHERIT(flags);
1284 const int amapwaitflag = (flags & UVM_FLAG_NOWAIT) ?
1285 AMAP_EXTEND_NOWAIT : 0;
1286 const int advice = UVM_ADVICE(flags);
1287
1288 vaddr_t start = args->uma_start;
1289 vsize_t size = args->uma_size;
1290 struct uvm_object *uobj = args->uma_uobj;
1291 voff_t uoffset = args->uma_uoffset;
1292
1293 const int kmap = (vm_map_pmap(map) == pmap_kernel());
1294 int merged = 0;
1295 int error;
1296 int newetype;
1297
1298 UVMHIST_FUNC(__func__);
1299 UVMHIST_CALLARGS(maphist, "(map=%#jx, start=%#jx, size=%ju, flags=%#jx)",
1300 (uintptr_t)map, start, size, flags);
1301 UVMHIST_LOG(maphist, " uobj/offset %#jx/%jd", (uintptr_t)uobj,
1302 uoffset,0,0);
1303
1304 KASSERT(map->hint == prev_entry); /* bimerge case assumes this */
1305 KASSERT(vm_map_locked_p(map));
1306 KASSERT((flags & (UVM_FLAG_NOWAIT | UVM_FLAG_UNMAP)) !=
1307 (UVM_FLAG_NOWAIT | UVM_FLAG_UNMAP));
1308
1309 if (uobj)
1310 newetype = UVM_ET_OBJ;
1311 else
1312 newetype = 0;
1313
1314 if (flags & UVM_FLAG_COPYONW) {
1315 newetype |= UVM_ET_COPYONWRITE;
1316 if ((flags & UVM_FLAG_OVERLAY) == 0)
1317 newetype |= UVM_ET_NEEDSCOPY;
1318 }
1319
1320 /*
1321 * For mappings with unmap, remove any old entries now. Adding the new
1322 * entry cannot fail because that can only happen if UVM_FLAG_NOWAIT
1323 * is set, and we do not support nowait and unmap together.
1324 */
1325
1326 if (flags & UVM_FLAG_UNMAP) {
1327 KASSERT(flags & UVM_FLAG_FIXED);
1328 uvm_unmap_remove(map, start, start + size, &dead_entries, 0);
1329 #ifdef DEBUG
1330 struct vm_map_entry *tmp_entry __diagused;
1331 bool rv __diagused;
1332
1333 rv = uvm_map_lookup_entry(map, start, &tmp_entry);
1334 KASSERT(!rv);
1335 KASSERTMSG(prev_entry == tmp_entry,
1336 "args %p prev_entry %p tmp_entry %p",
1337 args, prev_entry, tmp_entry);
1338 #endif
1339 SAVE_HINT(map, map->hint, prev_entry);
1340 }
1341
1342 /*
1343 * try and insert in map by extending previous entry, if possible.
1344 * XXX: we don't try and pull back the next entry. might be useful
1345 * for a stack, but we are currently allocating our stack in advance.
1346 */
1347
1348 if (flags & UVM_FLAG_NOMERGE)
1349 goto nomerge;
1350
1351 if (prev_entry->end == start &&
1352 prev_entry != &map->header &&
1353 UVM_ET_ISCOMPATIBLE(prev_entry, newetype, uobj, 0,
1354 prot, maxprot, inherit, advice, 0)) {
1355
1356 if (uobj && prev_entry->offset +
1357 (prev_entry->end - prev_entry->start) != uoffset)
1358 goto forwardmerge;
1359
1360 /*
1361 * can't extend a shared amap. note: no need to lock amap to
1362 * look at refs since we don't care about its exact value.
1363 * if it is one (i.e. we have only reference) it will stay there
1364 */
1365
1366 if (prev_entry->aref.ar_amap &&
1367 amap_refs(prev_entry->aref.ar_amap) != 1) {
1368 goto forwardmerge;
1369 }
1370
1371 if (prev_entry->aref.ar_amap) {
1372 error = amap_extend(prev_entry, size,
1373 amapwaitflag | AMAP_EXTEND_FORWARDS);
1374 if (error)
1375 goto nomerge;
1376 }
1377
1378 if (kmap) {
1379 UVMMAP_EVCNT_INCR(kbackmerge);
1380 } else {
1381 UVMMAP_EVCNT_INCR(ubackmerge);
1382 }
1383 UVMHIST_LOG(maphist," starting back merge", 0, 0, 0, 0);
1384
1385 /*
1386 * drop our reference to uobj since we are extending a reference
1387 * that we already have (the ref count can not drop to zero).
1388 */
1389
1390 if (uobj && uobj->pgops->pgo_detach)
1391 uobj->pgops->pgo_detach(uobj);
1392
1393 /*
1394 * Now that we've merged the entries, note that we've grown
1395 * and our gap has shrunk. Then fix the tree.
1396 */
1397 prev_entry->end += size;
1398 prev_entry->gap -= size;
1399 uvm_rb_fixup(map, prev_entry);
1400
1401 uvm_map_check(map, "map backmerged");
1402
1403 UVMHIST_LOG(maphist,"<- done (via backmerge)!", 0, 0, 0, 0);
1404 merged++;
1405 }
1406
1407 forwardmerge:
1408 if (prev_entry->next->start == (start + size) &&
1409 prev_entry->next != &map->header &&
1410 UVM_ET_ISCOMPATIBLE(prev_entry->next, newetype, uobj, 0,
1411 prot, maxprot, inherit, advice, 0)) {
1412
1413 if (uobj && prev_entry->next->offset != uoffset + size)
1414 goto nomerge;
1415
1416 /*
1417 * can't extend a shared amap. note: no need to lock amap to
1418 * look at refs since we don't care about its exact value.
1419 * if it is one (i.e. we have only reference) it will stay there.
1420 *
1421 * note that we also can't merge two amaps, so if we
1422 * merged with the previous entry which has an amap,
1423 * and the next entry also has an amap, we give up.
1424 *
1425 * Interesting cases:
1426 * amap, new, amap -> give up second merge (single fwd extend)
1427 * amap, new, none -> double forward extend (extend again here)
1428 * none, new, amap -> double backward extend (done here)
1429 * uobj, new, amap -> single backward extend (done here)
1430 *
1431 * XXX should we attempt to deal with someone refilling
1432 * the deallocated region between two entries that are
1433 * backed by the same amap (ie, arefs is 2, "prev" and
1434 * "next" refer to it, and adding this allocation will
1435 * close the hole, thus restoring arefs to 1 and
1436 * deallocating the "next" vm_map_entry)? -- @@@
1437 */
1438
1439 if (prev_entry->next->aref.ar_amap &&
1440 (amap_refs(prev_entry->next->aref.ar_amap) != 1 ||
1441 (merged && prev_entry->aref.ar_amap))) {
1442 goto nomerge;
1443 }
1444
1445 if (merged) {
1446 /*
1447 * Try to extend the amap of the previous entry to
1448 * cover the next entry as well. If it doesn't work
1449 * just skip on, don't actually give up, since we've
1450 * already completed the back merge.
1451 */
1452 if (prev_entry->aref.ar_amap) {
1453 if (amap_extend(prev_entry,
1454 prev_entry->next->end -
1455 prev_entry->next->start,
1456 amapwaitflag | AMAP_EXTEND_FORWARDS))
1457 goto nomerge;
1458 }
1459
1460 /*
1461 * Try to extend the amap of the *next* entry
1462 * back to cover the new allocation *and* the
1463 * previous entry as well (the previous merge
1464 * didn't have an amap already otherwise we
1465 * wouldn't be checking here for an amap). If
1466 * it doesn't work just skip on, again, don't
1467 * actually give up, since we've already
1468 * completed the back merge.
1469 */
1470 else if (prev_entry->next->aref.ar_amap) {
1471 if (amap_extend(prev_entry->next,
1472 prev_entry->end -
1473 prev_entry->start,
1474 amapwaitflag | AMAP_EXTEND_BACKWARDS))
1475 goto nomerge;
1476 }
1477 } else {
1478 /*
1479 * Pull the next entry's amap backwards to cover this
1480 * new allocation.
1481 */
1482 if (prev_entry->next->aref.ar_amap) {
1483 error = amap_extend(prev_entry->next, size,
1484 amapwaitflag | AMAP_EXTEND_BACKWARDS);
1485 if (error)
1486 goto nomerge;
1487 }
1488 }
1489
1490 if (merged) {
1491 if (kmap) {
1492 UVMMAP_EVCNT_DECR(kbackmerge);
1493 UVMMAP_EVCNT_INCR(kbimerge);
1494 } else {
1495 UVMMAP_EVCNT_DECR(ubackmerge);
1496 UVMMAP_EVCNT_INCR(ubimerge);
1497 }
1498 } else {
1499 if (kmap) {
1500 UVMMAP_EVCNT_INCR(kforwmerge);
1501 } else {
1502 UVMMAP_EVCNT_INCR(uforwmerge);
1503 }
1504 }
1505 UVMHIST_LOG(maphist," starting forward merge", 0, 0, 0, 0);
1506
1507 /*
1508 * drop our reference to uobj since we are extending a reference
1509 * that we already have (the ref count can not drop to zero).
1510 */
1511 if (uobj && uobj->pgops->pgo_detach)
1512 uobj->pgops->pgo_detach(uobj);
1513
1514 if (merged) {
1515 dead = prev_entry->next;
1516 prev_entry->end = dead->end;
1517 uvm_map_entry_unlink(map, dead);
1518 if (dead->aref.ar_amap != NULL) {
1519 prev_entry->aref = dead->aref;
1520 dead->aref.ar_amap = NULL;
1521 }
1522 } else {
1523 prev_entry->next->start -= size;
1524 if (prev_entry != &map->header) {
1525 prev_entry->gap -= size;
1526 KASSERT(prev_entry->gap == uvm_rb_gap(prev_entry));
1527 uvm_rb_fixup(map, prev_entry);
1528 }
1529 if (uobj)
1530 prev_entry->next->offset = uoffset;
1531 }
1532
1533 uvm_map_check(map, "map forwardmerged");
1534
1535 UVMHIST_LOG(maphist,"<- done forwardmerge", 0, 0, 0, 0);
1536 merged++;
1537 }
1538
1539 nomerge:
1540 if (!merged) {
1541 UVMHIST_LOG(maphist," allocating new map entry", 0, 0, 0, 0);
1542 if (kmap) {
1543 UVMMAP_EVCNT_INCR(knomerge);
1544 } else {
1545 UVMMAP_EVCNT_INCR(unomerge);
1546 }
1547
1548 /*
1549 * allocate new entry and link it in.
1550 */
1551
1552 if (new_entry == NULL) {
1553 new_entry = uvm_mapent_alloc(map,
1554 (flags & UVM_FLAG_NOWAIT));
1555 if (__predict_false(new_entry == NULL)) {
1556 error = ENOMEM;
1557 goto done;
1558 }
1559 }
1560 new_entry->start = start;
1561 new_entry->end = new_entry->start + size;
1562 new_entry->object.uvm_obj = uobj;
1563 new_entry->offset = uoffset;
1564
1565 new_entry->etype = newetype;
1566
1567 if (flags & UVM_FLAG_NOMERGE) {
1568 new_entry->flags |= UVM_MAP_NOMERGE;
1569 }
1570
1571 new_entry->protection = prot;
1572 new_entry->max_protection = maxprot;
1573 new_entry->inheritance = inherit;
1574 new_entry->wired_count = 0;
1575 new_entry->advice = advice;
1576 if (flags & UVM_FLAG_OVERLAY) {
1577
1578 /*
1579 * to_add: for BSS we overallocate a little since we
1580 * are likely to extend
1581 */
1582
1583 vaddr_t to_add = (flags & UVM_FLAG_AMAPPAD) ?
1584 UVM_AMAP_CHUNK << PAGE_SHIFT : 0;
1585 struct vm_amap *amap = amap_alloc(size, to_add,
1586 (flags & UVM_FLAG_NOWAIT));
1587 if (__predict_false(amap == NULL)) {
1588 error = ENOMEM;
1589 goto done;
1590 }
1591 new_entry->aref.ar_pageoff = 0;
1592 new_entry->aref.ar_amap = amap;
1593 } else {
1594 new_entry->aref.ar_pageoff = 0;
1595 new_entry->aref.ar_amap = NULL;
1596 }
1597 uvm_map_entry_link(map, prev_entry, new_entry);
1598
1599 /*
1600 * Update the free space hint
1601 */
1602
1603 if ((map->first_free == prev_entry) &&
1604 (prev_entry->end >= new_entry->start))
1605 map->first_free = new_entry;
1606
1607 new_entry = NULL;
1608 }
1609
1610 map->size += size;
1611
1612 UVMHIST_LOG(maphist,"<- done!", 0, 0, 0, 0);
1613
1614 error = 0;
1615
1616 done:
1617 vm_map_unlock(map);
1618
1619 if (new_entry) {
1620 uvm_mapent_free(new_entry);
1621 }
1622 if (dead) {
1623 KDASSERT(merged);
1624 uvm_mapent_free(dead);
1625 }
1626 if (dead_entries)
1627 uvm_unmap_detach(dead_entries, 0);
1628
1629 return error;
1630 }
1631
1632 /*
1633 * uvm_map_lookup_entry_bytree: lookup an entry in tree
1634 *
1635 * => map must at least be read-locked by caller.
1636 *
1637 * => If address lies in an entry, set *entry to it and return true;
1638 * then (*entry)->start <= address < (*entry)->end.
1639
1640 * => If address is below all entries in map, return false and set
1641 * *entry to &map->header.
1642 *
1643 * => Otherwise, return false and set *entry to the highest entry below
1644 * address, so (*entry)->end <= address, and if (*entry)->next is
1645 * not &map->header, address < (*entry)->next->start.
1646 */
1647
1648 static inline bool
1649 uvm_map_lookup_entry_bytree(struct vm_map *map, vaddr_t address,
1650 struct vm_map_entry **entry /* OUT */)
1651 {
1652 struct vm_map_entry *prev = &map->header;
1653 struct vm_map_entry *cur = ROOT_ENTRY(map);
1654
1655 KASSERT(rw_lock_held(&map->lock));
1656
1657 while (cur) {
1658 KASSERT(prev == &map->header || prev->end <= address);
1659 UVMMAP_EVCNT_INCR(mlk_treeloop);
1660 if (address >= cur->start) {
1661 if (address < cur->end) {
1662 *entry = cur;
1663 return true;
1664 }
1665 prev = cur;
1666 KASSERT(prev->end <= address);
1667 cur = RIGHT_ENTRY(cur);
1668 KASSERT(prev->end <= cur->start);
1669 } else
1670 cur = LEFT_ENTRY(cur);
1671 }
1672 KASSERT(prev == &map->header || prev->end <= address);
1673 KASSERT(prev->next == &map->header || address < prev->next->start);
1674 *entry = prev;
1675 return false;
1676 }
1677
1678 /*
1679 * uvm_map_lookup_entry: find map entry at or before an address
1680 *
1681 * => map must at least be read-locked by caller.
1682 *
1683 * => If address lies in an entry, set *entry to it and return true;
1684 * then (*entry)->start <= address < (*entry)->end.
1685
1686 * => If address is below all entries in map, return false and set
1687 * *entry to &map->header.
1688 *
1689 * => Otherwise, return false and set *entry to the highest entry below
1690 * address, so (*entry)->end <= address, and if (*entry)->next is
1691 * not &map->header, address < (*entry)->next->start.
1692 */
1693
1694 bool
1695 uvm_map_lookup_entry(struct vm_map *map, vaddr_t address,
1696 struct vm_map_entry **entry /* OUT */)
1697 {
1698 struct vm_map_entry *cur;
1699 UVMHIST_FUNC(__func__);
1700 UVMHIST_CALLARGS(maphist,"(map=%#jx,addr=%#jx,ent=%#jx)",
1701 (uintptr_t)map, address, (uintptr_t)entry, 0);
1702
1703 KDASSERT(rw_lock_held(&map->lock));
1704
1705 /*
1706 * make a quick check to see if we are already looking at
1707 * the entry we want (which is usually the case). note also
1708 * that we don't need to save the hint here... it is the
1709 * same hint (unless we are at the header, in which case the
1710 * hint didn't buy us anything anyway).
1711 */
1712
1713 cur = map->hint;
1714 UVMMAP_EVCNT_INCR(mlk_call);
1715 if (cur != &map->header &&
1716 address >= cur->start && cur->end > address) {
1717 UVMMAP_EVCNT_INCR(mlk_hint);
1718 *entry = cur;
1719 UVMHIST_LOG(maphist,"<- got it via hint (%#jx)",
1720 (uintptr_t)cur, 0, 0, 0);
1721 uvm_mapent_check(*entry);
1722 return (true);
1723 }
1724 uvm_map_check(map, __func__);
1725
1726 /*
1727 * lookup in the tree.
1728 */
1729
1730 UVMMAP_EVCNT_INCR(mlk_tree);
1731 if (__predict_true(uvm_map_lookup_entry_bytree(map, address, entry))) {
1732 SAVE_HINT(map, map->hint, *entry);
1733 UVMHIST_LOG(maphist,"<- search got it (%#jx)",
1734 (uintptr_t)cur, 0, 0, 0);
1735 KDASSERT((*entry)->start <= address);
1736 KDASSERT(address < (*entry)->end);
1737 uvm_mapent_check(*entry);
1738 return (true);
1739 }
1740
1741 SAVE_HINT(map, map->hint, *entry);
1742 UVMHIST_LOG(maphist,"<- failed!",0,0,0,0);
1743 KDASSERT((*entry) == &map->header || (*entry)->end <= address);
1744 KDASSERT((*entry)->next == &map->header ||
1745 address < (*entry)->next->start);
1746 return (false);
1747 }
1748
1749 /*
1750 * See if the range between start and start + length fits in the gap
1751 * entry->next->start and entry->end. Returns 1 if fits, 0 if doesn't
1752 * fit, and -1 address wraps around.
1753 */
1754 static int
1755 uvm_map_space_avail(vaddr_t *start, vsize_t length, voff_t uoffset,
1756 vsize_t align, int flags, int topdown, struct vm_map_entry *entry)
1757 {
1758 vaddr_t end;
1759
1760 #ifdef PMAP_PREFER
1761 /*
1762 * push start address forward as needed to avoid VAC alias problems.
1763 * we only do this if a valid offset is specified.
1764 */
1765
1766 if (uoffset != UVM_UNKNOWN_OFFSET)
1767 PMAP_PREFER(uoffset, start, length, topdown);
1768 #endif
1769 if ((flags & UVM_FLAG_COLORMATCH) != 0) {
1770 KASSERT(align < uvmexp.ncolors);
1771 if (uvmexp.ncolors > 1) {
1772 const u_int colormask = uvmexp.colormask;
1773 const u_int colorsize = colormask + 1;
1774 vaddr_t hint = atop(*start);
1775 const u_int color = hint & colormask;
1776 if (color != align) {
1777 hint -= color; /* adjust to color boundary */
1778 KASSERT((hint & colormask) == 0);
1779 if (topdown) {
1780 if (align > color)
1781 hint -= colorsize;
1782 } else {
1783 if (align < color)
1784 hint += colorsize;
1785 }
1786 *start = ptoa(hint + align); /* adjust to color */
1787 }
1788 }
1789 } else {
1790 KASSERT(powerof2(align));
1791 uvm_map_align_va(start, align, topdown);
1792 /*
1793 * XXX Should we PMAP_PREFER() here again?
1794 * eh...i think we're okay
1795 */
1796 }
1797
1798 /*
1799 * Find the end of the proposed new region. Be sure we didn't
1800 * wrap around the address; if so, we lose. Otherwise, if the
1801 * proposed new region fits before the next entry, we win.
1802 */
1803
1804 end = *start + length;
1805 if (end < *start)
1806 return (-1);
1807
1808 if (entry->next->start >= end && *start >= entry->end)
1809 return (1);
1810
1811 return (0);
1812 }
1813
1814 static void
1815 uvm_findspace_invariants(struct vm_map *map, vaddr_t orig_hint, vaddr_t length,
1816 struct uvm_object *uobj, voff_t uoffset, vsize_t align, int flags,
1817 vaddr_t hint, struct vm_map_entry *entry, int line)
1818 {
1819 const int topdown = map->flags & VM_MAP_TOPDOWN;
1820 const int hint_location_ok =
1821 topdown ? hint <= orig_hint
1822 : hint >= orig_hint;
1823
1824 #if !(defined(__sh3__) && defined(DIAGNOSTIC)) /* XXXRO: kern/51254 */
1825 #define UVM_FINDSPACE_KASSERTMSG KASSERTMSG
1826
1827 #else /* sh3 && DIAGNOSTIC */
1828 /* like KASSERTMSG but make it not fatal */
1829 #define UVM_FINDSPACE_KASSERTMSG(e, msg, ...) \
1830 (__predict_true((e)) ? (void)0 : \
1831 printf(__KASSERTSTR msg "\n", \
1832 "weak diagnostic ", #e, \
1833 __FILE__, __LINE__, ## __VA_ARGS__))
1834 #endif
1835
1836 UVM_FINDSPACE_KASSERTMSG(hint_location_ok,
1837 "%s map=%p hint=%#" PRIxVADDR " %s orig_hint=%#" PRIxVADDR
1838 " length=%#" PRIxVSIZE " uobj=%p uoffset=%#llx align=%" PRIxVSIZE
1839 " flags=%#x entry=%p (uvm_map_findspace line %d)",
1840 topdown ? "topdown" : "bottomup",
1841 map, hint, topdown ? ">" : "<", orig_hint,
1842 length, uobj, (unsigned long long)uoffset, align,
1843 flags, entry, line);
1844 }
1845
1846 /*
1847 * uvm_map_findspace: find "length" sized space in "map".
1848 *
1849 * => "hint" is a hint about where we want it, unless UVM_FLAG_FIXED is
1850 * set in "flags" (in which case we insist on using "hint").
1851 * => "result" is VA returned
1852 * => uobj/uoffset are to be used to handle VAC alignment, if required
1853 * => if "align" is non-zero, we attempt to align to that value.
1854 * => caller must at least have read-locked map
1855 * => returns NULL on failure, or pointer to prev. map entry if success
1856 * => note this is a cross between the old vm_map_findspace and vm_map_find
1857 */
1858
1859 struct vm_map_entry *
1860 uvm_map_findspace(struct vm_map *map, vaddr_t hint, vsize_t length,
1861 vaddr_t *result /* OUT */, struct uvm_object *uobj, voff_t uoffset,
1862 vsize_t align, int flags)
1863 {
1864 #define INVARIANTS() \
1865 uvm_findspace_invariants(map, orig_hint, length, uobj, uoffset, align,\
1866 flags, hint, entry, __LINE__)
1867 struct vm_map_entry *entry = NULL;
1868 struct vm_map_entry *child, *prev, *tmp;
1869 vaddr_t orig_hint __diagused;
1870 const int topdown = map->flags & VM_MAP_TOPDOWN;
1871 int avail;
1872 UVMHIST_FUNC(__func__);
1873 UVMHIST_CALLARGS(maphist, "(map=%#jx, hint=%#jx, len=%ju, flags=%#jx...",
1874 (uintptr_t)map, hint, length, flags);
1875 UVMHIST_LOG(maphist, " uobj=%#jx, uoffset=%#jx, align=%#jx)",
1876 (uintptr_t)uobj, uoffset, align, 0);
1877
1878 KASSERT((flags & UVM_FLAG_COLORMATCH) != 0 || powerof2(align));
1879 KASSERT((flags & UVM_FLAG_COLORMATCH) == 0 || align < uvmexp.ncolors);
1880 KASSERT((flags & UVM_FLAG_FIXED) == 0 || align == 0);
1881
1882 uvm_map_check(map, "map_findspace entry");
1883
1884 /*
1885 * Clamp the hint to the VM map's min/max address, and remmeber
1886 * the clamped original hint. Remember the original hint,
1887 * clamped to the min/max address. If we are aligning, then we
1888 * may have to try again with no alignment constraint if we
1889 * fail the first time.
1890 *
1891 * We use the original hint to verify later that the search has
1892 * been monotonic -- that is, nonincreasing or nondecreasing,
1893 * according to topdown or !topdown respectively. But the
1894 * clamping is not monotonic.
1895 */
1896 if (hint < vm_map_min(map)) { /* check ranges ... */
1897 if (flags & UVM_FLAG_FIXED) {
1898 UVMHIST_LOG(maphist,"<- VA below map range",0,0,0,0);
1899 return (NULL);
1900 }
1901 hint = vm_map_min(map);
1902 }
1903 if (hint > vm_map_max(map)) {
1904 UVMHIST_LOG(maphist,"<- VA %#jx > range [%#jx->%#jx]",
1905 hint, vm_map_min(map), vm_map_max(map), 0);
1906 return (NULL);
1907 }
1908 orig_hint = hint;
1909 INVARIANTS();
1910
1911 UVMHIST_LOG(maphist,"<- VA %#jx vs range [%#jx->%#jx]",
1912 hint, vm_map_min(map), vm_map_max(map), 0);
1913
1914 /*
1915 * hint may not be aligned properly; we need round up or down it
1916 * before proceeding further.
1917 */
1918 if ((flags & UVM_FLAG_COLORMATCH) == 0) {
1919 uvm_map_align_va(&hint, align, topdown);
1920 INVARIANTS();
1921 }
1922
1923 UVMHIST_LOG(maphist,"<- VA %#jx vs range [%#jx->%#jx]",
1924 hint, vm_map_min(map), vm_map_max(map), 0);
1925 /*
1926 * Look for the first possible address; if there's already
1927 * something at this address, we have to start after it.
1928 */
1929
1930 /*
1931 * @@@: there are four, no, eight cases to consider.
1932 *
1933 * 0: found, fixed, bottom up -> fail
1934 * 1: found, fixed, top down -> fail
1935 * 2: found, not fixed, bottom up -> start after entry->end,
1936 * loop up
1937 * 3: found, not fixed, top down -> start before entry->start,
1938 * loop down
1939 * 4: not found, fixed, bottom up -> check entry->next->start, fail
1940 * 5: not found, fixed, top down -> check entry->next->start, fail
1941 * 6: not found, not fixed, bottom up -> check entry->next->start,
1942 * loop up
1943 * 7: not found, not fixed, top down -> check entry->next->start,
1944 * loop down
1945 *
1946 * as you can see, it reduces to roughly five cases, and that
1947 * adding top down mapping only adds one unique case (without
1948 * it, there would be four cases).
1949 */
1950
1951 if ((flags & UVM_FLAG_FIXED) == 0 &&
1952 hint == (topdown ? vm_map_max(map) : vm_map_min(map))) {
1953 /*
1954 * The uvm_map_findspace algorithm is monotonic -- for
1955 * topdown VM it starts with a high hint and returns a
1956 * lower free address; for !topdown VM it starts with a
1957 * low hint and returns a higher free address. As an
1958 * optimization, start with the first (highest for
1959 * topdown, lowest for !topdown) free address.
1960 *
1961 * XXX This `optimization' probably doesn't actually do
1962 * much in practice unless userland explicitly passes
1963 * the VM map's minimum or maximum address, which
1964 * varies from machine to machine (VM_MAX/MIN_ADDRESS,
1965 * e.g. 0x7fbfdfeff000 on amd64 but 0xfffffffff000 on
1966 * aarch64) and may vary according to other factors
1967 * like sysctl vm.user_va0_disable. In particular, if
1968 * the user specifies 0 as a hint to mmap, then mmap
1969 * will choose a default address which is usually _not_
1970 * VM_MAX/MIN_ADDRESS but something else instead like
1971 * VM_MAX_ADDRESS - stack size - guard page overhead,
1972 * in which case this branch is never hit.
1973 *
1974 * In fact, this branch appears to have been broken for
1975 * two decades between when topdown was introduced in
1976 * ~2003 and when it was adapted to handle the topdown
1977 * case without violating the monotonicity assertion in
1978 * 2022. Maybe Someone^TM should either ditch the
1979 * optimization or find a better way to do it.
1980 */
1981 entry = map->first_free;
1982 } else if (uvm_map_lookup_entry(map, hint, &entry)) {
1983 KASSERT(entry->start <= hint);
1984 KASSERT(hint < entry->end);
1985 /* "hint" address already in use ... */
1986 if (flags & UVM_FLAG_FIXED) {
1987 UVMHIST_LOG(maphist, "<- fixed & VA in use",
1988 0, 0, 0, 0);
1989 return (NULL);
1990 }
1991 if (topdown)
1992 /* Start from lower gap. */
1993 entry = entry->prev;
1994 } else {
1995 KASSERT(entry == &map->header || entry->end <= hint);
1996 KASSERT(entry->next == &map->header ||
1997 hint < entry->next->start);
1998 if (flags & UVM_FLAG_FIXED) {
1999 if (entry->next->start >= hint + length &&
2000 hint + length > hint)
2001 goto found;
2002
2003 /* "hint" address is gap but too small */
2004 UVMHIST_LOG(maphist, "<- fixed mapping failed",
2005 0, 0, 0, 0);
2006 return (NULL); /* only one shot at it ... */
2007 } else {
2008 /*
2009 * See if given hint fits in this gap.
2010 */
2011 avail = uvm_map_space_avail(&hint, length,
2012 uoffset, align, flags, topdown, entry);
2013 INVARIANTS();
2014 switch (avail) {
2015 case 1:
2016 goto found;
2017 case -1:
2018 goto wraparound;
2019 }
2020
2021 if (topdown) {
2022 /*
2023 * Still there is a chance to fit
2024 * if hint > entry->end.
2025 */
2026 } else {
2027 /* Start from higher gap. */
2028 entry = entry->next;
2029 if (entry == &map->header)
2030 goto notfound;
2031 goto nextgap;
2032 }
2033 }
2034 }
2035
2036 /*
2037 * Note that all UVM_FLAGS_FIXED case is already handled.
2038 */
2039 KDASSERT((flags & UVM_FLAG_FIXED) == 0);
2040
2041 /* Try to find the space in the red-black tree */
2042
2043 /* Check slot before any entry */
2044 if (topdown) {
2045 KASSERTMSG(entry->next->start >= vm_map_min(map),
2046 "map=%p entry=%p entry->next=%p"
2047 " entry->next->start=0x%"PRIxVADDR" min=0x%"PRIxVADDR,
2048 map, entry, entry->next,
2049 entry->next->start, vm_map_min(map));
2050 if (length > entry->next->start - vm_map_min(map))
2051 hint = vm_map_min(map); /* XXX goto wraparound? */
2052 else
2053 hint = entry->next->start - length;
2054 KASSERT(hint >= vm_map_min(map));
2055 } else {
2056 hint = entry->end;
2057 }
2058 INVARIANTS();
2059 avail = uvm_map_space_avail(&hint, length, uoffset, align, flags,
2060 topdown, entry);
2061 INVARIANTS();
2062 switch (avail) {
2063 case 1:
2064 goto found;
2065 case -1:
2066 goto wraparound;
2067 }
2068
2069 nextgap:
2070 KDASSERT((flags & UVM_FLAG_FIXED) == 0);
2071 /* If there is not enough space in the whole tree, we fail */
2072 tmp = ROOT_ENTRY(map);
2073 if (tmp == NULL || tmp->maxgap < length)
2074 goto notfound;
2075
2076 prev = NULL; /* previous candidate */
2077
2078 /* Find an entry close to hint that has enough space */
2079 for (; tmp;) {
2080 KASSERT(tmp->next->start == tmp->end + tmp->gap);
2081 if (topdown) {
2082 if (tmp->next->start < hint + length &&
2083 (prev == NULL || tmp->end > prev->end)) {
2084 if (tmp->gap >= length)
2085 prev = tmp;
2086 else if ((child = LEFT_ENTRY(tmp)) != NULL
2087 && child->maxgap >= length)
2088 prev = tmp;
2089 }
2090 } else {
2091 if (tmp->end >= hint &&
2092 (prev == NULL || tmp->end < prev->end)) {
2093 if (tmp->gap >= length)
2094 prev = tmp;
2095 else if ((child = RIGHT_ENTRY(tmp)) != NULL
2096 && child->maxgap >= length)
2097 prev = tmp;
2098 }
2099 }
2100 if (tmp->next->start < hint + length)
2101 child = RIGHT_ENTRY(tmp);
2102 else if (tmp->end > hint)
2103 child = LEFT_ENTRY(tmp);
2104 else {
2105 if (tmp->gap >= length)
2106 break;
2107 if (topdown)
2108 child = LEFT_ENTRY(tmp);
2109 else
2110 child = RIGHT_ENTRY(tmp);
2111 }
2112 if (child == NULL || child->maxgap < length)
2113 break;
2114 tmp = child;
2115 }
2116
2117 if (tmp != NULL && tmp->start < hint && hint < tmp->next->start) {
2118 /*
2119 * Check if the entry that we found satifies the
2120 * space requirement
2121 */
2122 if (topdown) {
2123 if (hint > tmp->next->start - length)
2124 hint = tmp->next->start - length;
2125 } else {
2126 if (hint < tmp->end)
2127 hint = tmp->end;
2128 }
2129 INVARIANTS();
2130 avail = uvm_map_space_avail(&hint, length, uoffset, align,
2131 flags, topdown, tmp);
2132 INVARIANTS();
2133 switch (avail) {
2134 case 1:
2135 entry = tmp;
2136 goto found;
2137 case -1:
2138 goto wraparound;
2139 }
2140 if (tmp->gap >= length)
2141 goto listsearch;
2142 }
2143 if (prev == NULL)
2144 goto notfound;
2145
2146 if (topdown) {
2147 KASSERT(orig_hint >= prev->next->start - length ||
2148 prev->next->start - length > prev->next->start);
2149 hint = prev->next->start - length;
2150 } else {
2151 KASSERT(orig_hint <= prev->end);
2152 hint = prev->end;
2153 }
2154 INVARIANTS();
2155 avail = uvm_map_space_avail(&hint, length, uoffset, align,
2156 flags, topdown, prev);
2157 INVARIANTS();
2158 switch (avail) {
2159 case 1:
2160 entry = prev;
2161 goto found;
2162 case -1:
2163 goto wraparound;
2164 }
2165 if (prev->gap >= length)
2166 goto listsearch;
2167
2168 if (topdown)
2169 tmp = LEFT_ENTRY(prev);
2170 else
2171 tmp = RIGHT_ENTRY(prev);
2172 for (;;) {
2173 KASSERT(tmp);
2174 KASSERTMSG(tmp->maxgap >= length,
2175 "tmp->maxgap=0x%"PRIxVSIZE" length=0x%"PRIxVSIZE,
2176 tmp->maxgap, length);
2177 if (topdown)
2178 child = RIGHT_ENTRY(tmp);
2179 else
2180 child = LEFT_ENTRY(tmp);
2181 if (child && child->maxgap >= length) {
2182 tmp = child;
2183 continue;
2184 }
2185 if (tmp->gap >= length)
2186 break;
2187 if (topdown)
2188 tmp = LEFT_ENTRY(tmp);
2189 else
2190 tmp = RIGHT_ENTRY(tmp);
2191 }
2192
2193 if (topdown) {
2194 KASSERT(orig_hint >= tmp->next->start - length ||
2195 tmp->next->start - length > tmp->next->start);
2196 hint = tmp->next->start - length;
2197 } else {
2198 KASSERT(orig_hint <= tmp->end);
2199 hint = tmp->end;
2200 }
2201 INVARIANTS();
2202 avail = uvm_map_space_avail(&hint, length, uoffset, align,
2203 flags, topdown, tmp);
2204 INVARIANTS();
2205 switch (avail) {
2206 case 1:
2207 entry = tmp;
2208 goto found;
2209 case -1:
2210 goto wraparound;
2211 }
2212
2213 /*
2214 * The tree fails to find an entry because of offset or alignment
2215 * restrictions. Search the list instead.
2216 */
2217 listsearch:
2218 /*
2219 * Look through the rest of the map, trying to fit a new region in
2220 * the gap between existing regions, or after the very last region.
2221 * note: entry->end = base VA of current gap,
2222 * entry->next->start = VA of end of current gap
2223 */
2224
2225 INVARIANTS();
2226 for (;;) {
2227 /* Update hint for current gap. */
2228 hint = topdown ? entry->next->start - length : entry->end;
2229 INVARIANTS();
2230
2231 /* See if it fits. */
2232 avail = uvm_map_space_avail(&hint, length, uoffset, align,
2233 flags, topdown, entry);
2234 INVARIANTS();
2235 switch (avail) {
2236 case 1:
2237 goto found;
2238 case -1:
2239 goto wraparound;
2240 }
2241
2242 /* Advance to next/previous gap */
2243 if (topdown) {
2244 if (entry == &map->header) {
2245 UVMHIST_LOG(maphist, "<- failed (off start)",
2246 0,0,0,0);
2247 goto notfound;
2248 }
2249 entry = entry->prev;
2250 } else {
2251 entry = entry->next;
2252 if (entry == &map->header) {
2253 UVMHIST_LOG(maphist, "<- failed (off end)",
2254 0,0,0,0);
2255 goto notfound;
2256 }
2257 }
2258 }
2259
2260 found:
2261 SAVE_HINT(map, map->hint, entry);
2262 *result = hint;
2263 UVMHIST_LOG(maphist,"<- got it! (result=%#jx)", hint, 0,0,0);
2264 INVARIANTS();
2265 KASSERT(entry->end <= hint);
2266 KASSERT(hint + length <= entry->next->start);
2267 return (entry);
2268
2269 wraparound:
2270 UVMHIST_LOG(maphist, "<- failed (wrap around)", 0,0,0,0);
2271
2272 return (NULL);
2273
2274 notfound:
2275 UVMHIST_LOG(maphist, "<- failed (notfound)", 0,0,0,0);
2276
2277 return (NULL);
2278 #undef INVARIANTS
2279 }
2280
2281 /*
2282 * U N M A P - m a i n h e l p e r f u n c t i o n s
2283 */
2284
2285 /*
2286 * uvm_unmap_remove: remove mappings from a vm_map (from "start" up to "stop")
2287 *
2288 * => caller must check alignment and size
2289 * => map must be locked by caller
2290 * => we return a list of map entries that we've remove from the map
2291 * in "entry_list"
2292 */
2293
2294 void
2295 uvm_unmap_remove(struct vm_map *map, vaddr_t start, vaddr_t end,
2296 struct vm_map_entry **entry_list /* OUT */, int flags)
2297 {
2298 struct vm_map_entry *entry, *first_entry, *next;
2299 vaddr_t len;
2300 UVMHIST_FUNC(__func__);
2301 UVMHIST_CALLARGS(maphist,"(map=%#jx, start=%#jx, end=%#jx)",
2302 (uintptr_t)map, start, end, 0);
2303 VM_MAP_RANGE_CHECK(map, start, end);
2304
2305 uvm_map_check(map, "unmap_remove entry");
2306
2307 /*
2308 * find first entry
2309 */
2310
2311 if (uvm_map_lookup_entry(map, start, &first_entry) == true) {
2312 /* clip and go... */
2313 entry = first_entry;
2314 UVM_MAP_CLIP_START(map, entry, start);
2315 /* critical! prevents stale hint */
2316 SAVE_HINT(map, entry, entry->prev);
2317 } else {
2318 entry = first_entry->next;
2319 }
2320
2321 /*
2322 * save the free space hint
2323 */
2324
2325 if (map->first_free != &map->header && map->first_free->start >= start)
2326 map->first_free = entry->prev;
2327
2328 /*
2329 * note: we now re-use first_entry for a different task. we remove
2330 * a number of map entries from the map and save them in a linked
2331 * list headed by "first_entry". once we remove them from the map
2332 * the caller should unlock the map and drop the references to the
2333 * backing objects [c.f. uvm_unmap_detach]. the object is to
2334 * separate unmapping from reference dropping. why?
2335 * [1] the map has to be locked for unmapping
2336 * [2] the map need not be locked for reference dropping
2337 * [3] dropping references may trigger pager I/O, and if we hit
2338 * a pager that does synchronous I/O we may have to wait for it.
2339 * [4] we would like all waiting for I/O to occur with maps unlocked
2340 * so that we don't block other threads.
2341 */
2342
2343 first_entry = NULL;
2344 *entry_list = NULL;
2345
2346 /*
2347 * break up the area into map entry sized regions and unmap. note
2348 * that all mappings have to be removed before we can even consider
2349 * dropping references to amaps or VM objects (otherwise we could end
2350 * up with a mapping to a page on the free list which would be very bad)
2351 */
2352
2353 while ((entry != &map->header) && (entry->start < end)) {
2354 KASSERT((entry->flags & UVM_MAP_STATIC) == 0);
2355
2356 UVM_MAP_CLIP_END(map, entry, end);
2357 next = entry->next;
2358 len = entry->end - entry->start;
2359
2360 /*
2361 * unwire before removing addresses from the pmap; otherwise
2362 * unwiring will put the entries back into the pmap (XXX).
2363 */
2364
2365 if (VM_MAPENT_ISWIRED(entry)) {
2366 uvm_map_entry_unwire(map, entry);
2367 }
2368 if (flags & UVM_FLAG_VAONLY) {
2369
2370 /* nothing */
2371
2372 } else if ((map->flags & VM_MAP_PAGEABLE) == 0) {
2373
2374 /*
2375 * if the map is non-pageable, any pages mapped there
2376 * must be wired and entered with pmap_kenter_pa(),
2377 * and we should free any such pages immediately.
2378 * this is mostly used for kmem_map.
2379 */
2380 KASSERT(vm_map_pmap(map) == pmap_kernel());
2381
2382 uvm_km_pgremove_intrsafe(map, entry->start, entry->end);
2383 } else if (UVM_ET_ISOBJ(entry) &&
2384 UVM_OBJ_IS_KERN_OBJECT(entry->object.uvm_obj)) {
2385 panic("%s: kernel object %p %p\n",
2386 __func__, map, entry);
2387 } else if (UVM_ET_ISOBJ(entry) || entry->aref.ar_amap) {
2388 /*
2389 * remove mappings the standard way. lock object
2390 * and/or amap to ensure vm_page state does not
2391 * change while in pmap_remove().
2392 */
2393
2394 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
2395 uvm_map_lock_entry(entry, RW_WRITER);
2396 #else
2397 uvm_map_lock_entry(entry, RW_READER);
2398 #endif
2399 pmap_remove(map->pmap, entry->start, entry->end);
2400
2401 /*
2402 * note: if map is dying, leave pmap_update() for
2403 * later. if the map is to be reused (exec) then
2404 * pmap_update() will be called. if the map is
2405 * being disposed of (exit) then pmap_destroy()
2406 * will be called.
2407 */
2408
2409 if ((map->flags & VM_MAP_DYING) == 0) {
2410 pmap_update(vm_map_pmap(map));
2411 } else {
2412 KASSERT(vm_map_pmap(map) != pmap_kernel());
2413 }
2414
2415 uvm_map_unlock_entry(entry);
2416 }
2417
2418 #if defined(UVMDEBUG)
2419 /*
2420 * check if there's remaining mapping,
2421 * which is a bug in caller.
2422 */
2423
2424 vaddr_t va;
2425 for (va = entry->start; va < entry->end;
2426 va += PAGE_SIZE) {
2427 if (pmap_extract(vm_map_pmap(map), va, NULL)) {
2428 panic("%s: %#"PRIxVADDR" has mapping",
2429 __func__, va);
2430 }
2431 }
2432
2433 if (VM_MAP_IS_KERNEL(map) && (flags & UVM_FLAG_NOWAIT) == 0) {
2434 uvm_km_check_empty(map, entry->start, entry->end);
2435 }
2436 #endif /* defined(UVMDEBUG) */
2437
2438 /*
2439 * remove entry from map and put it on our list of entries
2440 * that we've nuked. then go to next entry.
2441 */
2442
2443 UVMHIST_LOG(maphist, " removed map entry %#jx",
2444 (uintptr_t)entry, 0, 0, 0);
2445
2446 /* critical! prevents stale hint */
2447 SAVE_HINT(map, entry, entry->prev);
2448
2449 uvm_map_entry_unlink(map, entry);
2450 KASSERT(map->size >= len);
2451 map->size -= len;
2452 entry->prev = NULL;
2453 entry->next = first_entry;
2454 first_entry = entry;
2455 entry = next;
2456 }
2457
2458 uvm_map_check(map, "unmap_remove leave");
2459
2460 /*
2461 * now we've cleaned up the map and are ready for the caller to drop
2462 * references to the mapped objects.
2463 */
2464
2465 *entry_list = first_entry;
2466 UVMHIST_LOG(maphist,"<- done!", 0, 0, 0, 0);
2467
2468 if (map->flags & VM_MAP_WANTVA) {
2469 mutex_enter(&map->misc_lock);
2470 map->flags &= ~VM_MAP_WANTVA;
2471 cv_broadcast(&map->cv);
2472 mutex_exit(&map->misc_lock);
2473 }
2474 }
2475
2476 /*
2477 * uvm_unmap_detach: drop references in a chain of map entries
2478 *
2479 * => we will free the map entries as we traverse the list.
2480 */
2481
2482 void
2483 uvm_unmap_detach(struct vm_map_entry *first_entry, int flags)
2484 {
2485 struct vm_map_entry *next_entry;
2486 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2487
2488 while (first_entry) {
2489 KASSERT(!VM_MAPENT_ISWIRED(first_entry));
2490 UVMHIST_LOG(maphist,
2491 " detach %#jx: amap=%#jx, obj=%#jx, submap?=%jd",
2492 (uintptr_t)first_entry,
2493 (uintptr_t)first_entry->aref.ar_amap,
2494 (uintptr_t)first_entry->object.uvm_obj,
2495 UVM_ET_ISSUBMAP(first_entry));
2496
2497 /*
2498 * drop reference to amap, if we've got one
2499 */
2500
2501 if (first_entry->aref.ar_amap)
2502 uvm_map_unreference_amap(first_entry, flags);
2503
2504 /*
2505 * drop reference to our backing object, if we've got one
2506 */
2507
2508 KASSERT(!UVM_ET_ISSUBMAP(first_entry));
2509 if (UVM_ET_ISOBJ(first_entry) &&
2510 first_entry->object.uvm_obj->pgops->pgo_detach) {
2511 (*first_entry->object.uvm_obj->pgops->pgo_detach)
2512 (first_entry->object.uvm_obj);
2513 }
2514 next_entry = first_entry->next;
2515 uvm_mapent_free(first_entry);
2516 first_entry = next_entry;
2517 }
2518 UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
2519 }
2520
2521 /*
2522 * E X T R A C T I O N F U N C T I O N S
2523 */
2524
2525 /*
2526 * uvm_map_reserve: reserve space in a vm_map for future use.
2527 *
2528 * => we reserve space in a map by putting a dummy map entry in the
2529 * map (dummy means obj=NULL, amap=NULL, prot=VM_PROT_NONE)
2530 * => map should be unlocked (we will write lock it)
2531 * => we return true if we were able to reserve space
2532 * => XXXCDC: should be inline?
2533 */
2534
2535 int
2536 uvm_map_reserve(struct vm_map *map, vsize_t size,
2537 vaddr_t offset /* hint for pmap_prefer */,
2538 vsize_t align /* alignment */,
2539 vaddr_t *raddr /* IN:hint, OUT: reserved VA */,
2540 uvm_flag_t flags /* UVM_FLAG_FIXED or UVM_FLAG_COLORMATCH or 0 */)
2541 {
2542 UVMHIST_FUNC(__func__);
2543 UVMHIST_CALLARGS(maphist, "(map=%#jx, size=%#jx, offset=%#jx, addr=%#jx)",
2544 (uintptr_t)map, size, offset, (uintptr_t)raddr);
2545
2546 size = round_page(size);
2547
2548 /*
2549 * reserve some virtual space.
2550 */
2551
2552 if (uvm_map(map, raddr, size, NULL, offset, align,
2553 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
2554 UVM_ADV_RANDOM, UVM_FLAG_NOMERGE|flags)) != 0) {
2555 UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
2556 return (false);
2557 }
2558
2559 UVMHIST_LOG(maphist, "<- done (*raddr=%#jx)", *raddr,0,0,0);
2560 return (true);
2561 }
2562
2563 /*
2564 * uvm_map_replace: replace a reserved (blank) area of memory with
2565 * real mappings.
2566 *
2567 * => caller must WRITE-LOCK the map
2568 * => we return true if replacement was a success
2569 * => we expect the newents chain to have nnewents entrys on it and
2570 * we expect newents->prev to point to the last entry on the list
2571 * => note newents is allowed to be NULL
2572 */
2573
2574 static int
2575 uvm_map_replace(struct vm_map *map, vaddr_t start, vaddr_t end,
2576 struct vm_map_entry *newents, int nnewents, vsize_t nsize,
2577 struct vm_map_entry **oldentryp)
2578 {
2579 struct vm_map_entry *oldent, *last;
2580
2581 uvm_map_check(map, "map_replace entry");
2582
2583 /*
2584 * first find the blank map entry at the specified address
2585 */
2586
2587 if (!uvm_map_lookup_entry(map, start, &oldent)) {
2588 return (false);
2589 }
2590
2591 /*
2592 * check to make sure we have a proper blank entry
2593 */
2594
2595 if (end < oldent->end) {
2596 UVM_MAP_CLIP_END(map, oldent, end);
2597 }
2598 if (oldent->start != start || oldent->end != end ||
2599 oldent->object.uvm_obj != NULL || oldent->aref.ar_amap != NULL) {
2600 return (false);
2601 }
2602
2603 #ifdef DIAGNOSTIC
2604
2605 /*
2606 * sanity check the newents chain
2607 */
2608
2609 {
2610 struct vm_map_entry *tmpent = newents;
2611 int nent = 0;
2612 vsize_t sz = 0;
2613 vaddr_t cur = start;
2614
2615 while (tmpent) {
2616 nent++;
2617 sz += tmpent->end - tmpent->start;
2618 if (tmpent->start < cur)
2619 panic("uvm_map_replace1");
2620 if (tmpent->start >= tmpent->end || tmpent->end > end) {
2621 panic("uvm_map_replace2: "
2622 "tmpent->start=%#"PRIxVADDR
2623 ", tmpent->end=%#"PRIxVADDR
2624 ", end=%#"PRIxVADDR,
2625 tmpent->start, tmpent->end, end);
2626 }
2627 cur = tmpent->end;
2628 if (tmpent->next) {
2629 if (tmpent->next->prev != tmpent)
2630 panic("uvm_map_replace3");
2631 } else {
2632 if (newents->prev != tmpent)
2633 panic("uvm_map_replace4");
2634 }
2635 tmpent = tmpent->next;
2636 }
2637 if (nent != nnewents)
2638 panic("uvm_map_replace5");
2639 if (sz != nsize)
2640 panic("uvm_map_replace6");
2641 }
2642 #endif
2643
2644 /*
2645 * map entry is a valid blank! replace it. (this does all the
2646 * work of map entry link/unlink...).
2647 */
2648
2649 if (newents) {
2650 last = newents->prev;
2651
2652 /* critical: flush stale hints out of map */
2653 SAVE_HINT(map, map->hint, newents);
2654 if (map->first_free == oldent)
2655 map->first_free = last;
2656
2657 last->next = oldent->next;
2658 last->next->prev = last;
2659
2660 /* Fix RB tree */
2661 uvm_rb_remove(map, oldent);
2662
2663 newents->prev = oldent->prev;
2664 newents->prev->next = newents;
2665 map->nentries = map->nentries + (nnewents - 1);
2666
2667 /* Fixup the RB tree */
2668 {
2669 int i;
2670 struct vm_map_entry *tmp;
2671
2672 tmp = newents;
2673 for (i = 0; i < nnewents && tmp; i++) {
2674 uvm_rb_insert(map, tmp);
2675 tmp = tmp->next;
2676 }
2677 }
2678 } else {
2679 /* NULL list of new entries: just remove the old one */
2680 clear_hints(map, oldent);
2681 uvm_map_entry_unlink(map, oldent);
2682 }
2683 map->size -= end - start - nsize;
2684
2685 uvm_map_check(map, "map_replace leave");
2686
2687 /*
2688 * now we can free the old blank entry and return.
2689 */
2690
2691 *oldentryp = oldent;
2692 return (true);
2693 }
2694
2695 /*
2696 * uvm_map_extract: extract a mapping from a map and put it somewhere
2697 * (maybe removing the old mapping)
2698 *
2699 * => maps should be unlocked (we will write lock them)
2700 * => returns 0 on success, error code otherwise
2701 * => start must be page aligned
2702 * => len must be page sized
2703 * => flags:
2704 * UVM_EXTRACT_REMOVE: remove mappings from srcmap
2705 * UVM_EXTRACT_CONTIG: abort if unmapped area (advisory only)
2706 * UVM_EXTRACT_QREF: for a temporary extraction do quick obj refs
2707 * UVM_EXTRACT_FIXPROT: set prot to maxprot as we go
2708 * UVM_EXTRACT_PROT_ALL: set prot to UVM_PROT_ALL as we go
2709 * >>>NOTE: if you set REMOVE, you are not allowed to use CONTIG or QREF!<<<
2710 * >>>NOTE: QREF's must be unmapped via the QREF path, thus should only
2711 * be used from within the kernel in a kernel level map <<<
2712 */
2713
2714 int
2715 uvm_map_extract(struct vm_map *srcmap, vaddr_t start, vsize_t len,
2716 struct vm_map *dstmap, vaddr_t *dstaddrp, int flags)
2717 {
2718 vaddr_t dstaddr, end, newend, oldoffset, fudge, orig_fudge;
2719 struct vm_map_entry *chain, *endchain, *entry, *orig_entry, *newentry,
2720 *deadentry, *oldentry;
2721 struct vm_map_entry *resentry = NULL; /* a dummy reservation entry */
2722 vsize_t elen __unused;
2723 int nchain, error, copy_ok;
2724 vsize_t nsize;
2725 UVMHIST_FUNC(__func__);
2726 UVMHIST_CALLARGS(maphist,"(srcmap=%#jx,start=%#jx, len=%#jx",
2727 (uintptr_t)srcmap, start, len, 0);
2728 UVMHIST_LOG(maphist," ...,dstmap=%#jx, flags=%#jx)",
2729 (uintptr_t)dstmap, flags, 0, 0);
2730
2731 /*
2732 * step 0: sanity check: start must be on a page boundary, length
2733 * must be page sized. can't ask for CONTIG/QREF if you asked for
2734 * REMOVE.
2735 */
2736
2737 KASSERTMSG((start & PAGE_MASK) == 0, "start=0x%"PRIxVADDR, start);
2738 KASSERTMSG((len & PAGE_MASK) == 0, "len=0x%"PRIxVADDR, len);
2739 KASSERT((flags & UVM_EXTRACT_REMOVE) == 0 ||
2740 (flags & (UVM_EXTRACT_CONTIG|UVM_EXTRACT_QREF)) == 0);
2741
2742 /*
2743 * step 1: reserve space in the target map for the extracted area
2744 */
2745
2746 if ((flags & UVM_EXTRACT_RESERVED) == 0) {
2747 dstaddr = vm_map_min(dstmap);
2748 if (!uvm_map_reserve(dstmap, len, start,
2749 atop(start) & uvmexp.colormask, &dstaddr,
2750 UVM_FLAG_COLORMATCH))
2751 return (ENOMEM);
2752 KASSERT((atop(start ^ dstaddr) & uvmexp.colormask) == 0);
2753 *dstaddrp = dstaddr; /* pass address back to caller */
2754 UVMHIST_LOG(maphist, " dstaddr=%#jx", dstaddr,0,0,0);
2755 } else {
2756 dstaddr = *dstaddrp;
2757 }
2758
2759 /*
2760 * step 2: setup for the extraction process loop by init'ing the
2761 * map entry chain, locking src map, and looking up the first useful
2762 * entry in the map.
2763 */
2764
2765 end = start + len;
2766 newend = dstaddr + len;
2767 chain = endchain = NULL;
2768 nchain = 0;
2769 nsize = 0;
2770 vm_map_lock(srcmap);
2771
2772 if (uvm_map_lookup_entry(srcmap, start, &entry)) {
2773
2774 /* "start" is within an entry */
2775 if (flags & UVM_EXTRACT_QREF) {
2776
2777 /*
2778 * for quick references we don't clip the entry, so
2779 * the entry may map space "before" the starting
2780 * virtual address... this is the "fudge" factor
2781 * (which can be non-zero only the first time
2782 * through the "while" loop in step 3).
2783 */
2784
2785 fudge = start - entry->start;
2786 } else {
2787
2788 /*
2789 * normal reference: we clip the map to fit (thus
2790 * fudge is zero)
2791 */
2792
2793 UVM_MAP_CLIP_START(srcmap, entry, start);
2794 SAVE_HINT(srcmap, srcmap->hint, entry->prev);
2795 fudge = 0;
2796 }
2797 } else {
2798
2799 /* "start" is not within an entry ... skip to next entry */
2800 if (flags & UVM_EXTRACT_CONTIG) {
2801 error = EINVAL;
2802 goto bad; /* definite hole here ... */
2803 }
2804
2805 entry = entry->next;
2806 fudge = 0;
2807 }
2808
2809 /* save values from srcmap for step 6 */
2810 orig_entry = entry;
2811 orig_fudge = fudge;
2812
2813 /*
2814 * step 3: now start looping through the map entries, extracting
2815 * as we go.
2816 */
2817
2818 while (entry->start < end && entry != &srcmap->header) {
2819
2820 /* if we are not doing a quick reference, clip it */
2821 if ((flags & UVM_EXTRACT_QREF) == 0)
2822 UVM_MAP_CLIP_END(srcmap, entry, end);
2823
2824 /* clear needs_copy (allow chunking) */
2825 if (UVM_ET_ISNEEDSCOPY(entry)) {
2826 amap_copy(srcmap, entry,
2827 AMAP_COPY_NOWAIT|AMAP_COPY_NOMERGE, start, end);
2828 if (UVM_ET_ISNEEDSCOPY(entry)) { /* failed? */
2829 error = ENOMEM;
2830 goto bad;
2831 }
2832
2833 /* amap_copy could clip (during chunk)! update fudge */
2834 if (fudge) {
2835 fudge = start - entry->start;
2836 orig_fudge = fudge;
2837 }
2838 }
2839
2840 /* calculate the offset of this from "start" */
2841 oldoffset = (entry->start + fudge) - start;
2842
2843 /* allocate a new map entry */
2844 newentry = uvm_mapent_alloc(dstmap, 0);
2845 if (newentry == NULL) {
2846 error = ENOMEM;
2847 goto bad;
2848 }
2849
2850 /* set up new map entry */
2851 newentry->next = NULL;
2852 newentry->prev = endchain;
2853 newentry->start = dstaddr + oldoffset;
2854 newentry->end =
2855 newentry->start + (entry->end - (entry->start + fudge));
2856 if (newentry->end > newend || newentry->end < newentry->start)
2857 newentry->end = newend;
2858 newentry->object.uvm_obj = entry->object.uvm_obj;
2859 if (newentry->object.uvm_obj) {
2860 if (newentry->object.uvm_obj->pgops->pgo_reference)
2861 newentry->object.uvm_obj->pgops->
2862 pgo_reference(newentry->object.uvm_obj);
2863 newentry->offset = entry->offset + fudge;
2864 } else {
2865 newentry->offset = 0;
2866 }
2867 newentry->etype = entry->etype;
2868 if (flags & UVM_EXTRACT_PROT_ALL) {
2869 newentry->protection = newentry->max_protection =
2870 UVM_PROT_ALL;
2871 } else {
2872 newentry->protection = (flags & UVM_EXTRACT_FIXPROT) ?
2873 entry->max_protection : entry->protection;
2874 newentry->max_protection = entry->max_protection;
2875 }
2876 newentry->inheritance = entry->inheritance;
2877 newentry->wired_count = 0;
2878 newentry->aref.ar_amap = entry->aref.ar_amap;
2879 if (newentry->aref.ar_amap) {
2880 newentry->aref.ar_pageoff =
2881 entry->aref.ar_pageoff + (fudge >> PAGE_SHIFT);
2882 uvm_map_reference_amap(newentry, AMAP_SHARED |
2883 ((flags & UVM_EXTRACT_QREF) ? AMAP_REFALL : 0));
2884 } else {
2885 newentry->aref.ar_pageoff = 0;
2886 }
2887 newentry->advice = entry->advice;
2888 if ((flags & UVM_EXTRACT_QREF) != 0) {
2889 newentry->flags |= UVM_MAP_NOMERGE;
2890 }
2891
2892 /* now link it on the chain */
2893 nchain++;
2894 nsize += newentry->end - newentry->start;
2895 if (endchain == NULL) {
2896 chain = endchain = newentry;
2897 } else {
2898 endchain->next = newentry;
2899 endchain = newentry;
2900 }
2901
2902 /* end of 'while' loop! */
2903 if ((flags & UVM_EXTRACT_CONTIG) && entry->end < end &&
2904 (entry->next == &srcmap->header ||
2905 entry->next->start != entry->end)) {
2906 error = EINVAL;
2907 goto bad;
2908 }
2909 entry = entry->next;
2910 fudge = 0;
2911 }
2912
2913 /*
2914 * step 4: close off chain (in format expected by uvm_map_replace)
2915 */
2916
2917 if (chain)
2918 chain->prev = endchain;
2919
2920 /*
2921 * step 5: attempt to lock the dest map so we can pmap_copy.
2922 * note usage of copy_ok:
2923 * 1 => dstmap locked, pmap_copy ok, and we "replace" here (step 5)
2924 * 0 => dstmap unlocked, NO pmap_copy, and we will "replace" in step 7
2925 */
2926
2927 if (srcmap == dstmap || vm_map_lock_try(dstmap) == true) {
2928 copy_ok = 1;
2929 if (!uvm_map_replace(dstmap, dstaddr, dstaddr+len, chain,
2930 nchain, nsize, &resentry)) {
2931 if (srcmap != dstmap)
2932 vm_map_unlock(dstmap);
2933 error = EIO;
2934 goto bad;
2935 }
2936 } else {
2937 copy_ok = 0;
2938 /* replace deferred until step 7 */
2939 }
2940
2941 /*
2942 * step 6: traverse the srcmap a second time to do the following:
2943 * - if we got a lock on the dstmap do pmap_copy
2944 * - if UVM_EXTRACT_REMOVE remove the entries
2945 * we make use of orig_entry and orig_fudge (saved in step 2)
2946 */
2947
2948 if (copy_ok || (flags & UVM_EXTRACT_REMOVE)) {
2949
2950 /* purge possible stale hints from srcmap */
2951 if (flags & UVM_EXTRACT_REMOVE) {
2952 SAVE_HINT(srcmap, srcmap->hint, orig_entry->prev);
2953 if (srcmap->first_free != &srcmap->header &&
2954 srcmap->first_free->start >= start)
2955 srcmap->first_free = orig_entry->prev;
2956 }
2957
2958 entry = orig_entry;
2959 fudge = orig_fudge;
2960 deadentry = NULL; /* for UVM_EXTRACT_REMOVE */
2961
2962 while (entry->start < end && entry != &srcmap->header) {
2963 if (copy_ok) {
2964 oldoffset = (entry->start + fudge) - start;
2965 elen = MIN(end, entry->end) -
2966 (entry->start + fudge);
2967 pmap_copy(dstmap->pmap, srcmap->pmap,
2968 dstaddr + oldoffset, elen,
2969 entry->start + fudge);
2970 }
2971
2972 /* we advance "entry" in the following if statement */
2973 if (flags & UVM_EXTRACT_REMOVE) {
2974 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
2975 uvm_map_lock_entry(entry, RW_WRITER);
2976 #else
2977 uvm_map_lock_entry(entry, RW_READER);
2978 #endif
2979 pmap_remove(srcmap->pmap, entry->start,
2980 entry->end);
2981 uvm_map_unlock_entry(entry);
2982 oldentry = entry; /* save entry */
2983 entry = entry->next; /* advance */
2984 uvm_map_entry_unlink(srcmap, oldentry);
2985 /* add to dead list */
2986 oldentry->next = deadentry;
2987 deadentry = oldentry;
2988 } else {
2989 entry = entry->next; /* advance */
2990 }
2991
2992 /* end of 'while' loop */
2993 fudge = 0;
2994 }
2995 pmap_update(srcmap->pmap);
2996
2997 /*
2998 * unlock dstmap. we will dispose of deadentry in
2999 * step 7 if needed
3000 */
3001
3002 if (copy_ok && srcmap != dstmap)
3003 vm_map_unlock(dstmap);
3004
3005 } else {
3006 deadentry = NULL;
3007 }
3008
3009 /*
3010 * step 7: we are done with the source map, unlock. if copy_ok
3011 * is 0 then we have not replaced the dummy mapping in dstmap yet
3012 * and we need to do so now.
3013 */
3014
3015 vm_map_unlock(srcmap);
3016 if ((flags & UVM_EXTRACT_REMOVE) && deadentry)
3017 uvm_unmap_detach(deadentry, 0); /* dispose of old entries */
3018
3019 /* now do the replacement if we didn't do it in step 5 */
3020 if (copy_ok == 0) {
3021 vm_map_lock(dstmap);
3022 error = uvm_map_replace(dstmap, dstaddr, dstaddr+len, chain,
3023 nchain, nsize, &resentry);
3024 vm_map_unlock(dstmap);
3025
3026 if (error == false) {
3027 error = EIO;
3028 goto bad2;
3029 }
3030 }
3031
3032 if (resentry != NULL)
3033 uvm_mapent_free(resentry);
3034
3035 return (0);
3036
3037 /*
3038 * bad: failure recovery
3039 */
3040 bad:
3041 vm_map_unlock(srcmap);
3042 bad2: /* src already unlocked */
3043 if (chain)
3044 uvm_unmap_detach(chain,
3045 (flags & UVM_EXTRACT_QREF) ? AMAP_REFALL : 0);
3046
3047 if (resentry != NULL)
3048 uvm_mapent_free(resentry);
3049
3050 if ((flags & UVM_EXTRACT_RESERVED) == 0) {
3051 uvm_unmap(dstmap, dstaddr, dstaddr+len); /* ??? */
3052 }
3053 return (error);
3054 }
3055
3056 /* end of extraction functions */
3057
3058 /*
3059 * uvm_map_submap: punch down part of a map into a submap
3060 *
3061 * => only the kernel_map is allowed to be submapped
3062 * => the purpose of submapping is to break up the locking granularity
3063 * of a larger map
3064 * => the range specified must have been mapped previously with a uvm_map()
3065 * call [with uobj==NULL] to create a blank map entry in the main map.
3066 * [And it had better still be blank!]
3067 * => maps which contain submaps should never be copied or forked.
3068 * => to remove a submap, use uvm_unmap() on the main map
3069 * and then uvm_map_deallocate() the submap.
3070 * => main map must be unlocked.
3071 * => submap must have been init'd and have a zero reference count.
3072 * [need not be locked as we don't actually reference it]
3073 */
3074
3075 int
3076 uvm_map_submap(struct vm_map *map, vaddr_t start, vaddr_t end,
3077 struct vm_map *submap)
3078 {
3079 struct vm_map_entry *entry;
3080 int error;
3081
3082 vm_map_lock(map);
3083 VM_MAP_RANGE_CHECK(map, start, end);
3084
3085 if (uvm_map_lookup_entry(map, start, &entry)) {
3086 UVM_MAP_CLIP_START(map, entry, start);
3087 UVM_MAP_CLIP_END(map, entry, end); /* to be safe */
3088 } else {
3089 entry = NULL;
3090 }
3091
3092 if (entry != NULL &&
3093 entry->start == start && entry->end == end &&
3094 entry->object.uvm_obj == NULL && entry->aref.ar_amap == NULL &&
3095 !UVM_ET_ISCOPYONWRITE(entry) && !UVM_ET_ISNEEDSCOPY(entry)) {
3096 entry->etype |= UVM_ET_SUBMAP;
3097 entry->object.sub_map = submap;
3098 entry->offset = 0;
3099 uvm_map_reference(submap);
3100 error = 0;
3101 } else {
3102 error = EINVAL;
3103 }
3104 vm_map_unlock(map);
3105
3106 return error;
3107 }
3108
3109 /*
3110 * uvm_map_protect_user: change map protection on behalf of the user.
3111 * Enforces PAX settings as necessary.
3112 */
3113 int
3114 uvm_map_protect_user(struct lwp *l, vaddr_t start, vaddr_t end,
3115 vm_prot_t new_prot)
3116 {
3117 int error;
3118
3119 if ((error = PAX_MPROTECT_VALIDATE(l, new_prot)))
3120 return error;
3121
3122 return uvm_map_protect(&l->l_proc->p_vmspace->vm_map, start, end,
3123 new_prot, false);
3124 }
3125
3126
3127 /*
3128 * uvm_map_protect: change map protection
3129 *
3130 * => set_max means set max_protection.
3131 * => map must be unlocked.
3132 */
3133
3134 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
3135 ~VM_PROT_WRITE : VM_PROT_ALL)
3136
3137 int
3138 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
3139 vm_prot_t new_prot, bool set_max)
3140 {
3141 struct vm_map_entry *current, *entry;
3142 int error = 0;
3143 UVMHIST_FUNC(__func__);
3144 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,new_prot=%#jx)",
3145 (uintptr_t)map, start, end, new_prot);
3146
3147 vm_map_lock(map);
3148 VM_MAP_RANGE_CHECK(map, start, end);
3149 if (uvm_map_lookup_entry(map, start, &entry)) {
3150 UVM_MAP_CLIP_START(map, entry, start);
3151 } else {
3152 entry = entry->next;
3153 }
3154
3155 /*
3156 * make a first pass to check for protection violations.
3157 */
3158
3159 current = entry;
3160 while ((current != &map->header) && (current->start < end)) {
3161 if (UVM_ET_ISSUBMAP(current)) {
3162 error = EINVAL;
3163 goto out;
3164 }
3165 if ((new_prot & current->max_protection) != new_prot) {
3166 error = EACCES;
3167 goto out;
3168 }
3169 /*
3170 * Don't allow VM_PROT_EXECUTE to be set on entries that
3171 * point to vnodes that are associated with a NOEXEC file
3172 * system.
3173 */
3174 if (UVM_ET_ISOBJ(current) &&
3175 UVM_OBJ_IS_VNODE(current->object.uvm_obj)) {
3176 struct vnode *vp =
3177 (struct vnode *) current->object.uvm_obj;
3178
3179 if ((new_prot & VM_PROT_EXECUTE) != 0 &&
3180 (vp->v_mount->mnt_flag & MNT_NOEXEC) != 0) {
3181 error = EACCES;
3182 goto out;
3183 }
3184 }
3185
3186 current = current->next;
3187 }
3188
3189 /* go back and fix up protections (no need to clip this time). */
3190
3191 current = entry;
3192 while ((current != &map->header) && (current->start < end)) {
3193 vm_prot_t old_prot;
3194
3195 UVM_MAP_CLIP_END(map, current, end);
3196 old_prot = current->protection;
3197 if (set_max)
3198 current->protection =
3199 (current->max_protection = new_prot) & old_prot;
3200 else
3201 current->protection = new_prot;
3202
3203 /*
3204 * update physical map if necessary. worry about copy-on-write
3205 * here -- CHECK THIS XXX
3206 */
3207
3208 if (current->protection != old_prot) {
3209 /* update pmap! */
3210 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
3211 uvm_map_lock_entry(current, RW_WRITER);
3212 #else
3213 uvm_map_lock_entry(current, RW_READER);
3214 #endif
3215 pmap_protect(map->pmap, current->start, current->end,
3216 current->protection & MASK(current));
3217 uvm_map_unlock_entry(current);
3218
3219 /*
3220 * If this entry points at a vnode, and the
3221 * protection includes VM_PROT_EXECUTE, mark
3222 * the vnode as VEXECMAP.
3223 */
3224 if (UVM_ET_ISOBJ(current)) {
3225 struct uvm_object *uobj =
3226 current->object.uvm_obj;
3227
3228 if (UVM_OBJ_IS_VNODE(uobj) &&
3229 (current->protection & VM_PROT_EXECUTE)) {
3230 vn_markexec((struct vnode *) uobj);
3231 }
3232 }
3233 }
3234
3235 /*
3236 * If the map is configured to lock any future mappings,
3237 * wire this entry now if the old protection was VM_PROT_NONE
3238 * and the new protection is not VM_PROT_NONE.
3239 */
3240
3241 if ((map->flags & VM_MAP_WIREFUTURE) != 0 &&
3242 VM_MAPENT_ISWIRED(current) == 0 &&
3243 old_prot == VM_PROT_NONE &&
3244 new_prot != VM_PROT_NONE) {
3245
3246 /*
3247 * We must call pmap_update() here because the
3248 * pmap_protect() call above might have removed some
3249 * pmap entries and uvm_map_pageable() might create
3250 * some new pmap entries that rely on the prior
3251 * removals being completely finished.
3252 */
3253
3254 pmap_update(map->pmap);
3255
3256 if (uvm_map_pageable(map, current->start,
3257 current->end, false,
3258 UVM_LK_ENTER|UVM_LK_EXIT) != 0) {
3259
3260 /*
3261 * If locking the entry fails, remember the
3262 * error if it's the first one. Note we
3263 * still continue setting the protection in
3264 * the map, but will return the error
3265 * condition regardless.
3266 *
3267 * XXX Ignore what the actual error is,
3268 * XXX just call it a resource shortage
3269 * XXX so that it doesn't get confused
3270 * XXX what uvm_map_protect() itself would
3271 * XXX normally return.
3272 */
3273
3274 error = ENOMEM;
3275 }
3276 }
3277 current = current->next;
3278 }
3279 pmap_update(map->pmap);
3280
3281 out:
3282 vm_map_unlock(map);
3283
3284 UVMHIST_LOG(maphist, "<- done, error=%jd",error,0,0,0);
3285 return error;
3286 }
3287
3288 #undef MASK
3289
3290 /*
3291 * uvm_map_inherit: set inheritance code for range of addrs in map.
3292 *
3293 * => map must be unlocked
3294 * => note that the inherit code is used during a "fork". see fork
3295 * code for details.
3296 */
3297
3298 int
3299 uvm_map_inherit(struct vm_map *map, vaddr_t start, vaddr_t end,
3300 vm_inherit_t new_inheritance)
3301 {
3302 struct vm_map_entry *entry, *temp_entry;
3303 UVMHIST_FUNC(__func__);
3304 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,new_inh=%#jx)",
3305 (uintptr_t)map, start, end, new_inheritance);
3306
3307 switch (new_inheritance) {
3308 case MAP_INHERIT_NONE:
3309 case MAP_INHERIT_COPY:
3310 case MAP_INHERIT_SHARE:
3311 case MAP_INHERIT_ZERO:
3312 break;
3313 default:
3314 UVMHIST_LOG(maphist,"<- done (INVALID ARG)",0,0,0,0);
3315 return EINVAL;
3316 }
3317
3318 vm_map_lock(map);
3319 VM_MAP_RANGE_CHECK(map, start, end);
3320 if (uvm_map_lookup_entry(map, start, &temp_entry)) {
3321 entry = temp_entry;
3322 UVM_MAP_CLIP_START(map, entry, start);
3323 } else {
3324 entry = temp_entry->next;
3325 }
3326 while ((entry != &map->header) && (entry->start < end)) {
3327 UVM_MAP_CLIP_END(map, entry, end);
3328 entry->inheritance = new_inheritance;
3329 entry = entry->next;
3330 }
3331 vm_map_unlock(map);
3332 UVMHIST_LOG(maphist,"<- done (OK)",0,0,0,0);
3333 return 0;
3334 }
3335
3336 /*
3337 * uvm_map_advice: set advice code for range of addrs in map.
3338 *
3339 * => map must be unlocked
3340 */
3341
3342 int
3343 uvm_map_advice(struct vm_map *map, vaddr_t start, vaddr_t end, int new_advice)
3344 {
3345 struct vm_map_entry *entry, *temp_entry;
3346 UVMHIST_FUNC(__func__);
3347 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,new_adv=%#jx)",
3348 (uintptr_t)map, start, end, new_advice);
3349
3350 vm_map_lock(map);
3351 VM_MAP_RANGE_CHECK(map, start, end);
3352 if (uvm_map_lookup_entry(map, start, &temp_entry)) {
3353 entry = temp_entry;
3354 UVM_MAP_CLIP_START(map, entry, start);
3355 } else {
3356 entry = temp_entry->next;
3357 }
3358
3359 /*
3360 * XXXJRT: disallow holes?
3361 */
3362
3363 while ((entry != &map->header) && (entry->start < end)) {
3364 UVM_MAP_CLIP_END(map, entry, end);
3365
3366 switch (new_advice) {
3367 case MADV_NORMAL:
3368 case MADV_RANDOM:
3369 case MADV_SEQUENTIAL:
3370 /* nothing special here */
3371 break;
3372
3373 default:
3374 vm_map_unlock(map);
3375 UVMHIST_LOG(maphist,"<- done (INVALID ARG)",0,0,0,0);
3376 return EINVAL;
3377 }
3378 entry->advice = new_advice;
3379 entry = entry->next;
3380 }
3381
3382 vm_map_unlock(map);
3383 UVMHIST_LOG(maphist,"<- done (OK)",0,0,0,0);
3384 return 0;
3385 }
3386
3387 /*
3388 * uvm_map_willneed: apply MADV_WILLNEED
3389 */
3390
3391 int
3392 uvm_map_willneed(struct vm_map *map, vaddr_t start, vaddr_t end)
3393 {
3394 struct vm_map_entry *entry;
3395 UVMHIST_FUNC(__func__);
3396 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx)",
3397 (uintptr_t)map, start, end, 0);
3398
3399 vm_map_lock_read(map);
3400 VM_MAP_RANGE_CHECK(map, start, end);
3401 if (!uvm_map_lookup_entry(map, start, &entry)) {
3402 entry = entry->next;
3403 }
3404 while (entry->start < end) {
3405 struct vm_amap * const amap = entry->aref.ar_amap;
3406 struct uvm_object * const uobj = entry->object.uvm_obj;
3407
3408 KASSERT(entry != &map->header);
3409 KASSERT(start < entry->end);
3410 /*
3411 * For now, we handle only the easy but commonly-requested case.
3412 * ie. start prefetching of backing uobj pages.
3413 *
3414 * XXX It might be useful to pmap_enter() the already-in-core
3415 * pages by inventing a "weak" mode for uvm_fault() which would
3416 * only do the PGO_LOCKED pgo_get().
3417 */
3418 if (UVM_ET_ISOBJ(entry) && amap == NULL && uobj != NULL) {
3419 off_t offset;
3420 off_t size;
3421
3422 offset = entry->offset;
3423 if (start < entry->start) {
3424 offset += entry->start - start;
3425 }
3426 size = entry->offset + (entry->end - entry->start);
3427 if (entry->end < end) {
3428 size -= end - entry->end;
3429 }
3430 uvm_readahead(uobj, offset, size);
3431 }
3432 entry = entry->next;
3433 }
3434 vm_map_unlock_read(map);
3435 UVMHIST_LOG(maphist,"<- done (OK)",0,0,0,0);
3436 return 0;
3437 }
3438
3439 /*
3440 * uvm_map_pageable: sets the pageability of a range in a map.
3441 *
3442 * => wires map entries. should not be used for transient page locking.
3443 * for that, use uvm_fault_wire()/uvm_fault_unwire() (see uvm_vslock()).
3444 * => regions specified as not pageable require lock-down (wired) memory
3445 * and page tables.
3446 * => map must never be read-locked
3447 * => if islocked is true, map is already write-locked
3448 * => we always unlock the map, since we must downgrade to a read-lock
3449 * to call uvm_fault_wire()
3450 * => XXXCDC: check this and try and clean it up.
3451 */
3452
3453 int
3454 uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end,
3455 bool new_pageable, int lockflags)
3456 {
3457 struct vm_map_entry *entry, *start_entry, *failed_entry;
3458 int rv;
3459 #ifdef DIAGNOSTIC
3460 u_int timestamp_save;
3461 #endif
3462 UVMHIST_FUNC(__func__);
3463 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,new_pageable=%ju)",
3464 (uintptr_t)map, start, end, new_pageable);
3465 KASSERT(map->flags & VM_MAP_PAGEABLE);
3466
3467 if ((lockflags & UVM_LK_ENTER) == 0)
3468 vm_map_lock(map);
3469 VM_MAP_RANGE_CHECK(map, start, end);
3470
3471 /*
3472 * only one pageability change may take place at one time, since
3473 * uvm_fault_wire assumes it will be called only once for each
3474 * wiring/unwiring. therefore, we have to make sure we're actually
3475 * changing the pageability for the entire region. we do so before
3476 * making any changes.
3477 */
3478
3479 if (uvm_map_lookup_entry(map, start, &start_entry) == false) {
3480 if ((lockflags & UVM_LK_EXIT) == 0)
3481 vm_map_unlock(map);
3482
3483 UVMHIST_LOG(maphist,"<- done (fault)",0,0,0,0);
3484 return EFAULT;
3485 }
3486 entry = start_entry;
3487
3488 if (start == end) { /* nothing required */
3489 if ((lockflags & UVM_LK_EXIT) == 0)
3490 vm_map_unlock(map);
3491
3492 UVMHIST_LOG(maphist,"<- done (nothing)",0,0,0,0);
3493 return 0;
3494 }
3495
3496 /*
3497 * handle wiring and unwiring separately.
3498 */
3499
3500 if (new_pageable) { /* unwire */
3501 UVM_MAP_CLIP_START(map, entry, start);
3502
3503 /*
3504 * unwiring. first ensure that the range to be unwired is
3505 * really wired down and that there are no holes.
3506 */
3507
3508 while ((entry != &map->header) && (entry->start < end)) {
3509 if (entry->wired_count == 0 ||
3510 (entry->end < end &&
3511 (entry->next == &map->header ||
3512 entry->next->start > entry->end))) {
3513 if ((lockflags & UVM_LK_EXIT) == 0)
3514 vm_map_unlock(map);
3515 UVMHIST_LOG(maphist, "<- done (INVAL)",0,0,0,0);
3516 return EINVAL;
3517 }
3518 entry = entry->next;
3519 }
3520
3521 /*
3522 * POSIX 1003.1b - a single munlock call unlocks a region,
3523 * regardless of the number of mlock calls made on that
3524 * region.
3525 */
3526
3527 entry = start_entry;
3528 while ((entry != &map->header) && (entry->start < end)) {
3529 UVM_MAP_CLIP_END(map, entry, end);
3530 if (VM_MAPENT_ISWIRED(entry))
3531 uvm_map_entry_unwire(map, entry);
3532 entry = entry->next;
3533 }
3534 if ((lockflags & UVM_LK_EXIT) == 0)
3535 vm_map_unlock(map);
3536 UVMHIST_LOG(maphist,"<- done (OK UNWIRE)",0,0,0,0);
3537 return 0;
3538 }
3539
3540 /*
3541 * wire case: in two passes [XXXCDC: ugly block of code here]
3542 *
3543 * 1: holding the write lock, we create any anonymous maps that need
3544 * to be created. then we clip each map entry to the region to
3545 * be wired and increment its wiring count.
3546 *
3547 * 2: we downgrade to a read lock, and call uvm_fault_wire to fault
3548 * in the pages for any newly wired area (wired_count == 1).
3549 *
3550 * downgrading to a read lock for uvm_fault_wire avoids a possible
3551 * deadlock with another thread that may have faulted on one of
3552 * the pages to be wired (it would mark the page busy, blocking
3553 * us, then in turn block on the map lock that we hold). because
3554 * of problems in the recursive lock package, we cannot upgrade
3555 * to a write lock in vm_map_lookup. thus, any actions that
3556 * require the write lock must be done beforehand. because we
3557 * keep the read lock on the map, the copy-on-write status of the
3558 * entries we modify here cannot change.
3559 */
3560
3561 while ((entry != &map->header) && (entry->start < end)) {
3562 if (VM_MAPENT_ISWIRED(entry) == 0) { /* not already wired? */
3563
3564 /*
3565 * perform actions of vm_map_lookup that need the
3566 * write lock on the map: create an anonymous map
3567 * for a copy-on-write region, or an anonymous map
3568 * for a zero-fill region. (XXXCDC: submap case
3569 * ok?)
3570 */
3571
3572 if (!UVM_ET_ISSUBMAP(entry)) { /* not submap */
3573 if (UVM_ET_ISNEEDSCOPY(entry) &&
3574 ((entry->max_protection & VM_PROT_WRITE) ||
3575 (entry->object.uvm_obj == NULL))) {
3576 amap_copy(map, entry, 0, start, end);
3577 /* XXXCDC: wait OK? */
3578 }
3579 }
3580 }
3581 UVM_MAP_CLIP_START(map, entry, start);
3582 UVM_MAP_CLIP_END(map, entry, end);
3583 entry->wired_count++;
3584
3585 /*
3586 * Check for holes
3587 */
3588
3589 if (entry->protection == VM_PROT_NONE ||
3590 (entry->end < end &&
3591 (entry->next == &map->header ||
3592 entry->next->start > entry->end))) {
3593
3594 /*
3595 * found one. amap creation actions do not need to
3596 * be undone, but the wired counts need to be restored.
3597 */
3598
3599 while (entry != &map->header && entry->end > start) {
3600 entry->wired_count--;
3601 entry = entry->prev;
3602 }
3603 if ((lockflags & UVM_LK_EXIT) == 0)
3604 vm_map_unlock(map);
3605 UVMHIST_LOG(maphist,"<- done (INVALID WIRE)",0,0,0,0);
3606 return EINVAL;
3607 }
3608 entry = entry->next;
3609 }
3610
3611 /*
3612 * Pass 2.
3613 */
3614
3615 #ifdef DIAGNOSTIC
3616 timestamp_save = map->timestamp;
3617 #endif
3618 vm_map_busy(map);
3619 vm_map_unlock(map);
3620
3621 rv = 0;
3622 entry = start_entry;
3623 while (entry != &map->header && entry->start < end) {
3624 if (entry->wired_count == 1) {
3625 rv = uvm_fault_wire(map, entry->start, entry->end,
3626 entry->max_protection, 1);
3627 if (rv) {
3628
3629 /*
3630 * wiring failed. break out of the loop.
3631 * we'll clean up the map below, once we
3632 * have a write lock again.
3633 */
3634
3635 break;
3636 }
3637 }
3638 entry = entry->next;
3639 }
3640
3641 if (rv) { /* failed? */
3642
3643 /*
3644 * Get back to an exclusive (write) lock.
3645 */
3646
3647 vm_map_lock(map);
3648 vm_map_unbusy(map);
3649
3650 #ifdef DIAGNOSTIC
3651 if (timestamp_save + 1 != map->timestamp)
3652 panic("uvm_map_pageable: stale map");
3653 #endif
3654
3655 /*
3656 * first drop the wiring count on all the entries
3657 * which haven't actually been wired yet.
3658 */
3659
3660 failed_entry = entry;
3661 while (entry != &map->header && entry->start < end) {
3662 entry->wired_count--;
3663 entry = entry->next;
3664 }
3665
3666 /*
3667 * now, unwire all the entries that were successfully
3668 * wired above.
3669 */
3670
3671 entry = start_entry;
3672 while (entry != failed_entry) {
3673 entry->wired_count--;
3674 if (VM_MAPENT_ISWIRED(entry) == 0)
3675 uvm_map_entry_unwire(map, entry);
3676 entry = entry->next;
3677 }
3678 if ((lockflags & UVM_LK_EXIT) == 0)
3679 vm_map_unlock(map);
3680 UVMHIST_LOG(maphist, "<- done (RV=%jd)", rv,0,0,0);
3681 return (rv);
3682 }
3683
3684 if ((lockflags & UVM_LK_EXIT) == 0) {
3685 vm_map_unbusy(map);
3686 } else {
3687
3688 /*
3689 * Get back to an exclusive (write) lock.
3690 */
3691
3692 vm_map_lock(map);
3693 vm_map_unbusy(map);
3694 }
3695
3696 UVMHIST_LOG(maphist,"<- done (OK WIRE)",0,0,0,0);
3697 return 0;
3698 }
3699
3700 /*
3701 * uvm_map_pageable_all: special case of uvm_map_pageable - affects
3702 * all mapped regions.
3703 *
3704 * => map must not be locked.
3705 * => if no flags are specified, all regions are unwired.
3706 * => XXXJRT: has some of the same problems as uvm_map_pageable() above.
3707 */
3708
3709 int
3710 uvm_map_pageable_all(struct vm_map *map, int flags, vsize_t limit)
3711 {
3712 struct vm_map_entry *entry, *failed_entry;
3713 vsize_t size;
3714 int rv;
3715 #ifdef DIAGNOSTIC
3716 u_int timestamp_save;
3717 #endif
3718 UVMHIST_FUNC(__func__);
3719 UVMHIST_CALLARGS(maphist,"(map=%#jx,flags=%#jx)", (uintptr_t)map, flags,
3720 0, 0);
3721
3722 KASSERT(map->flags & VM_MAP_PAGEABLE);
3723
3724 vm_map_lock(map);
3725
3726 /*
3727 * handle wiring and unwiring separately.
3728 */
3729
3730 if (flags == 0) { /* unwire */
3731
3732 /*
3733 * POSIX 1003.1b -- munlockall unlocks all regions,
3734 * regardless of how many times mlockall has been called.
3735 */
3736
3737 for (entry = map->header.next; entry != &map->header;
3738 entry = entry->next) {
3739 if (VM_MAPENT_ISWIRED(entry))
3740 uvm_map_entry_unwire(map, entry);
3741 }
3742 map->flags &= ~VM_MAP_WIREFUTURE;
3743 vm_map_unlock(map);
3744 UVMHIST_LOG(maphist,"<- done (OK UNWIRE)",0,0,0,0);
3745 return 0;
3746 }
3747
3748 if (flags & MCL_FUTURE) {
3749
3750 /*
3751 * must wire all future mappings; remember this.
3752 */
3753
3754 map->flags |= VM_MAP_WIREFUTURE;
3755 }
3756
3757 if ((flags & MCL_CURRENT) == 0) {
3758
3759 /*
3760 * no more work to do!
3761 */
3762
3763 UVMHIST_LOG(maphist,"<- done (OK no wire)",0,0,0,0);
3764 vm_map_unlock(map);
3765 return 0;
3766 }
3767
3768 /*
3769 * wire case: in three passes [XXXCDC: ugly block of code here]
3770 *
3771 * 1: holding the write lock, count all pages mapped by non-wired
3772 * entries. if this would cause us to go over our limit, we fail.
3773 *
3774 * 2: still holding the write lock, we create any anonymous maps that
3775 * need to be created. then we increment its wiring count.
3776 *
3777 * 3: we downgrade to a read lock, and call uvm_fault_wire to fault
3778 * in the pages for any newly wired area (wired_count == 1).
3779 *
3780 * downgrading to a read lock for uvm_fault_wire avoids a possible
3781 * deadlock with another thread that may have faulted on one of
3782 * the pages to be wired (it would mark the page busy, blocking
3783 * us, then in turn block on the map lock that we hold). because
3784 * of problems in the recursive lock package, we cannot upgrade
3785 * to a write lock in vm_map_lookup. thus, any actions that
3786 * require the write lock must be done beforehand. because we
3787 * keep the read lock on the map, the copy-on-write status of the
3788 * entries we modify here cannot change.
3789 */
3790
3791 for (size = 0, entry = map->header.next; entry != &map->header;
3792 entry = entry->next) {
3793 if (entry->protection != VM_PROT_NONE &&
3794 VM_MAPENT_ISWIRED(entry) == 0) { /* not already wired? */
3795 size += entry->end - entry->start;
3796 }
3797 }
3798
3799 if (atop(size) + uvmexp.wired > uvmexp.wiredmax) {
3800 vm_map_unlock(map);
3801 return ENOMEM;
3802 }
3803
3804 if (limit != 0 &&
3805 (size + ptoa(pmap_wired_count(vm_map_pmap(map))) > limit)) {
3806 vm_map_unlock(map);
3807 return ENOMEM;
3808 }
3809
3810 /*
3811 * Pass 2.
3812 */
3813
3814 for (entry = map->header.next; entry != &map->header;
3815 entry = entry->next) {
3816 if (entry->protection == VM_PROT_NONE)
3817 continue;
3818 if (VM_MAPENT_ISWIRED(entry) == 0) { /* not already wired? */
3819
3820 /*
3821 * perform actions of vm_map_lookup that need the
3822 * write lock on the map: create an anonymous map
3823 * for a copy-on-write region, or an anonymous map
3824 * for a zero-fill region. (XXXCDC: submap case
3825 * ok?)
3826 */
3827
3828 if (!UVM_ET_ISSUBMAP(entry)) { /* not submap */
3829 if (UVM_ET_ISNEEDSCOPY(entry) &&
3830 ((entry->max_protection & VM_PROT_WRITE) ||
3831 (entry->object.uvm_obj == NULL))) {
3832 amap_copy(map, entry, 0, entry->start,
3833 entry->end);
3834 /* XXXCDC: wait OK? */
3835 }
3836 }
3837 }
3838 entry->wired_count++;
3839 }
3840
3841 /*
3842 * Pass 3.
3843 */
3844
3845 #ifdef DIAGNOSTIC
3846 timestamp_save = map->timestamp;
3847 #endif
3848 vm_map_busy(map);
3849 vm_map_unlock(map);
3850
3851 rv = 0;
3852 for (entry = map->header.next; entry != &map->header;
3853 entry = entry->next) {
3854 if (entry->wired_count == 1) {
3855 rv = uvm_fault_wire(map, entry->start, entry->end,
3856 entry->max_protection, 1);
3857 if (rv) {
3858
3859 /*
3860 * wiring failed. break out of the loop.
3861 * we'll clean up the map below, once we
3862 * have a write lock again.
3863 */
3864
3865 break;
3866 }
3867 }
3868 }
3869
3870 if (rv) {
3871
3872 /*
3873 * Get back an exclusive (write) lock.
3874 */
3875
3876 vm_map_lock(map);
3877 vm_map_unbusy(map);
3878
3879 #ifdef DIAGNOSTIC
3880 if (timestamp_save + 1 != map->timestamp)
3881 panic("uvm_map_pageable_all: stale map");
3882 #endif
3883
3884 /*
3885 * first drop the wiring count on all the entries
3886 * which haven't actually been wired yet.
3887 *
3888 * Skip VM_PROT_NONE entries like we did above.
3889 */
3890
3891 failed_entry = entry;
3892 for (/* nothing */; entry != &map->header;
3893 entry = entry->next) {
3894 if (entry->protection == VM_PROT_NONE)
3895 continue;
3896 entry->wired_count--;
3897 }
3898
3899 /*
3900 * now, unwire all the entries that were successfully
3901 * wired above.
3902 *
3903 * Skip VM_PROT_NONE entries like we did above.
3904 */
3905
3906 for (entry = map->header.next; entry != failed_entry;
3907 entry = entry->next) {
3908 if (entry->protection == VM_PROT_NONE)
3909 continue;
3910 entry->wired_count--;
3911 if (VM_MAPENT_ISWIRED(entry))
3912 uvm_map_entry_unwire(map, entry);
3913 }
3914 vm_map_unlock(map);
3915 UVMHIST_LOG(maphist,"<- done (RV=%jd)", rv,0,0,0);
3916 return (rv);
3917 }
3918
3919 vm_map_unbusy(map);
3920
3921 UVMHIST_LOG(maphist,"<- done (OK WIRE)",0,0,0,0);
3922 return 0;
3923 }
3924
3925 /*
3926 * uvm_map_clean: clean out a map range
3927 *
3928 * => valid flags:
3929 * if (flags & PGO_CLEANIT): dirty pages are cleaned first
3930 * if (flags & PGO_SYNCIO): dirty pages are written synchronously
3931 * if (flags & PGO_DEACTIVATE): any cached pages are deactivated after clean
3932 * if (flags & PGO_FREE): any cached pages are freed after clean
3933 * => returns an error if any part of the specified range isn't mapped
3934 * => never a need to flush amap layer since the anonymous memory has
3935 * no permanent home, but may deactivate pages there
3936 * => called from sys_msync() and sys_madvise()
3937 * => caller must not have map locked
3938 */
3939
3940 int
3941 uvm_map_clean(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
3942 {
3943 struct vm_map_entry *current, *entry;
3944 struct uvm_object *uobj;
3945 struct vm_amap *amap;
3946 struct vm_anon *anon;
3947 struct vm_page *pg;
3948 vaddr_t offset;
3949 vsize_t size;
3950 voff_t uoff;
3951 int error, refs;
3952 UVMHIST_FUNC(__func__);
3953 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,flags=%#jx)",
3954 (uintptr_t)map, start, end, flags);
3955
3956 KASSERT((flags & (PGO_FREE|PGO_DEACTIVATE)) !=
3957 (PGO_FREE|PGO_DEACTIVATE));
3958
3959 vm_map_lock(map);
3960 VM_MAP_RANGE_CHECK(map, start, end);
3961 if (!uvm_map_lookup_entry(map, start, &entry)) {
3962 vm_map_unlock(map);
3963 return EFAULT;
3964 }
3965
3966 /*
3967 * Make a first pass to check for holes and wiring problems.
3968 */
3969
3970 for (current = entry; current->start < end; current = current->next) {
3971 if (UVM_ET_ISSUBMAP(current)) {
3972 vm_map_unlock(map);
3973 return EINVAL;
3974 }
3975 if ((flags & PGO_FREE) != 0 && VM_MAPENT_ISWIRED(entry)) {
3976 vm_map_unlock(map);
3977 return EBUSY;
3978 }
3979 if (end <= current->end) {
3980 break;
3981 }
3982 if (current->end != current->next->start) {
3983 vm_map_unlock(map);
3984 return EFAULT;
3985 }
3986 }
3987
3988 vm_map_busy(map);
3989 vm_map_unlock(map);
3990 error = 0;
3991 for (current = entry; start < end; current = current->next) {
3992 amap = current->aref.ar_amap; /* upper layer */
3993 uobj = current->object.uvm_obj; /* lower layer */
3994 KASSERT(start >= current->start);
3995
3996 /*
3997 * No amap cleaning necessary if:
3998 *
3999 * (1) There's no amap.
4000 *
4001 * (2) We're not deactivating or freeing pages.
4002 */
4003
4004 if (amap == NULL || (flags & (PGO_DEACTIVATE|PGO_FREE)) == 0)
4005 goto flush_object;
4006
4007 offset = start - current->start;
4008 size = MIN(end, current->end) - start;
4009
4010 amap_lock(amap, RW_WRITER);
4011 for ( ; size != 0; size -= PAGE_SIZE, offset += PAGE_SIZE) {
4012 anon = amap_lookup(¤t->aref, offset);
4013 if (anon == NULL)
4014 continue;
4015
4016 KASSERT(anon->an_lock == amap->am_lock);
4017 pg = anon->an_page;
4018 if (pg == NULL) {
4019 continue;
4020 }
4021 if (pg->flags & PG_BUSY) {
4022 continue;
4023 }
4024
4025 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
4026
4027 /*
4028 * In these first 3 cases, we just deactivate the page.
4029 */
4030
4031 case PGO_CLEANIT|PGO_FREE:
4032 case PGO_CLEANIT|PGO_DEACTIVATE:
4033 case PGO_DEACTIVATE:
4034 deactivate_it:
4035 /*
4036 * skip the page if it's loaned or wired,
4037 * since it shouldn't be on a paging queue
4038 * at all in these cases.
4039 */
4040
4041 if (pg->loan_count != 0 ||
4042 pg->wire_count != 0) {
4043 continue;
4044 }
4045 KASSERT(pg->uanon == anon);
4046 uvm_pagelock(pg);
4047 uvm_pagedeactivate(pg);
4048 uvm_pageunlock(pg);
4049 continue;
4050
4051 case PGO_FREE:
4052
4053 /*
4054 * If there are multiple references to
4055 * the amap, just deactivate the page.
4056 */
4057
4058 if (amap_refs(amap) > 1)
4059 goto deactivate_it;
4060
4061 /* skip the page if it's wired */
4062 if (pg->wire_count != 0) {
4063 continue;
4064 }
4065 amap_unadd(¤t->aref, offset);
4066 refs = --anon->an_ref;
4067 if (refs == 0) {
4068 uvm_anfree(anon);
4069 }
4070 continue;
4071 }
4072 }
4073 amap_unlock(amap);
4074
4075 flush_object:
4076 /*
4077 * flush pages if we've got a valid backing object.
4078 * note that we must always clean object pages before
4079 * freeing them since otherwise we could reveal stale
4080 * data from files.
4081 */
4082
4083 uoff = current->offset + (start - current->start);
4084 size = MIN(end, current->end) - start;
4085 if (uobj != NULL) {
4086 rw_enter(uobj->vmobjlock, RW_WRITER);
4087 if (uobj->pgops->pgo_put != NULL)
4088 error = (uobj->pgops->pgo_put)(uobj, uoff,
4089 uoff + size, flags | PGO_CLEANIT);
4090 else
4091 error = 0;
4092 }
4093 start += size;
4094 }
4095 vm_map_unbusy(map);
4096 return error;
4097 }
4098
4099
4100 /*
4101 * uvm_map_checkprot: check protection in map
4102 *
4103 * => must allow specified protection in a fully allocated region.
4104 * => map must be read or write locked by caller.
4105 */
4106
4107 bool
4108 uvm_map_checkprot(struct vm_map *map, vaddr_t start, vaddr_t end,
4109 vm_prot_t protection)
4110 {
4111 struct vm_map_entry *entry;
4112 struct vm_map_entry *tmp_entry;
4113
4114 if (!uvm_map_lookup_entry(map, start, &tmp_entry)) {
4115 return (false);
4116 }
4117 entry = tmp_entry;
4118 while (start < end) {
4119 if (entry == &map->header) {
4120 return (false);
4121 }
4122
4123 /*
4124 * no holes allowed
4125 */
4126
4127 if (start < entry->start) {
4128 return (false);
4129 }
4130
4131 /*
4132 * check protection associated with entry
4133 */
4134
4135 if ((entry->protection & protection) != protection) {
4136 return (false);
4137 }
4138 start = entry->end;
4139 entry = entry->next;
4140 }
4141 return (true);
4142 }
4143
4144 /*
4145 * uvmspace_alloc: allocate a vmspace structure.
4146 *
4147 * - structure includes vm_map and pmap
4148 * - XXX: no locking on this structure
4149 * - refcnt set to 1, rest must be init'd by caller
4150 */
4151 struct vmspace *
4152 uvmspace_alloc(vaddr_t vmin, vaddr_t vmax, bool topdown)
4153 {
4154 struct vmspace *vm;
4155 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4156
4157 vm = kmem_alloc(sizeof(*vm), KM_SLEEP);
4158 uvmspace_init(vm, NULL, vmin, vmax, topdown);
4159 UVMHIST_LOG(maphist,"<- done (vm=%#jx)", (uintptr_t)vm, 0, 0, 0);
4160 return (vm);
4161 }
4162
4163 /*
4164 * uvmspace_init: initialize a vmspace structure.
4165 *
4166 * - XXX: no locking on this structure
4167 * - refcnt set to 1, rest must be init'd by caller
4168 */
4169 void
4170 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin,
4171 vaddr_t vmax, bool topdown)
4172 {
4173 UVMHIST_FUNC(__func__);
4174 UVMHIST_CALLARGS(maphist, "(vm=%#jx, pmap=%#jx, vmin=%#jx, vmax=%#jx",
4175 (uintptr_t)vm, (uintptr_t)pmap, vmin, vmax);
4176 UVMHIST_LOG(maphist, " topdown=%ju)", topdown, 0, 0, 0);
4177
4178 memset(vm, 0, sizeof(*vm));
4179 uvm_map_setup(&vm->vm_map, vmin, vmax, VM_MAP_PAGEABLE
4180 | (topdown ? VM_MAP_TOPDOWN : 0)
4181 );
4182 if (pmap)
4183 pmap_reference(pmap);
4184 else
4185 pmap = pmap_create();
4186 vm->vm_map.pmap = pmap;
4187 vm->vm_refcnt = 1;
4188 UVMHIST_LOG(maphist,"<- done",0,0,0,0);
4189 }
4190
4191 /*
4192 * uvmspace_share: share a vmspace between two processes
4193 *
4194 * - used for vfork, threads(?)
4195 */
4196
4197 void
4198 uvmspace_share(struct proc *p1, struct proc *p2)
4199 {
4200
4201 uvmspace_addref(p1->p_vmspace);
4202 p2->p_vmspace = p1->p_vmspace;
4203 }
4204
4205 #if 0
4206
4207 /*
4208 * uvmspace_unshare: ensure that process "p" has its own, unshared, vmspace
4209 *
4210 * - XXX: no locking on vmspace
4211 */
4212
4213 void
4214 uvmspace_unshare(struct lwp *l)
4215 {
4216 struct proc *p = l->l_proc;
4217 struct vmspace *nvm, *ovm = p->p_vmspace;
4218
4219 if (ovm->vm_refcnt == 1)
4220 /* nothing to do: vmspace isn't shared in the first place */
4221 return;
4222
4223 /* make a new vmspace, still holding old one */
4224 nvm = uvmspace_fork(ovm);
4225
4226 kpreempt_disable();
4227 pmap_deactivate(l); /* unbind old vmspace */
4228 p->p_vmspace = nvm;
4229 pmap_activate(l); /* switch to new vmspace */
4230 kpreempt_enable();
4231
4232 uvmspace_free(ovm); /* drop reference to old vmspace */
4233 }
4234
4235 #endif
4236
4237
4238 /*
4239 * uvmspace_spawn: a new process has been spawned and needs a vmspace
4240 */
4241
4242 void
4243 uvmspace_spawn(struct lwp *l, vaddr_t start, vaddr_t end, bool topdown)
4244 {
4245 struct proc *p = l->l_proc;
4246 struct vmspace *nvm;
4247
4248 #ifdef __HAVE_CPU_VMSPACE_EXEC
4249 cpu_vmspace_exec(l, start, end);
4250 #endif
4251
4252 nvm = uvmspace_alloc(start, end, topdown);
4253 kpreempt_disable();
4254 p->p_vmspace = nvm;
4255 pmap_activate(l);
4256 kpreempt_enable();
4257 }
4258
4259 /*
4260 * uvmspace_exec: the process wants to exec a new program
4261 */
4262
4263 void
4264 uvmspace_exec(struct lwp *l, vaddr_t start, vaddr_t end, bool topdown)
4265 {
4266 struct proc *p = l->l_proc;
4267 struct vmspace *nvm, *ovm = p->p_vmspace;
4268 struct vm_map *map;
4269 int flags;
4270
4271 KASSERT(ovm != NULL);
4272 #ifdef __HAVE_CPU_VMSPACE_EXEC
4273 cpu_vmspace_exec(l, start, end);
4274 #endif
4275
4276 map = &ovm->vm_map;
4277 /*
4278 * see if more than one process is using this vmspace...
4279 */
4280
4281 if (ovm->vm_refcnt == 1
4282 && topdown == ((ovm->vm_map.flags & VM_MAP_TOPDOWN) != 0)) {
4283
4284 /*
4285 * if p is the only process using its vmspace then we can safely
4286 * recycle that vmspace for the program that is being exec'd.
4287 * But only if TOPDOWN matches the requested value for the new
4288 * vm space!
4289 */
4290
4291 /*
4292 * SYSV SHM semantics require us to kill all segments on an exec
4293 */
4294 if (uvm_shmexit && ovm->vm_shm)
4295 (*uvm_shmexit)(ovm);
4296
4297 /*
4298 * POSIX 1003.1b -- "lock future mappings" is revoked
4299 * when a process execs another program image.
4300 */
4301
4302 map->flags &= ~VM_MAP_WIREFUTURE;
4303
4304 /*
4305 * now unmap the old program.
4306 *
4307 * XXX set VM_MAP_DYING for the duration, so pmap_update()
4308 * is not called until the pmap has been totally cleared out
4309 * after pmap_remove_all(), or it can confuse some pmap
4310 * implementations. it would be nice to handle this by
4311 * deferring the pmap_update() while it is known the address
4312 * space is not visible to any user LWP other than curlwp,
4313 * but there isn't an elegant way of inferring that right
4314 * now.
4315 */
4316
4317 flags = pmap_remove_all(map->pmap) ? UVM_FLAG_VAONLY : 0;
4318 map->flags |= VM_MAP_DYING;
4319 uvm_unmap1(map, vm_map_min(map), vm_map_max(map), flags);
4320 map->flags &= ~VM_MAP_DYING;
4321 pmap_update(map->pmap);
4322 KASSERT(map->header.prev == &map->header);
4323 KASSERT(map->nentries == 0);
4324
4325 /*
4326 * resize the map
4327 */
4328
4329 vm_map_setmin(map, start);
4330 vm_map_setmax(map, end);
4331 } else {
4332
4333 /*
4334 * p's vmspace is being shared, so we can't reuse it for p since
4335 * it is still being used for others. allocate a new vmspace
4336 * for p
4337 */
4338
4339 nvm = uvmspace_alloc(start, end, topdown);
4340
4341 /*
4342 * install new vmspace and drop our ref to the old one.
4343 */
4344
4345 kpreempt_disable();
4346 pmap_deactivate(l);
4347 p->p_vmspace = nvm;
4348 pmap_activate(l);
4349 kpreempt_enable();
4350
4351 uvmspace_free(ovm);
4352 }
4353 }
4354
4355 /*
4356 * uvmspace_addref: add a reference to a vmspace.
4357 */
4358
4359 void
4360 uvmspace_addref(struct vmspace *vm)
4361 {
4362
4363 KASSERT((vm->vm_map.flags & VM_MAP_DYING) == 0);
4364 KASSERT(vm->vm_refcnt > 0);
4365 atomic_inc_uint(&vm->vm_refcnt);
4366 }
4367
4368 /*
4369 * uvmspace_free: free a vmspace data structure
4370 */
4371
4372 void
4373 uvmspace_free(struct vmspace *vm)
4374 {
4375 struct vm_map_entry *dead_entries;
4376 struct vm_map *map = &vm->vm_map;
4377 int flags;
4378
4379 UVMHIST_FUNC(__func__);
4380 UVMHIST_CALLARGS(maphist,"(vm=%#jx) ref=%jd", (uintptr_t)vm,
4381 vm->vm_refcnt, 0, 0);
4382
4383 membar_release();
4384 if (atomic_dec_uint_nv(&vm->vm_refcnt) > 0)
4385 return;
4386 membar_acquire();
4387
4388 /*
4389 * at this point, there should be no other references to the map.
4390 * delete all of the mappings, then destroy the pmap.
4391 */
4392
4393 map->flags |= VM_MAP_DYING;
4394 flags = pmap_remove_all(map->pmap) ? UVM_FLAG_VAONLY : 0;
4395
4396 /* Get rid of any SYSV shared memory segments. */
4397 if (uvm_shmexit && vm->vm_shm != NULL)
4398 (*uvm_shmexit)(vm);
4399
4400 if (map->nentries) {
4401 uvm_unmap_remove(map, vm_map_min(map), vm_map_max(map),
4402 &dead_entries, flags);
4403 if (dead_entries != NULL)
4404 uvm_unmap_detach(dead_entries, 0);
4405 }
4406 KASSERT(map->nentries == 0);
4407 KASSERT(map->size == 0);
4408
4409 mutex_destroy(&map->misc_lock);
4410 rw_destroy(&map->lock);
4411 cv_destroy(&map->cv);
4412 pmap_destroy(map->pmap);
4413 kmem_free(vm, sizeof(*vm));
4414 }
4415
4416 static struct vm_map_entry *
4417 uvm_mapent_clone(struct vm_map *new_map, struct vm_map_entry *old_entry,
4418 int flags)
4419 {
4420 struct vm_map_entry *new_entry;
4421
4422 new_entry = uvm_mapent_alloc(new_map, 0);
4423 /* old_entry -> new_entry */
4424 uvm_mapent_copy(old_entry, new_entry);
4425
4426 /* new pmap has nothing wired in it */
4427 new_entry->wired_count = 0;
4428
4429 /*
4430 * gain reference to object backing the map (can't
4431 * be a submap, already checked this case).
4432 */
4433
4434 if (new_entry->aref.ar_amap)
4435 uvm_map_reference_amap(new_entry, flags);
4436
4437 if (new_entry->object.uvm_obj &&
4438 new_entry->object.uvm_obj->pgops->pgo_reference)
4439 new_entry->object.uvm_obj->pgops->pgo_reference(
4440 new_entry->object.uvm_obj);
4441
4442 /* insert entry at end of new_map's entry list */
4443 uvm_map_entry_link(new_map, new_map->header.prev,
4444 new_entry);
4445
4446 return new_entry;
4447 }
4448
4449 /*
4450 * share the mapping: this means we want the old and
4451 * new entries to share amaps and backing objects.
4452 */
4453 static void
4454 uvm_mapent_forkshared(struct vm_map *new_map, struct vm_map *old_map,
4455 struct vm_map_entry *old_entry)
4456 {
4457 /*
4458 * if the old_entry needs a new amap (due to prev fork)
4459 * then we need to allocate it now so that we have
4460 * something we own to share with the new_entry. [in
4461 * other words, we need to clear needs_copy]
4462 */
4463
4464 if (UVM_ET_ISNEEDSCOPY(old_entry)) {
4465 /* get our own amap, clears needs_copy */
4466 amap_copy(old_map, old_entry, AMAP_COPY_NOCHUNK,
4467 0, 0);
4468 /* XXXCDC: WAITOK??? */
4469 }
4470
4471 uvm_mapent_clone(new_map, old_entry, AMAP_SHARED);
4472 }
4473
4474
4475 static void
4476 uvm_mapent_forkcopy(struct vm_map *new_map, struct vm_map *old_map,
4477 struct vm_map_entry *old_entry)
4478 {
4479 struct vm_map_entry *new_entry;
4480
4481 /*
4482 * copy-on-write the mapping (using mmap's
4483 * MAP_PRIVATE semantics)
4484 *
4485 * allocate new_entry, adjust reference counts.
4486 * (note that new references are read-only).
4487 */
4488
4489 new_entry = uvm_mapent_clone(new_map, old_entry, 0);
4490
4491 new_entry->etype |=
4492 (UVM_ET_COPYONWRITE|UVM_ET_NEEDSCOPY);
4493
4494 /*
4495 * the new entry will need an amap. it will either
4496 * need to be copied from the old entry or created
4497 * from scratch (if the old entry does not have an
4498 * amap). can we defer this process until later
4499 * (by setting "needs_copy") or do we need to copy
4500 * the amap now?
4501 *
4502 * we must copy the amap now if any of the following
4503 * conditions hold:
4504 * 1. the old entry has an amap and that amap is
4505 * being shared. this means that the old (parent)
4506 * process is sharing the amap with another
4507 * process. if we do not clear needs_copy here
4508 * we will end up in a situation where both the
4509 * parent and child process are referring to the
4510 * same amap with "needs_copy" set. if the
4511 * parent write-faults, the fault routine will
4512 * clear "needs_copy" in the parent by allocating
4513 * a new amap. this is wrong because the
4514 * parent is supposed to be sharing the old amap
4515 * and the new amap will break that.
4516 *
4517 * 2. if the old entry has an amap and a non-zero
4518 * wire count then we are going to have to call
4519 * amap_cow_now to avoid page faults in the
4520 * parent process. since amap_cow_now requires
4521 * "needs_copy" to be clear we might as well
4522 * clear it here as well.
4523 *
4524 */
4525
4526 if (old_entry->aref.ar_amap != NULL) {
4527 if ((amap_flags(old_entry->aref.ar_amap) & AMAP_SHARED) != 0 ||
4528 VM_MAPENT_ISWIRED(old_entry)) {
4529
4530 amap_copy(new_map, new_entry,
4531 AMAP_COPY_NOCHUNK, 0, 0);
4532 /* XXXCDC: M_WAITOK ... ok? */
4533 }
4534 }
4535
4536 /*
4537 * if the parent's entry is wired down, then the
4538 * parent process does not want page faults on
4539 * access to that memory. this means that we
4540 * cannot do copy-on-write because we can't write
4541 * protect the old entry. in this case we
4542 * resolve all copy-on-write faults now, using
4543 * amap_cow_now. note that we have already
4544 * allocated any needed amap (above).
4545 */
4546
4547 if (VM_MAPENT_ISWIRED(old_entry)) {
4548
4549 /*
4550 * resolve all copy-on-write faults now
4551 * (note that there is nothing to do if
4552 * the old mapping does not have an amap).
4553 */
4554 if (old_entry->aref.ar_amap)
4555 amap_cow_now(new_map, new_entry);
4556
4557 } else {
4558 /*
4559 * setup mappings to trigger copy-on-write faults
4560 * we must write-protect the parent if it has
4561 * an amap and it is not already "needs_copy"...
4562 * if it is already "needs_copy" then the parent
4563 * has already been write-protected by a previous
4564 * fork operation.
4565 */
4566 if (old_entry->aref.ar_amap &&
4567 !UVM_ET_ISNEEDSCOPY(old_entry)) {
4568 if (old_entry->max_protection & VM_PROT_WRITE) {
4569 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
4570 uvm_map_lock_entry(old_entry, RW_WRITER);
4571 #else
4572 uvm_map_lock_entry(old_entry, RW_READER);
4573 #endif
4574 pmap_protect(old_map->pmap,
4575 old_entry->start, old_entry->end,
4576 old_entry->protection & ~VM_PROT_WRITE);
4577 uvm_map_unlock_entry(old_entry);
4578 }
4579 old_entry->etype |= UVM_ET_NEEDSCOPY;
4580 }
4581 }
4582 }
4583
4584 /*
4585 * zero the mapping: the new entry will be zero initialized
4586 */
4587 static void
4588 uvm_mapent_forkzero(struct vm_map *new_map, struct vm_map *old_map,
4589 struct vm_map_entry *old_entry)
4590 {
4591 struct vm_map_entry *new_entry;
4592
4593 new_entry = uvm_mapent_clone(new_map, old_entry, 0);
4594
4595 new_entry->etype |=
4596 (UVM_ET_COPYONWRITE|UVM_ET_NEEDSCOPY);
4597
4598 if (new_entry->aref.ar_amap) {
4599 uvm_map_unreference_amap(new_entry, 0);
4600 new_entry->aref.ar_pageoff = 0;
4601 new_entry->aref.ar_amap = NULL;
4602 }
4603
4604 if (UVM_ET_ISOBJ(new_entry)) {
4605 if (new_entry->object.uvm_obj->pgops->pgo_detach)
4606 new_entry->object.uvm_obj->pgops->pgo_detach(
4607 new_entry->object.uvm_obj);
4608 new_entry->object.uvm_obj = NULL;
4609 new_entry->offset = 0;
4610 new_entry->etype &= ~UVM_ET_OBJ;
4611 }
4612 }
4613
4614 /*
4615 * F O R K - m a i n e n t r y p o i n t
4616 */
4617 /*
4618 * uvmspace_fork: fork a process' main map
4619 *
4620 * => create a new vmspace for child process from parent.
4621 * => parent's map must not be locked.
4622 */
4623
4624 struct vmspace *
4625 uvmspace_fork(struct vmspace *vm1)
4626 {
4627 struct vmspace *vm2;
4628 struct vm_map *old_map = &vm1->vm_map;
4629 struct vm_map *new_map;
4630 struct vm_map_entry *old_entry;
4631 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4632
4633 vm_map_lock(old_map);
4634
4635 vm2 = uvmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4636 vm1->vm_map.flags & VM_MAP_TOPDOWN);
4637 memcpy(&vm2->vm_startcopy, &vm1->vm_startcopy,
4638 (char *) (vm1 + 1) - (char *) &vm1->vm_startcopy);
4639 new_map = &vm2->vm_map; /* XXX */
4640
4641 old_entry = old_map->header.next;
4642 new_map->size = old_map->size;
4643
4644 /*
4645 * go entry-by-entry
4646 */
4647
4648 while (old_entry != &old_map->header) {
4649
4650 /*
4651 * first, some sanity checks on the old entry
4652 */
4653
4654 KASSERT(!UVM_ET_ISSUBMAP(old_entry));
4655 KASSERT(UVM_ET_ISCOPYONWRITE(old_entry) ||
4656 !UVM_ET_ISNEEDSCOPY(old_entry));
4657
4658 switch (old_entry->inheritance) {
4659 case MAP_INHERIT_NONE:
4660 /*
4661 * drop the mapping, modify size
4662 */
4663 new_map->size -= old_entry->end - old_entry->start;
4664 break;
4665
4666 case MAP_INHERIT_SHARE:
4667 uvm_mapent_forkshared(new_map, old_map, old_entry);
4668 break;
4669
4670 case MAP_INHERIT_COPY:
4671 uvm_mapent_forkcopy(new_map, old_map, old_entry);
4672 break;
4673
4674 case MAP_INHERIT_ZERO:
4675 uvm_mapent_forkzero(new_map, old_map, old_entry);
4676 break;
4677 default:
4678 KASSERT(0);
4679 break;
4680 }
4681 old_entry = old_entry->next;
4682 }
4683
4684 pmap_update(old_map->pmap);
4685 vm_map_unlock(old_map);
4686
4687 if (uvm_shmfork && vm1->vm_shm)
4688 (*uvm_shmfork)(vm1, vm2);
4689
4690 #ifdef PMAP_FORK
4691 pmap_fork(vm1->vm_map.pmap, vm2->vm_map.pmap);
4692 #endif
4693
4694 UVMHIST_LOG(maphist,"<- done",0,0,0,0);
4695 return (vm2);
4696 }
4697
4698
4699 /*
4700 * uvm_mapent_trymerge: try to merge an entry with its neighbors.
4701 *
4702 * => called with map locked.
4703 * => return non zero if successfully merged.
4704 */
4705
4706 int
4707 uvm_mapent_trymerge(struct vm_map *map, struct vm_map_entry *entry, int flags)
4708 {
4709 struct uvm_object *uobj;
4710 struct vm_map_entry *next;
4711 struct vm_map_entry *prev;
4712 vsize_t size;
4713 int merged = 0;
4714 bool copying;
4715 int newetype;
4716
4717 if (entry->aref.ar_amap != NULL) {
4718 return 0;
4719 }
4720 if ((entry->flags & UVM_MAP_NOMERGE) != 0) {
4721 return 0;
4722 }
4723
4724 uobj = entry->object.uvm_obj;
4725 size = entry->end - entry->start;
4726 copying = (flags & UVM_MERGE_COPYING) != 0;
4727 newetype = copying ? (entry->etype & ~UVM_ET_NEEDSCOPY) : entry->etype;
4728
4729 next = entry->next;
4730 if (next != &map->header &&
4731 next->start == entry->end &&
4732 ((copying && next->aref.ar_amap != NULL &&
4733 amap_refs(next->aref.ar_amap) == 1) ||
4734 (!copying && next->aref.ar_amap == NULL)) &&
4735 UVM_ET_ISCOMPATIBLE(next, newetype,
4736 uobj, entry->flags, entry->protection,
4737 entry->max_protection, entry->inheritance, entry->advice,
4738 entry->wired_count) &&
4739 (uobj == NULL || entry->offset + size == next->offset)) {
4740 int error;
4741
4742 if (copying) {
4743 error = amap_extend(next, size,
4744 AMAP_EXTEND_NOWAIT|AMAP_EXTEND_BACKWARDS);
4745 } else {
4746 error = 0;
4747 }
4748 if (error == 0) {
4749 if (uobj) {
4750 if (uobj->pgops->pgo_detach) {
4751 uobj->pgops->pgo_detach(uobj);
4752 }
4753 }
4754
4755 entry->end = next->end;
4756 clear_hints(map, next);
4757 uvm_map_entry_unlink(map, next);
4758 if (copying) {
4759 entry->aref = next->aref;
4760 entry->etype &= ~UVM_ET_NEEDSCOPY;
4761 }
4762 uvm_map_check(map, "trymerge forwardmerge");
4763 uvm_mapent_free(next);
4764 merged++;
4765 }
4766 }
4767
4768 prev = entry->prev;
4769 if (prev != &map->header &&
4770 prev->end == entry->start &&
4771 ((copying && !merged && prev->aref.ar_amap != NULL &&
4772 amap_refs(prev->aref.ar_amap) == 1) ||
4773 (!copying && prev->aref.ar_amap == NULL)) &&
4774 UVM_ET_ISCOMPATIBLE(prev, newetype,
4775 uobj, entry->flags, entry->protection,
4776 entry->max_protection, entry->inheritance, entry->advice,
4777 entry->wired_count) &&
4778 (uobj == NULL ||
4779 prev->offset + prev->end - prev->start == entry->offset)) {
4780 int error;
4781
4782 if (copying) {
4783 error = amap_extend(prev, size,
4784 AMAP_EXTEND_NOWAIT|AMAP_EXTEND_FORWARDS);
4785 } else {
4786 error = 0;
4787 }
4788 if (error == 0) {
4789 if (uobj) {
4790 if (uobj->pgops->pgo_detach) {
4791 uobj->pgops->pgo_detach(uobj);
4792 }
4793 entry->offset = prev->offset;
4794 }
4795
4796 entry->start = prev->start;
4797 clear_hints(map, prev);
4798 uvm_map_entry_unlink(map, prev);
4799 if (copying) {
4800 entry->aref = prev->aref;
4801 entry->etype &= ~UVM_ET_NEEDSCOPY;
4802 }
4803 uvm_map_check(map, "trymerge backmerge");
4804 uvm_mapent_free(prev);
4805 merged++;
4806 }
4807 }
4808
4809 return merged;
4810 }
4811
4812 /*
4813 * uvm_map_setup: init map
4814 *
4815 * => map must not be in service yet.
4816 */
4817
4818 void
4819 uvm_map_setup(struct vm_map *map, vaddr_t vmin, vaddr_t vmax, int flags)
4820 {
4821
4822 rb_tree_init(&map->rb_tree, &uvm_map_tree_ops);
4823 map->header.next = map->header.prev = &map->header;
4824 map->nentries = 0;
4825 map->size = 0;
4826 map->ref_count = 1;
4827 vm_map_setmin(map, vmin);
4828 vm_map_setmax(map, vmax);
4829 map->flags = flags;
4830 map->first_free = &map->header;
4831 map->hint = &map->header;
4832 map->timestamp = 0;
4833 map->busy = NULL;
4834
4835 rw_init(&map->lock);
4836 cv_init(&map->cv, "vm_map");
4837 mutex_init(&map->misc_lock, MUTEX_DRIVER, IPL_NONE);
4838 }
4839
4840 /*
4841 * U N M A P - m a i n e n t r y p o i n t
4842 */
4843
4844 /*
4845 * uvm_unmap1: remove mappings from a vm_map (from "start" up to "stop")
4846 *
4847 * => caller must check alignment and size
4848 * => map must be unlocked (we will lock it)
4849 * => flags is UVM_FLAG_QUANTUM or 0.
4850 */
4851
4852 void
4853 uvm_unmap1(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
4854 {
4855 struct vm_map_entry *dead_entries;
4856 UVMHIST_FUNC(__func__);
4857 UVMHIST_CALLARGS(maphist, " (map=%#jx, start=%#jx, end=%#jx)",
4858 (uintptr_t)map, start, end, 0);
4859
4860 KASSERTMSG(start < end,
4861 "%s: map %p: start %#jx < end %#jx", __func__, map,
4862 (uintmax_t)start, (uintmax_t)end);
4863 if (map == kernel_map) {
4864 LOCKDEBUG_MEM_CHECK((void *)start, end - start);
4865 }
4866
4867 /*
4868 * work now done by helper functions. wipe the pmap's and then
4869 * detach from the dead entries...
4870 */
4871 vm_map_lock(map);
4872 uvm_unmap_remove(map, start, end, &dead_entries, flags);
4873 vm_map_unlock(map);
4874
4875 if (dead_entries != NULL)
4876 uvm_unmap_detach(dead_entries, 0);
4877
4878 UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
4879 }
4880
4881
4882 /*
4883 * uvm_map_reference: add reference to a map
4884 *
4885 * => map need not be locked
4886 */
4887
4888 void
4889 uvm_map_reference(struct vm_map *map)
4890 {
4891
4892 atomic_inc_uint(&map->ref_count);
4893 }
4894
4895 void
4896 uvm_map_lock_entry(struct vm_map_entry *entry, krw_t op)
4897 {
4898
4899 if (entry->aref.ar_amap != NULL) {
4900 amap_lock(entry->aref.ar_amap, op);
4901 }
4902 if (UVM_ET_ISOBJ(entry)) {
4903 rw_enter(entry->object.uvm_obj->vmobjlock, op);
4904 }
4905 }
4906
4907 void
4908 uvm_map_unlock_entry(struct vm_map_entry *entry)
4909 {
4910
4911 if (UVM_ET_ISOBJ(entry)) {
4912 rw_exit(entry->object.uvm_obj->vmobjlock);
4913 }
4914 if (entry->aref.ar_amap != NULL) {
4915 amap_unlock(entry->aref.ar_amap);
4916 }
4917 }
4918
4919 #define UVM_VOADDR_TYPE_MASK 0x3UL
4920 #define UVM_VOADDR_TYPE_UOBJ 0x1UL
4921 #define UVM_VOADDR_TYPE_ANON 0x2UL
4922 #define UVM_VOADDR_OBJECT_MASK ~UVM_VOADDR_TYPE_MASK
4923
4924 #define UVM_VOADDR_GET_TYPE(voa) \
4925 ((voa)->object & UVM_VOADDR_TYPE_MASK)
4926 #define UVM_VOADDR_GET_OBJECT(voa) \
4927 ((voa)->object & UVM_VOADDR_OBJECT_MASK)
4928 #define UVM_VOADDR_SET_OBJECT(voa, obj, type) \
4929 do { \
4930 KASSERT(((uintptr_t)(obj) & UVM_VOADDR_TYPE_MASK) == 0); \
4931 (voa)->object = ((uintptr_t)(obj)) | (type); \
4932 } while (/*CONSTCOND*/0)
4933
4934 #define UVM_VOADDR_GET_UOBJ(voa) \
4935 ((struct uvm_object *)UVM_VOADDR_GET_OBJECT(voa))
4936 #define UVM_VOADDR_SET_UOBJ(voa, uobj) \
4937 UVM_VOADDR_SET_OBJECT(voa, uobj, UVM_VOADDR_TYPE_UOBJ)
4938
4939 #define UVM_VOADDR_GET_ANON(voa) \
4940 ((struct vm_anon *)UVM_VOADDR_GET_OBJECT(voa))
4941 #define UVM_VOADDR_SET_ANON(voa, anon) \
4942 UVM_VOADDR_SET_OBJECT(voa, anon, UVM_VOADDR_TYPE_ANON)
4943
4944 /*
4945 * uvm_voaddr_acquire: returns the virtual object address corresponding
4946 * to the specified virtual address.
4947 *
4948 * => resolves COW so the true page identity is tracked.
4949 *
4950 * => acquires a reference on the page's owner (uvm_object or vm_anon)
4951 */
4952 bool
4953 uvm_voaddr_acquire(struct vm_map * const map, vaddr_t const va,
4954 struct uvm_voaddr * const voaddr)
4955 {
4956 struct vm_map_entry *entry;
4957 struct vm_anon *anon = NULL;
4958 bool result = false;
4959 bool exclusive = false;
4960 void (*unlock_fn)(struct vm_map *);
4961
4962 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4963 UVMHIST_LOG(maphist,"(map=%#jx,va=%#jx)", (uintptr_t)map, va, 0, 0);
4964
4965 const vaddr_t start = trunc_page(va);
4966 const vaddr_t end = round_page(va+1);
4967
4968 lookup_again:
4969 if (__predict_false(exclusive)) {
4970 vm_map_lock(map);
4971 unlock_fn = vm_map_unlock;
4972 } else {
4973 vm_map_lock_read(map);
4974 unlock_fn = vm_map_unlock_read;
4975 }
4976
4977 if (__predict_false(!uvm_map_lookup_entry(map, start, &entry))) {
4978 unlock_fn(map);
4979 UVMHIST_LOG(maphist,"<- done (no entry)",0,0,0,0);
4980 return false;
4981 }
4982
4983 if (__predict_false(entry->protection == VM_PROT_NONE)) {
4984 unlock_fn(map);
4985 UVMHIST_LOG(maphist,"<- done (PROT_NONE)",0,0,0,0);
4986 return false;
4987 }
4988
4989 /*
4990 * We have a fast path for the common case of "no COW resolution
4991 * needed" whereby we have taken a read lock on the map and if
4992 * we don't encounter any need to create a vm_anon then great!
4993 * But if we do, we loop around again, instead taking an exclusive
4994 * lock so that we can perform the fault.
4995 *
4996 * In the event that we have to resolve the fault, we do nearly the
4997 * same work as uvm_map_pageable() does:
4998 *
4999 * 1: holding the write lock, we create any anonymous maps that need
5000 * to be created. however, we do NOT need to clip the map entries
5001 * in this case.
5002 *
5003 * 2: we downgrade to a read lock, and call uvm_fault_wire to fault
5004 * in the page (assuming the entry is not already wired). this
5005 * is done because we need the vm_anon to be present.
5006 */
5007 if (__predict_true(!VM_MAPENT_ISWIRED(entry))) {
5008
5009 bool need_fault = false;
5010
5011 /*
5012 * perform the action of vm_map_lookup that need the
5013 * write lock on the map: create an anonymous map for
5014 * a copy-on-write region, or an anonymous map for
5015 * a zero-fill region.
5016 */
5017 if (__predict_false(UVM_ET_ISSUBMAP(entry))) {
5018 unlock_fn(map);
5019 UVMHIST_LOG(maphist,"<- done (submap)",0,0,0,0);
5020 return false;
5021 }
5022 if (__predict_false(UVM_ET_ISNEEDSCOPY(entry) &&
5023 ((entry->max_protection & VM_PROT_WRITE) ||
5024 (entry->object.uvm_obj == NULL)))) {
5025 if (!exclusive) {
5026 /* need to take the slow path */
5027 KASSERT(unlock_fn == vm_map_unlock_read);
5028 vm_map_unlock_read(map);
5029 exclusive = true;
5030 goto lookup_again;
5031 }
5032 need_fault = true;
5033 amap_copy(map, entry, 0, start, end);
5034 /* XXXCDC: wait OK? */
5035 }
5036
5037 /*
5038 * do a quick check to see if the fault has already
5039 * been resolved to the upper layer.
5040 */
5041 if (__predict_true(entry->aref.ar_amap != NULL &&
5042 need_fault == false)) {
5043 amap_lock(entry->aref.ar_amap, RW_WRITER);
5044 anon = amap_lookup(&entry->aref, start - entry->start);
5045 if (__predict_true(anon != NULL)) {
5046 /* amap unlocked below */
5047 goto found_anon;
5048 }
5049 amap_unlock(entry->aref.ar_amap);
5050 need_fault = true;
5051 }
5052
5053 /*
5054 * we predict this test as false because if we reach
5055 * this point, then we are likely dealing with a
5056 * shared memory region backed by a uvm_object, in
5057 * which case a fault to create the vm_anon is not
5058 * necessary.
5059 */
5060 if (__predict_false(need_fault)) {
5061 if (exclusive) {
5062 vm_map_busy(map);
5063 vm_map_unlock(map);
5064 unlock_fn = vm_map_unbusy;
5065 }
5066
5067 if (uvm_fault_wire(map, start, end,
5068 entry->max_protection, 1)) {
5069 /* wiring failed */
5070 unlock_fn(map);
5071 UVMHIST_LOG(maphist,"<- done (wire failed)",
5072 0,0,0,0);
5073 return false;
5074 }
5075
5076 /*
5077 * now that we have resolved the fault, we can unwire
5078 * the page.
5079 */
5080 if (exclusive) {
5081 vm_map_lock(map);
5082 vm_map_unbusy(map);
5083 unlock_fn = vm_map_unlock;
5084 }
5085
5086 uvm_fault_unwire_locked(map, start, end);
5087 }
5088 }
5089
5090 /* check the upper layer */
5091 if (entry->aref.ar_amap) {
5092 amap_lock(entry->aref.ar_amap, RW_WRITER);
5093 anon = amap_lookup(&entry->aref, start - entry->start);
5094 if (anon) {
5095 found_anon: KASSERT(anon->an_lock == entry->aref.ar_amap->am_lock);
5096 anon->an_ref++;
5097 rw_obj_hold(anon->an_lock);
5098 KASSERT(anon->an_ref != 0);
5099 UVM_VOADDR_SET_ANON(voaddr, anon);
5100 voaddr->offset = va & PAGE_MASK;
5101 result = true;
5102 }
5103 amap_unlock(entry->aref.ar_amap);
5104 }
5105
5106 /* check the lower layer */
5107 if (!result && UVM_ET_ISOBJ(entry)) {
5108 struct uvm_object *uobj = entry->object.uvm_obj;
5109
5110 KASSERT(uobj != NULL);
5111 (*uobj->pgops->pgo_reference)(uobj);
5112 UVM_VOADDR_SET_UOBJ(voaddr, uobj);
5113 voaddr->offset = entry->offset + (va - entry->start);
5114 result = true;
5115 }
5116
5117 unlock_fn(map);
5118
5119 if (result) {
5120 UVMHIST_LOG(maphist,
5121 "<- done OK (type=%jd,owner=%#jx,offset=%#jx)",
5122 UVM_VOADDR_GET_TYPE(voaddr),
5123 UVM_VOADDR_GET_OBJECT(voaddr),
5124 voaddr->offset, 0);
5125 } else {
5126 UVMHIST_LOG(maphist,"<- done (failed)",0,0,0,0);
5127 }
5128
5129 return result;
5130 }
5131
5132 /*
5133 * uvm_voaddr_release: release the references held by the
5134 * vitual object address.
5135 */
5136 void
5137 uvm_voaddr_release(struct uvm_voaddr * const voaddr)
5138 {
5139
5140 switch (UVM_VOADDR_GET_TYPE(voaddr)) {
5141 case UVM_VOADDR_TYPE_UOBJ: {
5142 struct uvm_object * const uobj = UVM_VOADDR_GET_UOBJ(voaddr);
5143
5144 KASSERT(uobj != NULL);
5145 KASSERT(uobj->pgops->pgo_detach != NULL);
5146 (*uobj->pgops->pgo_detach)(uobj);
5147 break;
5148 }
5149 case UVM_VOADDR_TYPE_ANON: {
5150 struct vm_anon * const anon = UVM_VOADDR_GET_ANON(voaddr);
5151 krwlock_t *lock;
5152
5153 KASSERT(anon != NULL);
5154 rw_enter((lock = anon->an_lock), RW_WRITER);
5155 KASSERT(anon->an_ref > 0);
5156 if (--anon->an_ref == 0) {
5157 uvm_anfree(anon);
5158 }
5159 rw_exit(lock);
5160 rw_obj_free(lock);
5161 break;
5162 }
5163 default:
5164 panic("uvm_voaddr_release: bad type");
5165 }
5166 memset(voaddr, 0, sizeof(*voaddr));
5167 }
5168
5169 /*
5170 * uvm_voaddr_compare: compare two uvm_voaddr objects.
5171 *
5172 * => memcmp() semantics
5173 */
5174 int
5175 uvm_voaddr_compare(const struct uvm_voaddr * const voaddr1,
5176 const struct uvm_voaddr * const voaddr2)
5177 {
5178 const uintptr_t type1 = UVM_VOADDR_GET_TYPE(voaddr1);
5179 const uintptr_t type2 = UVM_VOADDR_GET_TYPE(voaddr2);
5180
5181 KASSERT(type1 == UVM_VOADDR_TYPE_UOBJ ||
5182 type1 == UVM_VOADDR_TYPE_ANON);
5183
5184 KASSERT(type2 == UVM_VOADDR_TYPE_UOBJ ||
5185 type2 == UVM_VOADDR_TYPE_ANON);
5186
5187 if (type1 < type2)
5188 return -1;
5189 if (type1 > type2)
5190 return 1;
5191
5192 const uintptr_t addr1 = UVM_VOADDR_GET_OBJECT(voaddr1);
5193 const uintptr_t addr2 = UVM_VOADDR_GET_OBJECT(voaddr2);
5194
5195 if (addr1 < addr2)
5196 return -1;
5197 if (addr1 > addr2)
5198 return 1;
5199
5200 if (voaddr1->offset < voaddr2->offset)
5201 return -1;
5202 if (voaddr1->offset > voaddr2->offset)
5203 return 1;
5204
5205 return 0;
5206 }
5207
5208 #if defined(DDB) || defined(DEBUGPRINT)
5209
5210 /*
5211 * uvm_map_printit: actually prints the map
5212 */
5213
5214 void
5215 uvm_map_printit(struct vm_map *map, bool full,
5216 void (*pr)(const char *, ...))
5217 {
5218 struct vm_map_entry *entry;
5219
5220 (*pr)("MAP %p: [%#lx->%#lx]\n", map, vm_map_min(map),
5221 vm_map_max(map));
5222 (*pr)("\t#ent=%d, sz=%d, ref=%d, version=%d, flags=%#x\n",
5223 map->nentries, map->size, map->ref_count, map->timestamp,
5224 map->flags);
5225 (*pr)("\tpmap=%p(resident=%ld, wired=%ld)\n", map->pmap,
5226 pmap_resident_count(map->pmap), pmap_wired_count(map->pmap));
5227 if (!full)
5228 return;
5229 for (entry = map->header.next; entry != &map->header;
5230 entry = entry->next) {
5231 (*pr)(" - %p: %#lx->%#lx: obj=%p/%#llx, amap=%p/%d\n",
5232 entry, entry->start, entry->end, entry->object.uvm_obj,
5233 (long long)entry->offset, entry->aref.ar_amap,
5234 entry->aref.ar_pageoff);
5235 (*pr)(
5236 "\tsubmap=%c, cow=%c, nc=%c, prot(max)=%d/%d, inh=%d, "
5237 "wc=%d, adv=%d%s\n",
5238 (entry->etype & UVM_ET_SUBMAP) ? 'T' : 'F',
5239 (entry->etype & UVM_ET_COPYONWRITE) ? 'T' : 'F',
5240 (entry->etype & UVM_ET_NEEDSCOPY) ? 'T' : 'F',
5241 entry->protection, entry->max_protection,
5242 entry->inheritance, entry->wired_count, entry->advice,
5243 entry == map->first_free ? " (first_free)" : "");
5244 }
5245 }
5246
5247 void
5248 uvm_whatis(uintptr_t addr, void (*pr)(const char *, ...))
5249 {
5250 struct vm_map *map;
5251
5252 for (map = kernel_map;;) {
5253 struct vm_map_entry *entry;
5254
5255 if (!uvm_map_lookup_entry_bytree(map, (vaddr_t)addr, &entry)) {
5256 break;
5257 }
5258 (*pr)("%p is %p+%zu from VMMAP %p\n",
5259 (void *)addr, (void *)entry->start,
5260 (size_t)(addr - (uintptr_t)entry->start), map);
5261 if (!UVM_ET_ISSUBMAP(entry)) {
5262 break;
5263 }
5264 map = entry->object.sub_map;
5265 }
5266 }
5267
5268 #endif /* DDB || DEBUGPRINT */
5269
5270 #ifndef __USER_VA0_IS_SAFE
5271 static int
5272 sysctl_user_va0_disable(SYSCTLFN_ARGS)
5273 {
5274 struct sysctlnode node;
5275 int t, error;
5276
5277 node = *rnode;
5278 node.sysctl_data = &t;
5279 t = user_va0_disable;
5280 error = sysctl_lookup(SYSCTLFN_CALL(&node));
5281 if (error || newp == NULL)
5282 return (error);
5283
5284 if (!t && user_va0_disable &&
5285 kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_MAP_VA_ZERO, 0,
5286 NULL, NULL, NULL))
5287 return EPERM;
5288
5289 user_va0_disable = !!t;
5290 return 0;
5291 }
5292 #endif
5293
5294 static int
5295 fill_vmentry(struct lwp *l, struct proc *p, struct kinfo_vmentry *kve,
5296 struct vm_map *m, struct vm_map_entry *e)
5297 {
5298 #ifndef _RUMPKERNEL
5299 int error;
5300
5301 memset(kve, 0, sizeof(*kve));
5302 KASSERT(e != NULL);
5303 if (UVM_ET_ISOBJ(e)) {
5304 struct uvm_object *uobj = e->object.uvm_obj;
5305 KASSERT(uobj != NULL);
5306 kve->kve_ref_count = uobj->uo_refs;
5307 kve->kve_count = uobj->uo_npages;
5308 if (UVM_OBJ_IS_VNODE(uobj)) {
5309 struct vattr va;
5310 struct vnode *vp = (struct vnode *)uobj;
5311 vn_lock(vp, LK_SHARED | LK_RETRY);
5312 error = VOP_GETATTR(vp, &va, l->l_cred);
5313 VOP_UNLOCK(vp);
5314 kve->kve_type = KVME_TYPE_VNODE;
5315 if (error == 0) {
5316 kve->kve_vn_size = vp->v_size;
5317 kve->kve_vn_type = (int)vp->v_type;
5318 kve->kve_vn_mode = va.va_mode;
5319 kve->kve_vn_rdev = va.va_rdev;
5320 kve->kve_vn_fileid = va.va_fileid;
5321 kve->kve_vn_fsid = va.va_fsid;
5322 error = vnode_to_path(kve->kve_path,
5323 sizeof(kve->kve_path) / 2, vp, l, p);
5324 }
5325 } else if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
5326 kve->kve_type = KVME_TYPE_KERN;
5327 } else if (UVM_OBJ_IS_DEVICE(uobj)) {
5328 kve->kve_type = KVME_TYPE_DEVICE;
5329 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
5330 kve->kve_type = KVME_TYPE_ANON;
5331 } else {
5332 kve->kve_type = KVME_TYPE_OBJECT;
5333 }
5334 } else if (UVM_ET_ISSUBMAP(e)) {
5335 struct vm_map *map = e->object.sub_map;
5336 KASSERT(map != NULL);
5337 kve->kve_ref_count = map->ref_count;
5338 kve->kve_count = map->nentries;
5339 kve->kve_type = KVME_TYPE_SUBMAP;
5340 } else
5341 kve->kve_type = KVME_TYPE_UNKNOWN;
5342
5343 kve->kve_start = e->start;
5344 kve->kve_end = e->end;
5345 kve->kve_offset = e->offset;
5346 kve->kve_wired_count = e->wired_count;
5347 kve->kve_inheritance = e->inheritance;
5348 kve->kve_attributes = 0; /* unused */
5349 kve->kve_advice = e->advice;
5350 #define PROT(p) (((p) & VM_PROT_READ) ? KVME_PROT_READ : 0) | \
5351 (((p) & VM_PROT_WRITE) ? KVME_PROT_WRITE : 0) | \
5352 (((p) & VM_PROT_EXECUTE) ? KVME_PROT_EXEC : 0)
5353 kve->kve_protection = PROT(e->protection);
5354 kve->kve_max_protection = PROT(e->max_protection);
5355 kve->kve_flags |= (e->etype & UVM_ET_COPYONWRITE)
5356 ? KVME_FLAG_COW : 0;
5357 kve->kve_flags |= (e->etype & UVM_ET_NEEDSCOPY)
5358 ? KVME_FLAG_NEEDS_COPY : 0;
5359 kve->kve_flags |= (m->flags & VM_MAP_TOPDOWN)
5360 ? KVME_FLAG_GROWS_DOWN : KVME_FLAG_GROWS_UP;
5361 kve->kve_flags |= (m->flags & VM_MAP_PAGEABLE)
5362 ? KVME_FLAG_PAGEABLE : 0;
5363 #endif
5364 return 0;
5365 }
5366
5367 static int
5368 fill_vmentries(struct lwp *l, pid_t pid, u_int elem_size, void *oldp,
5369 size_t *oldlenp)
5370 {
5371 int error;
5372 struct proc *p;
5373 struct kinfo_vmentry *vme;
5374 struct vmspace *vm;
5375 struct vm_map *map;
5376 struct vm_map_entry *entry;
5377 char *dp;
5378 size_t count, vmesize;
5379
5380 if (elem_size == 0 || elem_size > 2 * sizeof(*vme))
5381 return EINVAL;
5382
5383 if (oldp) {
5384 if (*oldlenp > 10UL * 1024UL * 1024UL)
5385 return E2BIG;
5386 count = *oldlenp / elem_size;
5387 if (count == 0)
5388 return ENOMEM;
5389 vmesize = count * sizeof(*vme);
5390 } else
5391 vmesize = 0;
5392
5393 if ((error = proc_find_locked(l, &p, pid)) != 0)
5394 return error;
5395
5396 vme = NULL;
5397 count = 0;
5398
5399 if ((error = proc_vmspace_getref(p, &vm)) != 0)
5400 goto out;
5401
5402 map = &vm->vm_map;
5403 vm_map_lock_read(map);
5404
5405 dp = oldp;
5406 if (oldp)
5407 vme = kmem_alloc(vmesize, KM_SLEEP);
5408 for (entry = map->header.next; entry != &map->header;
5409 entry = entry->next) {
5410 if (oldp && (dp - (char *)oldp) < vmesize) {
5411 error = fill_vmentry(l, p, &vme[count], map, entry);
5412 if (error)
5413 goto out;
5414 dp += elem_size;
5415 }
5416 count++;
5417 }
5418 vm_map_unlock_read(map);
5419 uvmspace_free(vm);
5420
5421 out:
5422 if (pid != -1)
5423 mutex_exit(p->p_lock);
5424 if (error == 0) {
5425 const u_int esize = uimin(sizeof(*vme), elem_size);
5426 dp = oldp;
5427 for (size_t i = 0; i < count; i++) {
5428 if (oldp && (dp - (char *)oldp) < vmesize) {
5429 error = sysctl_copyout(l, &vme[i], dp, esize);
5430 if (error)
5431 break;
5432 dp += elem_size;
5433 } else
5434 break;
5435 }
5436 count *= elem_size;
5437 if (oldp != NULL && *oldlenp < count)
5438 error = ENOSPC;
5439 *oldlenp = count;
5440 }
5441 if (vme)
5442 kmem_free(vme, vmesize);
5443 return error;
5444 }
5445
5446 static int
5447 sysctl_vmproc(SYSCTLFN_ARGS)
5448 {
5449 int error;
5450
5451 if (namelen == 1 && name[0] == CTL_QUERY)
5452 return (sysctl_query(SYSCTLFN_CALL(rnode)));
5453
5454 if (namelen == 0)
5455 return EINVAL;
5456
5457 switch (name[0]) {
5458 case VM_PROC_MAP:
5459 if (namelen != 3)
5460 return EINVAL;
5461 sysctl_unlock();
5462 error = fill_vmentries(l, name[1], name[2], oldp, oldlenp);
5463 sysctl_relock();
5464 return error;
5465 default:
5466 return EINVAL;
5467 }
5468 }
5469
5470 SYSCTL_SETUP(sysctl_uvmmap_setup, "sysctl uvmmap setup")
5471 {
5472
5473 sysctl_createv(clog, 0, NULL, NULL,
5474 CTLFLAG_PERMANENT,
5475 CTLTYPE_STRUCT, "proc",
5476 SYSCTL_DESCR("Process vm information"),
5477 sysctl_vmproc, 0, NULL, 0,
5478 CTL_VM, VM_PROC, CTL_EOL);
5479 #ifndef __USER_VA0_IS_SAFE
5480 sysctl_createv(clog, 0, NULL, NULL,
5481 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5482 CTLTYPE_INT, "user_va0_disable",
5483 SYSCTL_DESCR("Disable VA 0"),
5484 sysctl_user_va0_disable, 0, &user_va0_disable, 0,
5485 CTL_VM, CTL_CREATE, CTL_EOL);
5486 #endif
5487 }
5488