uvm_map.c revision 1.415 1 /* $NetBSD: uvm_map.c,v 1.415 2024/08/13 17:54:59 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vm_map.c 8.3 (Berkeley) 1/12/94
37 * from: Id: uvm_map.c,v 1.1.2.27 1998/02/07 01:16:54 chs Exp
38 *
39 *
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
48 *
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 *
53 * Carnegie Mellon requests users of this software to return to
54 *
55 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 * School of Computer Science
57 * Carnegie Mellon University
58 * Pittsburgh PA 15213-3890
59 *
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
62 */
63
64 /*
65 * uvm_map.c: uvm map operations
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: uvm_map.c,v 1.415 2024/08/13 17:54:59 riastradh Exp $");
70
71 #include "opt_ddb.h"
72 #include "opt_pax.h"
73 #include "opt_uvmhist.h"
74 #include "opt_uvm.h"
75 #include "opt_sysv.h"
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/mman.h>
80 #include <sys/proc.h>
81 #include <sys/pool.h>
82 #include <sys/kernel.h>
83 #include <sys/mount.h>
84 #include <sys/pax.h>
85 #include <sys/vnode.h>
86 #include <sys/filedesc.h>
87 #include <sys/lockdebug.h>
88 #include <sys/atomic.h>
89 #include <sys/sysctl.h>
90 #ifndef __USER_VA0_IS_SAFE
91 #include <sys/kauth.h>
92 #include "opt_user_va0_disable_default.h"
93 #endif
94
95 #include <sys/shm.h>
96
97 #include <uvm/uvm.h>
98 #include <uvm/uvm_readahead.h>
99
100 #if defined(DDB) || defined(DEBUGPRINT)
101 #include <uvm/uvm_ddb.h>
102 #endif
103
104 #ifdef UVMHIST
105 #ifndef UVMHIST_MAPHIST_SIZE
106 #define UVMHIST_MAPHIST_SIZE 100
107 #endif
108 static struct kern_history_ent maphistbuf[UVMHIST_MAPHIST_SIZE];
109 UVMHIST_DEFINE(maphist) = UVMHIST_INITIALIZER(maphist, maphistbuf);
110 #endif
111
112 #if !defined(UVMMAP_COUNTERS)
113
114 #define UVMMAP_EVCNT_DEFINE(name) /* nothing */
115 #define UVMMAP_EVCNT_INCR(ev) /* nothing */
116 #define UVMMAP_EVCNT_DECR(ev) /* nothing */
117
118 #else /* defined(UVMMAP_NOCOUNTERS) */
119
120 #include <sys/evcnt.h>
121 #define UVMMAP_EVCNT_DEFINE(name) \
122 struct evcnt uvmmap_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
123 "uvmmap", #name); \
124 EVCNT_ATTACH_STATIC(uvmmap_evcnt_##name);
125 #define UVMMAP_EVCNT_INCR(ev) uvmmap_evcnt_##ev.ev_count++
126 #define UVMMAP_EVCNT_DECR(ev) uvmmap_evcnt_##ev.ev_count--
127
128 #endif /* defined(UVMMAP_NOCOUNTERS) */
129
130 UVMMAP_EVCNT_DEFINE(ubackmerge)
131 UVMMAP_EVCNT_DEFINE(uforwmerge)
132 UVMMAP_EVCNT_DEFINE(ubimerge)
133 UVMMAP_EVCNT_DEFINE(unomerge)
134 UVMMAP_EVCNT_DEFINE(kbackmerge)
135 UVMMAP_EVCNT_DEFINE(kforwmerge)
136 UVMMAP_EVCNT_DEFINE(kbimerge)
137 UVMMAP_EVCNT_DEFINE(knomerge)
138 UVMMAP_EVCNT_DEFINE(map_call)
139 UVMMAP_EVCNT_DEFINE(mlk_call)
140 UVMMAP_EVCNT_DEFINE(mlk_hint)
141 UVMMAP_EVCNT_DEFINE(mlk_tree)
142 UVMMAP_EVCNT_DEFINE(mlk_treeloop)
143
144 const char vmmapbsy[] = "vmmapbsy";
145
146 /*
147 * cache for dynamically-allocated map entries.
148 */
149
150 static struct pool_cache uvm_map_entry_cache;
151
152 #ifdef PMAP_GROWKERNEL
153 /*
154 * This global represents the end of the kernel virtual address
155 * space. If we want to exceed this, we must grow the kernel
156 * virtual address space dynamically.
157 *
158 * Note, this variable is locked by kernel_map's lock.
159 */
160 vaddr_t uvm_maxkaddr;
161 #endif
162
163 #ifndef __USER_VA0_IS_SAFE
164 #ifndef __USER_VA0_DISABLE_DEFAULT
165 #define __USER_VA0_DISABLE_DEFAULT 1
166 #endif
167 #ifdef USER_VA0_DISABLE_DEFAULT /* kernel config option overrides */
168 #undef __USER_VA0_DISABLE_DEFAULT
169 #define __USER_VA0_DISABLE_DEFAULT USER_VA0_DISABLE_DEFAULT
170 #endif
171 int user_va0_disable = __USER_VA0_DISABLE_DEFAULT;
172 #endif
173
174 /*
175 * macros
176 */
177
178 /*
179 * uvm_map_align_va: round down or up virtual address
180 */
181 static __inline void
182 uvm_map_align_va(vaddr_t *vap, vsize_t align, int topdown)
183 {
184
185 KASSERT(powerof2(align));
186
187 if (align != 0 && (*vap & (align - 1)) != 0) {
188 if (topdown)
189 *vap = rounddown2(*vap, align);
190 else
191 *vap = roundup2(*vap, align);
192 }
193 }
194
195 /*
196 * UVM_ET_ISCOMPATIBLE: check some requirements for map entry merging
197 */
198 extern struct vm_map *pager_map;
199
200 #define UVM_ET_ISCOMPATIBLE(ent, type, uobj, meflags, \
201 prot, maxprot, inh, adv, wire) \
202 ((ent)->etype == (type) && \
203 (((ent)->flags ^ (meflags)) & (UVM_MAP_NOMERGE)) == 0 && \
204 (ent)->object.uvm_obj == (uobj) && \
205 (ent)->protection == (prot) && \
206 (ent)->max_protection == (maxprot) && \
207 (ent)->inheritance == (inh) && \
208 (ent)->advice == (adv) && \
209 (ent)->wired_count == (wire))
210
211 /*
212 * uvm_map_entry_link: insert entry into a map
213 *
214 * => map must be locked
215 */
216 #define uvm_map_entry_link(map, after_where, entry) do { \
217 uvm_mapent_check(entry); \
218 (map)->nentries++; \
219 (entry)->prev = (after_where); \
220 (entry)->next = (after_where)->next; \
221 (entry)->prev->next = (entry); \
222 (entry)->next->prev = (entry); \
223 uvm_rb_insert((map), (entry)); \
224 } while (/*CONSTCOND*/ 0)
225
226 /*
227 * uvm_map_entry_unlink: remove entry from a map
228 *
229 * => map must be locked
230 */
231 #define uvm_map_entry_unlink(map, entry) do { \
232 KASSERT((entry) != (map)->first_free); \
233 KASSERT((entry) != (map)->hint); \
234 uvm_mapent_check(entry); \
235 (map)->nentries--; \
236 (entry)->next->prev = (entry)->prev; \
237 (entry)->prev->next = (entry)->next; \
238 uvm_rb_remove((map), (entry)); \
239 } while (/*CONSTCOND*/ 0)
240
241 /*
242 * SAVE_HINT: saves the specified entry as the hint for future lookups.
243 *
244 * => map need not be locked.
245 */
246 #define SAVE_HINT(map, check, value) do { \
247 if ((map)->hint == (check)) \
248 (map)->hint = (value); \
249 } while (/*CONSTCOND*/ 0)
250
251 /*
252 * clear_hints: ensure that hints don't point to the entry.
253 *
254 * => map must be write-locked.
255 */
256 static void
257 clear_hints(struct vm_map *map, struct vm_map_entry *ent)
258 {
259
260 SAVE_HINT(map, ent, ent->prev);
261 if (map->first_free == ent) {
262 map->first_free = ent->prev;
263 }
264 }
265
266 /*
267 * VM_MAP_RANGE_CHECK: check and correct range
268 *
269 * => map must at least be read locked
270 */
271
272 #define VM_MAP_RANGE_CHECK(map, start, end) do { \
273 if (start < vm_map_min(map)) \
274 start = vm_map_min(map); \
275 if (end > vm_map_max(map)) \
276 end = vm_map_max(map); \
277 if (start > end) \
278 start = end; \
279 } while (/*CONSTCOND*/ 0)
280
281 /*
282 * local prototypes
283 */
284
285 static struct vm_map_entry *
286 uvm_mapent_alloc(struct vm_map *, int);
287 static void uvm_mapent_copy(struct vm_map_entry *, struct vm_map_entry *);
288 static void uvm_mapent_free(struct vm_map_entry *);
289 #if defined(DEBUG)
290 static void _uvm_mapent_check(const struct vm_map_entry *, int);
291 #define uvm_mapent_check(map) _uvm_mapent_check(map, __LINE__)
292 #else /* defined(DEBUG) */
293 #define uvm_mapent_check(e) /* nothing */
294 #endif /* defined(DEBUG) */
295
296 static void uvm_map_entry_unwire(struct vm_map *, struct vm_map_entry *);
297 static void uvm_map_reference_amap(struct vm_map_entry *, int);
298 static int uvm_map_space_avail(vaddr_t *, vsize_t, voff_t, vsize_t, int,
299 int, struct vm_map_entry *);
300 static void uvm_map_unreference_amap(struct vm_map_entry *, int);
301
302 int _uvm_map_sanity(struct vm_map *);
303 int _uvm_tree_sanity(struct vm_map *);
304 static vsize_t uvm_rb_maxgap(const struct vm_map_entry *);
305
306 /*
307 * Tree iteration. We violate the rbtree(9) abstraction for various
308 * things here. Entries are ascending left to right, so, provided the
309 * child entry in question exists:
310 *
311 * LEFT_ENTRY(entry)->end <= entry->start
312 * entry->end <= RIGHT_ENTRY(entry)->start
313 */
314 __CTASSERT(offsetof(struct vm_map_entry, rb_node) == 0);
315 #define ROOT_ENTRY(map) \
316 ((struct vm_map_entry *)(map)->rb_tree.rbt_root)
317 #define LEFT_ENTRY(entry) \
318 ((struct vm_map_entry *)(entry)->rb_node.rb_left)
319 #define RIGHT_ENTRY(entry) \
320 ((struct vm_map_entry *)(entry)->rb_node.rb_right)
321 #define PARENT_ENTRY(map, entry) \
322 (ROOT_ENTRY(map) == (entry) \
323 ? NULL : (struct vm_map_entry *)RB_FATHER(&(entry)->rb_node))
324
325 /*
326 * These get filled in if/when SYSVSHM shared memory code is loaded
327 *
328 * We do this with function pointers rather the #ifdef SYSVSHM so the
329 * SYSVSHM code can be loaded and unloaded
330 */
331 void (*uvm_shmexit)(struct vmspace *) = NULL;
332 void (*uvm_shmfork)(struct vmspace *, struct vmspace *) = NULL;
333
334 static int
335 uvm_map_compare_nodes(void *ctx, const void *nparent, const void *nkey)
336 {
337 const struct vm_map_entry *eparent = nparent;
338 const struct vm_map_entry *ekey = nkey;
339
340 KASSERT(eparent->start < ekey->start || eparent->start >= ekey->end);
341 KASSERT(ekey->start < eparent->start || ekey->start >= eparent->end);
342
343 if (eparent->start < ekey->start)
344 return -1;
345 if (eparent->end >= ekey->start)
346 return 1;
347 return 0;
348 }
349
350 static int
351 uvm_map_compare_key(void *ctx, const void *nparent, const void *vkey)
352 {
353 const struct vm_map_entry *eparent = nparent;
354 const vaddr_t va = *(const vaddr_t *) vkey;
355
356 if (eparent->start < va)
357 return -1;
358 if (eparent->end >= va)
359 return 1;
360 return 0;
361 }
362
363 static const rb_tree_ops_t uvm_map_tree_ops = {
364 .rbto_compare_nodes = uvm_map_compare_nodes,
365 .rbto_compare_key = uvm_map_compare_key,
366 .rbto_node_offset = offsetof(struct vm_map_entry, rb_node),
367 .rbto_context = NULL
368 };
369
370 /*
371 * uvm_rb_gap: return the gap size between our entry and next entry.
372 */
373 static inline vsize_t
374 uvm_rb_gap(const struct vm_map_entry *entry)
375 {
376
377 KASSERT(entry->next != NULL);
378 return entry->next->start - entry->end;
379 }
380
381 static vsize_t
382 uvm_rb_maxgap(const struct vm_map_entry *entry)
383 {
384 struct vm_map_entry *child;
385 vsize_t maxgap = entry->gap;
386
387 /*
388 * We need maxgap to be the largest gap of us or any of our
389 * descendents. Since each of our children's maxgap is the
390 * cached value of their largest gap of themselves or their
391 * descendents, we can just use that value and avoid recursing
392 * down the tree to calculate it.
393 */
394 if ((child = LEFT_ENTRY(entry)) != NULL && maxgap < child->maxgap)
395 maxgap = child->maxgap;
396
397 if ((child = RIGHT_ENTRY(entry)) != NULL && maxgap < child->maxgap)
398 maxgap = child->maxgap;
399
400 return maxgap;
401 }
402
403 static void
404 uvm_rb_fixup(struct vm_map *map, struct vm_map_entry *entry)
405 {
406 struct vm_map_entry *parent;
407
408 KASSERT(entry->gap == uvm_rb_gap(entry));
409 entry->maxgap = uvm_rb_maxgap(entry);
410
411 while ((parent = PARENT_ENTRY(map, entry)) != NULL) {
412 struct vm_map_entry *brother;
413 vsize_t maxgap = parent->gap;
414 unsigned int which;
415
416 KDASSERT(parent->gap == uvm_rb_gap(parent));
417 if (maxgap < entry->maxgap)
418 maxgap = entry->maxgap;
419 /*
420 * Since we work towards the root, we know entry's maxgap
421 * value is OK, but its brothers may now be out-of-date due
422 * to rebalancing. So refresh it.
423 */
424 which = RB_POSITION(&entry->rb_node) ^ RB_DIR_OTHER;
425 brother = (struct vm_map_entry *)parent->rb_node.rb_nodes[which];
426 if (brother != NULL) {
427 KDASSERT(brother->gap == uvm_rb_gap(brother));
428 brother->maxgap = uvm_rb_maxgap(brother);
429 if (maxgap < brother->maxgap)
430 maxgap = brother->maxgap;
431 }
432
433 parent->maxgap = maxgap;
434 entry = parent;
435 }
436 }
437
438 static void
439 uvm_rb_insert(struct vm_map *map, struct vm_map_entry *entry)
440 {
441 struct vm_map_entry *ret __diagused;
442
443 entry->gap = entry->maxgap = uvm_rb_gap(entry);
444 if (entry->prev != &map->header)
445 entry->prev->gap = uvm_rb_gap(entry->prev);
446
447 ret = rb_tree_insert_node(&map->rb_tree, entry);
448 KASSERTMSG(ret == entry,
449 "uvm_rb_insert: map %p: duplicate entry %p", map, ret);
450
451 /*
452 * If the previous entry is not our immediate left child, then it's an
453 * ancestor and will be fixed up on the way to the root. We don't
454 * have to check entry->prev against &map->header since &map->header
455 * will never be in the tree.
456 */
457 uvm_rb_fixup(map,
458 LEFT_ENTRY(entry) == entry->prev ? entry->prev : entry);
459 }
460
461 static void
462 uvm_rb_remove(struct vm_map *map, struct vm_map_entry *entry)
463 {
464 struct vm_map_entry *prev_parent = NULL, *next_parent = NULL;
465
466 /*
467 * If we are removing an interior node, then an adjacent node will
468 * be used to replace its position in the tree. Therefore we will
469 * need to fixup the tree starting at the parent of the replacement
470 * node. So record their parents for later use.
471 */
472 if (entry->prev != &map->header)
473 prev_parent = PARENT_ENTRY(map, entry->prev);
474 if (entry->next != &map->header)
475 next_parent = PARENT_ENTRY(map, entry->next);
476
477 rb_tree_remove_node(&map->rb_tree, entry);
478
479 /*
480 * If the previous node has a new parent, fixup the tree starting
481 * at the previous node's old parent.
482 */
483 if (entry->prev != &map->header) {
484 /*
485 * Update the previous entry's gap due to our absence.
486 */
487 entry->prev->gap = uvm_rb_gap(entry->prev);
488 uvm_rb_fixup(map, entry->prev);
489 if (prev_parent != NULL
490 && prev_parent != entry
491 && prev_parent != PARENT_ENTRY(map, entry->prev))
492 uvm_rb_fixup(map, prev_parent);
493 }
494
495 /*
496 * If the next node has a new parent, fixup the tree starting
497 * at the next node's old parent.
498 */
499 if (entry->next != &map->header) {
500 uvm_rb_fixup(map, entry->next);
501 if (next_parent != NULL
502 && next_parent != entry
503 && next_parent != PARENT_ENTRY(map, entry->next))
504 uvm_rb_fixup(map, next_parent);
505 }
506 }
507
508 #if defined(DEBUG)
509 int uvm_debug_check_map = 0;
510 int uvm_debug_check_rbtree = 0;
511 #define uvm_map_check(map, name) \
512 _uvm_map_check((map), (name), __FILE__, __LINE__)
513 static void
514 _uvm_map_check(struct vm_map *map, const char *name,
515 const char *file, int line)
516 {
517
518 if ((uvm_debug_check_map && _uvm_map_sanity(map)) ||
519 (uvm_debug_check_rbtree && _uvm_tree_sanity(map))) {
520 panic("uvm_map_check failed: \"%s\" map=%p (%s:%d)",
521 name, map, file, line);
522 }
523 }
524 #else /* defined(DEBUG) */
525 #define uvm_map_check(map, name) /* nothing */
526 #endif /* defined(DEBUG) */
527
528 #if defined(DEBUG) || defined(DDB)
529 int
530 _uvm_map_sanity(struct vm_map *map)
531 {
532 bool first_free_found = false;
533 bool hint_found = false;
534 const struct vm_map_entry *e;
535 struct vm_map_entry *hint = map->hint;
536
537 e = &map->header;
538 for (;;) {
539 if (map->first_free == e) {
540 first_free_found = true;
541 } else if (!first_free_found && e->next->start > e->end) {
542 printf("first_free %p should be %p\n",
543 map->first_free, e);
544 return -1;
545 }
546 if (hint == e) {
547 hint_found = true;
548 }
549
550 e = e->next;
551 if (e == &map->header) {
552 break;
553 }
554 }
555 if (!first_free_found) {
556 printf("stale first_free\n");
557 return -1;
558 }
559 if (!hint_found) {
560 printf("stale hint\n");
561 return -1;
562 }
563 return 0;
564 }
565
566 int
567 _uvm_tree_sanity(struct vm_map *map)
568 {
569 struct vm_map_entry *tmp, *trtmp;
570 int n = 0, i = 1;
571
572 for (tmp = map->header.next; tmp != &map->header; tmp = tmp->next) {
573 if (tmp->gap != uvm_rb_gap(tmp)) {
574 printf("%d/%d gap %#lx != %#lx %s\n",
575 n + 1, map->nentries,
576 (ulong)tmp->gap, (ulong)uvm_rb_gap(tmp),
577 tmp->next == &map->header ? "(last)" : "");
578 goto error;
579 }
580 /*
581 * If any entries are out of order, tmp->gap will be unsigned
582 * and will likely exceed the size of the map.
583 */
584 if (tmp->gap >= vm_map_max(map) - vm_map_min(map)) {
585 printf("too large gap %zu\n", (size_t)tmp->gap);
586 goto error;
587 }
588 n++;
589 }
590
591 if (n != map->nentries) {
592 printf("nentries: %d vs %d\n", n, map->nentries);
593 goto error;
594 }
595
596 trtmp = NULL;
597 for (tmp = map->header.next; tmp != &map->header; tmp = tmp->next) {
598 if (tmp->maxgap != uvm_rb_maxgap(tmp)) {
599 printf("maxgap %#lx != %#lx\n",
600 (ulong)tmp->maxgap,
601 (ulong)uvm_rb_maxgap(tmp));
602 goto error;
603 }
604 if (trtmp != NULL && trtmp->start >= tmp->start) {
605 printf("corrupt: 0x%"PRIxVADDR"x >= 0x%"PRIxVADDR"x\n",
606 trtmp->start, tmp->start);
607 goto error;
608 }
609
610 trtmp = tmp;
611 }
612
613 for (tmp = map->header.next; tmp != &map->header;
614 tmp = tmp->next, i++) {
615 trtmp = rb_tree_iterate(&map->rb_tree, tmp, RB_DIR_LEFT);
616 if (trtmp == NULL)
617 trtmp = &map->header;
618 if (tmp->prev != trtmp) {
619 printf("lookup: %d: %p->prev=%p: %p\n",
620 i, tmp, tmp->prev, trtmp);
621 goto error;
622 }
623 trtmp = rb_tree_iterate(&map->rb_tree, tmp, RB_DIR_RIGHT);
624 if (trtmp == NULL)
625 trtmp = &map->header;
626 if (tmp->next != trtmp) {
627 printf("lookup: %d: %p->next=%p: %p\n",
628 i, tmp, tmp->next, trtmp);
629 goto error;
630 }
631 trtmp = rb_tree_find_node(&map->rb_tree, &tmp->start);
632 if (trtmp != tmp) {
633 printf("lookup: %d: %p - %p: %p\n", i, tmp, trtmp,
634 PARENT_ENTRY(map, tmp));
635 goto error;
636 }
637 }
638
639 return (0);
640 error:
641 return (-1);
642 }
643 #endif /* defined(DEBUG) || defined(DDB) */
644
645 /*
646 * vm_map_lock: acquire an exclusive (write) lock on a map.
647 *
648 * => The locking protocol provides for guaranteed upgrade from shared ->
649 * exclusive by whichever thread currently has the map marked busy.
650 * See "LOCKING PROTOCOL NOTES" in uvm_map.h. This is horrible; among
651 * other problems, it defeats any fairness guarantees provided by RW
652 * locks.
653 */
654
655 void
656 vm_map_lock(struct vm_map *map)
657 {
658
659 for (;;) {
660 rw_enter(&map->lock, RW_WRITER);
661 if (map->busy == NULL || map->busy == curlwp) {
662 break;
663 }
664 mutex_enter(&map->misc_lock);
665 rw_exit(&map->lock);
666 if (map->busy != NULL) {
667 cv_wait(&map->cv, &map->misc_lock);
668 }
669 mutex_exit(&map->misc_lock);
670 }
671 map->timestamp++;
672 }
673
674 /*
675 * vm_map_lock_try: try to lock a map, failing if it is already locked.
676 */
677
678 bool
679 vm_map_lock_try(struct vm_map *map)
680 {
681
682 if (!rw_tryenter(&map->lock, RW_WRITER)) {
683 return false;
684 }
685 if (map->busy != NULL) {
686 rw_exit(&map->lock);
687 return false;
688 }
689 map->timestamp++;
690 return true;
691 }
692
693 /*
694 * vm_map_unlock: release an exclusive lock on a map.
695 */
696
697 void
698 vm_map_unlock(struct vm_map *map)
699 {
700
701 KASSERT(rw_write_held(&map->lock));
702 KASSERT(map->busy == NULL || map->busy == curlwp);
703 rw_exit(&map->lock);
704 }
705
706 /*
707 * vm_map_unbusy: mark the map as unbusy, and wake any waiters that
708 * want an exclusive lock.
709 */
710
711 void
712 vm_map_unbusy(struct vm_map *map)
713 {
714
715 KASSERT(map->busy == curlwp);
716
717 /*
718 * Safe to clear 'busy' and 'waiters' with only a read lock held:
719 *
720 * o they can only be set with a write lock held
721 * o writers are blocked out with a read or write hold
722 * o at any time, only one thread owns the set of values
723 */
724 mutex_enter(&map->misc_lock);
725 map->busy = NULL;
726 cv_broadcast(&map->cv);
727 mutex_exit(&map->misc_lock);
728 }
729
730 /*
731 * vm_map_lock_read: acquire a shared (read) lock on a map.
732 */
733
734 void
735 vm_map_lock_read(struct vm_map *map)
736 {
737
738 rw_enter(&map->lock, RW_READER);
739 }
740
741 /*
742 * vm_map_unlock_read: release a shared lock on a map.
743 */
744
745 void
746 vm_map_unlock_read(struct vm_map *map)
747 {
748
749 rw_exit(&map->lock);
750 }
751
752 /*
753 * vm_map_busy: mark a map as busy.
754 *
755 * => the caller must hold the map write locked
756 */
757
758 void
759 vm_map_busy(struct vm_map *map)
760 {
761
762 KASSERT(rw_write_held(&map->lock));
763 KASSERT(map->busy == NULL);
764
765 map->busy = curlwp;
766 }
767
768 /*
769 * vm_map_locked_p: return true if the map is write locked.
770 *
771 * => only for debug purposes like KASSERTs.
772 * => should not be used to verify that a map is not locked.
773 */
774
775 bool
776 vm_map_locked_p(struct vm_map *map)
777 {
778
779 return rw_write_held(&map->lock);
780 }
781
782 /*
783 * uvm_mapent_alloc: allocate a map entry
784 */
785
786 static struct vm_map_entry *
787 uvm_mapent_alloc(struct vm_map *map, int flags)
788 {
789 struct vm_map_entry *me;
790 int pflags = (flags & UVM_FLAG_NOWAIT) ? PR_NOWAIT : PR_WAITOK;
791 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
792
793 me = pool_cache_get(&uvm_map_entry_cache, pflags);
794 if (__predict_false(me == NULL)) {
795 return NULL;
796 }
797 me->flags = 0;
798
799 UVMHIST_LOG(maphist, "<- new entry=%#jx [kentry=%jd]", (uintptr_t)me,
800 (map == kernel_map), 0, 0);
801 return me;
802 }
803
804 /*
805 * uvm_mapent_free: free map entry
806 */
807
808 static void
809 uvm_mapent_free(struct vm_map_entry *me)
810 {
811 UVMHIST_FUNC(__func__);
812 UVMHIST_CALLARGS(maphist,"<- freeing map entry=%#jx [flags=%#jx]",
813 (uintptr_t)me, me->flags, 0, 0);
814 pool_cache_put(&uvm_map_entry_cache, me);
815 }
816
817 /*
818 * uvm_mapent_copy: copy a map entry, preserving flags
819 */
820
821 static inline void
822 uvm_mapent_copy(struct vm_map_entry *src, struct vm_map_entry *dst)
823 {
824
825 memcpy(dst, src, sizeof(*dst));
826 dst->flags = 0;
827 }
828
829 #if defined(DEBUG)
830 static void
831 _uvm_mapent_check(const struct vm_map_entry *entry, int line)
832 {
833
834 if (entry->start >= entry->end) {
835 goto bad;
836 }
837 if (UVM_ET_ISOBJ(entry)) {
838 if (entry->object.uvm_obj == NULL) {
839 goto bad;
840 }
841 } else if (UVM_ET_ISSUBMAP(entry)) {
842 if (entry->object.sub_map == NULL) {
843 goto bad;
844 }
845 } else {
846 if (entry->object.uvm_obj != NULL ||
847 entry->object.sub_map != NULL) {
848 goto bad;
849 }
850 }
851 if (!UVM_ET_ISOBJ(entry)) {
852 if (entry->offset != 0) {
853 goto bad;
854 }
855 }
856
857 return;
858
859 bad:
860 panic("%s: bad entry %p, line %d", __func__, entry, line);
861 }
862 #endif /* defined(DEBUG) */
863
864 /*
865 * uvm_map_entry_unwire: unwire a map entry
866 *
867 * => map should be locked by caller
868 */
869
870 static inline void
871 uvm_map_entry_unwire(struct vm_map *map, struct vm_map_entry *entry)
872 {
873
874 entry->wired_count = 0;
875 uvm_fault_unwire_locked(map, entry->start, entry->end);
876 }
877
878
879 /*
880 * wrapper for calling amap_ref()
881 */
882 static inline void
883 uvm_map_reference_amap(struct vm_map_entry *entry, int flags)
884 {
885
886 amap_ref(entry->aref.ar_amap, entry->aref.ar_pageoff,
887 (entry->end - entry->start) >> PAGE_SHIFT, flags);
888 }
889
890
891 /*
892 * wrapper for calling amap_unref()
893 */
894 static inline void
895 uvm_map_unreference_amap(struct vm_map_entry *entry, int flags)
896 {
897
898 amap_unref(entry->aref.ar_amap, entry->aref.ar_pageoff,
899 (entry->end - entry->start) >> PAGE_SHIFT, flags);
900 }
901
902
903 /*
904 * uvm_map_init: init mapping system at boot time.
905 */
906
907 void
908 uvm_map_init(void)
909 {
910 /*
911 * first, init logging system.
912 */
913
914 UVMHIST_FUNC(__func__);
915 UVMHIST_LINK_STATIC(maphist);
916 UVMHIST_LINK_STATIC(pdhist);
917 UVMHIST_CALLED(maphist);
918 UVMHIST_LOG(maphist,"<starting uvm map system>", 0, 0, 0, 0);
919
920 /*
921 * initialize the global lock for kernel map entry.
922 */
923
924 mutex_init(&uvm_kentry_lock, MUTEX_DRIVER, IPL_VM);
925 }
926
927 /*
928 * uvm_map_init_caches: init mapping system caches.
929 */
930 void
931 uvm_map_init_caches(void)
932 {
933 /*
934 * initialize caches.
935 */
936
937 pool_cache_bootstrap(&uvm_map_entry_cache, sizeof(struct vm_map_entry),
938 coherency_unit, 0, PR_LARGECACHE, "vmmpepl", NULL, IPL_NONE, NULL,
939 NULL, NULL);
940 }
941
942 /*
943 * clippers
944 */
945
946 /*
947 * uvm_mapent_splitadj: adjust map entries for splitting, after uvm_mapent_copy.
948 */
949
950 static void
951 uvm_mapent_splitadj(struct vm_map_entry *entry1, struct vm_map_entry *entry2,
952 vaddr_t splitat)
953 {
954 vaddr_t adj;
955
956 KASSERT(entry1->start < splitat);
957 KASSERT(splitat < entry1->end);
958
959 adj = splitat - entry1->start;
960 entry1->end = entry2->start = splitat;
961
962 if (entry1->aref.ar_amap) {
963 amap_splitref(&entry1->aref, &entry2->aref, adj);
964 }
965 if (UVM_ET_ISSUBMAP(entry1)) {
966 /* ... unlikely to happen, but play it safe */
967 uvm_map_reference(entry1->object.sub_map);
968 } else if (UVM_ET_ISOBJ(entry1)) {
969 KASSERT(entry1->object.uvm_obj != NULL); /* suppress coverity */
970 entry2->offset += adj;
971 if (entry1->object.uvm_obj->pgops &&
972 entry1->object.uvm_obj->pgops->pgo_reference)
973 entry1->object.uvm_obj->pgops->pgo_reference(
974 entry1->object.uvm_obj);
975 }
976 }
977
978 /*
979 * uvm_map_clip_start: ensure that the entry begins at or after
980 * the starting address, if it doesn't we split the entry.
981 *
982 * => caller should use UVM_MAP_CLIP_START macro rather than calling
983 * this directly
984 * => map must be locked by caller
985 */
986
987 void
988 uvm_map_clip_start(struct vm_map *map, struct vm_map_entry *entry,
989 vaddr_t start)
990 {
991 struct vm_map_entry *new_entry;
992
993 /* uvm_map_simplify_entry(map, entry); */ /* XXX */
994
995 uvm_map_check(map, "clip_start entry");
996 uvm_mapent_check(entry);
997
998 /*
999 * Split off the front portion. note that we must insert the new
1000 * entry BEFORE this one, so that this entry has the specified
1001 * starting address.
1002 */
1003 new_entry = uvm_mapent_alloc(map, 0);
1004 uvm_mapent_copy(entry, new_entry); /* entry -> new_entry */
1005 uvm_mapent_splitadj(new_entry, entry, start);
1006 uvm_map_entry_link(map, entry->prev, new_entry);
1007
1008 uvm_map_check(map, "clip_start leave");
1009 }
1010
1011 /*
1012 * uvm_map_clip_end: ensure that the entry ends at or before
1013 * the ending address, if it does't we split the reference
1014 *
1015 * => caller should use UVM_MAP_CLIP_END macro rather than calling
1016 * this directly
1017 * => map must be locked by caller
1018 */
1019
1020 void
1021 uvm_map_clip_end(struct vm_map *map, struct vm_map_entry *entry, vaddr_t end)
1022 {
1023 struct vm_map_entry *new_entry;
1024
1025 uvm_map_check(map, "clip_end entry");
1026 uvm_mapent_check(entry);
1027
1028 /*
1029 * Create a new entry and insert it
1030 * AFTER the specified entry
1031 */
1032 new_entry = uvm_mapent_alloc(map, 0);
1033 uvm_mapent_copy(entry, new_entry); /* entry -> new_entry */
1034 uvm_mapent_splitadj(entry, new_entry, end);
1035 uvm_map_entry_link(map, entry, new_entry);
1036
1037 uvm_map_check(map, "clip_end leave");
1038 }
1039
1040 /*
1041 * M A P - m a i n e n t r y p o i n t
1042 */
1043 /*
1044 * uvm_map: establish a valid mapping in a map
1045 *
1046 * => assume startp is page aligned.
1047 * => assume size is a multiple of PAGE_SIZE.
1048 * => assume sys_mmap provides enough of a "hint" to have us skip
1049 * over text/data/bss area.
1050 * => map must be unlocked (we will lock it)
1051 * => <uobj,uoffset> value meanings (4 cases):
1052 * [1] <NULL,uoffset> == uoffset is a hint for PMAP_PREFER
1053 * [2] <NULL,UVM_UNKNOWN_OFFSET> == don't PMAP_PREFER
1054 * [3] <uobj,uoffset> == normal mapping
1055 * [4] <uobj,UVM_UNKNOWN_OFFSET> == uvm_map finds offset based on VA
1056 *
1057 * case [4] is for kernel mappings where we don't know the offset until
1058 * we've found a virtual address. note that kernel object offsets are
1059 * always relative to vm_map_min(kernel_map).
1060 *
1061 * => if `align' is non-zero, we align the virtual address to the specified
1062 * alignment.
1063 * this is provided as a mechanism for large pages.
1064 *
1065 * => XXXCDC: need way to map in external amap?
1066 */
1067
1068 int
1069 uvm_map(struct vm_map *map, vaddr_t *startp /* IN/OUT */, vsize_t size,
1070 struct uvm_object *uobj, voff_t uoffset, vsize_t align, uvm_flag_t flags)
1071 {
1072 struct uvm_map_args args;
1073 struct vm_map_entry *new_entry;
1074 int error;
1075
1076 KASSERT((size & PAGE_MASK) == 0);
1077 KASSERT((flags & UVM_FLAG_FIXED) == 0 || align == 0);
1078
1079 /*
1080 * for pager_map, allocate the new entry first to avoid sleeping
1081 * for memory while we have the map locked.
1082 */
1083
1084 new_entry = NULL;
1085 if (map == pager_map) {
1086 new_entry = uvm_mapent_alloc(map, (flags & UVM_FLAG_NOWAIT));
1087 if (__predict_false(new_entry == NULL))
1088 return ENOMEM;
1089 }
1090 if (map == pager_map)
1091 flags |= UVM_FLAG_NOMERGE;
1092
1093 error = uvm_map_prepare(map, *startp, size, uobj, uoffset, align,
1094 flags, &args);
1095 if (!error) {
1096 error = uvm_map_enter(map, &args, new_entry);
1097 *startp = args.uma_start;
1098 } else if (new_entry) {
1099 uvm_mapent_free(new_entry);
1100 }
1101
1102 #if defined(DEBUG)
1103 if (!error && VM_MAP_IS_KERNEL(map) && (flags & UVM_FLAG_NOWAIT) == 0) {
1104 uvm_km_check_empty(map, *startp, *startp + size);
1105 }
1106 #endif /* defined(DEBUG) */
1107
1108 return error;
1109 }
1110
1111 /*
1112 * uvm_map_prepare:
1113 *
1114 * called with map unlocked.
1115 * on success, returns the map locked.
1116 */
1117
1118 int
1119 uvm_map_prepare(struct vm_map *map, vaddr_t start, vsize_t size,
1120 struct uvm_object *uobj, voff_t uoffset, vsize_t align, uvm_flag_t flags,
1121 struct uvm_map_args *args)
1122 {
1123 struct vm_map_entry *prev_entry;
1124 vm_prot_t prot = UVM_PROTECTION(flags);
1125 vm_prot_t maxprot = UVM_MAXPROTECTION(flags);
1126
1127 UVMHIST_FUNC(__func__);
1128 UVMHIST_CALLARGS(maphist, "(map=%#jx, start=%#jx, size=%jx, flags=%#jx)",
1129 (uintptr_t)map, start, size, flags);
1130 UVMHIST_LOG(maphist, " uobj/offset %#jx/%jd", (uintptr_t)uobj,
1131 uoffset,0,0);
1132
1133 /*
1134 * detect a popular device driver bug.
1135 */
1136
1137 KASSERT(doing_shutdown || curlwp != NULL);
1138
1139 /*
1140 * zero-sized mapping doesn't make any sense.
1141 */
1142 KASSERT(size > 0);
1143
1144 KASSERT((~flags & (UVM_FLAG_NOWAIT | UVM_FLAG_WAITVA)) != 0);
1145
1146 uvm_map_check(map, "map entry");
1147
1148 /*
1149 * check sanity of protection code
1150 */
1151
1152 if ((prot & maxprot) != prot) {
1153 UVMHIST_LOG(maphist, "<- prot. failure: prot=%#jx, max=%#jx",
1154 prot, maxprot,0,0);
1155 return EACCES;
1156 }
1157
1158 /*
1159 * figure out where to put new VM range
1160 */
1161 retry:
1162 if (vm_map_lock_try(map) == false) {
1163 if ((flags & UVM_FLAG_TRYLOCK) != 0) {
1164 return EAGAIN;
1165 }
1166 vm_map_lock(map); /* could sleep here */
1167 }
1168 if (flags & UVM_FLAG_UNMAP) {
1169 KASSERT(flags & UVM_FLAG_FIXED);
1170 KASSERT((flags & UVM_FLAG_NOWAIT) == 0);
1171
1172 /*
1173 * Set prev_entry to what it will need to be after any existing
1174 * entries are removed later in uvm_map_enter().
1175 */
1176
1177 if (uvm_map_lookup_entry(map, start, &prev_entry)) {
1178 if (start == prev_entry->start)
1179 prev_entry = prev_entry->prev;
1180 else
1181 UVM_MAP_CLIP_END(map, prev_entry, start);
1182 SAVE_HINT(map, map->hint, prev_entry);
1183 }
1184 } else {
1185 prev_entry = uvm_map_findspace(map, start, size, &start,
1186 uobj, uoffset, align, flags);
1187 }
1188 if (prev_entry == NULL) {
1189 unsigned int timestamp;
1190
1191 timestamp = map->timestamp;
1192 UVMHIST_LOG(maphist,"waiting va timestamp=%#jx",
1193 timestamp,0,0,0);
1194 map->flags |= VM_MAP_WANTVA;
1195 vm_map_unlock(map);
1196
1197 /*
1198 * try to reclaim kva and wait until someone does unmap.
1199 * fragile locking here, so we awaken every second to
1200 * recheck the condition.
1201 */
1202
1203 mutex_enter(&map->misc_lock);
1204 while ((map->flags & VM_MAP_WANTVA) != 0 &&
1205 map->timestamp == timestamp) {
1206 if ((flags & UVM_FLAG_WAITVA) == 0) {
1207 mutex_exit(&map->misc_lock);
1208 UVMHIST_LOG(maphist,
1209 "<- uvm_map_findspace failed!", 0,0,0,0);
1210 return ENOMEM;
1211 } else {
1212 cv_timedwait(&map->cv, &map->misc_lock, hz);
1213 }
1214 }
1215 mutex_exit(&map->misc_lock);
1216 goto retry;
1217 }
1218
1219 #ifdef PMAP_GROWKERNEL
1220 /*
1221 * If the kernel pmap can't map the requested space,
1222 * then allocate more resources for it.
1223 */
1224 if (map == kernel_map && uvm_maxkaddr < (start + size))
1225 uvm_maxkaddr = pmap_growkernel(start + size);
1226 #endif
1227
1228 UVMMAP_EVCNT_INCR(map_call);
1229
1230 /*
1231 * if uobj is null, then uoffset is either a VAC hint for PMAP_PREFER
1232 * [typically from uvm_map_reserve] or it is UVM_UNKNOWN_OFFSET. in
1233 * either case we want to zero it before storing it in the map entry
1234 * (because it looks strange and confusing when debugging...)
1235 *
1236 * if uobj is not null
1237 * if uoffset is not UVM_UNKNOWN_OFFSET then we have a normal mapping
1238 * and we do not need to change uoffset.
1239 * if uoffset is UVM_UNKNOWN_OFFSET then we need to find the offset
1240 * now (based on the starting address of the map). this case is
1241 * for kernel object mappings where we don't know the offset until
1242 * the virtual address is found (with uvm_map_findspace). the
1243 * offset is the distance we are from the start of the map.
1244 */
1245
1246 if (uobj == NULL) {
1247 uoffset = 0;
1248 } else {
1249 if (uoffset == UVM_UNKNOWN_OFFSET) {
1250 KASSERT(UVM_OBJ_IS_KERN_OBJECT(uobj));
1251 uoffset = start - vm_map_min(kernel_map);
1252 }
1253 }
1254
1255 args->uma_flags = flags;
1256 args->uma_prev = prev_entry;
1257 args->uma_start = start;
1258 args->uma_size = size;
1259 args->uma_uobj = uobj;
1260 args->uma_uoffset = uoffset;
1261
1262 UVMHIST_LOG(maphist, "<- done!", 0,0,0,0);
1263 return 0;
1264 }
1265
1266 /*
1267 * uvm_map_enter:
1268 *
1269 * called with map locked.
1270 * unlock the map before returning.
1271 */
1272
1273 int
1274 uvm_map_enter(struct vm_map *map, const struct uvm_map_args *args,
1275 struct vm_map_entry *new_entry)
1276 {
1277 struct vm_map_entry *prev_entry = args->uma_prev;
1278 struct vm_map_entry *dead = NULL, *dead_entries = NULL;
1279
1280 const uvm_flag_t flags = args->uma_flags;
1281 const vm_prot_t prot = UVM_PROTECTION(flags);
1282 const vm_prot_t maxprot = UVM_MAXPROTECTION(flags);
1283 const vm_inherit_t inherit = UVM_INHERIT(flags);
1284 const int amapwaitflag = (flags & UVM_FLAG_NOWAIT) ?
1285 AMAP_EXTEND_NOWAIT : 0;
1286 const int advice = UVM_ADVICE(flags);
1287
1288 vaddr_t start = args->uma_start;
1289 vsize_t size = args->uma_size;
1290 struct uvm_object *uobj = args->uma_uobj;
1291 voff_t uoffset = args->uma_uoffset;
1292
1293 const int kmap = (vm_map_pmap(map) == pmap_kernel());
1294 int merged = 0;
1295 int error;
1296 int newetype;
1297
1298 UVMHIST_FUNC(__func__);
1299 UVMHIST_CALLARGS(maphist, "(map=%#jx, start=%#jx, size=%ju, flags=%#jx)",
1300 (uintptr_t)map, start, size, flags);
1301 UVMHIST_LOG(maphist, " uobj/offset %#jx/%jd", (uintptr_t)uobj,
1302 uoffset,0,0);
1303
1304 KASSERT(map->hint == prev_entry); /* bimerge case assumes this */
1305 KASSERT(vm_map_locked_p(map));
1306 KASSERT((flags & (UVM_FLAG_NOWAIT | UVM_FLAG_UNMAP)) !=
1307 (UVM_FLAG_NOWAIT | UVM_FLAG_UNMAP));
1308
1309 if (uobj)
1310 newetype = UVM_ET_OBJ;
1311 else
1312 newetype = 0;
1313
1314 if (flags & UVM_FLAG_COPYONW) {
1315 newetype |= UVM_ET_COPYONWRITE;
1316 if ((flags & UVM_FLAG_OVERLAY) == 0)
1317 newetype |= UVM_ET_NEEDSCOPY;
1318 }
1319
1320 /*
1321 * For mappings with unmap, remove any old entries now. Adding the new
1322 * entry cannot fail because that can only happen if UVM_FLAG_NOWAIT
1323 * is set, and we do not support nowait and unmap together.
1324 */
1325
1326 if (flags & UVM_FLAG_UNMAP) {
1327 KASSERT(flags & UVM_FLAG_FIXED);
1328 uvm_unmap_remove(map, start, start + size, &dead_entries, 0);
1329 #ifdef DEBUG
1330 struct vm_map_entry *tmp_entry __diagused;
1331 bool rv __diagused;
1332
1333 rv = uvm_map_lookup_entry(map, start, &tmp_entry);
1334 KASSERT(!rv);
1335 KASSERTMSG(prev_entry == tmp_entry,
1336 "args %p prev_entry %p tmp_entry %p",
1337 args, prev_entry, tmp_entry);
1338 #endif
1339 SAVE_HINT(map, map->hint, prev_entry);
1340 }
1341
1342 /*
1343 * try and insert in map by extending previous entry, if possible.
1344 * XXX: we don't try and pull back the next entry. might be useful
1345 * for a stack, but we are currently allocating our stack in advance.
1346 */
1347
1348 if (flags & UVM_FLAG_NOMERGE)
1349 goto nomerge;
1350
1351 if (prev_entry->end == start &&
1352 prev_entry != &map->header &&
1353 UVM_ET_ISCOMPATIBLE(prev_entry, newetype, uobj, 0,
1354 prot, maxprot, inherit, advice, 0)) {
1355
1356 if (uobj && prev_entry->offset +
1357 (prev_entry->end - prev_entry->start) != uoffset)
1358 goto forwardmerge;
1359
1360 /*
1361 * can't extend a shared amap. note: no need to lock amap to
1362 * look at refs since we don't care about its exact value.
1363 * if it is one (i.e. we have only reference) it will stay there
1364 */
1365
1366 if (prev_entry->aref.ar_amap &&
1367 amap_refs(prev_entry->aref.ar_amap) != 1) {
1368 goto forwardmerge;
1369 }
1370
1371 if (prev_entry->aref.ar_amap) {
1372 error = amap_extend(prev_entry, size,
1373 amapwaitflag | AMAP_EXTEND_FORWARDS);
1374 if (error)
1375 goto nomerge;
1376 }
1377
1378 if (kmap) {
1379 UVMMAP_EVCNT_INCR(kbackmerge);
1380 } else {
1381 UVMMAP_EVCNT_INCR(ubackmerge);
1382 }
1383 UVMHIST_LOG(maphist," starting back merge", 0, 0, 0, 0);
1384
1385 /*
1386 * drop our reference to uobj since we are extending a reference
1387 * that we already have (the ref count can not drop to zero).
1388 */
1389
1390 if (uobj && uobj->pgops->pgo_detach)
1391 uobj->pgops->pgo_detach(uobj);
1392
1393 /*
1394 * Now that we've merged the entries, note that we've grown
1395 * and our gap has shrunk. Then fix the tree.
1396 */
1397 prev_entry->end += size;
1398 prev_entry->gap -= size;
1399 uvm_rb_fixup(map, prev_entry);
1400
1401 uvm_map_check(map, "map backmerged");
1402
1403 UVMHIST_LOG(maphist,"<- done (via backmerge)!", 0, 0, 0, 0);
1404 merged++;
1405 }
1406
1407 forwardmerge:
1408 if (prev_entry->next->start == (start + size) &&
1409 prev_entry->next != &map->header &&
1410 UVM_ET_ISCOMPATIBLE(prev_entry->next, newetype, uobj, 0,
1411 prot, maxprot, inherit, advice, 0)) {
1412
1413 if (uobj && prev_entry->next->offset != uoffset + size)
1414 goto nomerge;
1415
1416 /*
1417 * can't extend a shared amap. note: no need to lock amap to
1418 * look at refs since we don't care about its exact value.
1419 * if it is one (i.e. we have only reference) it will stay there.
1420 *
1421 * note that we also can't merge two amaps, so if we
1422 * merged with the previous entry which has an amap,
1423 * and the next entry also has an amap, we give up.
1424 *
1425 * Interesting cases:
1426 * amap, new, amap -> give up second merge (single fwd extend)
1427 * amap, new, none -> double forward extend (extend again here)
1428 * none, new, amap -> double backward extend (done here)
1429 * uobj, new, amap -> single backward extend (done here)
1430 *
1431 * XXX should we attempt to deal with someone refilling
1432 * the deallocated region between two entries that are
1433 * backed by the same amap (ie, arefs is 2, "prev" and
1434 * "next" refer to it, and adding this allocation will
1435 * close the hole, thus restoring arefs to 1 and
1436 * deallocating the "next" vm_map_entry)? -- @@@
1437 */
1438
1439 if (prev_entry->next->aref.ar_amap &&
1440 (amap_refs(prev_entry->next->aref.ar_amap) != 1 ||
1441 (merged && prev_entry->aref.ar_amap))) {
1442 goto nomerge;
1443 }
1444
1445 if (merged) {
1446 /*
1447 * Try to extend the amap of the previous entry to
1448 * cover the next entry as well. If it doesn't work
1449 * just skip on, don't actually give up, since we've
1450 * already completed the back merge.
1451 */
1452 if (prev_entry->aref.ar_amap) {
1453 if (amap_extend(prev_entry,
1454 prev_entry->next->end -
1455 prev_entry->next->start,
1456 amapwaitflag | AMAP_EXTEND_FORWARDS))
1457 goto nomerge;
1458 }
1459
1460 /*
1461 * Try to extend the amap of the *next* entry
1462 * back to cover the new allocation *and* the
1463 * previous entry as well (the previous merge
1464 * didn't have an amap already otherwise we
1465 * wouldn't be checking here for an amap). If
1466 * it doesn't work just skip on, again, don't
1467 * actually give up, since we've already
1468 * completed the back merge.
1469 */
1470 else if (prev_entry->next->aref.ar_amap) {
1471 if (amap_extend(prev_entry->next,
1472 prev_entry->end -
1473 prev_entry->start,
1474 amapwaitflag | AMAP_EXTEND_BACKWARDS))
1475 goto nomerge;
1476 }
1477 } else {
1478 /*
1479 * Pull the next entry's amap backwards to cover this
1480 * new allocation.
1481 */
1482 if (prev_entry->next->aref.ar_amap) {
1483 error = amap_extend(prev_entry->next, size,
1484 amapwaitflag | AMAP_EXTEND_BACKWARDS);
1485 if (error)
1486 goto nomerge;
1487 }
1488 }
1489
1490 if (merged) {
1491 if (kmap) {
1492 UVMMAP_EVCNT_DECR(kbackmerge);
1493 UVMMAP_EVCNT_INCR(kbimerge);
1494 } else {
1495 UVMMAP_EVCNT_DECR(ubackmerge);
1496 UVMMAP_EVCNT_INCR(ubimerge);
1497 }
1498 } else {
1499 if (kmap) {
1500 UVMMAP_EVCNT_INCR(kforwmerge);
1501 } else {
1502 UVMMAP_EVCNT_INCR(uforwmerge);
1503 }
1504 }
1505 UVMHIST_LOG(maphist," starting forward merge", 0, 0, 0, 0);
1506
1507 /*
1508 * drop our reference to uobj since we are extending a reference
1509 * that we already have (the ref count can not drop to zero).
1510 */
1511 if (uobj && uobj->pgops->pgo_detach)
1512 uobj->pgops->pgo_detach(uobj);
1513
1514 if (merged) {
1515 dead = prev_entry->next;
1516 prev_entry->end = dead->end;
1517 uvm_map_entry_unlink(map, dead);
1518 if (dead->aref.ar_amap != NULL) {
1519 prev_entry->aref = dead->aref;
1520 dead->aref.ar_amap = NULL;
1521 }
1522 } else {
1523 prev_entry->next->start -= size;
1524 if (prev_entry != &map->header) {
1525 prev_entry->gap -= size;
1526 KASSERT(prev_entry->gap == uvm_rb_gap(prev_entry));
1527 uvm_rb_fixup(map, prev_entry);
1528 }
1529 if (uobj)
1530 prev_entry->next->offset = uoffset;
1531 }
1532
1533 uvm_map_check(map, "map forwardmerged");
1534
1535 UVMHIST_LOG(maphist,"<- done forwardmerge", 0, 0, 0, 0);
1536 merged++;
1537 }
1538
1539 nomerge:
1540 if (!merged) {
1541 UVMHIST_LOG(maphist," allocating new map entry", 0, 0, 0, 0);
1542 if (kmap) {
1543 UVMMAP_EVCNT_INCR(knomerge);
1544 } else {
1545 UVMMAP_EVCNT_INCR(unomerge);
1546 }
1547
1548 /*
1549 * allocate new entry and link it in.
1550 */
1551
1552 if (new_entry == NULL) {
1553 new_entry = uvm_mapent_alloc(map,
1554 (flags & UVM_FLAG_NOWAIT));
1555 if (__predict_false(new_entry == NULL)) {
1556 error = ENOMEM;
1557 goto done;
1558 }
1559 }
1560 new_entry->start = start;
1561 new_entry->end = new_entry->start + size;
1562 new_entry->object.uvm_obj = uobj;
1563 new_entry->offset = uoffset;
1564
1565 new_entry->etype = newetype;
1566
1567 if (flags & UVM_FLAG_NOMERGE) {
1568 new_entry->flags |= UVM_MAP_NOMERGE;
1569 }
1570
1571 new_entry->protection = prot;
1572 new_entry->max_protection = maxprot;
1573 new_entry->inheritance = inherit;
1574 new_entry->wired_count = 0;
1575 new_entry->advice = advice;
1576 if (flags & UVM_FLAG_OVERLAY) {
1577
1578 /*
1579 * to_add: for BSS we overallocate a little since we
1580 * are likely to extend
1581 */
1582
1583 vaddr_t to_add = (flags & UVM_FLAG_AMAPPAD) ?
1584 UVM_AMAP_CHUNK << PAGE_SHIFT : 0;
1585 struct vm_amap *amap = amap_alloc(size, to_add,
1586 (flags & UVM_FLAG_NOWAIT));
1587 if (__predict_false(amap == NULL)) {
1588 error = ENOMEM;
1589 goto done;
1590 }
1591 new_entry->aref.ar_pageoff = 0;
1592 new_entry->aref.ar_amap = amap;
1593 } else {
1594 new_entry->aref.ar_pageoff = 0;
1595 new_entry->aref.ar_amap = NULL;
1596 }
1597 uvm_map_entry_link(map, prev_entry, new_entry);
1598
1599 /*
1600 * Update the free space hint
1601 */
1602
1603 if ((map->first_free == prev_entry) &&
1604 (prev_entry->end >= new_entry->start))
1605 map->first_free = new_entry;
1606
1607 new_entry = NULL;
1608 }
1609
1610 map->size += size;
1611
1612 UVMHIST_LOG(maphist,"<- done!", 0, 0, 0, 0);
1613
1614 error = 0;
1615
1616 done:
1617 vm_map_unlock(map);
1618
1619 if (new_entry) {
1620 uvm_mapent_free(new_entry);
1621 }
1622 if (dead) {
1623 KDASSERT(merged);
1624 uvm_mapent_free(dead);
1625 }
1626 if (dead_entries)
1627 uvm_unmap_detach(dead_entries, 0);
1628
1629 return error;
1630 }
1631
1632 /*
1633 * uvm_map_lookup_entry_bytree: lookup an entry in tree
1634 *
1635 * => map must at least be read-locked by caller.
1636 *
1637 * => If address lies in an entry, set *entry to it and return true;
1638 * then (*entry)->start <= address < (*entry)->end.
1639
1640 * => If address is below all entries in map, return false and set
1641 * *entry to &map->header.
1642 *
1643 * => Otherwise, return false and set *entry to the highest entry below
1644 * address, so (*entry)->end <= address, and if (*entry)->next is
1645 * not &map->header, address < (*entry)->next->start.
1646 */
1647
1648 static inline bool
1649 uvm_map_lookup_entry_bytree(struct vm_map *map, vaddr_t address,
1650 struct vm_map_entry **entry /* OUT */)
1651 {
1652 struct vm_map_entry *prev = &map->header;
1653 struct vm_map_entry *cur = ROOT_ENTRY(map);
1654
1655 KASSERT(rw_lock_held(&map->lock));
1656
1657 while (cur) {
1658 KASSERT(prev == &map->header || prev->end <= address);
1659 UVMMAP_EVCNT_INCR(mlk_treeloop);
1660 if (address >= cur->start) {
1661 if (address < cur->end) {
1662 *entry = cur;
1663 return true;
1664 }
1665 prev = cur;
1666 KASSERT(prev->end <= address);
1667 cur = RIGHT_ENTRY(cur);
1668 KASSERT(prev->end <= cur->start);
1669 } else
1670 cur = LEFT_ENTRY(cur);
1671 }
1672 KASSERT(prev == &map->header || prev->end <= address);
1673 KASSERT(prev->next == &map->header || address < prev->next->start);
1674 *entry = prev;
1675 return false;
1676 }
1677
1678 /*
1679 * uvm_map_lookup_entry: find map entry at or before an address
1680 *
1681 * => map must at least be read-locked by caller.
1682 *
1683 * => If address lies in an entry, set *entry to it and return true;
1684 * then (*entry)->start <= address < (*entry)->end.
1685
1686 * => If address is below all entries in map, return false and set
1687 * *entry to &map->header.
1688 *
1689 * => Otherwise, return false and set *entry to the highest entry below
1690 * address, so (*entry)->end <= address, and if (*entry)->next is
1691 * not &map->header, address < (*entry)->next->start.
1692 */
1693
1694 bool
1695 uvm_map_lookup_entry(struct vm_map *map, vaddr_t address,
1696 struct vm_map_entry **entry /* OUT */)
1697 {
1698 struct vm_map_entry *cur;
1699 UVMHIST_FUNC(__func__);
1700 UVMHIST_CALLARGS(maphist,"(map=%#jx,addr=%#jx,ent=%#jx)",
1701 (uintptr_t)map, address, (uintptr_t)entry, 0);
1702
1703 KDASSERT(rw_lock_held(&map->lock));
1704
1705 /*
1706 * make a quick check to see if we are already looking at
1707 * the entry we want (which is usually the case). note also
1708 * that we don't need to save the hint here... it is the
1709 * same hint (unless we are at the header, in which case the
1710 * hint didn't buy us anything anyway).
1711 */
1712
1713 cur = map->hint;
1714 UVMMAP_EVCNT_INCR(mlk_call);
1715 if (cur != &map->header &&
1716 address >= cur->start && cur->end > address) {
1717 UVMMAP_EVCNT_INCR(mlk_hint);
1718 *entry = cur;
1719 UVMHIST_LOG(maphist,"<- got it via hint (%#jx)",
1720 (uintptr_t)cur, 0, 0, 0);
1721 uvm_mapent_check(*entry);
1722 return (true);
1723 }
1724 uvm_map_check(map, __func__);
1725
1726 /*
1727 * lookup in the tree.
1728 */
1729
1730 UVMMAP_EVCNT_INCR(mlk_tree);
1731 if (__predict_true(uvm_map_lookup_entry_bytree(map, address, entry))) {
1732 SAVE_HINT(map, map->hint, *entry);
1733 UVMHIST_LOG(maphist,"<- search got it (%#jx)",
1734 (uintptr_t)cur, 0, 0, 0);
1735 KDASSERT((*entry)->start <= address);
1736 KDASSERT(address < (*entry)->end);
1737 uvm_mapent_check(*entry);
1738 return (true);
1739 }
1740
1741 SAVE_HINT(map, map->hint, *entry);
1742 UVMHIST_LOG(maphist,"<- failed!",0,0,0,0);
1743 KDASSERT((*entry) == &map->header || (*entry)->end <= address);
1744 KDASSERT((*entry)->next == &map->header ||
1745 address < (*entry)->next->start);
1746 return (false);
1747 }
1748
1749 /*
1750 * See if the range between start and start + length fits in the gap
1751 * entry->next->start and entry->end. Returns 1 if fits, 0 if doesn't
1752 * fit, and -1 address wraps around.
1753 */
1754 static int
1755 uvm_map_space_avail(vaddr_t *start, vsize_t length, voff_t uoffset,
1756 vsize_t align, int flags, int topdown, struct vm_map_entry *entry)
1757 {
1758 vaddr_t orig_start = *start;
1759 vaddr_t end;
1760
1761 #define INVARIANTS() \
1762 KASSERTMSG((topdown \
1763 ? *start <= orig_start \
1764 : *start >= orig_start), \
1765 "[%s] *start=%"PRIxVADDR" orig_start=%"PRIxVADDR \
1766 " length=%"PRIxVSIZE" uoffset=%#llx align=%"PRIxVSIZE \
1767 " flags=%x entry@%p=[%"PRIxVADDR",%"PRIxVADDR")" \
1768 " ncolors=%d colormask=%x", \
1769 topdown ? "topdown" : "bottomup", *start, orig_start, \
1770 length, (unsigned long long)uoffset, align, \
1771 flags, entry, entry->start, entry->end, \
1772 uvmexp.ncolors, uvmexp.colormask)
1773
1774 INVARIANTS();
1775
1776 #ifdef PMAP_PREFER
1777 /*
1778 * push start address forward as needed to avoid VAC alias problems.
1779 * we only do this if a valid offset is specified.
1780 */
1781
1782 if (uoffset != UVM_UNKNOWN_OFFSET) {
1783 PMAP_PREFER(uoffset, start, length, topdown);
1784 INVARIANTS();
1785 }
1786 #endif
1787 if ((flags & UVM_FLAG_COLORMATCH) != 0) {
1788 KASSERT(align < uvmexp.ncolors);
1789 if (uvmexp.ncolors > 1) {
1790 const u_int colormask = uvmexp.colormask;
1791 const u_int colorsize = colormask + 1;
1792 vaddr_t hint = atop(*start);
1793 const u_int color = hint & colormask;
1794 if (color != align) {
1795 hint -= color; /* adjust to color boundary */
1796 KASSERT((hint & colormask) == 0);
1797 if (topdown) {
1798 if (align > color)
1799 hint -= colorsize;
1800 } else {
1801 if (align < color)
1802 hint += colorsize;
1803 }
1804 *start = ptoa(hint + align); /* adjust to color */
1805 INVARIANTS();
1806 }
1807 }
1808 } else {
1809 KASSERT(powerof2(align));
1810 uvm_map_align_va(start, align, topdown);
1811 INVARIANTS();
1812 /*
1813 * XXX Should we PMAP_PREFER() here again?
1814 * eh...i think we're okay
1815 */
1816 }
1817
1818 /*
1819 * Find the end of the proposed new region. Be sure we didn't
1820 * wrap around the address; if so, we lose. Otherwise, if the
1821 * proposed new region fits before the next entry, we win.
1822 */
1823
1824 end = *start + length;
1825 if (end < *start)
1826 return (-1);
1827
1828 if (entry->next->start >= end && *start >= entry->end)
1829 return (1);
1830
1831 return (0);
1832
1833 #undef INVARIANTS
1834 }
1835
1836 static void
1837 uvm_findspace_invariants(struct vm_map *map, vaddr_t orig_hint, vaddr_t length,
1838 struct uvm_object *uobj, voff_t uoffset, vsize_t align, int flags,
1839 vaddr_t hint, struct vm_map_entry *entry, int line)
1840 {
1841 const int topdown = map->flags & VM_MAP_TOPDOWN;
1842 const int hint_location_ok =
1843 topdown ? hint <= orig_hint
1844 : hint >= orig_hint;
1845
1846 #if !(defined(__sh3__) && defined(DIAGNOSTIC)) /* XXXRO: kern/51254 */
1847 #define UVM_FINDSPACE_KASSERTMSG KASSERTMSG
1848
1849 #else /* sh3 && DIAGNOSTIC */
1850 /* like KASSERTMSG but make it not fatal */
1851 #define UVM_FINDSPACE_KASSERTMSG(e, msg, ...) \
1852 (__predict_true((e)) ? (void)0 : \
1853 printf(__KASSERTSTR msg "\n", \
1854 "weak diagnostic ", #e, \
1855 __FILE__, __LINE__, ## __VA_ARGS__))
1856 #endif
1857
1858 UVM_FINDSPACE_KASSERTMSG(hint_location_ok,
1859 "%s map=%p hint=%#" PRIxVADDR " %s orig_hint=%#" PRIxVADDR
1860 " length=%#" PRIxVSIZE " uobj=%p uoffset=%#llx align=%" PRIxVSIZE
1861 " flags=%#x entry=%p (uvm_map_findspace line %d)",
1862 topdown ? "topdown" : "bottomup",
1863 map, hint, topdown ? ">" : "<", orig_hint,
1864 length, uobj, (unsigned long long)uoffset, align,
1865 flags, entry, line);
1866 }
1867
1868 /*
1869 * uvm_map_findspace: find "length" sized space in "map".
1870 *
1871 * => "hint" is a hint about where we want it, unless UVM_FLAG_FIXED is
1872 * set in "flags" (in which case we insist on using "hint").
1873 * => "result" is VA returned
1874 * => uobj/uoffset are to be used to handle VAC alignment, if required
1875 * => if "align" is non-zero, we attempt to align to that value.
1876 * => caller must at least have read-locked map
1877 * => returns NULL on failure, or pointer to prev. map entry if success
1878 * => note this is a cross between the old vm_map_findspace and vm_map_find
1879 */
1880
1881 struct vm_map_entry *
1882 uvm_map_findspace(struct vm_map *map, vaddr_t hint, vsize_t length,
1883 vaddr_t *result /* OUT */, struct uvm_object *uobj, voff_t uoffset,
1884 vsize_t align, int flags)
1885 {
1886 #define INVARIANTS() \
1887 uvm_findspace_invariants(map, orig_hint, length, uobj, uoffset, align,\
1888 flags, hint, entry, __LINE__)
1889 struct vm_map_entry *entry = NULL;
1890 struct vm_map_entry *child, *prev, *tmp;
1891 vaddr_t orig_hint __diagused;
1892 const int topdown = map->flags & VM_MAP_TOPDOWN;
1893 int avail;
1894 UVMHIST_FUNC(__func__);
1895 UVMHIST_CALLARGS(maphist, "(map=%#jx, hint=%#jx, len=%ju, flags=%#jx...",
1896 (uintptr_t)map, hint, length, flags);
1897 UVMHIST_LOG(maphist, " uobj=%#jx, uoffset=%#jx, align=%#jx)",
1898 (uintptr_t)uobj, uoffset, align, 0);
1899
1900 KASSERT((flags & UVM_FLAG_COLORMATCH) != 0 || powerof2(align));
1901 KASSERT((flags & UVM_FLAG_COLORMATCH) == 0 || align < uvmexp.ncolors);
1902 KASSERT((flags & UVM_FLAG_FIXED) == 0 || align == 0);
1903
1904 uvm_map_check(map, "map_findspace entry");
1905
1906 /*
1907 * Clamp the hint to the VM map's min/max address, and remmeber
1908 * the clamped original hint. Remember the original hint,
1909 * clamped to the min/max address. If we are aligning, then we
1910 * may have to try again with no alignment constraint if we
1911 * fail the first time.
1912 *
1913 * We use the original hint to verify later that the search has
1914 * been monotonic -- that is, nonincreasing or nondecreasing,
1915 * according to topdown or !topdown respectively. But the
1916 * clamping is not monotonic.
1917 */
1918 if (hint < vm_map_min(map)) { /* check ranges ... */
1919 if (flags & UVM_FLAG_FIXED) {
1920 UVMHIST_LOG(maphist,"<- VA below map range",0,0,0,0);
1921 return (NULL);
1922 }
1923 hint = vm_map_min(map);
1924 }
1925 if (hint > vm_map_max(map)) {
1926 UVMHIST_LOG(maphist,"<- VA %#jx > range [%#jx->%#jx]",
1927 hint, vm_map_min(map), vm_map_max(map), 0);
1928 return (NULL);
1929 }
1930 orig_hint = hint;
1931 INVARIANTS();
1932
1933 UVMHIST_LOG(maphist,"<- VA %#jx vs range [%#jx->%#jx]",
1934 hint, vm_map_min(map), vm_map_max(map), 0);
1935
1936 /*
1937 * hint may not be aligned properly; we need round up or down it
1938 * before proceeding further.
1939 */
1940 if ((flags & UVM_FLAG_COLORMATCH) == 0) {
1941 uvm_map_align_va(&hint, align, topdown);
1942 INVARIANTS();
1943 }
1944
1945 UVMHIST_LOG(maphist,"<- VA %#jx vs range [%#jx->%#jx]",
1946 hint, vm_map_min(map), vm_map_max(map), 0);
1947 /*
1948 * Look for the first possible address; if there's already
1949 * something at this address, we have to start after it.
1950 */
1951
1952 /*
1953 * @@@: there are four, no, eight cases to consider.
1954 *
1955 * 0: found, fixed, bottom up -> fail
1956 * 1: found, fixed, top down -> fail
1957 * 2: found, not fixed, bottom up -> start after entry->end,
1958 * loop up
1959 * 3: found, not fixed, top down -> start before entry->start,
1960 * loop down
1961 * 4: not found, fixed, bottom up -> check entry->next->start, fail
1962 * 5: not found, fixed, top down -> check entry->next->start, fail
1963 * 6: not found, not fixed, bottom up -> check entry->next->start,
1964 * loop up
1965 * 7: not found, not fixed, top down -> check entry->next->start,
1966 * loop down
1967 *
1968 * as you can see, it reduces to roughly five cases, and that
1969 * adding top down mapping only adds one unique case (without
1970 * it, there would be four cases).
1971 */
1972
1973 if ((flags & UVM_FLAG_FIXED) == 0 &&
1974 hint == (topdown ? vm_map_max(map) : vm_map_min(map))) {
1975 /*
1976 * The uvm_map_findspace algorithm is monotonic -- for
1977 * topdown VM it starts with a high hint and returns a
1978 * lower free address; for !topdown VM it starts with a
1979 * low hint and returns a higher free address. As an
1980 * optimization, start with the first (highest for
1981 * topdown, lowest for !topdown) free address.
1982 *
1983 * XXX This `optimization' probably doesn't actually do
1984 * much in practice unless userland explicitly passes
1985 * the VM map's minimum or maximum address, which
1986 * varies from machine to machine (VM_MAX/MIN_ADDRESS,
1987 * e.g. 0x7fbfdfeff000 on amd64 but 0xfffffffff000 on
1988 * aarch64) and may vary according to other factors
1989 * like sysctl vm.user_va0_disable. In particular, if
1990 * the user specifies 0 as a hint to mmap, then mmap
1991 * will choose a default address which is usually _not_
1992 * VM_MAX/MIN_ADDRESS but something else instead like
1993 * VM_MAX_ADDRESS - stack size - guard page overhead,
1994 * in which case this branch is never hit.
1995 *
1996 * In fact, this branch appears to have been broken for
1997 * two decades between when topdown was introduced in
1998 * ~2003 and when it was adapted to handle the topdown
1999 * case without violating the monotonicity assertion in
2000 * 2022. Maybe Someone^TM should either ditch the
2001 * optimization or find a better way to do it.
2002 */
2003 entry = map->first_free;
2004 } else if (uvm_map_lookup_entry(map, hint, &entry)) {
2005 KASSERT(entry->start <= hint);
2006 KASSERT(hint < entry->end);
2007 /* "hint" address already in use ... */
2008 if (flags & UVM_FLAG_FIXED) {
2009 UVMHIST_LOG(maphist, "<- fixed & VA in use",
2010 0, 0, 0, 0);
2011 return (NULL);
2012 }
2013 if (topdown)
2014 /* Start from lower gap. */
2015 entry = entry->prev;
2016 } else {
2017 KASSERT(entry == &map->header || entry->end <= hint);
2018 KASSERT(entry->next == &map->header ||
2019 hint < entry->next->start);
2020 if (flags & UVM_FLAG_FIXED) {
2021 if (entry->next->start >= hint + length &&
2022 hint + length > hint)
2023 goto found;
2024
2025 /* "hint" address is gap but too small */
2026 UVMHIST_LOG(maphist, "<- fixed mapping failed",
2027 0, 0, 0, 0);
2028 return (NULL); /* only one shot at it ... */
2029 } else {
2030 /*
2031 * See if given hint fits in this gap.
2032 */
2033 avail = uvm_map_space_avail(&hint, length,
2034 uoffset, align, flags, topdown, entry);
2035 INVARIANTS();
2036 switch (avail) {
2037 case 1:
2038 goto found;
2039 case -1:
2040 goto wraparound;
2041 }
2042
2043 if (topdown) {
2044 /*
2045 * Still there is a chance to fit
2046 * if hint > entry->end.
2047 */
2048 } else {
2049 /* Start from higher gap. */
2050 entry = entry->next;
2051 if (entry == &map->header)
2052 goto notfound;
2053 goto nextgap;
2054 }
2055 }
2056 }
2057
2058 /*
2059 * Note that all UVM_FLAGS_FIXED case is already handled.
2060 */
2061 KDASSERT((flags & UVM_FLAG_FIXED) == 0);
2062
2063 /* Try to find the space in the red-black tree */
2064
2065 /* Check slot before any entry */
2066 if (topdown) {
2067 KASSERTMSG(entry->next->start >= vm_map_min(map),
2068 "map=%p entry=%p entry->next=%p"
2069 " entry->next->start=0x%"PRIxVADDR" min=0x%"PRIxVADDR,
2070 map, entry, entry->next,
2071 entry->next->start, vm_map_min(map));
2072 if (length > entry->next->start - vm_map_min(map))
2073 hint = vm_map_min(map); /* XXX goto wraparound? */
2074 else
2075 hint = entry->next->start - length;
2076 KASSERT(hint >= vm_map_min(map));
2077 } else {
2078 hint = entry->end;
2079 }
2080 INVARIANTS();
2081 avail = uvm_map_space_avail(&hint, length, uoffset, align, flags,
2082 topdown, entry);
2083 INVARIANTS();
2084 switch (avail) {
2085 case 1:
2086 goto found;
2087 case -1:
2088 goto wraparound;
2089 }
2090
2091 nextgap:
2092 KDASSERT((flags & UVM_FLAG_FIXED) == 0);
2093 /* If there is not enough space in the whole tree, we fail */
2094 tmp = ROOT_ENTRY(map);
2095 if (tmp == NULL || tmp->maxgap < length)
2096 goto notfound;
2097
2098 prev = NULL; /* previous candidate */
2099
2100 /* Find an entry close to hint that has enough space */
2101 for (; tmp;) {
2102 KASSERT(tmp->next->start == tmp->end + tmp->gap);
2103 if (topdown) {
2104 if (tmp->next->start < hint + length &&
2105 (prev == NULL || tmp->end > prev->end)) {
2106 if (tmp->gap >= length)
2107 prev = tmp;
2108 else if ((child = LEFT_ENTRY(tmp)) != NULL
2109 && child->maxgap >= length)
2110 prev = tmp;
2111 }
2112 } else {
2113 if (tmp->end >= hint &&
2114 (prev == NULL || tmp->end < prev->end)) {
2115 if (tmp->gap >= length)
2116 prev = tmp;
2117 else if ((child = RIGHT_ENTRY(tmp)) != NULL
2118 && child->maxgap >= length)
2119 prev = tmp;
2120 }
2121 }
2122 if (tmp->next->start < hint + length)
2123 child = RIGHT_ENTRY(tmp);
2124 else if (tmp->end > hint)
2125 child = LEFT_ENTRY(tmp);
2126 else {
2127 if (tmp->gap >= length)
2128 break;
2129 if (topdown)
2130 child = LEFT_ENTRY(tmp);
2131 else
2132 child = RIGHT_ENTRY(tmp);
2133 }
2134 if (child == NULL || child->maxgap < length)
2135 break;
2136 tmp = child;
2137 }
2138
2139 if (tmp != NULL && tmp->start < hint && hint < tmp->next->start) {
2140 /*
2141 * Check if the entry that we found satifies the
2142 * space requirement
2143 */
2144 if (topdown) {
2145 if (hint > tmp->next->start - length)
2146 hint = tmp->next->start - length;
2147 } else {
2148 if (hint < tmp->end)
2149 hint = tmp->end;
2150 }
2151 INVARIANTS();
2152 avail = uvm_map_space_avail(&hint, length, uoffset, align,
2153 flags, topdown, tmp);
2154 INVARIANTS();
2155 switch (avail) {
2156 case 1:
2157 entry = tmp;
2158 goto found;
2159 case -1:
2160 goto wraparound;
2161 }
2162 if (tmp->gap >= length)
2163 goto listsearch;
2164 }
2165 if (prev == NULL)
2166 goto notfound;
2167
2168 if (topdown) {
2169 KASSERT(orig_hint >= prev->next->start - length ||
2170 prev->next->start - length > prev->next->start);
2171 hint = prev->next->start - length;
2172 } else {
2173 KASSERT(orig_hint <= prev->end);
2174 hint = prev->end;
2175 }
2176 INVARIANTS();
2177 avail = uvm_map_space_avail(&hint, length, uoffset, align,
2178 flags, topdown, prev);
2179 INVARIANTS();
2180 switch (avail) {
2181 case 1:
2182 entry = prev;
2183 goto found;
2184 case -1:
2185 goto wraparound;
2186 }
2187 if (prev->gap >= length)
2188 goto listsearch;
2189
2190 if (topdown)
2191 tmp = LEFT_ENTRY(prev);
2192 else
2193 tmp = RIGHT_ENTRY(prev);
2194 for (;;) {
2195 KASSERT(tmp);
2196 KASSERTMSG(tmp->maxgap >= length,
2197 "tmp->maxgap=0x%"PRIxVSIZE" length=0x%"PRIxVSIZE,
2198 tmp->maxgap, length);
2199 if (topdown)
2200 child = RIGHT_ENTRY(tmp);
2201 else
2202 child = LEFT_ENTRY(tmp);
2203 if (child && child->maxgap >= length) {
2204 tmp = child;
2205 continue;
2206 }
2207 if (tmp->gap >= length)
2208 break;
2209 if (topdown)
2210 tmp = LEFT_ENTRY(tmp);
2211 else
2212 tmp = RIGHT_ENTRY(tmp);
2213 }
2214
2215 if (topdown) {
2216 KASSERT(orig_hint >= tmp->next->start - length ||
2217 tmp->next->start - length > tmp->next->start);
2218 hint = tmp->next->start - length;
2219 } else {
2220 KASSERT(orig_hint <= tmp->end);
2221 hint = tmp->end;
2222 }
2223 INVARIANTS();
2224 avail = uvm_map_space_avail(&hint, length, uoffset, align,
2225 flags, topdown, tmp);
2226 INVARIANTS();
2227 switch (avail) {
2228 case 1:
2229 entry = tmp;
2230 goto found;
2231 case -1:
2232 goto wraparound;
2233 }
2234
2235 /*
2236 * The tree fails to find an entry because of offset or alignment
2237 * restrictions. Search the list instead.
2238 */
2239 listsearch:
2240 /*
2241 * Look through the rest of the map, trying to fit a new region in
2242 * the gap between existing regions, or after the very last region.
2243 * note: entry->end = base VA of current gap,
2244 * entry->next->start = VA of end of current gap
2245 */
2246
2247 INVARIANTS();
2248 for (;;) {
2249 /* Update hint for current gap. */
2250 hint = topdown ? entry->next->start - length : entry->end;
2251 INVARIANTS();
2252
2253 /* See if it fits. */
2254 avail = uvm_map_space_avail(&hint, length, uoffset, align,
2255 flags, topdown, entry);
2256 INVARIANTS();
2257 switch (avail) {
2258 case 1:
2259 goto found;
2260 case -1:
2261 goto wraparound;
2262 }
2263
2264 /* Advance to next/previous gap */
2265 if (topdown) {
2266 if (entry == &map->header) {
2267 UVMHIST_LOG(maphist, "<- failed (off start)",
2268 0,0,0,0);
2269 goto notfound;
2270 }
2271 entry = entry->prev;
2272 } else {
2273 entry = entry->next;
2274 if (entry == &map->header) {
2275 UVMHIST_LOG(maphist, "<- failed (off end)",
2276 0,0,0,0);
2277 goto notfound;
2278 }
2279 }
2280 }
2281
2282 found:
2283 SAVE_HINT(map, map->hint, entry);
2284 *result = hint;
2285 UVMHIST_LOG(maphist,"<- got it! (result=%#jx)", hint, 0,0,0);
2286 INVARIANTS();
2287 KASSERT(entry->end <= hint);
2288 KASSERT(hint + length <= entry->next->start);
2289 return (entry);
2290
2291 wraparound:
2292 UVMHIST_LOG(maphist, "<- failed (wrap around)", 0,0,0,0);
2293
2294 return (NULL);
2295
2296 notfound:
2297 UVMHIST_LOG(maphist, "<- failed (notfound)", 0,0,0,0);
2298
2299 return (NULL);
2300 #undef INVARIANTS
2301 }
2302
2303 /*
2304 * U N M A P - m a i n h e l p e r f u n c t i o n s
2305 */
2306
2307 /*
2308 * uvm_unmap_remove: remove mappings from a vm_map (from "start" up to "stop")
2309 *
2310 * => caller must check alignment and size
2311 * => map must be locked by caller
2312 * => we return a list of map entries that we've remove from the map
2313 * in "entry_list"
2314 */
2315
2316 void
2317 uvm_unmap_remove(struct vm_map *map, vaddr_t start, vaddr_t end,
2318 struct vm_map_entry **entry_list /* OUT */, int flags)
2319 {
2320 struct vm_map_entry *entry, *first_entry, *next;
2321 vaddr_t len;
2322 UVMHIST_FUNC(__func__);
2323 UVMHIST_CALLARGS(maphist,"(map=%#jx, start=%#jx, end=%#jx)",
2324 (uintptr_t)map, start, end, 0);
2325 VM_MAP_RANGE_CHECK(map, start, end);
2326
2327 uvm_map_check(map, "unmap_remove entry");
2328
2329 /*
2330 * find first entry
2331 */
2332
2333 if (uvm_map_lookup_entry(map, start, &first_entry) == true) {
2334 /* clip and go... */
2335 entry = first_entry;
2336 UVM_MAP_CLIP_START(map, entry, start);
2337 /* critical! prevents stale hint */
2338 SAVE_HINT(map, entry, entry->prev);
2339 } else {
2340 entry = first_entry->next;
2341 }
2342
2343 /*
2344 * save the free space hint
2345 */
2346
2347 if (map->first_free != &map->header && map->first_free->start >= start)
2348 map->first_free = entry->prev;
2349
2350 /*
2351 * note: we now re-use first_entry for a different task. we remove
2352 * a number of map entries from the map and save them in a linked
2353 * list headed by "first_entry". once we remove them from the map
2354 * the caller should unlock the map and drop the references to the
2355 * backing objects [c.f. uvm_unmap_detach]. the object is to
2356 * separate unmapping from reference dropping. why?
2357 * [1] the map has to be locked for unmapping
2358 * [2] the map need not be locked for reference dropping
2359 * [3] dropping references may trigger pager I/O, and if we hit
2360 * a pager that does synchronous I/O we may have to wait for it.
2361 * [4] we would like all waiting for I/O to occur with maps unlocked
2362 * so that we don't block other threads.
2363 */
2364
2365 first_entry = NULL;
2366 *entry_list = NULL;
2367
2368 /*
2369 * break up the area into map entry sized regions and unmap. note
2370 * that all mappings have to be removed before we can even consider
2371 * dropping references to amaps or VM objects (otherwise we could end
2372 * up with a mapping to a page on the free list which would be very bad)
2373 */
2374
2375 while ((entry != &map->header) && (entry->start < end)) {
2376 KASSERT((entry->flags & UVM_MAP_STATIC) == 0);
2377
2378 UVM_MAP_CLIP_END(map, entry, end);
2379 next = entry->next;
2380 len = entry->end - entry->start;
2381
2382 /*
2383 * unwire before removing addresses from the pmap; otherwise
2384 * unwiring will put the entries back into the pmap (XXX).
2385 */
2386
2387 if (VM_MAPENT_ISWIRED(entry)) {
2388 uvm_map_entry_unwire(map, entry);
2389 }
2390 if (flags & UVM_FLAG_VAONLY) {
2391
2392 /* nothing */
2393
2394 } else if ((map->flags & VM_MAP_PAGEABLE) == 0) {
2395
2396 /*
2397 * if the map is non-pageable, any pages mapped there
2398 * must be wired and entered with pmap_kenter_pa(),
2399 * and we should free any such pages immediately.
2400 * this is mostly used for kmem_map.
2401 */
2402 KASSERT(vm_map_pmap(map) == pmap_kernel());
2403
2404 uvm_km_pgremove_intrsafe(map, entry->start, entry->end);
2405 } else if (UVM_ET_ISOBJ(entry) &&
2406 UVM_OBJ_IS_KERN_OBJECT(entry->object.uvm_obj)) {
2407 panic("%s: kernel object %p %p\n",
2408 __func__, map, entry);
2409 } else if (UVM_ET_ISOBJ(entry) || entry->aref.ar_amap) {
2410 /*
2411 * remove mappings the standard way. lock object
2412 * and/or amap to ensure vm_page state does not
2413 * change while in pmap_remove().
2414 */
2415
2416 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
2417 uvm_map_lock_entry(entry, RW_WRITER);
2418 #else
2419 uvm_map_lock_entry(entry, RW_READER);
2420 #endif
2421 pmap_remove(map->pmap, entry->start, entry->end);
2422
2423 /*
2424 * note: if map is dying, leave pmap_update() for
2425 * later. if the map is to be reused (exec) then
2426 * pmap_update() will be called. if the map is
2427 * being disposed of (exit) then pmap_destroy()
2428 * will be called.
2429 */
2430
2431 if ((map->flags & VM_MAP_DYING) == 0) {
2432 pmap_update(vm_map_pmap(map));
2433 } else {
2434 KASSERT(vm_map_pmap(map) != pmap_kernel());
2435 }
2436
2437 uvm_map_unlock_entry(entry);
2438 }
2439
2440 #if defined(UVMDEBUG)
2441 /*
2442 * check if there's remaining mapping,
2443 * which is a bug in caller.
2444 */
2445
2446 vaddr_t va;
2447 for (va = entry->start; va < entry->end;
2448 va += PAGE_SIZE) {
2449 if (pmap_extract(vm_map_pmap(map), va, NULL)) {
2450 panic("%s: %#"PRIxVADDR" has mapping",
2451 __func__, va);
2452 }
2453 }
2454
2455 if (VM_MAP_IS_KERNEL(map) && (flags & UVM_FLAG_NOWAIT) == 0) {
2456 uvm_km_check_empty(map, entry->start, entry->end);
2457 }
2458 #endif /* defined(UVMDEBUG) */
2459
2460 /*
2461 * remove entry from map and put it on our list of entries
2462 * that we've nuked. then go to next entry.
2463 */
2464
2465 UVMHIST_LOG(maphist, " removed map entry %#jx",
2466 (uintptr_t)entry, 0, 0, 0);
2467
2468 /* critical! prevents stale hint */
2469 SAVE_HINT(map, entry, entry->prev);
2470
2471 uvm_map_entry_unlink(map, entry);
2472 KASSERT(map->size >= len);
2473 map->size -= len;
2474 entry->prev = NULL;
2475 entry->next = first_entry;
2476 first_entry = entry;
2477 entry = next;
2478 }
2479
2480 uvm_map_check(map, "unmap_remove leave");
2481
2482 /*
2483 * now we've cleaned up the map and are ready for the caller to drop
2484 * references to the mapped objects.
2485 */
2486
2487 *entry_list = first_entry;
2488 UVMHIST_LOG(maphist,"<- done!", 0, 0, 0, 0);
2489
2490 if (map->flags & VM_MAP_WANTVA) {
2491 mutex_enter(&map->misc_lock);
2492 map->flags &= ~VM_MAP_WANTVA;
2493 cv_broadcast(&map->cv);
2494 mutex_exit(&map->misc_lock);
2495 }
2496 }
2497
2498 /*
2499 * uvm_unmap_detach: drop references in a chain of map entries
2500 *
2501 * => we will free the map entries as we traverse the list.
2502 */
2503
2504 void
2505 uvm_unmap_detach(struct vm_map_entry *first_entry, int flags)
2506 {
2507 struct vm_map_entry *next_entry;
2508 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2509
2510 while (first_entry) {
2511 KASSERT(!VM_MAPENT_ISWIRED(first_entry));
2512 UVMHIST_LOG(maphist,
2513 " detach %#jx: amap=%#jx, obj=%#jx, submap?=%jd",
2514 (uintptr_t)first_entry,
2515 (uintptr_t)first_entry->aref.ar_amap,
2516 (uintptr_t)first_entry->object.uvm_obj,
2517 UVM_ET_ISSUBMAP(first_entry));
2518
2519 /*
2520 * drop reference to amap, if we've got one
2521 */
2522
2523 if (first_entry->aref.ar_amap)
2524 uvm_map_unreference_amap(first_entry, flags);
2525
2526 /*
2527 * drop reference to our backing object, if we've got one
2528 */
2529
2530 KASSERT(!UVM_ET_ISSUBMAP(first_entry));
2531 if (UVM_ET_ISOBJ(first_entry) &&
2532 first_entry->object.uvm_obj->pgops->pgo_detach) {
2533 (*first_entry->object.uvm_obj->pgops->pgo_detach)
2534 (first_entry->object.uvm_obj);
2535 }
2536 next_entry = first_entry->next;
2537 uvm_mapent_free(first_entry);
2538 first_entry = next_entry;
2539 }
2540 UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
2541 }
2542
2543 /*
2544 * E X T R A C T I O N F U N C T I O N S
2545 */
2546
2547 /*
2548 * uvm_map_reserve: reserve space in a vm_map for future use.
2549 *
2550 * => we reserve space in a map by putting a dummy map entry in the
2551 * map (dummy means obj=NULL, amap=NULL, prot=VM_PROT_NONE)
2552 * => map should be unlocked (we will write lock it)
2553 * => we return true if we were able to reserve space
2554 * => XXXCDC: should be inline?
2555 */
2556
2557 int
2558 uvm_map_reserve(struct vm_map *map, vsize_t size,
2559 vaddr_t offset /* hint for pmap_prefer */,
2560 vsize_t align /* alignment */,
2561 vaddr_t *raddr /* IN:hint, OUT: reserved VA */,
2562 uvm_flag_t flags /* UVM_FLAG_FIXED or UVM_FLAG_COLORMATCH or 0 */)
2563 {
2564 UVMHIST_FUNC(__func__);
2565 UVMHIST_CALLARGS(maphist, "(map=%#jx, size=%#jx, offset=%#jx, addr=%#jx)",
2566 (uintptr_t)map, size, offset, (uintptr_t)raddr);
2567
2568 size = round_page(size);
2569
2570 /*
2571 * reserve some virtual space.
2572 */
2573
2574 if (uvm_map(map, raddr, size, NULL, offset, align,
2575 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
2576 UVM_ADV_RANDOM, UVM_FLAG_NOMERGE|flags)) != 0) {
2577 UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
2578 return (false);
2579 }
2580
2581 UVMHIST_LOG(maphist, "<- done (*raddr=%#jx)", *raddr,0,0,0);
2582 return (true);
2583 }
2584
2585 /*
2586 * uvm_map_replace: replace a reserved (blank) area of memory with
2587 * real mappings.
2588 *
2589 * => caller must WRITE-LOCK the map
2590 * => we return true if replacement was a success
2591 * => we expect the newents chain to have nnewents entrys on it and
2592 * we expect newents->prev to point to the last entry on the list
2593 * => note newents is allowed to be NULL
2594 */
2595
2596 static int
2597 uvm_map_replace(struct vm_map *map, vaddr_t start, vaddr_t end,
2598 struct vm_map_entry *newents, int nnewents, vsize_t nsize,
2599 struct vm_map_entry **oldentryp)
2600 {
2601 struct vm_map_entry *oldent, *last;
2602
2603 uvm_map_check(map, "map_replace entry");
2604
2605 /*
2606 * first find the blank map entry at the specified address
2607 */
2608
2609 if (!uvm_map_lookup_entry(map, start, &oldent)) {
2610 return (false);
2611 }
2612
2613 /*
2614 * check to make sure we have a proper blank entry
2615 */
2616
2617 if (end < oldent->end) {
2618 UVM_MAP_CLIP_END(map, oldent, end);
2619 }
2620 if (oldent->start != start || oldent->end != end ||
2621 oldent->object.uvm_obj != NULL || oldent->aref.ar_amap != NULL) {
2622 return (false);
2623 }
2624
2625 #ifdef DIAGNOSTIC
2626
2627 /*
2628 * sanity check the newents chain
2629 */
2630
2631 {
2632 struct vm_map_entry *tmpent = newents;
2633 int nent = 0;
2634 vsize_t sz = 0;
2635 vaddr_t cur = start;
2636
2637 while (tmpent) {
2638 nent++;
2639 sz += tmpent->end - tmpent->start;
2640 if (tmpent->start < cur)
2641 panic("uvm_map_replace1");
2642 if (tmpent->start >= tmpent->end || tmpent->end > end) {
2643 panic("uvm_map_replace2: "
2644 "tmpent->start=%#"PRIxVADDR
2645 ", tmpent->end=%#"PRIxVADDR
2646 ", end=%#"PRIxVADDR,
2647 tmpent->start, tmpent->end, end);
2648 }
2649 cur = tmpent->end;
2650 if (tmpent->next) {
2651 if (tmpent->next->prev != tmpent)
2652 panic("uvm_map_replace3");
2653 } else {
2654 if (newents->prev != tmpent)
2655 panic("uvm_map_replace4");
2656 }
2657 tmpent = tmpent->next;
2658 }
2659 if (nent != nnewents)
2660 panic("uvm_map_replace5");
2661 if (sz != nsize)
2662 panic("uvm_map_replace6");
2663 }
2664 #endif
2665
2666 /*
2667 * map entry is a valid blank! replace it. (this does all the
2668 * work of map entry link/unlink...).
2669 */
2670
2671 if (newents) {
2672 last = newents->prev;
2673
2674 /* critical: flush stale hints out of map */
2675 SAVE_HINT(map, map->hint, newents);
2676 if (map->first_free == oldent)
2677 map->first_free = last;
2678
2679 last->next = oldent->next;
2680 last->next->prev = last;
2681
2682 /* Fix RB tree */
2683 uvm_rb_remove(map, oldent);
2684
2685 newents->prev = oldent->prev;
2686 newents->prev->next = newents;
2687 map->nentries = map->nentries + (nnewents - 1);
2688
2689 /* Fixup the RB tree */
2690 {
2691 int i;
2692 struct vm_map_entry *tmp;
2693
2694 tmp = newents;
2695 for (i = 0; i < nnewents && tmp; i++) {
2696 uvm_rb_insert(map, tmp);
2697 tmp = tmp->next;
2698 }
2699 }
2700 } else {
2701 /* NULL list of new entries: just remove the old one */
2702 clear_hints(map, oldent);
2703 uvm_map_entry_unlink(map, oldent);
2704 }
2705 map->size -= end - start - nsize;
2706
2707 uvm_map_check(map, "map_replace leave");
2708
2709 /*
2710 * now we can free the old blank entry and return.
2711 */
2712
2713 *oldentryp = oldent;
2714 return (true);
2715 }
2716
2717 /*
2718 * uvm_map_extract: extract a mapping from a map and put it somewhere
2719 * (maybe removing the old mapping)
2720 *
2721 * => maps should be unlocked (we will write lock them)
2722 * => returns 0 on success, error code otherwise
2723 * => start must be page aligned
2724 * => len must be page sized
2725 * => flags:
2726 * UVM_EXTRACT_REMOVE: remove mappings from srcmap
2727 * UVM_EXTRACT_CONTIG: abort if unmapped area (advisory only)
2728 * UVM_EXTRACT_QREF: for a temporary extraction do quick obj refs
2729 * UVM_EXTRACT_FIXPROT: set prot to maxprot as we go
2730 * UVM_EXTRACT_PROT_ALL: set prot to UVM_PROT_ALL as we go
2731 * >>>NOTE: if you set REMOVE, you are not allowed to use CONTIG or QREF!<<<
2732 * >>>NOTE: QREF's must be unmapped via the QREF path, thus should only
2733 * be used from within the kernel in a kernel level map <<<
2734 */
2735
2736 int
2737 uvm_map_extract(struct vm_map *srcmap, vaddr_t start, vsize_t len,
2738 struct vm_map *dstmap, vaddr_t *dstaddrp, int flags)
2739 {
2740 vaddr_t dstaddr, end, newend, oldoffset, fudge, orig_fudge;
2741 struct vm_map_entry *chain, *endchain, *entry, *orig_entry, *newentry,
2742 *deadentry, *oldentry;
2743 struct vm_map_entry *resentry = NULL; /* a dummy reservation entry */
2744 vsize_t elen __unused;
2745 int nchain, error, copy_ok;
2746 vsize_t nsize;
2747 UVMHIST_FUNC(__func__);
2748 UVMHIST_CALLARGS(maphist,"(srcmap=%#jx,start=%#jx, len=%#jx",
2749 (uintptr_t)srcmap, start, len, 0);
2750 UVMHIST_LOG(maphist," ...,dstmap=%#jx, flags=%#jx)",
2751 (uintptr_t)dstmap, flags, 0, 0);
2752
2753 /*
2754 * step 0: sanity check: start must be on a page boundary, length
2755 * must be page sized. can't ask for CONTIG/QREF if you asked for
2756 * REMOVE.
2757 */
2758
2759 KASSERTMSG((start & PAGE_MASK) == 0, "start=0x%"PRIxVADDR, start);
2760 KASSERTMSG((len & PAGE_MASK) == 0, "len=0x%"PRIxVADDR, len);
2761 KASSERT((flags & UVM_EXTRACT_REMOVE) == 0 ||
2762 (flags & (UVM_EXTRACT_CONTIG|UVM_EXTRACT_QREF)) == 0);
2763
2764 /*
2765 * step 1: reserve space in the target map for the extracted area
2766 */
2767
2768 if ((flags & UVM_EXTRACT_RESERVED) == 0) {
2769 dstaddr = vm_map_min(dstmap);
2770 if (!uvm_map_reserve(dstmap, len, start,
2771 atop(start) & uvmexp.colormask, &dstaddr,
2772 UVM_FLAG_COLORMATCH))
2773 return (ENOMEM);
2774 KASSERT((atop(start ^ dstaddr) & uvmexp.colormask) == 0);
2775 *dstaddrp = dstaddr; /* pass address back to caller */
2776 UVMHIST_LOG(maphist, " dstaddr=%#jx", dstaddr,0,0,0);
2777 } else {
2778 dstaddr = *dstaddrp;
2779 }
2780
2781 /*
2782 * step 2: setup for the extraction process loop by init'ing the
2783 * map entry chain, locking src map, and looking up the first useful
2784 * entry in the map.
2785 */
2786
2787 end = start + len;
2788 newend = dstaddr + len;
2789 chain = endchain = NULL;
2790 nchain = 0;
2791 nsize = 0;
2792 vm_map_lock(srcmap);
2793
2794 if (uvm_map_lookup_entry(srcmap, start, &entry)) {
2795
2796 /* "start" is within an entry */
2797 if (flags & UVM_EXTRACT_QREF) {
2798
2799 /*
2800 * for quick references we don't clip the entry, so
2801 * the entry may map space "before" the starting
2802 * virtual address... this is the "fudge" factor
2803 * (which can be non-zero only the first time
2804 * through the "while" loop in step 3).
2805 */
2806
2807 fudge = start - entry->start;
2808 } else {
2809
2810 /*
2811 * normal reference: we clip the map to fit (thus
2812 * fudge is zero)
2813 */
2814
2815 UVM_MAP_CLIP_START(srcmap, entry, start);
2816 SAVE_HINT(srcmap, srcmap->hint, entry->prev);
2817 fudge = 0;
2818 }
2819 } else {
2820
2821 /* "start" is not within an entry ... skip to next entry */
2822 if (flags & UVM_EXTRACT_CONTIG) {
2823 error = EINVAL;
2824 goto bad; /* definite hole here ... */
2825 }
2826
2827 entry = entry->next;
2828 fudge = 0;
2829 }
2830
2831 /* save values from srcmap for step 6 */
2832 orig_entry = entry;
2833 orig_fudge = fudge;
2834
2835 /*
2836 * step 3: now start looping through the map entries, extracting
2837 * as we go.
2838 */
2839
2840 while (entry->start < end && entry != &srcmap->header) {
2841
2842 /* if we are not doing a quick reference, clip it */
2843 if ((flags & UVM_EXTRACT_QREF) == 0)
2844 UVM_MAP_CLIP_END(srcmap, entry, end);
2845
2846 /* clear needs_copy (allow chunking) */
2847 if (UVM_ET_ISNEEDSCOPY(entry)) {
2848 amap_copy(srcmap, entry,
2849 AMAP_COPY_NOWAIT|AMAP_COPY_NOMERGE, start, end);
2850 if (UVM_ET_ISNEEDSCOPY(entry)) { /* failed? */
2851 error = ENOMEM;
2852 goto bad;
2853 }
2854
2855 /* amap_copy could clip (during chunk)! update fudge */
2856 if (fudge) {
2857 fudge = start - entry->start;
2858 orig_fudge = fudge;
2859 }
2860 }
2861
2862 /* calculate the offset of this from "start" */
2863 oldoffset = (entry->start + fudge) - start;
2864
2865 /* allocate a new map entry */
2866 newentry = uvm_mapent_alloc(dstmap, 0);
2867 if (newentry == NULL) {
2868 error = ENOMEM;
2869 goto bad;
2870 }
2871
2872 /* set up new map entry */
2873 newentry->next = NULL;
2874 newentry->prev = endchain;
2875 newentry->start = dstaddr + oldoffset;
2876 newentry->end =
2877 newentry->start + (entry->end - (entry->start + fudge));
2878 if (newentry->end > newend || newentry->end < newentry->start)
2879 newentry->end = newend;
2880 newentry->object.uvm_obj = entry->object.uvm_obj;
2881 if (newentry->object.uvm_obj) {
2882 if (newentry->object.uvm_obj->pgops->pgo_reference)
2883 newentry->object.uvm_obj->pgops->
2884 pgo_reference(newentry->object.uvm_obj);
2885 newentry->offset = entry->offset + fudge;
2886 } else {
2887 newentry->offset = 0;
2888 }
2889 newentry->etype = entry->etype;
2890 if (flags & UVM_EXTRACT_PROT_ALL) {
2891 newentry->protection = newentry->max_protection =
2892 UVM_PROT_ALL;
2893 } else {
2894 newentry->protection = (flags & UVM_EXTRACT_FIXPROT) ?
2895 entry->max_protection : entry->protection;
2896 newentry->max_protection = entry->max_protection;
2897 }
2898 newentry->inheritance = entry->inheritance;
2899 newentry->wired_count = 0;
2900 newentry->aref.ar_amap = entry->aref.ar_amap;
2901 if (newentry->aref.ar_amap) {
2902 newentry->aref.ar_pageoff =
2903 entry->aref.ar_pageoff + (fudge >> PAGE_SHIFT);
2904 uvm_map_reference_amap(newentry, AMAP_SHARED |
2905 ((flags & UVM_EXTRACT_QREF) ? AMAP_REFALL : 0));
2906 } else {
2907 newentry->aref.ar_pageoff = 0;
2908 }
2909 newentry->advice = entry->advice;
2910 if ((flags & UVM_EXTRACT_QREF) != 0) {
2911 newentry->flags |= UVM_MAP_NOMERGE;
2912 }
2913
2914 /* now link it on the chain */
2915 nchain++;
2916 nsize += newentry->end - newentry->start;
2917 if (endchain == NULL) {
2918 chain = endchain = newentry;
2919 } else {
2920 endchain->next = newentry;
2921 endchain = newentry;
2922 }
2923
2924 /* end of 'while' loop! */
2925 if ((flags & UVM_EXTRACT_CONTIG) && entry->end < end &&
2926 (entry->next == &srcmap->header ||
2927 entry->next->start != entry->end)) {
2928 error = EINVAL;
2929 goto bad;
2930 }
2931 entry = entry->next;
2932 fudge = 0;
2933 }
2934
2935 /*
2936 * step 4: close off chain (in format expected by uvm_map_replace)
2937 */
2938
2939 if (chain)
2940 chain->prev = endchain;
2941
2942 /*
2943 * step 5: attempt to lock the dest map so we can pmap_copy.
2944 * note usage of copy_ok:
2945 * 1 => dstmap locked, pmap_copy ok, and we "replace" here (step 5)
2946 * 0 => dstmap unlocked, NO pmap_copy, and we will "replace" in step 7
2947 */
2948
2949 if (srcmap == dstmap || vm_map_lock_try(dstmap) == true) {
2950 copy_ok = 1;
2951 if (!uvm_map_replace(dstmap, dstaddr, dstaddr+len, chain,
2952 nchain, nsize, &resentry)) {
2953 if (srcmap != dstmap)
2954 vm_map_unlock(dstmap);
2955 error = EIO;
2956 goto bad;
2957 }
2958 } else {
2959 copy_ok = 0;
2960 /* replace deferred until step 7 */
2961 }
2962
2963 /*
2964 * step 6: traverse the srcmap a second time to do the following:
2965 * - if we got a lock on the dstmap do pmap_copy
2966 * - if UVM_EXTRACT_REMOVE remove the entries
2967 * we make use of orig_entry and orig_fudge (saved in step 2)
2968 */
2969
2970 if (copy_ok || (flags & UVM_EXTRACT_REMOVE)) {
2971
2972 /* purge possible stale hints from srcmap */
2973 if (flags & UVM_EXTRACT_REMOVE) {
2974 SAVE_HINT(srcmap, srcmap->hint, orig_entry->prev);
2975 if (srcmap->first_free != &srcmap->header &&
2976 srcmap->first_free->start >= start)
2977 srcmap->first_free = orig_entry->prev;
2978 }
2979
2980 entry = orig_entry;
2981 fudge = orig_fudge;
2982 deadentry = NULL; /* for UVM_EXTRACT_REMOVE */
2983
2984 while (entry->start < end && entry != &srcmap->header) {
2985 if (copy_ok) {
2986 oldoffset = (entry->start + fudge) - start;
2987 elen = MIN(end, entry->end) -
2988 (entry->start + fudge);
2989 pmap_copy(dstmap->pmap, srcmap->pmap,
2990 dstaddr + oldoffset, elen,
2991 entry->start + fudge);
2992 }
2993
2994 /* we advance "entry" in the following if statement */
2995 if (flags & UVM_EXTRACT_REMOVE) {
2996 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
2997 uvm_map_lock_entry(entry, RW_WRITER);
2998 #else
2999 uvm_map_lock_entry(entry, RW_READER);
3000 #endif
3001 pmap_remove(srcmap->pmap, entry->start,
3002 entry->end);
3003 uvm_map_unlock_entry(entry);
3004 oldentry = entry; /* save entry */
3005 entry = entry->next; /* advance */
3006 uvm_map_entry_unlink(srcmap, oldentry);
3007 /* add to dead list */
3008 oldentry->next = deadentry;
3009 deadentry = oldentry;
3010 } else {
3011 entry = entry->next; /* advance */
3012 }
3013
3014 /* end of 'while' loop */
3015 fudge = 0;
3016 }
3017 pmap_update(srcmap->pmap);
3018
3019 /*
3020 * unlock dstmap. we will dispose of deadentry in
3021 * step 7 if needed
3022 */
3023
3024 if (copy_ok && srcmap != dstmap)
3025 vm_map_unlock(dstmap);
3026
3027 } else {
3028 deadentry = NULL;
3029 }
3030
3031 /*
3032 * step 7: we are done with the source map, unlock. if copy_ok
3033 * is 0 then we have not replaced the dummy mapping in dstmap yet
3034 * and we need to do so now.
3035 */
3036
3037 vm_map_unlock(srcmap);
3038 if ((flags & UVM_EXTRACT_REMOVE) && deadentry)
3039 uvm_unmap_detach(deadentry, 0); /* dispose of old entries */
3040
3041 /* now do the replacement if we didn't do it in step 5 */
3042 if (copy_ok == 0) {
3043 vm_map_lock(dstmap);
3044 error = uvm_map_replace(dstmap, dstaddr, dstaddr+len, chain,
3045 nchain, nsize, &resentry);
3046 vm_map_unlock(dstmap);
3047
3048 if (error == false) {
3049 error = EIO;
3050 goto bad2;
3051 }
3052 }
3053
3054 if (resentry != NULL)
3055 uvm_mapent_free(resentry);
3056
3057 return (0);
3058
3059 /*
3060 * bad: failure recovery
3061 */
3062 bad:
3063 vm_map_unlock(srcmap);
3064 bad2: /* src already unlocked */
3065 if (chain)
3066 uvm_unmap_detach(chain,
3067 (flags & UVM_EXTRACT_QREF) ? AMAP_REFALL : 0);
3068
3069 if (resentry != NULL)
3070 uvm_mapent_free(resentry);
3071
3072 if ((flags & UVM_EXTRACT_RESERVED) == 0) {
3073 uvm_unmap(dstmap, dstaddr, dstaddr+len); /* ??? */
3074 }
3075 return (error);
3076 }
3077
3078 /* end of extraction functions */
3079
3080 /*
3081 * uvm_map_submap: punch down part of a map into a submap
3082 *
3083 * => only the kernel_map is allowed to be submapped
3084 * => the purpose of submapping is to break up the locking granularity
3085 * of a larger map
3086 * => the range specified must have been mapped previously with a uvm_map()
3087 * call [with uobj==NULL] to create a blank map entry in the main map.
3088 * [And it had better still be blank!]
3089 * => maps which contain submaps should never be copied or forked.
3090 * => to remove a submap, use uvm_unmap() on the main map
3091 * and then uvm_map_deallocate() the submap.
3092 * => main map must be unlocked.
3093 * => submap must have been init'd and have a zero reference count.
3094 * [need not be locked as we don't actually reference it]
3095 */
3096
3097 int
3098 uvm_map_submap(struct vm_map *map, vaddr_t start, vaddr_t end,
3099 struct vm_map *submap)
3100 {
3101 struct vm_map_entry *entry;
3102 int error;
3103
3104 vm_map_lock(map);
3105 VM_MAP_RANGE_CHECK(map, start, end);
3106
3107 if (uvm_map_lookup_entry(map, start, &entry)) {
3108 UVM_MAP_CLIP_START(map, entry, start);
3109 UVM_MAP_CLIP_END(map, entry, end); /* to be safe */
3110 } else {
3111 entry = NULL;
3112 }
3113
3114 if (entry != NULL &&
3115 entry->start == start && entry->end == end &&
3116 entry->object.uvm_obj == NULL && entry->aref.ar_amap == NULL &&
3117 !UVM_ET_ISCOPYONWRITE(entry) && !UVM_ET_ISNEEDSCOPY(entry)) {
3118 entry->etype |= UVM_ET_SUBMAP;
3119 entry->object.sub_map = submap;
3120 entry->offset = 0;
3121 uvm_map_reference(submap);
3122 error = 0;
3123 } else {
3124 error = EINVAL;
3125 }
3126 vm_map_unlock(map);
3127
3128 return error;
3129 }
3130
3131 /*
3132 * uvm_map_protect_user: change map protection on behalf of the user.
3133 * Enforces PAX settings as necessary.
3134 */
3135 int
3136 uvm_map_protect_user(struct lwp *l, vaddr_t start, vaddr_t end,
3137 vm_prot_t new_prot)
3138 {
3139 int error;
3140
3141 if ((error = PAX_MPROTECT_VALIDATE(l, new_prot)))
3142 return error;
3143
3144 return uvm_map_protect(&l->l_proc->p_vmspace->vm_map, start, end,
3145 new_prot, false);
3146 }
3147
3148
3149 /*
3150 * uvm_map_protect: change map protection
3151 *
3152 * => set_max means set max_protection.
3153 * => map must be unlocked.
3154 */
3155
3156 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
3157 ~VM_PROT_WRITE : VM_PROT_ALL)
3158
3159 int
3160 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
3161 vm_prot_t new_prot, bool set_max)
3162 {
3163 struct vm_map_entry *current, *entry;
3164 int error = 0;
3165 UVMHIST_FUNC(__func__);
3166 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,new_prot=%#jx)",
3167 (uintptr_t)map, start, end, new_prot);
3168
3169 vm_map_lock(map);
3170 VM_MAP_RANGE_CHECK(map, start, end);
3171 if (uvm_map_lookup_entry(map, start, &entry)) {
3172 UVM_MAP_CLIP_START(map, entry, start);
3173 } else {
3174 entry = entry->next;
3175 }
3176
3177 /*
3178 * make a first pass to check for protection violations.
3179 */
3180
3181 current = entry;
3182 while ((current != &map->header) && (current->start < end)) {
3183 if (UVM_ET_ISSUBMAP(current)) {
3184 error = EINVAL;
3185 goto out;
3186 }
3187 if ((new_prot & current->max_protection) != new_prot) {
3188 error = EACCES;
3189 goto out;
3190 }
3191 /*
3192 * Don't allow VM_PROT_EXECUTE to be set on entries that
3193 * point to vnodes that are associated with a NOEXEC file
3194 * system.
3195 */
3196 if (UVM_ET_ISOBJ(current) &&
3197 UVM_OBJ_IS_VNODE(current->object.uvm_obj)) {
3198 struct vnode *vp =
3199 (struct vnode *) current->object.uvm_obj;
3200
3201 if ((new_prot & VM_PROT_EXECUTE) != 0 &&
3202 (vp->v_mount->mnt_flag & MNT_NOEXEC) != 0) {
3203 error = EACCES;
3204 goto out;
3205 }
3206 }
3207
3208 current = current->next;
3209 }
3210
3211 /* go back and fix up protections (no need to clip this time). */
3212
3213 current = entry;
3214 while ((current != &map->header) && (current->start < end)) {
3215 vm_prot_t old_prot;
3216
3217 UVM_MAP_CLIP_END(map, current, end);
3218 old_prot = current->protection;
3219 if (set_max)
3220 current->protection =
3221 (current->max_protection = new_prot) & old_prot;
3222 else
3223 current->protection = new_prot;
3224
3225 /*
3226 * update physical map if necessary. worry about copy-on-write
3227 * here -- CHECK THIS XXX
3228 */
3229
3230 if (current->protection != old_prot) {
3231 /* update pmap! */
3232 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
3233 uvm_map_lock_entry(current, RW_WRITER);
3234 #else
3235 uvm_map_lock_entry(current, RW_READER);
3236 #endif
3237 pmap_protect(map->pmap, current->start, current->end,
3238 current->protection & MASK(current));
3239 uvm_map_unlock_entry(current);
3240
3241 /*
3242 * If this entry points at a vnode, and the
3243 * protection includes VM_PROT_EXECUTE, mark
3244 * the vnode as VEXECMAP.
3245 */
3246 if (UVM_ET_ISOBJ(current)) {
3247 struct uvm_object *uobj =
3248 current->object.uvm_obj;
3249
3250 if (UVM_OBJ_IS_VNODE(uobj) &&
3251 (current->protection & VM_PROT_EXECUTE)) {
3252 vn_markexec((struct vnode *) uobj);
3253 }
3254 }
3255 }
3256
3257 /*
3258 * If the map is configured to lock any future mappings,
3259 * wire this entry now if the old protection was VM_PROT_NONE
3260 * and the new protection is not VM_PROT_NONE.
3261 */
3262
3263 if ((map->flags & VM_MAP_WIREFUTURE) != 0 &&
3264 VM_MAPENT_ISWIRED(current) == 0 &&
3265 old_prot == VM_PROT_NONE &&
3266 new_prot != VM_PROT_NONE) {
3267
3268 /*
3269 * We must call pmap_update() here because the
3270 * pmap_protect() call above might have removed some
3271 * pmap entries and uvm_map_pageable() might create
3272 * some new pmap entries that rely on the prior
3273 * removals being completely finished.
3274 */
3275
3276 pmap_update(map->pmap);
3277
3278 if (uvm_map_pageable(map, current->start,
3279 current->end, false,
3280 UVM_LK_ENTER|UVM_LK_EXIT) != 0) {
3281
3282 /*
3283 * If locking the entry fails, remember the
3284 * error if it's the first one. Note we
3285 * still continue setting the protection in
3286 * the map, but will return the error
3287 * condition regardless.
3288 *
3289 * XXX Ignore what the actual error is,
3290 * XXX just call it a resource shortage
3291 * XXX so that it doesn't get confused
3292 * XXX what uvm_map_protect() itself would
3293 * XXX normally return.
3294 */
3295
3296 error = ENOMEM;
3297 }
3298 }
3299 current = current->next;
3300 }
3301 pmap_update(map->pmap);
3302
3303 out:
3304 vm_map_unlock(map);
3305
3306 UVMHIST_LOG(maphist, "<- done, error=%jd",error,0,0,0);
3307 return error;
3308 }
3309
3310 #undef MASK
3311
3312 /*
3313 * uvm_map_inherit: set inheritance code for range of addrs in map.
3314 *
3315 * => map must be unlocked
3316 * => note that the inherit code is used during a "fork". see fork
3317 * code for details.
3318 */
3319
3320 int
3321 uvm_map_inherit(struct vm_map *map, vaddr_t start, vaddr_t end,
3322 vm_inherit_t new_inheritance)
3323 {
3324 struct vm_map_entry *entry, *temp_entry;
3325 UVMHIST_FUNC(__func__);
3326 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,new_inh=%#jx)",
3327 (uintptr_t)map, start, end, new_inheritance);
3328
3329 switch (new_inheritance) {
3330 case MAP_INHERIT_NONE:
3331 case MAP_INHERIT_COPY:
3332 case MAP_INHERIT_SHARE:
3333 case MAP_INHERIT_ZERO:
3334 break;
3335 default:
3336 UVMHIST_LOG(maphist,"<- done (INVALID ARG)",0,0,0,0);
3337 return EINVAL;
3338 }
3339
3340 vm_map_lock(map);
3341 VM_MAP_RANGE_CHECK(map, start, end);
3342 if (uvm_map_lookup_entry(map, start, &temp_entry)) {
3343 entry = temp_entry;
3344 UVM_MAP_CLIP_START(map, entry, start);
3345 } else {
3346 entry = temp_entry->next;
3347 }
3348 while ((entry != &map->header) && (entry->start < end)) {
3349 UVM_MAP_CLIP_END(map, entry, end);
3350 entry->inheritance = new_inheritance;
3351 entry = entry->next;
3352 }
3353 vm_map_unlock(map);
3354 UVMHIST_LOG(maphist,"<- done (OK)",0,0,0,0);
3355 return 0;
3356 }
3357
3358 /*
3359 * uvm_map_advice: set advice code for range of addrs in map.
3360 *
3361 * => map must be unlocked
3362 */
3363
3364 int
3365 uvm_map_advice(struct vm_map *map, vaddr_t start, vaddr_t end, int new_advice)
3366 {
3367 struct vm_map_entry *entry, *temp_entry;
3368 UVMHIST_FUNC(__func__);
3369 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,new_adv=%#jx)",
3370 (uintptr_t)map, start, end, new_advice);
3371
3372 vm_map_lock(map);
3373 VM_MAP_RANGE_CHECK(map, start, end);
3374 if (uvm_map_lookup_entry(map, start, &temp_entry)) {
3375 entry = temp_entry;
3376 UVM_MAP_CLIP_START(map, entry, start);
3377 } else {
3378 entry = temp_entry->next;
3379 }
3380
3381 /*
3382 * XXXJRT: disallow holes?
3383 */
3384
3385 while ((entry != &map->header) && (entry->start < end)) {
3386 UVM_MAP_CLIP_END(map, entry, end);
3387
3388 switch (new_advice) {
3389 case MADV_NORMAL:
3390 case MADV_RANDOM:
3391 case MADV_SEQUENTIAL:
3392 /* nothing special here */
3393 break;
3394
3395 default:
3396 vm_map_unlock(map);
3397 UVMHIST_LOG(maphist,"<- done (INVALID ARG)",0,0,0,0);
3398 return EINVAL;
3399 }
3400 entry->advice = new_advice;
3401 entry = entry->next;
3402 }
3403
3404 vm_map_unlock(map);
3405 UVMHIST_LOG(maphist,"<- done (OK)",0,0,0,0);
3406 return 0;
3407 }
3408
3409 /*
3410 * uvm_map_willneed: apply MADV_WILLNEED
3411 */
3412
3413 int
3414 uvm_map_willneed(struct vm_map *map, vaddr_t start, vaddr_t end)
3415 {
3416 struct vm_map_entry *entry;
3417 UVMHIST_FUNC(__func__);
3418 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx)",
3419 (uintptr_t)map, start, end, 0);
3420
3421 vm_map_lock_read(map);
3422 VM_MAP_RANGE_CHECK(map, start, end);
3423 if (!uvm_map_lookup_entry(map, start, &entry)) {
3424 entry = entry->next;
3425 }
3426 while (entry->start < end) {
3427 struct vm_amap * const amap = entry->aref.ar_amap;
3428 struct uvm_object * const uobj = entry->object.uvm_obj;
3429
3430 KASSERT(entry != &map->header);
3431 KASSERT(start < entry->end);
3432 /*
3433 * For now, we handle only the easy but commonly-requested case.
3434 * ie. start prefetching of backing uobj pages.
3435 *
3436 * XXX It might be useful to pmap_enter() the already-in-core
3437 * pages by inventing a "weak" mode for uvm_fault() which would
3438 * only do the PGO_LOCKED pgo_get().
3439 */
3440 if (UVM_ET_ISOBJ(entry) && amap == NULL && uobj != NULL) {
3441 off_t offset;
3442 off_t size;
3443
3444 offset = entry->offset;
3445 if (start < entry->start) {
3446 offset += entry->start - start;
3447 }
3448 size = entry->offset + (entry->end - entry->start);
3449 if (entry->end < end) {
3450 size -= end - entry->end;
3451 }
3452 uvm_readahead(uobj, offset, size);
3453 }
3454 entry = entry->next;
3455 }
3456 vm_map_unlock_read(map);
3457 UVMHIST_LOG(maphist,"<- done (OK)",0,0,0,0);
3458 return 0;
3459 }
3460
3461 /*
3462 * uvm_map_pageable: sets the pageability of a range in a map.
3463 *
3464 * => wires map entries. should not be used for transient page locking.
3465 * for that, use uvm_fault_wire()/uvm_fault_unwire() (see uvm_vslock()).
3466 * => regions specified as not pageable require lock-down (wired) memory
3467 * and page tables.
3468 * => map must never be read-locked
3469 * => if islocked is true, map is already write-locked
3470 * => we always unlock the map, since we must downgrade to a read-lock
3471 * to call uvm_fault_wire()
3472 * => XXXCDC: check this and try and clean it up.
3473 */
3474
3475 int
3476 uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end,
3477 bool new_pageable, int lockflags)
3478 {
3479 struct vm_map_entry *entry, *start_entry, *failed_entry;
3480 int rv;
3481 #ifdef DIAGNOSTIC
3482 u_int timestamp_save;
3483 #endif
3484 UVMHIST_FUNC(__func__);
3485 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,new_pageable=%ju)",
3486 (uintptr_t)map, start, end, new_pageable);
3487 KASSERT(map->flags & VM_MAP_PAGEABLE);
3488
3489 if ((lockflags & UVM_LK_ENTER) == 0)
3490 vm_map_lock(map);
3491 VM_MAP_RANGE_CHECK(map, start, end);
3492
3493 /*
3494 * only one pageability change may take place at one time, since
3495 * uvm_fault_wire assumes it will be called only once for each
3496 * wiring/unwiring. therefore, we have to make sure we're actually
3497 * changing the pageability for the entire region. we do so before
3498 * making any changes.
3499 */
3500
3501 if (uvm_map_lookup_entry(map, start, &start_entry) == false) {
3502 if ((lockflags & UVM_LK_EXIT) == 0)
3503 vm_map_unlock(map);
3504
3505 UVMHIST_LOG(maphist,"<- done (fault)",0,0,0,0);
3506 return EFAULT;
3507 }
3508 entry = start_entry;
3509
3510 if (start == end) { /* nothing required */
3511 if ((lockflags & UVM_LK_EXIT) == 0)
3512 vm_map_unlock(map);
3513
3514 UVMHIST_LOG(maphist,"<- done (nothing)",0,0,0,0);
3515 return 0;
3516 }
3517
3518 /*
3519 * handle wiring and unwiring separately.
3520 */
3521
3522 if (new_pageable) { /* unwire */
3523 UVM_MAP_CLIP_START(map, entry, start);
3524
3525 /*
3526 * unwiring. first ensure that the range to be unwired is
3527 * really wired down and that there are no holes.
3528 */
3529
3530 while ((entry != &map->header) && (entry->start < end)) {
3531 if (entry->wired_count == 0 ||
3532 (entry->end < end &&
3533 (entry->next == &map->header ||
3534 entry->next->start > entry->end))) {
3535 if ((lockflags & UVM_LK_EXIT) == 0)
3536 vm_map_unlock(map);
3537 UVMHIST_LOG(maphist, "<- done (INVAL)",0,0,0,0);
3538 return EINVAL;
3539 }
3540 entry = entry->next;
3541 }
3542
3543 /*
3544 * POSIX 1003.1b - a single munlock call unlocks a region,
3545 * regardless of the number of mlock calls made on that
3546 * region.
3547 */
3548
3549 entry = start_entry;
3550 while ((entry != &map->header) && (entry->start < end)) {
3551 UVM_MAP_CLIP_END(map, entry, end);
3552 if (VM_MAPENT_ISWIRED(entry))
3553 uvm_map_entry_unwire(map, entry);
3554 entry = entry->next;
3555 }
3556 if ((lockflags & UVM_LK_EXIT) == 0)
3557 vm_map_unlock(map);
3558 UVMHIST_LOG(maphist,"<- done (OK UNWIRE)",0,0,0,0);
3559 return 0;
3560 }
3561
3562 /*
3563 * wire case: in two passes [XXXCDC: ugly block of code here]
3564 *
3565 * 1: holding the write lock, we create any anonymous maps that need
3566 * to be created. then we clip each map entry to the region to
3567 * be wired and increment its wiring count.
3568 *
3569 * 2: we downgrade to a read lock, and call uvm_fault_wire to fault
3570 * in the pages for any newly wired area (wired_count == 1).
3571 *
3572 * downgrading to a read lock for uvm_fault_wire avoids a possible
3573 * deadlock with another thread that may have faulted on one of
3574 * the pages to be wired (it would mark the page busy, blocking
3575 * us, then in turn block on the map lock that we hold). because
3576 * of problems in the recursive lock package, we cannot upgrade
3577 * to a write lock in vm_map_lookup. thus, any actions that
3578 * require the write lock must be done beforehand. because we
3579 * keep the read lock on the map, the copy-on-write status of the
3580 * entries we modify here cannot change.
3581 */
3582
3583 while ((entry != &map->header) && (entry->start < end)) {
3584 if (VM_MAPENT_ISWIRED(entry) == 0) { /* not already wired? */
3585
3586 /*
3587 * perform actions of vm_map_lookup that need the
3588 * write lock on the map: create an anonymous map
3589 * for a copy-on-write region, or an anonymous map
3590 * for a zero-fill region. (XXXCDC: submap case
3591 * ok?)
3592 */
3593
3594 if (!UVM_ET_ISSUBMAP(entry)) { /* not submap */
3595 if (UVM_ET_ISNEEDSCOPY(entry) &&
3596 ((entry->max_protection & VM_PROT_WRITE) ||
3597 (entry->object.uvm_obj == NULL))) {
3598 amap_copy(map, entry, 0, start, end);
3599 /* XXXCDC: wait OK? */
3600 }
3601 }
3602 }
3603 UVM_MAP_CLIP_START(map, entry, start);
3604 UVM_MAP_CLIP_END(map, entry, end);
3605 entry->wired_count++;
3606
3607 /*
3608 * Check for holes
3609 */
3610
3611 if (entry->protection == VM_PROT_NONE ||
3612 (entry->end < end &&
3613 (entry->next == &map->header ||
3614 entry->next->start > entry->end))) {
3615
3616 /*
3617 * found one. amap creation actions do not need to
3618 * be undone, but the wired counts need to be restored.
3619 */
3620
3621 while (entry != &map->header && entry->end > start) {
3622 entry->wired_count--;
3623 entry = entry->prev;
3624 }
3625 if ((lockflags & UVM_LK_EXIT) == 0)
3626 vm_map_unlock(map);
3627 UVMHIST_LOG(maphist,"<- done (INVALID WIRE)",0,0,0,0);
3628 return EINVAL;
3629 }
3630 entry = entry->next;
3631 }
3632
3633 /*
3634 * Pass 2.
3635 */
3636
3637 #ifdef DIAGNOSTIC
3638 timestamp_save = map->timestamp;
3639 #endif
3640 vm_map_busy(map);
3641 vm_map_unlock(map);
3642
3643 rv = 0;
3644 entry = start_entry;
3645 while (entry != &map->header && entry->start < end) {
3646 if (entry->wired_count == 1) {
3647 rv = uvm_fault_wire(map, entry->start, entry->end,
3648 entry->max_protection, 1);
3649 if (rv) {
3650
3651 /*
3652 * wiring failed. break out of the loop.
3653 * we'll clean up the map below, once we
3654 * have a write lock again.
3655 */
3656
3657 break;
3658 }
3659 }
3660 entry = entry->next;
3661 }
3662
3663 if (rv) { /* failed? */
3664
3665 /*
3666 * Get back to an exclusive (write) lock.
3667 */
3668
3669 vm_map_lock(map);
3670 vm_map_unbusy(map);
3671
3672 #ifdef DIAGNOSTIC
3673 if (timestamp_save + 1 != map->timestamp)
3674 panic("uvm_map_pageable: stale map");
3675 #endif
3676
3677 /*
3678 * first drop the wiring count on all the entries
3679 * which haven't actually been wired yet.
3680 */
3681
3682 failed_entry = entry;
3683 while (entry != &map->header && entry->start < end) {
3684 entry->wired_count--;
3685 entry = entry->next;
3686 }
3687
3688 /*
3689 * now, unwire all the entries that were successfully
3690 * wired above.
3691 */
3692
3693 entry = start_entry;
3694 while (entry != failed_entry) {
3695 entry->wired_count--;
3696 if (VM_MAPENT_ISWIRED(entry) == 0)
3697 uvm_map_entry_unwire(map, entry);
3698 entry = entry->next;
3699 }
3700 if ((lockflags & UVM_LK_EXIT) == 0)
3701 vm_map_unlock(map);
3702 UVMHIST_LOG(maphist, "<- done (RV=%jd)", rv,0,0,0);
3703 return (rv);
3704 }
3705
3706 if ((lockflags & UVM_LK_EXIT) == 0) {
3707 vm_map_unbusy(map);
3708 } else {
3709
3710 /*
3711 * Get back to an exclusive (write) lock.
3712 */
3713
3714 vm_map_lock(map);
3715 vm_map_unbusy(map);
3716 }
3717
3718 UVMHIST_LOG(maphist,"<- done (OK WIRE)",0,0,0,0);
3719 return 0;
3720 }
3721
3722 /*
3723 * uvm_map_pageable_all: special case of uvm_map_pageable - affects
3724 * all mapped regions.
3725 *
3726 * => map must not be locked.
3727 * => if no flags are specified, all regions are unwired.
3728 * => XXXJRT: has some of the same problems as uvm_map_pageable() above.
3729 */
3730
3731 int
3732 uvm_map_pageable_all(struct vm_map *map, int flags, vsize_t limit)
3733 {
3734 struct vm_map_entry *entry, *failed_entry;
3735 vsize_t size;
3736 int rv;
3737 #ifdef DIAGNOSTIC
3738 u_int timestamp_save;
3739 #endif
3740 UVMHIST_FUNC(__func__);
3741 UVMHIST_CALLARGS(maphist,"(map=%#jx,flags=%#jx)", (uintptr_t)map, flags,
3742 0, 0);
3743
3744 KASSERT(map->flags & VM_MAP_PAGEABLE);
3745
3746 vm_map_lock(map);
3747
3748 /*
3749 * handle wiring and unwiring separately.
3750 */
3751
3752 if (flags == 0) { /* unwire */
3753
3754 /*
3755 * POSIX 1003.1b -- munlockall unlocks all regions,
3756 * regardless of how many times mlockall has been called.
3757 */
3758
3759 for (entry = map->header.next; entry != &map->header;
3760 entry = entry->next) {
3761 if (VM_MAPENT_ISWIRED(entry))
3762 uvm_map_entry_unwire(map, entry);
3763 }
3764 map->flags &= ~VM_MAP_WIREFUTURE;
3765 vm_map_unlock(map);
3766 UVMHIST_LOG(maphist,"<- done (OK UNWIRE)",0,0,0,0);
3767 return 0;
3768 }
3769
3770 if (flags & MCL_FUTURE) {
3771
3772 /*
3773 * must wire all future mappings; remember this.
3774 */
3775
3776 map->flags |= VM_MAP_WIREFUTURE;
3777 }
3778
3779 if ((flags & MCL_CURRENT) == 0) {
3780
3781 /*
3782 * no more work to do!
3783 */
3784
3785 UVMHIST_LOG(maphist,"<- done (OK no wire)",0,0,0,0);
3786 vm_map_unlock(map);
3787 return 0;
3788 }
3789
3790 /*
3791 * wire case: in three passes [XXXCDC: ugly block of code here]
3792 *
3793 * 1: holding the write lock, count all pages mapped by non-wired
3794 * entries. if this would cause us to go over our limit, we fail.
3795 *
3796 * 2: still holding the write lock, we create any anonymous maps that
3797 * need to be created. then we increment its wiring count.
3798 *
3799 * 3: we downgrade to a read lock, and call uvm_fault_wire to fault
3800 * in the pages for any newly wired area (wired_count == 1).
3801 *
3802 * downgrading to a read lock for uvm_fault_wire avoids a possible
3803 * deadlock with another thread that may have faulted on one of
3804 * the pages to be wired (it would mark the page busy, blocking
3805 * us, then in turn block on the map lock that we hold). because
3806 * of problems in the recursive lock package, we cannot upgrade
3807 * to a write lock in vm_map_lookup. thus, any actions that
3808 * require the write lock must be done beforehand. because we
3809 * keep the read lock on the map, the copy-on-write status of the
3810 * entries we modify here cannot change.
3811 */
3812
3813 for (size = 0, entry = map->header.next; entry != &map->header;
3814 entry = entry->next) {
3815 if (entry->protection != VM_PROT_NONE &&
3816 VM_MAPENT_ISWIRED(entry) == 0) { /* not already wired? */
3817 size += entry->end - entry->start;
3818 }
3819 }
3820
3821 if (atop(size) + uvmexp.wired > uvmexp.wiredmax) {
3822 vm_map_unlock(map);
3823 return ENOMEM;
3824 }
3825
3826 if (limit != 0 &&
3827 (size + ptoa(pmap_wired_count(vm_map_pmap(map))) > limit)) {
3828 vm_map_unlock(map);
3829 return ENOMEM;
3830 }
3831
3832 /*
3833 * Pass 2.
3834 */
3835
3836 for (entry = map->header.next; entry != &map->header;
3837 entry = entry->next) {
3838 if (entry->protection == VM_PROT_NONE)
3839 continue;
3840 if (VM_MAPENT_ISWIRED(entry) == 0) { /* not already wired? */
3841
3842 /*
3843 * perform actions of vm_map_lookup that need the
3844 * write lock on the map: create an anonymous map
3845 * for a copy-on-write region, or an anonymous map
3846 * for a zero-fill region. (XXXCDC: submap case
3847 * ok?)
3848 */
3849
3850 if (!UVM_ET_ISSUBMAP(entry)) { /* not submap */
3851 if (UVM_ET_ISNEEDSCOPY(entry) &&
3852 ((entry->max_protection & VM_PROT_WRITE) ||
3853 (entry->object.uvm_obj == NULL))) {
3854 amap_copy(map, entry, 0, entry->start,
3855 entry->end);
3856 /* XXXCDC: wait OK? */
3857 }
3858 }
3859 }
3860 entry->wired_count++;
3861 }
3862
3863 /*
3864 * Pass 3.
3865 */
3866
3867 #ifdef DIAGNOSTIC
3868 timestamp_save = map->timestamp;
3869 #endif
3870 vm_map_busy(map);
3871 vm_map_unlock(map);
3872
3873 rv = 0;
3874 for (entry = map->header.next; entry != &map->header;
3875 entry = entry->next) {
3876 if (entry->wired_count == 1) {
3877 rv = uvm_fault_wire(map, entry->start, entry->end,
3878 entry->max_protection, 1);
3879 if (rv) {
3880
3881 /*
3882 * wiring failed. break out of the loop.
3883 * we'll clean up the map below, once we
3884 * have a write lock again.
3885 */
3886
3887 break;
3888 }
3889 }
3890 }
3891
3892 if (rv) {
3893
3894 /*
3895 * Get back an exclusive (write) lock.
3896 */
3897
3898 vm_map_lock(map);
3899 vm_map_unbusy(map);
3900
3901 #ifdef DIAGNOSTIC
3902 if (timestamp_save + 1 != map->timestamp)
3903 panic("uvm_map_pageable_all: stale map");
3904 #endif
3905
3906 /*
3907 * first drop the wiring count on all the entries
3908 * which haven't actually been wired yet.
3909 *
3910 * Skip VM_PROT_NONE entries like we did above.
3911 */
3912
3913 failed_entry = entry;
3914 for (/* nothing */; entry != &map->header;
3915 entry = entry->next) {
3916 if (entry->protection == VM_PROT_NONE)
3917 continue;
3918 entry->wired_count--;
3919 }
3920
3921 /*
3922 * now, unwire all the entries that were successfully
3923 * wired above.
3924 *
3925 * Skip VM_PROT_NONE entries like we did above.
3926 */
3927
3928 for (entry = map->header.next; entry != failed_entry;
3929 entry = entry->next) {
3930 if (entry->protection == VM_PROT_NONE)
3931 continue;
3932 entry->wired_count--;
3933 if (VM_MAPENT_ISWIRED(entry))
3934 uvm_map_entry_unwire(map, entry);
3935 }
3936 vm_map_unlock(map);
3937 UVMHIST_LOG(maphist,"<- done (RV=%jd)", rv,0,0,0);
3938 return (rv);
3939 }
3940
3941 vm_map_unbusy(map);
3942
3943 UVMHIST_LOG(maphist,"<- done (OK WIRE)",0,0,0,0);
3944 return 0;
3945 }
3946
3947 /*
3948 * uvm_map_clean: clean out a map range
3949 *
3950 * => valid flags:
3951 * if (flags & PGO_CLEANIT): dirty pages are cleaned first
3952 * if (flags & PGO_SYNCIO): dirty pages are written synchronously
3953 * if (flags & PGO_DEACTIVATE): any cached pages are deactivated after clean
3954 * if (flags & PGO_FREE): any cached pages are freed after clean
3955 * => returns an error if any part of the specified range isn't mapped
3956 * => never a need to flush amap layer since the anonymous memory has
3957 * no permanent home, but may deactivate pages there
3958 * => called from sys_msync() and sys_madvise()
3959 * => caller must not have map locked
3960 */
3961
3962 int
3963 uvm_map_clean(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
3964 {
3965 struct vm_map_entry *current, *entry;
3966 struct uvm_object *uobj;
3967 struct vm_amap *amap;
3968 struct vm_anon *anon;
3969 struct vm_page *pg;
3970 vaddr_t offset;
3971 vsize_t size;
3972 voff_t uoff;
3973 int error, refs;
3974 UVMHIST_FUNC(__func__);
3975 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,flags=%#jx)",
3976 (uintptr_t)map, start, end, flags);
3977
3978 KASSERT((flags & (PGO_FREE|PGO_DEACTIVATE)) !=
3979 (PGO_FREE|PGO_DEACTIVATE));
3980
3981 vm_map_lock(map);
3982 VM_MAP_RANGE_CHECK(map, start, end);
3983 if (!uvm_map_lookup_entry(map, start, &entry)) {
3984 vm_map_unlock(map);
3985 return EFAULT;
3986 }
3987
3988 /*
3989 * Make a first pass to check for holes and wiring problems.
3990 */
3991
3992 for (current = entry; current->start < end; current = current->next) {
3993 if (UVM_ET_ISSUBMAP(current)) {
3994 vm_map_unlock(map);
3995 return EINVAL;
3996 }
3997 if ((flags & PGO_FREE) != 0 && VM_MAPENT_ISWIRED(entry)) {
3998 vm_map_unlock(map);
3999 return EBUSY;
4000 }
4001 if (end <= current->end) {
4002 break;
4003 }
4004 if (current->end != current->next->start) {
4005 vm_map_unlock(map);
4006 return EFAULT;
4007 }
4008 }
4009
4010 vm_map_busy(map);
4011 vm_map_unlock(map);
4012 error = 0;
4013 for (current = entry; start < end; current = current->next) {
4014 amap = current->aref.ar_amap; /* upper layer */
4015 uobj = current->object.uvm_obj; /* lower layer */
4016 KASSERT(start >= current->start);
4017
4018 /*
4019 * No amap cleaning necessary if:
4020 *
4021 * (1) There's no amap.
4022 *
4023 * (2) We're not deactivating or freeing pages.
4024 */
4025
4026 if (amap == NULL || (flags & (PGO_DEACTIVATE|PGO_FREE)) == 0)
4027 goto flush_object;
4028
4029 offset = start - current->start;
4030 size = MIN(end, current->end) - start;
4031
4032 amap_lock(amap, RW_WRITER);
4033 for ( ; size != 0; size -= PAGE_SIZE, offset += PAGE_SIZE) {
4034 anon = amap_lookup(¤t->aref, offset);
4035 if (anon == NULL)
4036 continue;
4037
4038 KASSERT(anon->an_lock == amap->am_lock);
4039 pg = anon->an_page;
4040 if (pg == NULL) {
4041 continue;
4042 }
4043 if (pg->flags & PG_BUSY) {
4044 continue;
4045 }
4046
4047 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
4048
4049 /*
4050 * In these first 3 cases, we just deactivate the page.
4051 */
4052
4053 case PGO_CLEANIT|PGO_FREE:
4054 case PGO_CLEANIT|PGO_DEACTIVATE:
4055 case PGO_DEACTIVATE:
4056 deactivate_it:
4057 /*
4058 * skip the page if it's loaned or wired,
4059 * since it shouldn't be on a paging queue
4060 * at all in these cases.
4061 */
4062
4063 if (pg->loan_count != 0 ||
4064 pg->wire_count != 0) {
4065 continue;
4066 }
4067 KASSERT(pg->uanon == anon);
4068 uvm_pagelock(pg);
4069 uvm_pagedeactivate(pg);
4070 uvm_pageunlock(pg);
4071 continue;
4072
4073 case PGO_FREE:
4074
4075 /*
4076 * If there are multiple references to
4077 * the amap, just deactivate the page.
4078 */
4079
4080 if (amap_refs(amap) > 1)
4081 goto deactivate_it;
4082
4083 /* skip the page if it's wired */
4084 if (pg->wire_count != 0) {
4085 continue;
4086 }
4087 amap_unadd(¤t->aref, offset);
4088 refs = --anon->an_ref;
4089 if (refs == 0) {
4090 uvm_anfree(anon);
4091 }
4092 continue;
4093 }
4094 }
4095 amap_unlock(amap);
4096
4097 flush_object:
4098 /*
4099 * flush pages if we've got a valid backing object.
4100 * note that we must always clean object pages before
4101 * freeing them since otherwise we could reveal stale
4102 * data from files.
4103 */
4104
4105 uoff = current->offset + (start - current->start);
4106 size = MIN(end, current->end) - start;
4107 if (uobj != NULL) {
4108 rw_enter(uobj->vmobjlock, RW_WRITER);
4109 if (uobj->pgops->pgo_put != NULL)
4110 error = (uobj->pgops->pgo_put)(uobj, uoff,
4111 uoff + size, flags | PGO_CLEANIT);
4112 else
4113 error = 0;
4114 }
4115 start += size;
4116 }
4117 vm_map_unbusy(map);
4118 return error;
4119 }
4120
4121
4122 /*
4123 * uvm_map_checkprot: check protection in map
4124 *
4125 * => must allow specified protection in a fully allocated region.
4126 * => map must be read or write locked by caller.
4127 */
4128
4129 bool
4130 uvm_map_checkprot(struct vm_map *map, vaddr_t start, vaddr_t end,
4131 vm_prot_t protection)
4132 {
4133 struct vm_map_entry *entry;
4134 struct vm_map_entry *tmp_entry;
4135
4136 if (!uvm_map_lookup_entry(map, start, &tmp_entry)) {
4137 return (false);
4138 }
4139 entry = tmp_entry;
4140 while (start < end) {
4141 if (entry == &map->header) {
4142 return (false);
4143 }
4144
4145 /*
4146 * no holes allowed
4147 */
4148
4149 if (start < entry->start) {
4150 return (false);
4151 }
4152
4153 /*
4154 * check protection associated with entry
4155 */
4156
4157 if ((entry->protection & protection) != protection) {
4158 return (false);
4159 }
4160 start = entry->end;
4161 entry = entry->next;
4162 }
4163 return (true);
4164 }
4165
4166 /*
4167 * uvmspace_alloc: allocate a vmspace structure.
4168 *
4169 * - structure includes vm_map and pmap
4170 * - XXX: no locking on this structure
4171 * - refcnt set to 1, rest must be init'd by caller
4172 */
4173 struct vmspace *
4174 uvmspace_alloc(vaddr_t vmin, vaddr_t vmax, bool topdown)
4175 {
4176 struct vmspace *vm;
4177 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4178
4179 vm = kmem_alloc(sizeof(*vm), KM_SLEEP);
4180 uvmspace_init(vm, NULL, vmin, vmax, topdown);
4181 UVMHIST_LOG(maphist,"<- done (vm=%#jx)", (uintptr_t)vm, 0, 0, 0);
4182 return (vm);
4183 }
4184
4185 /*
4186 * uvmspace_init: initialize a vmspace structure.
4187 *
4188 * - XXX: no locking on this structure
4189 * - refcnt set to 1, rest must be init'd by caller
4190 */
4191 void
4192 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin,
4193 vaddr_t vmax, bool topdown)
4194 {
4195 UVMHIST_FUNC(__func__);
4196 UVMHIST_CALLARGS(maphist, "(vm=%#jx, pmap=%#jx, vmin=%#jx, vmax=%#jx",
4197 (uintptr_t)vm, (uintptr_t)pmap, vmin, vmax);
4198 UVMHIST_LOG(maphist, " topdown=%ju)", topdown, 0, 0, 0);
4199
4200 memset(vm, 0, sizeof(*vm));
4201 uvm_map_setup(&vm->vm_map, vmin, vmax, VM_MAP_PAGEABLE
4202 | (topdown ? VM_MAP_TOPDOWN : 0)
4203 );
4204 if (pmap)
4205 pmap_reference(pmap);
4206 else
4207 pmap = pmap_create();
4208 vm->vm_map.pmap = pmap;
4209 vm->vm_refcnt = 1;
4210 UVMHIST_LOG(maphist,"<- done",0,0,0,0);
4211 }
4212
4213 /*
4214 * uvmspace_share: share a vmspace between two processes
4215 *
4216 * - used for vfork, threads(?)
4217 */
4218
4219 void
4220 uvmspace_share(struct proc *p1, struct proc *p2)
4221 {
4222
4223 uvmspace_addref(p1->p_vmspace);
4224 p2->p_vmspace = p1->p_vmspace;
4225 }
4226
4227 #if 0
4228
4229 /*
4230 * uvmspace_unshare: ensure that process "p" has its own, unshared, vmspace
4231 *
4232 * - XXX: no locking on vmspace
4233 */
4234
4235 void
4236 uvmspace_unshare(struct lwp *l)
4237 {
4238 struct proc *p = l->l_proc;
4239 struct vmspace *nvm, *ovm = p->p_vmspace;
4240
4241 if (ovm->vm_refcnt == 1)
4242 /* nothing to do: vmspace isn't shared in the first place */
4243 return;
4244
4245 /* make a new vmspace, still holding old one */
4246 nvm = uvmspace_fork(ovm);
4247
4248 kpreempt_disable();
4249 pmap_deactivate(l); /* unbind old vmspace */
4250 p->p_vmspace = nvm;
4251 pmap_activate(l); /* switch to new vmspace */
4252 kpreempt_enable();
4253
4254 uvmspace_free(ovm); /* drop reference to old vmspace */
4255 }
4256
4257 #endif
4258
4259
4260 /*
4261 * uvmspace_spawn: a new process has been spawned and needs a vmspace
4262 */
4263
4264 void
4265 uvmspace_spawn(struct lwp *l, vaddr_t start, vaddr_t end, bool topdown)
4266 {
4267 struct proc *p = l->l_proc;
4268 struct vmspace *nvm;
4269
4270 #ifdef __HAVE_CPU_VMSPACE_EXEC
4271 cpu_vmspace_exec(l, start, end);
4272 #endif
4273
4274 nvm = uvmspace_alloc(start, end, topdown);
4275 kpreempt_disable();
4276 p->p_vmspace = nvm;
4277 pmap_activate(l);
4278 kpreempt_enable();
4279 }
4280
4281 /*
4282 * uvmspace_exec: the process wants to exec a new program
4283 */
4284
4285 void
4286 uvmspace_exec(struct lwp *l, vaddr_t start, vaddr_t end, bool topdown)
4287 {
4288 struct proc *p = l->l_proc;
4289 struct vmspace *nvm, *ovm = p->p_vmspace;
4290 struct vm_map *map;
4291 int flags;
4292
4293 KASSERT(ovm != NULL);
4294 #ifdef __HAVE_CPU_VMSPACE_EXEC
4295 cpu_vmspace_exec(l, start, end);
4296 #endif
4297
4298 map = &ovm->vm_map;
4299 /*
4300 * see if more than one process is using this vmspace...
4301 */
4302
4303 if (ovm->vm_refcnt == 1
4304 && topdown == ((ovm->vm_map.flags & VM_MAP_TOPDOWN) != 0)) {
4305
4306 /*
4307 * if p is the only process using its vmspace then we can safely
4308 * recycle that vmspace for the program that is being exec'd.
4309 * But only if TOPDOWN matches the requested value for the new
4310 * vm space!
4311 */
4312
4313 /*
4314 * SYSV SHM semantics require us to kill all segments on an exec
4315 */
4316 if (uvm_shmexit && ovm->vm_shm)
4317 (*uvm_shmexit)(ovm);
4318
4319 /*
4320 * POSIX 1003.1b -- "lock future mappings" is revoked
4321 * when a process execs another program image.
4322 */
4323
4324 map->flags &= ~VM_MAP_WIREFUTURE;
4325
4326 /*
4327 * now unmap the old program.
4328 *
4329 * XXX set VM_MAP_DYING for the duration, so pmap_update()
4330 * is not called until the pmap has been totally cleared out
4331 * after pmap_remove_all(), or it can confuse some pmap
4332 * implementations. it would be nice to handle this by
4333 * deferring the pmap_update() while it is known the address
4334 * space is not visible to any user LWP other than curlwp,
4335 * but there isn't an elegant way of inferring that right
4336 * now.
4337 */
4338
4339 flags = pmap_remove_all(map->pmap) ? UVM_FLAG_VAONLY : 0;
4340 map->flags |= VM_MAP_DYING;
4341 uvm_unmap1(map, vm_map_min(map), vm_map_max(map), flags);
4342 map->flags &= ~VM_MAP_DYING;
4343 pmap_update(map->pmap);
4344 KASSERT(map->header.prev == &map->header);
4345 KASSERT(map->nentries == 0);
4346
4347 /*
4348 * resize the map
4349 */
4350
4351 vm_map_setmin(map, start);
4352 vm_map_setmax(map, end);
4353 } else {
4354
4355 /*
4356 * p's vmspace is being shared, so we can't reuse it for p since
4357 * it is still being used for others. allocate a new vmspace
4358 * for p
4359 */
4360
4361 nvm = uvmspace_alloc(start, end, topdown);
4362
4363 /*
4364 * install new vmspace and drop our ref to the old one.
4365 */
4366
4367 kpreempt_disable();
4368 pmap_deactivate(l);
4369 p->p_vmspace = nvm;
4370 pmap_activate(l);
4371 kpreempt_enable();
4372
4373 uvmspace_free(ovm);
4374 }
4375 }
4376
4377 /*
4378 * uvmspace_addref: add a reference to a vmspace.
4379 */
4380
4381 void
4382 uvmspace_addref(struct vmspace *vm)
4383 {
4384
4385 KASSERT((vm->vm_map.flags & VM_MAP_DYING) == 0);
4386 KASSERT(vm->vm_refcnt > 0);
4387 atomic_inc_uint(&vm->vm_refcnt);
4388 }
4389
4390 /*
4391 * uvmspace_free: free a vmspace data structure
4392 */
4393
4394 void
4395 uvmspace_free(struct vmspace *vm)
4396 {
4397 struct vm_map_entry *dead_entries;
4398 struct vm_map *map = &vm->vm_map;
4399 int flags;
4400
4401 UVMHIST_FUNC(__func__);
4402 UVMHIST_CALLARGS(maphist,"(vm=%#jx) ref=%jd", (uintptr_t)vm,
4403 vm->vm_refcnt, 0, 0);
4404
4405 membar_release();
4406 if (atomic_dec_uint_nv(&vm->vm_refcnt) > 0)
4407 return;
4408 membar_acquire();
4409
4410 /*
4411 * at this point, there should be no other references to the map.
4412 * delete all of the mappings, then destroy the pmap.
4413 */
4414
4415 map->flags |= VM_MAP_DYING;
4416 flags = pmap_remove_all(map->pmap) ? UVM_FLAG_VAONLY : 0;
4417
4418 /* Get rid of any SYSV shared memory segments. */
4419 if (uvm_shmexit && vm->vm_shm != NULL)
4420 (*uvm_shmexit)(vm);
4421
4422 if (map->nentries) {
4423 uvm_unmap_remove(map, vm_map_min(map), vm_map_max(map),
4424 &dead_entries, flags);
4425 if (dead_entries != NULL)
4426 uvm_unmap_detach(dead_entries, 0);
4427 }
4428 KASSERT(map->nentries == 0);
4429 KASSERT(map->size == 0);
4430
4431 mutex_destroy(&map->misc_lock);
4432 rw_destroy(&map->lock);
4433 cv_destroy(&map->cv);
4434 pmap_destroy(map->pmap);
4435 kmem_free(vm, sizeof(*vm));
4436 }
4437
4438 static struct vm_map_entry *
4439 uvm_mapent_clone(struct vm_map *new_map, struct vm_map_entry *old_entry,
4440 int flags)
4441 {
4442 struct vm_map_entry *new_entry;
4443
4444 new_entry = uvm_mapent_alloc(new_map, 0);
4445 /* old_entry -> new_entry */
4446 uvm_mapent_copy(old_entry, new_entry);
4447
4448 /* new pmap has nothing wired in it */
4449 new_entry->wired_count = 0;
4450
4451 /*
4452 * gain reference to object backing the map (can't
4453 * be a submap, already checked this case).
4454 */
4455
4456 if (new_entry->aref.ar_amap)
4457 uvm_map_reference_amap(new_entry, flags);
4458
4459 if (new_entry->object.uvm_obj &&
4460 new_entry->object.uvm_obj->pgops->pgo_reference)
4461 new_entry->object.uvm_obj->pgops->pgo_reference(
4462 new_entry->object.uvm_obj);
4463
4464 /* insert entry at end of new_map's entry list */
4465 uvm_map_entry_link(new_map, new_map->header.prev,
4466 new_entry);
4467
4468 return new_entry;
4469 }
4470
4471 /*
4472 * share the mapping: this means we want the old and
4473 * new entries to share amaps and backing objects.
4474 */
4475 static void
4476 uvm_mapent_forkshared(struct vm_map *new_map, struct vm_map *old_map,
4477 struct vm_map_entry *old_entry)
4478 {
4479 /*
4480 * if the old_entry needs a new amap (due to prev fork)
4481 * then we need to allocate it now so that we have
4482 * something we own to share with the new_entry. [in
4483 * other words, we need to clear needs_copy]
4484 */
4485
4486 if (UVM_ET_ISNEEDSCOPY(old_entry)) {
4487 /* get our own amap, clears needs_copy */
4488 amap_copy(old_map, old_entry, AMAP_COPY_NOCHUNK,
4489 0, 0);
4490 /* XXXCDC: WAITOK??? */
4491 }
4492
4493 uvm_mapent_clone(new_map, old_entry, AMAP_SHARED);
4494 }
4495
4496
4497 static void
4498 uvm_mapent_forkcopy(struct vm_map *new_map, struct vm_map *old_map,
4499 struct vm_map_entry *old_entry)
4500 {
4501 struct vm_map_entry *new_entry;
4502
4503 /*
4504 * copy-on-write the mapping (using mmap's
4505 * MAP_PRIVATE semantics)
4506 *
4507 * allocate new_entry, adjust reference counts.
4508 * (note that new references are read-only).
4509 */
4510
4511 new_entry = uvm_mapent_clone(new_map, old_entry, 0);
4512
4513 new_entry->etype |=
4514 (UVM_ET_COPYONWRITE|UVM_ET_NEEDSCOPY);
4515
4516 /*
4517 * the new entry will need an amap. it will either
4518 * need to be copied from the old entry or created
4519 * from scratch (if the old entry does not have an
4520 * amap). can we defer this process until later
4521 * (by setting "needs_copy") or do we need to copy
4522 * the amap now?
4523 *
4524 * we must copy the amap now if any of the following
4525 * conditions hold:
4526 * 1. the old entry has an amap and that amap is
4527 * being shared. this means that the old (parent)
4528 * process is sharing the amap with another
4529 * process. if we do not clear needs_copy here
4530 * we will end up in a situation where both the
4531 * parent and child process are referring to the
4532 * same amap with "needs_copy" set. if the
4533 * parent write-faults, the fault routine will
4534 * clear "needs_copy" in the parent by allocating
4535 * a new amap. this is wrong because the
4536 * parent is supposed to be sharing the old amap
4537 * and the new amap will break that.
4538 *
4539 * 2. if the old entry has an amap and a non-zero
4540 * wire count then we are going to have to call
4541 * amap_cow_now to avoid page faults in the
4542 * parent process. since amap_cow_now requires
4543 * "needs_copy" to be clear we might as well
4544 * clear it here as well.
4545 *
4546 */
4547
4548 if (old_entry->aref.ar_amap != NULL) {
4549 if ((amap_flags(old_entry->aref.ar_amap) & AMAP_SHARED) != 0 ||
4550 VM_MAPENT_ISWIRED(old_entry)) {
4551
4552 amap_copy(new_map, new_entry,
4553 AMAP_COPY_NOCHUNK, 0, 0);
4554 /* XXXCDC: M_WAITOK ... ok? */
4555 }
4556 }
4557
4558 /*
4559 * if the parent's entry is wired down, then the
4560 * parent process does not want page faults on
4561 * access to that memory. this means that we
4562 * cannot do copy-on-write because we can't write
4563 * protect the old entry. in this case we
4564 * resolve all copy-on-write faults now, using
4565 * amap_cow_now. note that we have already
4566 * allocated any needed amap (above).
4567 */
4568
4569 if (VM_MAPENT_ISWIRED(old_entry)) {
4570
4571 /*
4572 * resolve all copy-on-write faults now
4573 * (note that there is nothing to do if
4574 * the old mapping does not have an amap).
4575 */
4576 if (old_entry->aref.ar_amap)
4577 amap_cow_now(new_map, new_entry);
4578
4579 } else {
4580 /*
4581 * setup mappings to trigger copy-on-write faults
4582 * we must write-protect the parent if it has
4583 * an amap and it is not already "needs_copy"...
4584 * if it is already "needs_copy" then the parent
4585 * has already been write-protected by a previous
4586 * fork operation.
4587 */
4588 if (old_entry->aref.ar_amap &&
4589 !UVM_ET_ISNEEDSCOPY(old_entry)) {
4590 if (old_entry->max_protection & VM_PROT_WRITE) {
4591 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
4592 uvm_map_lock_entry(old_entry, RW_WRITER);
4593 #else
4594 uvm_map_lock_entry(old_entry, RW_READER);
4595 #endif
4596 pmap_protect(old_map->pmap,
4597 old_entry->start, old_entry->end,
4598 old_entry->protection & ~VM_PROT_WRITE);
4599 uvm_map_unlock_entry(old_entry);
4600 }
4601 old_entry->etype |= UVM_ET_NEEDSCOPY;
4602 }
4603 }
4604 }
4605
4606 /*
4607 * zero the mapping: the new entry will be zero initialized
4608 */
4609 static void
4610 uvm_mapent_forkzero(struct vm_map *new_map, struct vm_map *old_map,
4611 struct vm_map_entry *old_entry)
4612 {
4613 struct vm_map_entry *new_entry;
4614
4615 new_entry = uvm_mapent_clone(new_map, old_entry, 0);
4616
4617 new_entry->etype |=
4618 (UVM_ET_COPYONWRITE|UVM_ET_NEEDSCOPY);
4619
4620 if (new_entry->aref.ar_amap) {
4621 uvm_map_unreference_amap(new_entry, 0);
4622 new_entry->aref.ar_pageoff = 0;
4623 new_entry->aref.ar_amap = NULL;
4624 }
4625
4626 if (UVM_ET_ISOBJ(new_entry)) {
4627 if (new_entry->object.uvm_obj->pgops->pgo_detach)
4628 new_entry->object.uvm_obj->pgops->pgo_detach(
4629 new_entry->object.uvm_obj);
4630 new_entry->object.uvm_obj = NULL;
4631 new_entry->offset = 0;
4632 new_entry->etype &= ~UVM_ET_OBJ;
4633 }
4634 }
4635
4636 /*
4637 * F O R K - m a i n e n t r y p o i n t
4638 */
4639 /*
4640 * uvmspace_fork: fork a process' main map
4641 *
4642 * => create a new vmspace for child process from parent.
4643 * => parent's map must not be locked.
4644 */
4645
4646 struct vmspace *
4647 uvmspace_fork(struct vmspace *vm1)
4648 {
4649 struct vmspace *vm2;
4650 struct vm_map *old_map = &vm1->vm_map;
4651 struct vm_map *new_map;
4652 struct vm_map_entry *old_entry;
4653 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4654
4655 vm_map_lock(old_map);
4656
4657 vm2 = uvmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4658 vm1->vm_map.flags & VM_MAP_TOPDOWN);
4659 memcpy(&vm2->vm_startcopy, &vm1->vm_startcopy,
4660 (char *) (vm1 + 1) - (char *) &vm1->vm_startcopy);
4661 new_map = &vm2->vm_map; /* XXX */
4662
4663 old_entry = old_map->header.next;
4664 new_map->size = old_map->size;
4665
4666 /*
4667 * go entry-by-entry
4668 */
4669
4670 while (old_entry != &old_map->header) {
4671
4672 /*
4673 * first, some sanity checks on the old entry
4674 */
4675
4676 KASSERT(!UVM_ET_ISSUBMAP(old_entry));
4677 KASSERT(UVM_ET_ISCOPYONWRITE(old_entry) ||
4678 !UVM_ET_ISNEEDSCOPY(old_entry));
4679
4680 switch (old_entry->inheritance) {
4681 case MAP_INHERIT_NONE:
4682 /*
4683 * drop the mapping, modify size
4684 */
4685 new_map->size -= old_entry->end - old_entry->start;
4686 break;
4687
4688 case MAP_INHERIT_SHARE:
4689 uvm_mapent_forkshared(new_map, old_map, old_entry);
4690 break;
4691
4692 case MAP_INHERIT_COPY:
4693 uvm_mapent_forkcopy(new_map, old_map, old_entry);
4694 break;
4695
4696 case MAP_INHERIT_ZERO:
4697 uvm_mapent_forkzero(new_map, old_map, old_entry);
4698 break;
4699 default:
4700 KASSERT(0);
4701 break;
4702 }
4703 old_entry = old_entry->next;
4704 }
4705
4706 pmap_update(old_map->pmap);
4707 vm_map_unlock(old_map);
4708
4709 if (uvm_shmfork && vm1->vm_shm)
4710 (*uvm_shmfork)(vm1, vm2);
4711
4712 #ifdef PMAP_FORK
4713 pmap_fork(vm1->vm_map.pmap, vm2->vm_map.pmap);
4714 #endif
4715
4716 UVMHIST_LOG(maphist,"<- done",0,0,0,0);
4717 return (vm2);
4718 }
4719
4720
4721 /*
4722 * uvm_mapent_trymerge: try to merge an entry with its neighbors.
4723 *
4724 * => called with map locked.
4725 * => return non zero if successfully merged.
4726 */
4727
4728 int
4729 uvm_mapent_trymerge(struct vm_map *map, struct vm_map_entry *entry, int flags)
4730 {
4731 struct uvm_object *uobj;
4732 struct vm_map_entry *next;
4733 struct vm_map_entry *prev;
4734 vsize_t size;
4735 int merged = 0;
4736 bool copying;
4737 int newetype;
4738
4739 if (entry->aref.ar_amap != NULL) {
4740 return 0;
4741 }
4742 if ((entry->flags & UVM_MAP_NOMERGE) != 0) {
4743 return 0;
4744 }
4745
4746 uobj = entry->object.uvm_obj;
4747 size = entry->end - entry->start;
4748 copying = (flags & UVM_MERGE_COPYING) != 0;
4749 newetype = copying ? (entry->etype & ~UVM_ET_NEEDSCOPY) : entry->etype;
4750
4751 next = entry->next;
4752 if (next != &map->header &&
4753 next->start == entry->end &&
4754 ((copying && next->aref.ar_amap != NULL &&
4755 amap_refs(next->aref.ar_amap) == 1) ||
4756 (!copying && next->aref.ar_amap == NULL)) &&
4757 UVM_ET_ISCOMPATIBLE(next, newetype,
4758 uobj, entry->flags, entry->protection,
4759 entry->max_protection, entry->inheritance, entry->advice,
4760 entry->wired_count) &&
4761 (uobj == NULL || entry->offset + size == next->offset)) {
4762 int error;
4763
4764 if (copying) {
4765 error = amap_extend(next, size,
4766 AMAP_EXTEND_NOWAIT|AMAP_EXTEND_BACKWARDS);
4767 } else {
4768 error = 0;
4769 }
4770 if (error == 0) {
4771 if (uobj) {
4772 if (uobj->pgops->pgo_detach) {
4773 uobj->pgops->pgo_detach(uobj);
4774 }
4775 }
4776
4777 entry->end = next->end;
4778 clear_hints(map, next);
4779 uvm_map_entry_unlink(map, next);
4780 if (copying) {
4781 entry->aref = next->aref;
4782 entry->etype &= ~UVM_ET_NEEDSCOPY;
4783 }
4784 uvm_map_check(map, "trymerge forwardmerge");
4785 uvm_mapent_free(next);
4786 merged++;
4787 }
4788 }
4789
4790 prev = entry->prev;
4791 if (prev != &map->header &&
4792 prev->end == entry->start &&
4793 ((copying && !merged && prev->aref.ar_amap != NULL &&
4794 amap_refs(prev->aref.ar_amap) == 1) ||
4795 (!copying && prev->aref.ar_amap == NULL)) &&
4796 UVM_ET_ISCOMPATIBLE(prev, newetype,
4797 uobj, entry->flags, entry->protection,
4798 entry->max_protection, entry->inheritance, entry->advice,
4799 entry->wired_count) &&
4800 (uobj == NULL ||
4801 prev->offset + prev->end - prev->start == entry->offset)) {
4802 int error;
4803
4804 if (copying) {
4805 error = amap_extend(prev, size,
4806 AMAP_EXTEND_NOWAIT|AMAP_EXTEND_FORWARDS);
4807 } else {
4808 error = 0;
4809 }
4810 if (error == 0) {
4811 if (uobj) {
4812 if (uobj->pgops->pgo_detach) {
4813 uobj->pgops->pgo_detach(uobj);
4814 }
4815 entry->offset = prev->offset;
4816 }
4817
4818 entry->start = prev->start;
4819 clear_hints(map, prev);
4820 uvm_map_entry_unlink(map, prev);
4821 if (copying) {
4822 entry->aref = prev->aref;
4823 entry->etype &= ~UVM_ET_NEEDSCOPY;
4824 }
4825 uvm_map_check(map, "trymerge backmerge");
4826 uvm_mapent_free(prev);
4827 merged++;
4828 }
4829 }
4830
4831 return merged;
4832 }
4833
4834 /*
4835 * uvm_map_setup: init map
4836 *
4837 * => map must not be in service yet.
4838 */
4839
4840 void
4841 uvm_map_setup(struct vm_map *map, vaddr_t vmin, vaddr_t vmax, int flags)
4842 {
4843
4844 rb_tree_init(&map->rb_tree, &uvm_map_tree_ops);
4845 map->header.next = map->header.prev = &map->header;
4846 map->nentries = 0;
4847 map->size = 0;
4848 map->ref_count = 1;
4849 vm_map_setmin(map, vmin);
4850 vm_map_setmax(map, vmax);
4851 map->flags = flags;
4852 map->first_free = &map->header;
4853 map->hint = &map->header;
4854 map->timestamp = 0;
4855 map->busy = NULL;
4856
4857 rw_init(&map->lock);
4858 cv_init(&map->cv, "vm_map");
4859 mutex_init(&map->misc_lock, MUTEX_DRIVER, IPL_NONE);
4860 }
4861
4862 /*
4863 * U N M A P - m a i n e n t r y p o i n t
4864 */
4865
4866 /*
4867 * uvm_unmap1: remove mappings from a vm_map (from "start" up to "stop")
4868 *
4869 * => caller must check alignment and size
4870 * => map must be unlocked (we will lock it)
4871 * => flags is UVM_FLAG_QUANTUM or 0.
4872 */
4873
4874 void
4875 uvm_unmap1(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
4876 {
4877 struct vm_map_entry *dead_entries;
4878 UVMHIST_FUNC(__func__);
4879 UVMHIST_CALLARGS(maphist, " (map=%#jx, start=%#jx, end=%#jx)",
4880 (uintptr_t)map, start, end, 0);
4881
4882 KASSERTMSG(start < end,
4883 "%s: map %p: start %#jx < end %#jx", __func__, map,
4884 (uintmax_t)start, (uintmax_t)end);
4885 if (map == kernel_map) {
4886 LOCKDEBUG_MEM_CHECK((void *)start, end - start);
4887 }
4888
4889 /*
4890 * work now done by helper functions. wipe the pmap's and then
4891 * detach from the dead entries...
4892 */
4893 vm_map_lock(map);
4894 uvm_unmap_remove(map, start, end, &dead_entries, flags);
4895 vm_map_unlock(map);
4896
4897 if (dead_entries != NULL)
4898 uvm_unmap_detach(dead_entries, 0);
4899
4900 UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
4901 }
4902
4903
4904 /*
4905 * uvm_map_reference: add reference to a map
4906 *
4907 * => map need not be locked
4908 */
4909
4910 void
4911 uvm_map_reference(struct vm_map *map)
4912 {
4913
4914 atomic_inc_uint(&map->ref_count);
4915 }
4916
4917 void
4918 uvm_map_lock_entry(struct vm_map_entry *entry, krw_t op)
4919 {
4920
4921 if (entry->aref.ar_amap != NULL) {
4922 amap_lock(entry->aref.ar_amap, op);
4923 }
4924 if (UVM_ET_ISOBJ(entry)) {
4925 rw_enter(entry->object.uvm_obj->vmobjlock, op);
4926 }
4927 }
4928
4929 void
4930 uvm_map_unlock_entry(struct vm_map_entry *entry)
4931 {
4932
4933 if (UVM_ET_ISOBJ(entry)) {
4934 rw_exit(entry->object.uvm_obj->vmobjlock);
4935 }
4936 if (entry->aref.ar_amap != NULL) {
4937 amap_unlock(entry->aref.ar_amap);
4938 }
4939 }
4940
4941 #define UVM_VOADDR_TYPE_MASK 0x3UL
4942 #define UVM_VOADDR_TYPE_UOBJ 0x1UL
4943 #define UVM_VOADDR_TYPE_ANON 0x2UL
4944 #define UVM_VOADDR_OBJECT_MASK ~UVM_VOADDR_TYPE_MASK
4945
4946 #define UVM_VOADDR_GET_TYPE(voa) \
4947 ((voa)->object & UVM_VOADDR_TYPE_MASK)
4948 #define UVM_VOADDR_GET_OBJECT(voa) \
4949 ((voa)->object & UVM_VOADDR_OBJECT_MASK)
4950 #define UVM_VOADDR_SET_OBJECT(voa, obj, type) \
4951 do { \
4952 KASSERT(((uintptr_t)(obj) & UVM_VOADDR_TYPE_MASK) == 0); \
4953 (voa)->object = ((uintptr_t)(obj)) | (type); \
4954 } while (/*CONSTCOND*/0)
4955
4956 #define UVM_VOADDR_GET_UOBJ(voa) \
4957 ((struct uvm_object *)UVM_VOADDR_GET_OBJECT(voa))
4958 #define UVM_VOADDR_SET_UOBJ(voa, uobj) \
4959 UVM_VOADDR_SET_OBJECT(voa, uobj, UVM_VOADDR_TYPE_UOBJ)
4960
4961 #define UVM_VOADDR_GET_ANON(voa) \
4962 ((struct vm_anon *)UVM_VOADDR_GET_OBJECT(voa))
4963 #define UVM_VOADDR_SET_ANON(voa, anon) \
4964 UVM_VOADDR_SET_OBJECT(voa, anon, UVM_VOADDR_TYPE_ANON)
4965
4966 /*
4967 * uvm_voaddr_acquire: returns the virtual object address corresponding
4968 * to the specified virtual address.
4969 *
4970 * => resolves COW so the true page identity is tracked.
4971 *
4972 * => acquires a reference on the page's owner (uvm_object or vm_anon)
4973 */
4974 bool
4975 uvm_voaddr_acquire(struct vm_map * const map, vaddr_t const va,
4976 struct uvm_voaddr * const voaddr)
4977 {
4978 struct vm_map_entry *entry;
4979 struct vm_anon *anon = NULL;
4980 bool result = false;
4981 bool exclusive = false;
4982 void (*unlock_fn)(struct vm_map *);
4983
4984 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4985 UVMHIST_LOG(maphist,"(map=%#jx,va=%#jx)", (uintptr_t)map, va, 0, 0);
4986
4987 const vaddr_t start = trunc_page(va);
4988 const vaddr_t end = round_page(va+1);
4989
4990 lookup_again:
4991 if (__predict_false(exclusive)) {
4992 vm_map_lock(map);
4993 unlock_fn = vm_map_unlock;
4994 } else {
4995 vm_map_lock_read(map);
4996 unlock_fn = vm_map_unlock_read;
4997 }
4998
4999 if (__predict_false(!uvm_map_lookup_entry(map, start, &entry))) {
5000 unlock_fn(map);
5001 UVMHIST_LOG(maphist,"<- done (no entry)",0,0,0,0);
5002 return false;
5003 }
5004
5005 if (__predict_false(entry->protection == VM_PROT_NONE)) {
5006 unlock_fn(map);
5007 UVMHIST_LOG(maphist,"<- done (PROT_NONE)",0,0,0,0);
5008 return false;
5009 }
5010
5011 /*
5012 * We have a fast path for the common case of "no COW resolution
5013 * needed" whereby we have taken a read lock on the map and if
5014 * we don't encounter any need to create a vm_anon then great!
5015 * But if we do, we loop around again, instead taking an exclusive
5016 * lock so that we can perform the fault.
5017 *
5018 * In the event that we have to resolve the fault, we do nearly the
5019 * same work as uvm_map_pageable() does:
5020 *
5021 * 1: holding the write lock, we create any anonymous maps that need
5022 * to be created. however, we do NOT need to clip the map entries
5023 * in this case.
5024 *
5025 * 2: we downgrade to a read lock, and call uvm_fault_wire to fault
5026 * in the page (assuming the entry is not already wired). this
5027 * is done because we need the vm_anon to be present.
5028 */
5029 if (__predict_true(!VM_MAPENT_ISWIRED(entry))) {
5030
5031 bool need_fault = false;
5032
5033 /*
5034 * perform the action of vm_map_lookup that need the
5035 * write lock on the map: create an anonymous map for
5036 * a copy-on-write region, or an anonymous map for
5037 * a zero-fill region.
5038 */
5039 if (__predict_false(UVM_ET_ISSUBMAP(entry))) {
5040 unlock_fn(map);
5041 UVMHIST_LOG(maphist,"<- done (submap)",0,0,0,0);
5042 return false;
5043 }
5044 if (__predict_false(UVM_ET_ISNEEDSCOPY(entry) &&
5045 ((entry->max_protection & VM_PROT_WRITE) ||
5046 (entry->object.uvm_obj == NULL)))) {
5047 if (!exclusive) {
5048 /* need to take the slow path */
5049 KASSERT(unlock_fn == vm_map_unlock_read);
5050 vm_map_unlock_read(map);
5051 exclusive = true;
5052 goto lookup_again;
5053 }
5054 need_fault = true;
5055 amap_copy(map, entry, 0, start, end);
5056 /* XXXCDC: wait OK? */
5057 }
5058
5059 /*
5060 * do a quick check to see if the fault has already
5061 * been resolved to the upper layer.
5062 */
5063 if (__predict_true(entry->aref.ar_amap != NULL &&
5064 need_fault == false)) {
5065 amap_lock(entry->aref.ar_amap, RW_WRITER);
5066 anon = amap_lookup(&entry->aref, start - entry->start);
5067 if (__predict_true(anon != NULL)) {
5068 /* amap unlocked below */
5069 goto found_anon;
5070 }
5071 amap_unlock(entry->aref.ar_amap);
5072 need_fault = true;
5073 }
5074
5075 /*
5076 * we predict this test as false because if we reach
5077 * this point, then we are likely dealing with a
5078 * shared memory region backed by a uvm_object, in
5079 * which case a fault to create the vm_anon is not
5080 * necessary.
5081 */
5082 if (__predict_false(need_fault)) {
5083 if (exclusive) {
5084 vm_map_busy(map);
5085 vm_map_unlock(map);
5086 unlock_fn = vm_map_unbusy;
5087 }
5088
5089 if (uvm_fault_wire(map, start, end,
5090 entry->max_protection, 1)) {
5091 /* wiring failed */
5092 unlock_fn(map);
5093 UVMHIST_LOG(maphist,"<- done (wire failed)",
5094 0,0,0,0);
5095 return false;
5096 }
5097
5098 /*
5099 * now that we have resolved the fault, we can unwire
5100 * the page.
5101 */
5102 if (exclusive) {
5103 vm_map_lock(map);
5104 vm_map_unbusy(map);
5105 unlock_fn = vm_map_unlock;
5106 }
5107
5108 uvm_fault_unwire_locked(map, start, end);
5109 }
5110 }
5111
5112 /* check the upper layer */
5113 if (entry->aref.ar_amap) {
5114 amap_lock(entry->aref.ar_amap, RW_WRITER);
5115 anon = amap_lookup(&entry->aref, start - entry->start);
5116 if (anon) {
5117 found_anon: KASSERT(anon->an_lock == entry->aref.ar_amap->am_lock);
5118 anon->an_ref++;
5119 rw_obj_hold(anon->an_lock);
5120 KASSERT(anon->an_ref != 0);
5121 UVM_VOADDR_SET_ANON(voaddr, anon);
5122 voaddr->offset = va & PAGE_MASK;
5123 result = true;
5124 }
5125 amap_unlock(entry->aref.ar_amap);
5126 }
5127
5128 /* check the lower layer */
5129 if (!result && UVM_ET_ISOBJ(entry)) {
5130 struct uvm_object *uobj = entry->object.uvm_obj;
5131
5132 KASSERT(uobj != NULL);
5133 (*uobj->pgops->pgo_reference)(uobj);
5134 UVM_VOADDR_SET_UOBJ(voaddr, uobj);
5135 voaddr->offset = entry->offset + (va - entry->start);
5136 result = true;
5137 }
5138
5139 unlock_fn(map);
5140
5141 if (result) {
5142 UVMHIST_LOG(maphist,
5143 "<- done OK (type=%jd,owner=%#jx,offset=%#jx)",
5144 UVM_VOADDR_GET_TYPE(voaddr),
5145 UVM_VOADDR_GET_OBJECT(voaddr),
5146 voaddr->offset, 0);
5147 } else {
5148 UVMHIST_LOG(maphist,"<- done (failed)",0,0,0,0);
5149 }
5150
5151 return result;
5152 }
5153
5154 /*
5155 * uvm_voaddr_release: release the references held by the
5156 * vitual object address.
5157 */
5158 void
5159 uvm_voaddr_release(struct uvm_voaddr * const voaddr)
5160 {
5161
5162 switch (UVM_VOADDR_GET_TYPE(voaddr)) {
5163 case UVM_VOADDR_TYPE_UOBJ: {
5164 struct uvm_object * const uobj = UVM_VOADDR_GET_UOBJ(voaddr);
5165
5166 KASSERT(uobj != NULL);
5167 KASSERT(uobj->pgops->pgo_detach != NULL);
5168 (*uobj->pgops->pgo_detach)(uobj);
5169 break;
5170 }
5171 case UVM_VOADDR_TYPE_ANON: {
5172 struct vm_anon * const anon = UVM_VOADDR_GET_ANON(voaddr);
5173 krwlock_t *lock;
5174
5175 KASSERT(anon != NULL);
5176 rw_enter((lock = anon->an_lock), RW_WRITER);
5177 KASSERT(anon->an_ref > 0);
5178 if (--anon->an_ref == 0) {
5179 uvm_anfree(anon);
5180 }
5181 rw_exit(lock);
5182 rw_obj_free(lock);
5183 break;
5184 }
5185 default:
5186 panic("uvm_voaddr_release: bad type");
5187 }
5188 memset(voaddr, 0, sizeof(*voaddr));
5189 }
5190
5191 /*
5192 * uvm_voaddr_compare: compare two uvm_voaddr objects.
5193 *
5194 * => memcmp() semantics
5195 */
5196 int
5197 uvm_voaddr_compare(const struct uvm_voaddr * const voaddr1,
5198 const struct uvm_voaddr * const voaddr2)
5199 {
5200 const uintptr_t type1 = UVM_VOADDR_GET_TYPE(voaddr1);
5201 const uintptr_t type2 = UVM_VOADDR_GET_TYPE(voaddr2);
5202
5203 KASSERT(type1 == UVM_VOADDR_TYPE_UOBJ ||
5204 type1 == UVM_VOADDR_TYPE_ANON);
5205
5206 KASSERT(type2 == UVM_VOADDR_TYPE_UOBJ ||
5207 type2 == UVM_VOADDR_TYPE_ANON);
5208
5209 if (type1 < type2)
5210 return -1;
5211 if (type1 > type2)
5212 return 1;
5213
5214 const uintptr_t addr1 = UVM_VOADDR_GET_OBJECT(voaddr1);
5215 const uintptr_t addr2 = UVM_VOADDR_GET_OBJECT(voaddr2);
5216
5217 if (addr1 < addr2)
5218 return -1;
5219 if (addr1 > addr2)
5220 return 1;
5221
5222 if (voaddr1->offset < voaddr2->offset)
5223 return -1;
5224 if (voaddr1->offset > voaddr2->offset)
5225 return 1;
5226
5227 return 0;
5228 }
5229
5230 #if defined(DDB) || defined(DEBUGPRINT)
5231
5232 /*
5233 * uvm_map_printit: actually prints the map
5234 */
5235
5236 void
5237 uvm_map_printit(struct vm_map *map, bool full,
5238 void (*pr)(const char *, ...))
5239 {
5240 struct vm_map_entry *entry;
5241
5242 (*pr)("MAP %p: [%#lx->%#lx]\n", map, vm_map_min(map),
5243 vm_map_max(map));
5244 (*pr)("\t#ent=%d, sz=%d, ref=%d, version=%d, flags=%#x\n",
5245 map->nentries, map->size, map->ref_count, map->timestamp,
5246 map->flags);
5247 (*pr)("\tpmap=%p(resident=%ld, wired=%ld)\n", map->pmap,
5248 pmap_resident_count(map->pmap), pmap_wired_count(map->pmap));
5249 if (!full)
5250 return;
5251 for (entry = map->header.next; entry != &map->header;
5252 entry = entry->next) {
5253 (*pr)(" - %p: %#lx->%#lx: obj=%p/%#llx, amap=%p/%d\n",
5254 entry, entry->start, entry->end, entry->object.uvm_obj,
5255 (long long)entry->offset, entry->aref.ar_amap,
5256 entry->aref.ar_pageoff);
5257 (*pr)(
5258 "\tsubmap=%c, cow=%c, nc=%c, prot(max)=%d/%d, inh=%d, "
5259 "wc=%d, adv=%d%s\n",
5260 (entry->etype & UVM_ET_SUBMAP) ? 'T' : 'F',
5261 (entry->etype & UVM_ET_COPYONWRITE) ? 'T' : 'F',
5262 (entry->etype & UVM_ET_NEEDSCOPY) ? 'T' : 'F',
5263 entry->protection, entry->max_protection,
5264 entry->inheritance, entry->wired_count, entry->advice,
5265 entry == map->first_free ? " (first_free)" : "");
5266 }
5267 }
5268
5269 void
5270 uvm_whatis(uintptr_t addr, void (*pr)(const char *, ...))
5271 {
5272 struct vm_map *map;
5273
5274 for (map = kernel_map;;) {
5275 struct vm_map_entry *entry;
5276
5277 if (!uvm_map_lookup_entry_bytree(map, (vaddr_t)addr, &entry)) {
5278 break;
5279 }
5280 (*pr)("%p is %p+%zu from VMMAP %p\n",
5281 (void *)addr, (void *)entry->start,
5282 (size_t)(addr - (uintptr_t)entry->start), map);
5283 if (!UVM_ET_ISSUBMAP(entry)) {
5284 break;
5285 }
5286 map = entry->object.sub_map;
5287 }
5288 }
5289
5290 #endif /* DDB || DEBUGPRINT */
5291
5292 #ifndef __USER_VA0_IS_SAFE
5293 static int
5294 sysctl_user_va0_disable(SYSCTLFN_ARGS)
5295 {
5296 struct sysctlnode node;
5297 int t, error;
5298
5299 node = *rnode;
5300 node.sysctl_data = &t;
5301 t = user_va0_disable;
5302 error = sysctl_lookup(SYSCTLFN_CALL(&node));
5303 if (error || newp == NULL)
5304 return (error);
5305
5306 if (!t && user_va0_disable &&
5307 kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_MAP_VA_ZERO, 0,
5308 NULL, NULL, NULL))
5309 return EPERM;
5310
5311 user_va0_disable = !!t;
5312 return 0;
5313 }
5314 #endif
5315
5316 static int
5317 fill_vmentry(struct lwp *l, struct proc *p, struct kinfo_vmentry *kve,
5318 struct vm_map *m, struct vm_map_entry *e)
5319 {
5320 #ifndef _RUMPKERNEL
5321 int error;
5322
5323 memset(kve, 0, sizeof(*kve));
5324 KASSERT(e != NULL);
5325 if (UVM_ET_ISOBJ(e)) {
5326 struct uvm_object *uobj = e->object.uvm_obj;
5327 KASSERT(uobj != NULL);
5328 kve->kve_ref_count = uobj->uo_refs;
5329 kve->kve_count = uobj->uo_npages;
5330 if (UVM_OBJ_IS_VNODE(uobj)) {
5331 struct vattr va;
5332 struct vnode *vp = (struct vnode *)uobj;
5333 vn_lock(vp, LK_SHARED | LK_RETRY);
5334 error = VOP_GETATTR(vp, &va, l->l_cred);
5335 VOP_UNLOCK(vp);
5336 kve->kve_type = KVME_TYPE_VNODE;
5337 if (error == 0) {
5338 kve->kve_vn_size = vp->v_size;
5339 kve->kve_vn_type = (int)vp->v_type;
5340 kve->kve_vn_mode = va.va_mode;
5341 kve->kve_vn_rdev = va.va_rdev;
5342 kve->kve_vn_fileid = va.va_fileid;
5343 kve->kve_vn_fsid = va.va_fsid;
5344 error = vnode_to_path(kve->kve_path,
5345 sizeof(kve->kve_path) / 2, vp, l, p);
5346 }
5347 } else if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
5348 kve->kve_type = KVME_TYPE_KERN;
5349 } else if (UVM_OBJ_IS_DEVICE(uobj)) {
5350 kve->kve_type = KVME_TYPE_DEVICE;
5351 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
5352 kve->kve_type = KVME_TYPE_ANON;
5353 } else {
5354 kve->kve_type = KVME_TYPE_OBJECT;
5355 }
5356 } else if (UVM_ET_ISSUBMAP(e)) {
5357 struct vm_map *map = e->object.sub_map;
5358 KASSERT(map != NULL);
5359 kve->kve_ref_count = map->ref_count;
5360 kve->kve_count = map->nentries;
5361 kve->kve_type = KVME_TYPE_SUBMAP;
5362 } else
5363 kve->kve_type = KVME_TYPE_UNKNOWN;
5364
5365 kve->kve_start = e->start;
5366 kve->kve_end = e->end;
5367 kve->kve_offset = e->offset;
5368 kve->kve_wired_count = e->wired_count;
5369 kve->kve_inheritance = e->inheritance;
5370 kve->kve_attributes = 0; /* unused */
5371 kve->kve_advice = e->advice;
5372 #define PROT(p) (((p) & VM_PROT_READ) ? KVME_PROT_READ : 0) | \
5373 (((p) & VM_PROT_WRITE) ? KVME_PROT_WRITE : 0) | \
5374 (((p) & VM_PROT_EXECUTE) ? KVME_PROT_EXEC : 0)
5375 kve->kve_protection = PROT(e->protection);
5376 kve->kve_max_protection = PROT(e->max_protection);
5377 kve->kve_flags |= (e->etype & UVM_ET_COPYONWRITE)
5378 ? KVME_FLAG_COW : 0;
5379 kve->kve_flags |= (e->etype & UVM_ET_NEEDSCOPY)
5380 ? KVME_FLAG_NEEDS_COPY : 0;
5381 kve->kve_flags |= (m->flags & VM_MAP_TOPDOWN)
5382 ? KVME_FLAG_GROWS_DOWN : KVME_FLAG_GROWS_UP;
5383 kve->kve_flags |= (m->flags & VM_MAP_PAGEABLE)
5384 ? KVME_FLAG_PAGEABLE : 0;
5385 #endif
5386 return 0;
5387 }
5388
5389 static int
5390 fill_vmentries(struct lwp *l, pid_t pid, u_int elem_size, void *oldp,
5391 size_t *oldlenp)
5392 {
5393 int error;
5394 struct proc *p;
5395 struct kinfo_vmentry *vme;
5396 struct vmspace *vm;
5397 struct vm_map *map;
5398 struct vm_map_entry *entry;
5399 char *dp;
5400 size_t count, vmesize;
5401
5402 if (elem_size == 0 || elem_size > 2 * sizeof(*vme))
5403 return EINVAL;
5404
5405 if (oldp) {
5406 if (*oldlenp > 10UL * 1024UL * 1024UL)
5407 return E2BIG;
5408 count = *oldlenp / elem_size;
5409 if (count == 0)
5410 return ENOMEM;
5411 vmesize = count * sizeof(*vme);
5412 } else
5413 vmesize = 0;
5414
5415 if ((error = proc_find_locked(l, &p, pid)) != 0)
5416 return error;
5417
5418 vme = NULL;
5419 count = 0;
5420
5421 if ((error = proc_vmspace_getref(p, &vm)) != 0)
5422 goto out;
5423
5424 map = &vm->vm_map;
5425 vm_map_lock_read(map);
5426
5427 dp = oldp;
5428 if (oldp)
5429 vme = kmem_alloc(vmesize, KM_SLEEP);
5430 for (entry = map->header.next; entry != &map->header;
5431 entry = entry->next) {
5432 if (oldp && (dp - (char *)oldp) < vmesize) {
5433 error = fill_vmentry(l, p, &vme[count], map, entry);
5434 if (error)
5435 goto out;
5436 dp += elem_size;
5437 }
5438 count++;
5439 }
5440 vm_map_unlock_read(map);
5441 uvmspace_free(vm);
5442
5443 out:
5444 if (pid != -1)
5445 mutex_exit(p->p_lock);
5446 if (error == 0) {
5447 const u_int esize = uimin(sizeof(*vme), elem_size);
5448 dp = oldp;
5449 for (size_t i = 0; i < count; i++) {
5450 if (oldp && (dp - (char *)oldp) < vmesize) {
5451 error = sysctl_copyout(l, &vme[i], dp, esize);
5452 if (error)
5453 break;
5454 dp += elem_size;
5455 } else
5456 break;
5457 }
5458 count *= elem_size;
5459 if (oldp != NULL && *oldlenp < count)
5460 error = ENOSPC;
5461 *oldlenp = count;
5462 }
5463 if (vme)
5464 kmem_free(vme, vmesize);
5465 return error;
5466 }
5467
5468 static int
5469 sysctl_vmproc(SYSCTLFN_ARGS)
5470 {
5471 int error;
5472
5473 if (namelen == 1 && name[0] == CTL_QUERY)
5474 return (sysctl_query(SYSCTLFN_CALL(rnode)));
5475
5476 if (namelen == 0)
5477 return EINVAL;
5478
5479 switch (name[0]) {
5480 case VM_PROC_MAP:
5481 if (namelen != 3)
5482 return EINVAL;
5483 sysctl_unlock();
5484 error = fill_vmentries(l, name[1], name[2], oldp, oldlenp);
5485 sysctl_relock();
5486 return error;
5487 default:
5488 return EINVAL;
5489 }
5490 }
5491
5492 SYSCTL_SETUP(sysctl_uvmmap_setup, "sysctl uvmmap setup")
5493 {
5494
5495 sysctl_createv(clog, 0, NULL, NULL,
5496 CTLFLAG_PERMANENT,
5497 CTLTYPE_STRUCT, "proc",
5498 SYSCTL_DESCR("Process vm information"),
5499 sysctl_vmproc, 0, NULL, 0,
5500 CTL_VM, VM_PROC, CTL_EOL);
5501 #ifndef __USER_VA0_IS_SAFE
5502 sysctl_createv(clog, 0, NULL, NULL,
5503 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5504 CTLTYPE_INT, "user_va0_disable",
5505 SYSCTL_DESCR("Disable VA 0"),
5506 sysctl_user_va0_disable, 0, &user_va0_disable, 0,
5507 CTL_VM, CTL_CREATE, CTL_EOL);
5508 #endif
5509 }
5510