uvm_map.c revision 1.419 1 /* $NetBSD: uvm_map.c,v 1.419 2024/08/14 00:41:46 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vm_map.c 8.3 (Berkeley) 1/12/94
37 * from: Id: uvm_map.c,v 1.1.2.27 1998/02/07 01:16:54 chs Exp
38 *
39 *
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
48 *
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 *
53 * Carnegie Mellon requests users of this software to return to
54 *
55 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 * School of Computer Science
57 * Carnegie Mellon University
58 * Pittsburgh PA 15213-3890
59 *
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
62 */
63
64 /*
65 * uvm_map.c: uvm map operations
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: uvm_map.c,v 1.419 2024/08/14 00:41:46 riastradh Exp $");
70
71 #include "opt_ddb.h"
72 #include "opt_pax.h"
73 #include "opt_uvmhist.h"
74 #include "opt_uvm.h"
75 #include "opt_sysv.h"
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/mman.h>
80 #include <sys/proc.h>
81 #include <sys/pool.h>
82 #include <sys/kernel.h>
83 #include <sys/mount.h>
84 #include <sys/pax.h>
85 #include <sys/vnode.h>
86 #include <sys/filedesc.h>
87 #include <sys/lockdebug.h>
88 #include <sys/atomic.h>
89 #include <sys/sysctl.h>
90 #ifndef __USER_VA0_IS_SAFE
91 #include <sys/kauth.h>
92 #include "opt_user_va0_disable_default.h"
93 #endif
94
95 #include <sys/shm.h>
96
97 #include <uvm/uvm.h>
98 #include <uvm/uvm_readahead.h>
99
100 #if defined(DDB) || defined(DEBUGPRINT)
101 #include <uvm/uvm_ddb.h>
102 #endif
103
104 #ifdef UVMHIST
105 #ifndef UVMHIST_MAPHIST_SIZE
106 #define UVMHIST_MAPHIST_SIZE 100
107 #endif
108 static struct kern_history_ent maphistbuf[UVMHIST_MAPHIST_SIZE];
109 UVMHIST_DEFINE(maphist) = UVMHIST_INITIALIZER(maphist, maphistbuf);
110 #endif
111
112 #if !defined(UVMMAP_COUNTERS)
113
114 #define UVMMAP_EVCNT_DEFINE(name) /* nothing */
115 #define UVMMAP_EVCNT_INCR(ev) /* nothing */
116 #define UVMMAP_EVCNT_DECR(ev) /* nothing */
117
118 #else /* defined(UVMMAP_NOCOUNTERS) */
119
120 #include <sys/evcnt.h>
121 #define UVMMAP_EVCNT_DEFINE(name) \
122 struct evcnt uvmmap_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
123 "uvmmap", #name); \
124 EVCNT_ATTACH_STATIC(uvmmap_evcnt_##name);
125 #define UVMMAP_EVCNT_INCR(ev) uvmmap_evcnt_##ev.ev_count++
126 #define UVMMAP_EVCNT_DECR(ev) uvmmap_evcnt_##ev.ev_count--
127
128 #endif /* defined(UVMMAP_NOCOUNTERS) */
129
130 UVMMAP_EVCNT_DEFINE(ubackmerge)
131 UVMMAP_EVCNT_DEFINE(uforwmerge)
132 UVMMAP_EVCNT_DEFINE(ubimerge)
133 UVMMAP_EVCNT_DEFINE(unomerge)
134 UVMMAP_EVCNT_DEFINE(kbackmerge)
135 UVMMAP_EVCNT_DEFINE(kforwmerge)
136 UVMMAP_EVCNT_DEFINE(kbimerge)
137 UVMMAP_EVCNT_DEFINE(knomerge)
138 UVMMAP_EVCNT_DEFINE(map_call)
139 UVMMAP_EVCNT_DEFINE(mlk_call)
140 UVMMAP_EVCNT_DEFINE(mlk_hint)
141 UVMMAP_EVCNT_DEFINE(mlk_tree)
142 UVMMAP_EVCNT_DEFINE(mlk_treeloop)
143
144 const char vmmapbsy[] = "vmmapbsy";
145
146 /*
147 * cache for dynamically-allocated map entries.
148 */
149
150 static struct pool_cache uvm_map_entry_cache;
151
152 #ifdef PMAP_GROWKERNEL
153 /*
154 * This global represents the end of the kernel virtual address
155 * space. If we want to exceed this, we must grow the kernel
156 * virtual address space dynamically.
157 *
158 * Note, this variable is locked by kernel_map's lock.
159 */
160 vaddr_t uvm_maxkaddr;
161 #endif
162
163 #ifndef __USER_VA0_IS_SAFE
164 #ifndef __USER_VA0_DISABLE_DEFAULT
165 #define __USER_VA0_DISABLE_DEFAULT 1
166 #endif
167 #ifdef USER_VA0_DISABLE_DEFAULT /* kernel config option overrides */
168 #undef __USER_VA0_DISABLE_DEFAULT
169 #define __USER_VA0_DISABLE_DEFAULT USER_VA0_DISABLE_DEFAULT
170 #endif
171 int user_va0_disable = __USER_VA0_DISABLE_DEFAULT;
172 #endif
173
174 /*
175 * macros
176 */
177
178 /*
179 * uvm_map_align_va: round down or up virtual address
180 */
181 static __inline void
182 uvm_map_align_va(vaddr_t *vap, vsize_t align, int topdown)
183 {
184
185 KASSERT(powerof2(align));
186
187 if (align != 0 && (*vap & (align - 1)) != 0) {
188 if (topdown)
189 *vap = rounddown2(*vap, align);
190 else
191 *vap = roundup2(*vap, align);
192 }
193 }
194
195 /*
196 * UVM_ET_ISCOMPATIBLE: check some requirements for map entry merging
197 */
198 extern struct vm_map *pager_map;
199
200 #define UVM_ET_ISCOMPATIBLE(ent, type, uobj, meflags, \
201 prot, maxprot, inh, adv, wire) \
202 ((ent)->etype == (type) && \
203 (((ent)->flags ^ (meflags)) & (UVM_MAP_NOMERGE)) == 0 && \
204 (ent)->object.uvm_obj == (uobj) && \
205 (ent)->protection == (prot) && \
206 (ent)->max_protection == (maxprot) && \
207 (ent)->inheritance == (inh) && \
208 (ent)->advice == (adv) && \
209 (ent)->wired_count == (wire))
210
211 /*
212 * uvm_map_entry_link: insert entry into a map
213 *
214 * => map must be locked
215 */
216 #define uvm_map_entry_link(map, after_where, entry) do { \
217 uvm_mapent_check(entry); \
218 (map)->nentries++; \
219 (entry)->prev = (after_where); \
220 (entry)->next = (after_where)->next; \
221 (entry)->prev->next = (entry); \
222 (entry)->next->prev = (entry); \
223 uvm_rb_insert((map), (entry)); \
224 } while (/*CONSTCOND*/ 0)
225
226 /*
227 * uvm_map_entry_unlink: remove entry from a map
228 *
229 * => map must be locked
230 */
231 #define uvm_map_entry_unlink(map, entry) do { \
232 KASSERT((entry) != (map)->first_free); \
233 KASSERT((entry) != (map)->hint); \
234 uvm_mapent_check(entry); \
235 (map)->nentries--; \
236 (entry)->next->prev = (entry)->prev; \
237 (entry)->prev->next = (entry)->next; \
238 uvm_rb_remove((map), (entry)); \
239 } while (/*CONSTCOND*/ 0)
240
241 /*
242 * SAVE_HINT: saves the specified entry as the hint for future lookups.
243 *
244 * => map need not be locked.
245 */
246 #define SAVE_HINT(map, check, value) do { \
247 if ((map)->hint == (check)) \
248 (map)->hint = (value); \
249 } while (/*CONSTCOND*/ 0)
250
251 /*
252 * clear_hints: ensure that hints don't point to the entry.
253 *
254 * => map must be write-locked.
255 */
256 static void
257 clear_hints(struct vm_map *map, struct vm_map_entry *ent)
258 {
259
260 SAVE_HINT(map, ent, ent->prev);
261 if (map->first_free == ent) {
262 map->first_free = ent->prev;
263 }
264 }
265
266 /*
267 * VM_MAP_RANGE_CHECK: check and correct range
268 *
269 * => map must at least be read locked
270 */
271
272 #define VM_MAP_RANGE_CHECK(map, start, end) do { \
273 if (start < vm_map_min(map)) \
274 start = vm_map_min(map); \
275 if (end > vm_map_max(map)) \
276 end = vm_map_max(map); \
277 if (start > end) \
278 start = end; \
279 } while (/*CONSTCOND*/ 0)
280
281 /*
282 * local prototypes
283 */
284
285 static struct vm_map_entry *
286 uvm_mapent_alloc(struct vm_map *, int);
287 static void uvm_mapent_copy(struct vm_map_entry *, struct vm_map_entry *);
288 static void uvm_mapent_free(struct vm_map_entry *);
289 #if defined(DEBUG)
290 static void _uvm_mapent_check(const struct vm_map_entry *, int);
291 #define uvm_mapent_check(map) _uvm_mapent_check(map, __LINE__)
292 #else /* defined(DEBUG) */
293 #define uvm_mapent_check(e) /* nothing */
294 #endif /* defined(DEBUG) */
295
296 static void uvm_map_entry_unwire(struct vm_map *, struct vm_map_entry *);
297 static void uvm_map_reference_amap(struct vm_map_entry *, int);
298 static int uvm_map_space_avail(vaddr_t *, vsize_t, voff_t, vsize_t, int,
299 int, struct vm_map_entry *);
300 static void uvm_map_unreference_amap(struct vm_map_entry *, int);
301
302 int _uvm_map_sanity(struct vm_map *);
303 int _uvm_tree_sanity(struct vm_map *);
304 static vsize_t uvm_rb_maxgap(const struct vm_map_entry *);
305
306 /*
307 * Tree iteration. We violate the rbtree(9) abstraction for various
308 * things here. Entries are ascending left to right, so, provided the
309 * child entry in question exists:
310 *
311 * LEFT_ENTRY(entry)->end <= entry->start
312 * entry->end <= RIGHT_ENTRY(entry)->start
313 */
314 __CTASSERT(offsetof(struct vm_map_entry, rb_node) == 0);
315 #define ROOT_ENTRY(map) \
316 ((struct vm_map_entry *)(map)->rb_tree.rbt_root)
317 #define LEFT_ENTRY(entry) \
318 ((struct vm_map_entry *)(entry)->rb_node.rb_left)
319 #define RIGHT_ENTRY(entry) \
320 ((struct vm_map_entry *)(entry)->rb_node.rb_right)
321 #define PARENT_ENTRY(map, entry) \
322 (ROOT_ENTRY(map) == (entry) \
323 ? NULL : (struct vm_map_entry *)RB_FATHER(&(entry)->rb_node))
324
325 /*
326 * These get filled in if/when SYSVSHM shared memory code is loaded
327 *
328 * We do this with function pointers rather the #ifdef SYSVSHM so the
329 * SYSVSHM code can be loaded and unloaded
330 */
331 void (*uvm_shmexit)(struct vmspace *) = NULL;
332 void (*uvm_shmfork)(struct vmspace *, struct vmspace *) = NULL;
333
334 static int
335 uvm_map_compare_nodes(void *ctx, const void *nparent, const void *nkey)
336 {
337 const struct vm_map_entry *eparent = nparent;
338 const struct vm_map_entry *ekey = nkey;
339
340 KASSERT(eparent->start < ekey->start || eparent->start >= ekey->end);
341 KASSERT(ekey->start < eparent->start || ekey->start >= eparent->end);
342
343 if (eparent->start < ekey->start)
344 return -1;
345 if (eparent->end >= ekey->start)
346 return 1;
347 return 0;
348 }
349
350 static int
351 uvm_map_compare_key(void *ctx, const void *nparent, const void *vkey)
352 {
353 const struct vm_map_entry *eparent = nparent;
354 const vaddr_t va = *(const vaddr_t *) vkey;
355
356 if (eparent->start < va)
357 return -1;
358 if (eparent->end >= va)
359 return 1;
360 return 0;
361 }
362
363 static const rb_tree_ops_t uvm_map_tree_ops = {
364 .rbto_compare_nodes = uvm_map_compare_nodes,
365 .rbto_compare_key = uvm_map_compare_key,
366 .rbto_node_offset = offsetof(struct vm_map_entry, rb_node),
367 .rbto_context = NULL
368 };
369
370 /*
371 * uvm_rb_gap: return the gap size between our entry and next entry.
372 */
373 static inline vsize_t
374 uvm_rb_gap(const struct vm_map_entry *entry)
375 {
376
377 KASSERT(entry->next != NULL);
378 return entry->next->start - entry->end;
379 }
380
381 static vsize_t
382 uvm_rb_maxgap(const struct vm_map_entry *entry)
383 {
384 struct vm_map_entry *child;
385 vsize_t maxgap = entry->gap;
386
387 /*
388 * We need maxgap to be the largest gap of us or any of our
389 * descendents. Since each of our children's maxgap is the
390 * cached value of their largest gap of themselves or their
391 * descendents, we can just use that value and avoid recursing
392 * down the tree to calculate it.
393 */
394 if ((child = LEFT_ENTRY(entry)) != NULL && maxgap < child->maxgap)
395 maxgap = child->maxgap;
396
397 if ((child = RIGHT_ENTRY(entry)) != NULL && maxgap < child->maxgap)
398 maxgap = child->maxgap;
399
400 return maxgap;
401 }
402
403 static void
404 uvm_rb_fixup(struct vm_map *map, struct vm_map_entry *entry)
405 {
406 struct vm_map_entry *parent;
407
408 KASSERT(entry->gap == uvm_rb_gap(entry));
409 entry->maxgap = uvm_rb_maxgap(entry);
410
411 while ((parent = PARENT_ENTRY(map, entry)) != NULL) {
412 struct vm_map_entry *brother;
413 vsize_t maxgap = parent->gap;
414 unsigned int which;
415
416 KDASSERT(parent->gap == uvm_rb_gap(parent));
417 if (maxgap < entry->maxgap)
418 maxgap = entry->maxgap;
419 /*
420 * Since we work towards the root, we know entry's maxgap
421 * value is OK, but its brothers may now be out-of-date due
422 * to rebalancing. So refresh it.
423 */
424 which = RB_POSITION(&entry->rb_node) ^ RB_DIR_OTHER;
425 brother = (struct vm_map_entry *)parent->rb_node.rb_nodes[which];
426 if (brother != NULL) {
427 KDASSERT(brother->gap == uvm_rb_gap(brother));
428 brother->maxgap = uvm_rb_maxgap(brother);
429 if (maxgap < brother->maxgap)
430 maxgap = brother->maxgap;
431 }
432
433 parent->maxgap = maxgap;
434 entry = parent;
435 }
436 }
437
438 static void
439 uvm_rb_insert(struct vm_map *map, struct vm_map_entry *entry)
440 {
441 struct vm_map_entry *ret __diagused;
442
443 entry->gap = entry->maxgap = uvm_rb_gap(entry);
444 if (entry->prev != &map->header)
445 entry->prev->gap = uvm_rb_gap(entry->prev);
446
447 ret = rb_tree_insert_node(&map->rb_tree, entry);
448 KASSERTMSG(ret == entry,
449 "uvm_rb_insert: map %p: duplicate entry %p", map, ret);
450
451 /*
452 * If the previous entry is not our immediate left child, then it's an
453 * ancestor and will be fixed up on the way to the root. We don't
454 * have to check entry->prev against &map->header since &map->header
455 * will never be in the tree.
456 */
457 uvm_rb_fixup(map,
458 LEFT_ENTRY(entry) == entry->prev ? entry->prev : entry);
459 }
460
461 static void
462 uvm_rb_remove(struct vm_map *map, struct vm_map_entry *entry)
463 {
464 struct vm_map_entry *prev_parent = NULL, *next_parent = NULL;
465
466 /*
467 * If we are removing an interior node, then an adjacent node will
468 * be used to replace its position in the tree. Therefore we will
469 * need to fixup the tree starting at the parent of the replacement
470 * node. So record their parents for later use.
471 */
472 if (entry->prev != &map->header)
473 prev_parent = PARENT_ENTRY(map, entry->prev);
474 if (entry->next != &map->header)
475 next_parent = PARENT_ENTRY(map, entry->next);
476
477 rb_tree_remove_node(&map->rb_tree, entry);
478
479 /*
480 * If the previous node has a new parent, fixup the tree starting
481 * at the previous node's old parent.
482 */
483 if (entry->prev != &map->header) {
484 /*
485 * Update the previous entry's gap due to our absence.
486 */
487 entry->prev->gap = uvm_rb_gap(entry->prev);
488 uvm_rb_fixup(map, entry->prev);
489 if (prev_parent != NULL
490 && prev_parent != entry
491 && prev_parent != PARENT_ENTRY(map, entry->prev))
492 uvm_rb_fixup(map, prev_parent);
493 }
494
495 /*
496 * If the next node has a new parent, fixup the tree starting
497 * at the next node's old parent.
498 */
499 if (entry->next != &map->header) {
500 uvm_rb_fixup(map, entry->next);
501 if (next_parent != NULL
502 && next_parent != entry
503 && next_parent != PARENT_ENTRY(map, entry->next))
504 uvm_rb_fixup(map, next_parent);
505 }
506 }
507
508 #if defined(DEBUG)
509 int uvm_debug_check_map = 0;
510 int uvm_debug_check_rbtree = 0;
511 #define uvm_map_check(map, name) \
512 _uvm_map_check((map), (name), __FILE__, __LINE__)
513 static void
514 _uvm_map_check(struct vm_map *map, const char *name,
515 const char *file, int line)
516 {
517
518 if ((uvm_debug_check_map && _uvm_map_sanity(map)) ||
519 (uvm_debug_check_rbtree && _uvm_tree_sanity(map))) {
520 panic("uvm_map_check failed: \"%s\" map=%p (%s:%d)",
521 name, map, file, line);
522 }
523 }
524 #else /* defined(DEBUG) */
525 #define uvm_map_check(map, name) /* nothing */
526 #endif /* defined(DEBUG) */
527
528 #if defined(DEBUG) || defined(DDB)
529 int
530 _uvm_map_sanity(struct vm_map *map)
531 {
532 bool first_free_found = false;
533 bool hint_found = false;
534 const struct vm_map_entry *e;
535 struct vm_map_entry *hint = map->hint;
536
537 e = &map->header;
538 for (;;) {
539 if (map->first_free == e) {
540 first_free_found = true;
541 } else if (!first_free_found && e->next->start > e->end) {
542 printf("first_free %p should be %p\n",
543 map->first_free, e);
544 return -1;
545 }
546 if (hint == e) {
547 hint_found = true;
548 }
549
550 e = e->next;
551 if (e == &map->header) {
552 break;
553 }
554 }
555 if (!first_free_found) {
556 printf("stale first_free\n");
557 return -1;
558 }
559 if (!hint_found) {
560 printf("stale hint\n");
561 return -1;
562 }
563 return 0;
564 }
565
566 int
567 _uvm_tree_sanity(struct vm_map *map)
568 {
569 struct vm_map_entry *tmp, *trtmp;
570 int n = 0, i = 1;
571
572 for (tmp = map->header.next; tmp != &map->header; tmp = tmp->next) {
573 if (tmp->gap != uvm_rb_gap(tmp)) {
574 printf("%d/%d gap %#lx != %#lx %s\n",
575 n + 1, map->nentries,
576 (ulong)tmp->gap, (ulong)uvm_rb_gap(tmp),
577 tmp->next == &map->header ? "(last)" : "");
578 goto error;
579 }
580 /*
581 * If any entries are out of order, tmp->gap will be unsigned
582 * and will likely exceed the size of the map.
583 */
584 if (tmp->gap >= vm_map_max(map) - vm_map_min(map)) {
585 printf("too large gap %zu\n", (size_t)tmp->gap);
586 goto error;
587 }
588 n++;
589 }
590
591 if (n != map->nentries) {
592 printf("nentries: %d vs %d\n", n, map->nentries);
593 goto error;
594 }
595
596 trtmp = NULL;
597 for (tmp = map->header.next; tmp != &map->header; tmp = tmp->next) {
598 if (tmp->maxgap != uvm_rb_maxgap(tmp)) {
599 printf("maxgap %#lx != %#lx\n",
600 (ulong)tmp->maxgap,
601 (ulong)uvm_rb_maxgap(tmp));
602 goto error;
603 }
604 if (trtmp != NULL && trtmp->start >= tmp->start) {
605 printf("corrupt: 0x%"PRIxVADDR"x >= 0x%"PRIxVADDR"x\n",
606 trtmp->start, tmp->start);
607 goto error;
608 }
609
610 trtmp = tmp;
611 }
612
613 for (tmp = map->header.next; tmp != &map->header;
614 tmp = tmp->next, i++) {
615 trtmp = rb_tree_iterate(&map->rb_tree, tmp, RB_DIR_LEFT);
616 if (trtmp == NULL)
617 trtmp = &map->header;
618 if (tmp->prev != trtmp) {
619 printf("lookup: %d: %p->prev=%p: %p\n",
620 i, tmp, tmp->prev, trtmp);
621 goto error;
622 }
623 trtmp = rb_tree_iterate(&map->rb_tree, tmp, RB_DIR_RIGHT);
624 if (trtmp == NULL)
625 trtmp = &map->header;
626 if (tmp->next != trtmp) {
627 printf("lookup: %d: %p->next=%p: %p\n",
628 i, tmp, tmp->next, trtmp);
629 goto error;
630 }
631 trtmp = rb_tree_find_node(&map->rb_tree, &tmp->start);
632 if (trtmp != tmp) {
633 printf("lookup: %d: %p - %p: %p\n", i, tmp, trtmp,
634 PARENT_ENTRY(map, tmp));
635 goto error;
636 }
637 }
638
639 return (0);
640 error:
641 return (-1);
642 }
643 #endif /* defined(DEBUG) || defined(DDB) */
644
645 /*
646 * vm_map_lock: acquire an exclusive (write) lock on a map.
647 *
648 * => The locking protocol provides for guaranteed upgrade from shared ->
649 * exclusive by whichever thread currently has the map marked busy.
650 * See "LOCKING PROTOCOL NOTES" in uvm_map.h. This is horrible; among
651 * other problems, it defeats any fairness guarantees provided by RW
652 * locks.
653 */
654
655 void
656 vm_map_lock(struct vm_map *map)
657 {
658
659 for (;;) {
660 rw_enter(&map->lock, RW_WRITER);
661 if (map->busy == NULL || map->busy == curlwp) {
662 break;
663 }
664 mutex_enter(&map->misc_lock);
665 rw_exit(&map->lock);
666 if (map->busy != NULL) {
667 cv_wait(&map->cv, &map->misc_lock);
668 }
669 mutex_exit(&map->misc_lock);
670 }
671 map->timestamp++;
672 }
673
674 /*
675 * vm_map_lock_try: try to lock a map, failing if it is already locked.
676 */
677
678 bool
679 vm_map_lock_try(struct vm_map *map)
680 {
681
682 if (!rw_tryenter(&map->lock, RW_WRITER)) {
683 return false;
684 }
685 if (map->busy != NULL) {
686 rw_exit(&map->lock);
687 return false;
688 }
689 map->timestamp++;
690 return true;
691 }
692
693 /*
694 * vm_map_unlock: release an exclusive lock on a map.
695 */
696
697 void
698 vm_map_unlock(struct vm_map *map)
699 {
700
701 KASSERT(rw_write_held(&map->lock));
702 KASSERT(map->busy == NULL || map->busy == curlwp);
703 rw_exit(&map->lock);
704 }
705
706 /*
707 * vm_map_unbusy: mark the map as unbusy, and wake any waiters that
708 * want an exclusive lock.
709 */
710
711 void
712 vm_map_unbusy(struct vm_map *map)
713 {
714
715 KASSERT(map->busy == curlwp);
716
717 /*
718 * Safe to clear 'busy' and 'waiters' with only a read lock held:
719 *
720 * o they can only be set with a write lock held
721 * o writers are blocked out with a read or write hold
722 * o at any time, only one thread owns the set of values
723 */
724 mutex_enter(&map->misc_lock);
725 map->busy = NULL;
726 cv_broadcast(&map->cv);
727 mutex_exit(&map->misc_lock);
728 }
729
730 /*
731 * vm_map_lock_read: acquire a shared (read) lock on a map.
732 */
733
734 void
735 vm_map_lock_read(struct vm_map *map)
736 {
737
738 rw_enter(&map->lock, RW_READER);
739 }
740
741 /*
742 * vm_map_unlock_read: release a shared lock on a map.
743 */
744
745 void
746 vm_map_unlock_read(struct vm_map *map)
747 {
748
749 rw_exit(&map->lock);
750 }
751
752 /*
753 * vm_map_busy: mark a map as busy.
754 *
755 * => the caller must hold the map write locked
756 */
757
758 void
759 vm_map_busy(struct vm_map *map)
760 {
761
762 KASSERT(rw_write_held(&map->lock));
763 KASSERT(map->busy == NULL);
764
765 map->busy = curlwp;
766 }
767
768 /*
769 * vm_map_locked_p: return true if the map is write locked.
770 *
771 * => only for debug purposes like KASSERTs.
772 * => should not be used to verify that a map is not locked.
773 */
774
775 bool
776 vm_map_locked_p(struct vm_map *map)
777 {
778
779 return rw_write_held(&map->lock);
780 }
781
782 /*
783 * uvm_mapent_alloc: allocate a map entry
784 */
785
786 static struct vm_map_entry *
787 uvm_mapent_alloc(struct vm_map *map, int flags)
788 {
789 struct vm_map_entry *me;
790 int pflags = (flags & UVM_FLAG_NOWAIT) ? PR_NOWAIT : PR_WAITOK;
791 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
792
793 me = pool_cache_get(&uvm_map_entry_cache, pflags);
794 if (__predict_false(me == NULL)) {
795 return NULL;
796 }
797 me->flags = 0;
798
799 UVMHIST_LOG(maphist, "<- new entry=%#jx [kentry=%jd]", (uintptr_t)me,
800 (map == kernel_map), 0, 0);
801 return me;
802 }
803
804 /*
805 * uvm_mapent_free: free map entry
806 */
807
808 static void
809 uvm_mapent_free(struct vm_map_entry *me)
810 {
811 UVMHIST_FUNC(__func__);
812 UVMHIST_CALLARGS(maphist,"<- freeing map entry=%#jx [flags=%#jx]",
813 (uintptr_t)me, me->flags, 0, 0);
814 pool_cache_put(&uvm_map_entry_cache, me);
815 }
816
817 /*
818 * uvm_mapent_copy: copy a map entry, preserving flags
819 */
820
821 static inline void
822 uvm_mapent_copy(struct vm_map_entry *src, struct vm_map_entry *dst)
823 {
824
825 memcpy(dst, src, sizeof(*dst));
826 dst->flags = 0;
827 }
828
829 #if defined(DEBUG)
830 static void
831 _uvm_mapent_check(const struct vm_map_entry *entry, int line)
832 {
833
834 if (entry->start >= entry->end) {
835 goto bad;
836 }
837 if (UVM_ET_ISOBJ(entry)) {
838 if (entry->object.uvm_obj == NULL) {
839 goto bad;
840 }
841 } else if (UVM_ET_ISSUBMAP(entry)) {
842 if (entry->object.sub_map == NULL) {
843 goto bad;
844 }
845 } else {
846 if (entry->object.uvm_obj != NULL ||
847 entry->object.sub_map != NULL) {
848 goto bad;
849 }
850 }
851 if (!UVM_ET_ISOBJ(entry)) {
852 if (entry->offset != 0) {
853 goto bad;
854 }
855 }
856
857 return;
858
859 bad:
860 panic("%s: bad entry %p, line %d", __func__, entry, line);
861 }
862 #endif /* defined(DEBUG) */
863
864 /*
865 * uvm_map_entry_unwire: unwire a map entry
866 *
867 * => map should be locked by caller
868 */
869
870 static inline void
871 uvm_map_entry_unwire(struct vm_map *map, struct vm_map_entry *entry)
872 {
873
874 entry->wired_count = 0;
875 uvm_fault_unwire_locked(map, entry->start, entry->end);
876 }
877
878
879 /*
880 * wrapper for calling amap_ref()
881 */
882 static inline void
883 uvm_map_reference_amap(struct vm_map_entry *entry, int flags)
884 {
885
886 amap_ref(entry->aref.ar_amap, entry->aref.ar_pageoff,
887 (entry->end - entry->start) >> PAGE_SHIFT, flags);
888 }
889
890
891 /*
892 * wrapper for calling amap_unref()
893 */
894 static inline void
895 uvm_map_unreference_amap(struct vm_map_entry *entry, int flags)
896 {
897
898 amap_unref(entry->aref.ar_amap, entry->aref.ar_pageoff,
899 (entry->end - entry->start) >> PAGE_SHIFT, flags);
900 }
901
902
903 /*
904 * uvm_map_init: init mapping system at boot time.
905 */
906
907 void
908 uvm_map_init(void)
909 {
910 /*
911 * first, init logging system.
912 */
913
914 UVMHIST_FUNC(__func__);
915 UVMHIST_LINK_STATIC(maphist);
916 UVMHIST_LINK_STATIC(pdhist);
917 UVMHIST_CALLED(maphist);
918 UVMHIST_LOG(maphist,"<starting uvm map system>", 0, 0, 0, 0);
919
920 /*
921 * initialize the global lock for kernel map entry.
922 */
923
924 mutex_init(&uvm_kentry_lock, MUTEX_DRIVER, IPL_VM);
925 }
926
927 /*
928 * uvm_map_init_caches: init mapping system caches.
929 */
930 void
931 uvm_map_init_caches(void)
932 {
933 /*
934 * initialize caches.
935 */
936
937 pool_cache_bootstrap(&uvm_map_entry_cache, sizeof(struct vm_map_entry),
938 coherency_unit, 0, PR_LARGECACHE, "vmmpepl", NULL, IPL_NONE, NULL,
939 NULL, NULL);
940 }
941
942 /*
943 * clippers
944 */
945
946 /*
947 * uvm_mapent_splitadj: adjust map entries for splitting, after uvm_mapent_copy.
948 */
949
950 static void
951 uvm_mapent_splitadj(struct vm_map_entry *entry1, struct vm_map_entry *entry2,
952 vaddr_t splitat)
953 {
954 vaddr_t adj;
955
956 KASSERT(entry1->start < splitat);
957 KASSERT(splitat < entry1->end);
958
959 adj = splitat - entry1->start;
960 entry1->end = entry2->start = splitat;
961
962 if (entry1->aref.ar_amap) {
963 amap_splitref(&entry1->aref, &entry2->aref, adj);
964 }
965 if (UVM_ET_ISSUBMAP(entry1)) {
966 /* ... unlikely to happen, but play it safe */
967 uvm_map_reference(entry1->object.sub_map);
968 } else if (UVM_ET_ISOBJ(entry1)) {
969 KASSERT(entry1->object.uvm_obj != NULL); /* suppress coverity */
970 entry2->offset += adj;
971 if (entry1->object.uvm_obj->pgops &&
972 entry1->object.uvm_obj->pgops->pgo_reference)
973 entry1->object.uvm_obj->pgops->pgo_reference(
974 entry1->object.uvm_obj);
975 }
976 }
977
978 /*
979 * uvm_map_clip_start: ensure that the entry begins at or after
980 * the starting address, if it doesn't we split the entry.
981 *
982 * => caller should use UVM_MAP_CLIP_START macro rather than calling
983 * this directly
984 * => map must be locked by caller
985 */
986
987 void
988 uvm_map_clip_start(struct vm_map *map, struct vm_map_entry *entry,
989 vaddr_t start)
990 {
991 struct vm_map_entry *new_entry;
992
993 /* uvm_map_simplify_entry(map, entry); */ /* XXX */
994
995 uvm_map_check(map, "clip_start entry");
996 uvm_mapent_check(entry);
997
998 /*
999 * Split off the front portion. note that we must insert the new
1000 * entry BEFORE this one, so that this entry has the specified
1001 * starting address.
1002 */
1003 new_entry = uvm_mapent_alloc(map, 0);
1004 uvm_mapent_copy(entry, new_entry); /* entry -> new_entry */
1005 uvm_mapent_splitadj(new_entry, entry, start);
1006 uvm_map_entry_link(map, entry->prev, new_entry);
1007
1008 uvm_map_check(map, "clip_start leave");
1009 }
1010
1011 /*
1012 * uvm_map_clip_end: ensure that the entry ends at or before
1013 * the ending address, if it does't we split the reference
1014 *
1015 * => caller should use UVM_MAP_CLIP_END macro rather than calling
1016 * this directly
1017 * => map must be locked by caller
1018 */
1019
1020 void
1021 uvm_map_clip_end(struct vm_map *map, struct vm_map_entry *entry, vaddr_t end)
1022 {
1023 struct vm_map_entry *new_entry;
1024
1025 uvm_map_check(map, "clip_end entry");
1026 uvm_mapent_check(entry);
1027
1028 /*
1029 * Create a new entry and insert it
1030 * AFTER the specified entry
1031 */
1032 new_entry = uvm_mapent_alloc(map, 0);
1033 uvm_mapent_copy(entry, new_entry); /* entry -> new_entry */
1034 uvm_mapent_splitadj(entry, new_entry, end);
1035 uvm_map_entry_link(map, entry, new_entry);
1036
1037 uvm_map_check(map, "clip_end leave");
1038 }
1039
1040 /*
1041 * M A P - m a i n e n t r y p o i n t
1042 */
1043 /*
1044 * uvm_map: establish a valid mapping in a map
1045 *
1046 * => assume startp is page aligned.
1047 * => assume size is a multiple of PAGE_SIZE.
1048 * => assume sys_mmap provides enough of a "hint" to have us skip
1049 * over text/data/bss area.
1050 * => map must be unlocked (we will lock it)
1051 * => <uobj,uoffset> value meanings (4 cases):
1052 * [1] <NULL,uoffset> == uoffset is a hint for PMAP_PREFER
1053 * [2] <NULL,UVM_UNKNOWN_OFFSET> == don't PMAP_PREFER
1054 * [3] <uobj,uoffset> == normal mapping
1055 * [4] <uobj,UVM_UNKNOWN_OFFSET> == uvm_map finds offset based on VA
1056 *
1057 * case [4] is for kernel mappings where we don't know the offset until
1058 * we've found a virtual address. note that kernel object offsets are
1059 * always relative to vm_map_min(kernel_map).
1060 *
1061 * => if `align' is non-zero, we align the virtual address to the specified
1062 * alignment.
1063 * this is provided as a mechanism for large pages.
1064 *
1065 * => XXXCDC: need way to map in external amap?
1066 */
1067
1068 int
1069 uvm_map(struct vm_map *map, vaddr_t *startp /* IN/OUT */, vsize_t size,
1070 struct uvm_object *uobj, voff_t uoffset, vsize_t align, uvm_flag_t flags)
1071 {
1072 struct uvm_map_args args;
1073 struct vm_map_entry *new_entry;
1074 int error;
1075
1076 KASSERT((size & PAGE_MASK) == 0);
1077 KASSERT((flags & UVM_FLAG_FIXED) == 0 || align == 0);
1078
1079 /*
1080 * for pager_map, allocate the new entry first to avoid sleeping
1081 * for memory while we have the map locked.
1082 */
1083
1084 new_entry = NULL;
1085 if (map == pager_map) {
1086 new_entry = uvm_mapent_alloc(map, (flags & UVM_FLAG_NOWAIT));
1087 if (__predict_false(new_entry == NULL))
1088 return ENOMEM;
1089 }
1090 if (map == pager_map)
1091 flags |= UVM_FLAG_NOMERGE;
1092
1093 error = uvm_map_prepare(map, *startp, size, uobj, uoffset, align,
1094 flags, &args);
1095 if (!error) {
1096 error = uvm_map_enter(map, &args, new_entry);
1097 *startp = args.uma_start;
1098 } else if (new_entry) {
1099 uvm_mapent_free(new_entry);
1100 }
1101
1102 #if defined(DEBUG)
1103 if (!error && VM_MAP_IS_KERNEL(map) && (flags & UVM_FLAG_NOWAIT) == 0) {
1104 uvm_km_check_empty(map, *startp, *startp + size);
1105 }
1106 #endif /* defined(DEBUG) */
1107
1108 return error;
1109 }
1110
1111 /*
1112 * uvm_map_prepare:
1113 *
1114 * called with map unlocked.
1115 * on success, returns the map locked.
1116 */
1117
1118 int
1119 uvm_map_prepare(struct vm_map *map, vaddr_t start, vsize_t size,
1120 struct uvm_object *uobj, voff_t uoffset, vsize_t align, uvm_flag_t flags,
1121 struct uvm_map_args *args)
1122 {
1123 struct vm_map_entry *prev_entry;
1124 vm_prot_t prot = UVM_PROTECTION(flags);
1125 vm_prot_t maxprot = UVM_MAXPROTECTION(flags);
1126
1127 UVMHIST_FUNC(__func__);
1128 UVMHIST_CALLARGS(maphist, "(map=%#jx, start=%#jx, size=%jx, flags=%#jx)",
1129 (uintptr_t)map, start, size, flags);
1130 UVMHIST_LOG(maphist, " uobj/offset %#jx/%jd", (uintptr_t)uobj,
1131 uoffset,0,0);
1132
1133 /*
1134 * detect a popular device driver bug.
1135 */
1136
1137 KASSERT(doing_shutdown || curlwp != NULL);
1138
1139 /*
1140 * zero-sized mapping doesn't make any sense.
1141 */
1142 KASSERT(size > 0);
1143
1144 KASSERT((~flags & (UVM_FLAG_NOWAIT | UVM_FLAG_WAITVA)) != 0);
1145
1146 uvm_map_check(map, "map entry");
1147
1148 /*
1149 * check sanity of protection code
1150 */
1151
1152 if ((prot & maxprot) != prot) {
1153 UVMHIST_LOG(maphist, "<- prot. failure: prot=%#jx, max=%#jx",
1154 prot, maxprot,0,0);
1155 return EACCES;
1156 }
1157
1158 /*
1159 * figure out where to put new VM range
1160 */
1161 retry:
1162 if (vm_map_lock_try(map) == false) {
1163 if ((flags & UVM_FLAG_TRYLOCK) != 0) {
1164 return EAGAIN;
1165 }
1166 vm_map_lock(map); /* could sleep here */
1167 }
1168 if (flags & UVM_FLAG_UNMAP) {
1169 KASSERT(flags & UVM_FLAG_FIXED);
1170 KASSERT((flags & UVM_FLAG_NOWAIT) == 0);
1171
1172 /*
1173 * Set prev_entry to what it will need to be after any existing
1174 * entries are removed later in uvm_map_enter().
1175 */
1176
1177 if (uvm_map_lookup_entry(map, start, &prev_entry)) {
1178 if (start == prev_entry->start)
1179 prev_entry = prev_entry->prev;
1180 else
1181 UVM_MAP_CLIP_END(map, prev_entry, start);
1182 SAVE_HINT(map, map->hint, prev_entry);
1183 }
1184 } else {
1185 prev_entry = uvm_map_findspace(map, start, size, &start,
1186 uobj, uoffset, align, flags);
1187 }
1188 if (prev_entry == NULL) {
1189 unsigned int timestamp;
1190
1191 timestamp = map->timestamp;
1192 UVMHIST_LOG(maphist,"waiting va timestamp=%#jx",
1193 timestamp,0,0,0);
1194 map->flags |= VM_MAP_WANTVA;
1195 vm_map_unlock(map);
1196
1197 /*
1198 * try to reclaim kva and wait until someone does unmap.
1199 * fragile locking here, so we awaken every second to
1200 * recheck the condition.
1201 */
1202
1203 mutex_enter(&map->misc_lock);
1204 while ((map->flags & VM_MAP_WANTVA) != 0 &&
1205 map->timestamp == timestamp) {
1206 if ((flags & UVM_FLAG_WAITVA) == 0) {
1207 mutex_exit(&map->misc_lock);
1208 UVMHIST_LOG(maphist,
1209 "<- uvm_map_findspace failed!", 0,0,0,0);
1210 return ENOMEM;
1211 } else {
1212 cv_timedwait(&map->cv, &map->misc_lock, hz);
1213 }
1214 }
1215 mutex_exit(&map->misc_lock);
1216 goto retry;
1217 }
1218
1219 #ifdef PMAP_GROWKERNEL
1220 /*
1221 * If the kernel pmap can't map the requested space,
1222 * then allocate more resources for it.
1223 */
1224 if (map == kernel_map && uvm_maxkaddr < (start + size))
1225 uvm_maxkaddr = pmap_growkernel(start + size);
1226 #endif
1227
1228 UVMMAP_EVCNT_INCR(map_call);
1229
1230 /*
1231 * if uobj is null, then uoffset is either a VAC hint for PMAP_PREFER
1232 * [typically from uvm_map_reserve] or it is UVM_UNKNOWN_OFFSET. in
1233 * either case we want to zero it before storing it in the map entry
1234 * (because it looks strange and confusing when debugging...)
1235 *
1236 * if uobj is not null
1237 * if uoffset is not UVM_UNKNOWN_OFFSET then we have a normal mapping
1238 * and we do not need to change uoffset.
1239 * if uoffset is UVM_UNKNOWN_OFFSET then we need to find the offset
1240 * now (based on the starting address of the map). this case is
1241 * for kernel object mappings where we don't know the offset until
1242 * the virtual address is found (with uvm_map_findspace). the
1243 * offset is the distance we are from the start of the map.
1244 */
1245
1246 if (uobj == NULL) {
1247 uoffset = 0;
1248 } else {
1249 if (uoffset == UVM_UNKNOWN_OFFSET) {
1250 KASSERT(UVM_OBJ_IS_KERN_OBJECT(uobj));
1251 uoffset = start - vm_map_min(kernel_map);
1252 }
1253 }
1254
1255 args->uma_flags = flags;
1256 args->uma_prev = prev_entry;
1257 args->uma_start = start;
1258 args->uma_size = size;
1259 args->uma_uobj = uobj;
1260 args->uma_uoffset = uoffset;
1261
1262 UVMHIST_LOG(maphist, "<- done!", 0,0,0,0);
1263 return 0;
1264 }
1265
1266 /*
1267 * uvm_map_enter:
1268 *
1269 * called with map locked.
1270 * unlock the map before returning.
1271 */
1272
1273 int
1274 uvm_map_enter(struct vm_map *map, const struct uvm_map_args *args,
1275 struct vm_map_entry *new_entry)
1276 {
1277 struct vm_map_entry *prev_entry = args->uma_prev;
1278 struct vm_map_entry *dead = NULL, *dead_entries = NULL;
1279
1280 const uvm_flag_t flags = args->uma_flags;
1281 const vm_prot_t prot = UVM_PROTECTION(flags);
1282 const vm_prot_t maxprot = UVM_MAXPROTECTION(flags);
1283 const vm_inherit_t inherit = UVM_INHERIT(flags);
1284 const int amapwaitflag = (flags & UVM_FLAG_NOWAIT) ?
1285 AMAP_EXTEND_NOWAIT : 0;
1286 const int advice = UVM_ADVICE(flags);
1287
1288 vaddr_t start = args->uma_start;
1289 vsize_t size = args->uma_size;
1290 struct uvm_object *uobj = args->uma_uobj;
1291 voff_t uoffset = args->uma_uoffset;
1292
1293 const int kmap = (vm_map_pmap(map) == pmap_kernel());
1294 int merged = 0;
1295 int error;
1296 int newetype;
1297
1298 UVMHIST_FUNC(__func__);
1299 UVMHIST_CALLARGS(maphist, "(map=%#jx, start=%#jx, size=%ju, flags=%#jx)",
1300 (uintptr_t)map, start, size, flags);
1301 UVMHIST_LOG(maphist, " uobj/offset %#jx/%jd", (uintptr_t)uobj,
1302 uoffset,0,0);
1303
1304 KASSERT(map->hint == prev_entry); /* bimerge case assumes this */
1305 KASSERT(vm_map_locked_p(map));
1306 KASSERT((flags & (UVM_FLAG_NOWAIT | UVM_FLAG_UNMAP)) !=
1307 (UVM_FLAG_NOWAIT | UVM_FLAG_UNMAP));
1308
1309 if (uobj)
1310 newetype = UVM_ET_OBJ;
1311 else
1312 newetype = 0;
1313
1314 if (flags & UVM_FLAG_COPYONW) {
1315 newetype |= UVM_ET_COPYONWRITE;
1316 if ((flags & UVM_FLAG_OVERLAY) == 0)
1317 newetype |= UVM_ET_NEEDSCOPY;
1318 }
1319
1320 /*
1321 * For mappings with unmap, remove any old entries now. Adding the new
1322 * entry cannot fail because that can only happen if UVM_FLAG_NOWAIT
1323 * is set, and we do not support nowait and unmap together.
1324 */
1325
1326 if (flags & UVM_FLAG_UNMAP) {
1327 KASSERT(flags & UVM_FLAG_FIXED);
1328 uvm_unmap_remove(map, start, start + size, &dead_entries, 0);
1329 #ifdef DEBUG
1330 struct vm_map_entry *tmp_entry __diagused;
1331 bool rv __diagused;
1332
1333 rv = uvm_map_lookup_entry(map, start, &tmp_entry);
1334 KASSERT(!rv);
1335 KASSERTMSG(prev_entry == tmp_entry,
1336 "args %p prev_entry %p tmp_entry %p",
1337 args, prev_entry, tmp_entry);
1338 #endif
1339 SAVE_HINT(map, map->hint, prev_entry);
1340 }
1341
1342 /*
1343 * try and insert in map by extending previous entry, if possible.
1344 * XXX: we don't try and pull back the next entry. might be useful
1345 * for a stack, but we are currently allocating our stack in advance.
1346 */
1347
1348 if (flags & UVM_FLAG_NOMERGE)
1349 goto nomerge;
1350
1351 if (prev_entry->end == start &&
1352 prev_entry != &map->header &&
1353 UVM_ET_ISCOMPATIBLE(prev_entry, newetype, uobj, 0,
1354 prot, maxprot, inherit, advice, 0)) {
1355
1356 if (uobj && prev_entry->offset +
1357 (prev_entry->end - prev_entry->start) != uoffset)
1358 goto forwardmerge;
1359
1360 /*
1361 * can't extend a shared amap. note: no need to lock amap to
1362 * look at refs since we don't care about its exact value.
1363 * if it is one (i.e. we have only reference) it will stay there
1364 */
1365
1366 if (prev_entry->aref.ar_amap &&
1367 amap_refs(prev_entry->aref.ar_amap) != 1) {
1368 goto forwardmerge;
1369 }
1370
1371 if (prev_entry->aref.ar_amap) {
1372 error = amap_extend(prev_entry, size,
1373 amapwaitflag | AMAP_EXTEND_FORWARDS);
1374 if (error)
1375 goto nomerge;
1376 }
1377
1378 if (kmap) {
1379 UVMMAP_EVCNT_INCR(kbackmerge);
1380 } else {
1381 UVMMAP_EVCNT_INCR(ubackmerge);
1382 }
1383 UVMHIST_LOG(maphist," starting back merge", 0, 0, 0, 0);
1384
1385 /*
1386 * drop our reference to uobj since we are extending a reference
1387 * that we already have (the ref count can not drop to zero).
1388 */
1389
1390 if (uobj && uobj->pgops->pgo_detach)
1391 uobj->pgops->pgo_detach(uobj);
1392
1393 /*
1394 * Now that we've merged the entries, note that we've grown
1395 * and our gap has shrunk. Then fix the tree.
1396 */
1397 prev_entry->end += size;
1398 prev_entry->gap -= size;
1399 uvm_rb_fixup(map, prev_entry);
1400
1401 uvm_map_check(map, "map backmerged");
1402
1403 UVMHIST_LOG(maphist,"<- done (via backmerge)!", 0, 0, 0, 0);
1404 merged++;
1405 }
1406
1407 forwardmerge:
1408 if (prev_entry->next->start == (start + size) &&
1409 prev_entry->next != &map->header &&
1410 UVM_ET_ISCOMPATIBLE(prev_entry->next, newetype, uobj, 0,
1411 prot, maxprot, inherit, advice, 0)) {
1412
1413 if (uobj && prev_entry->next->offset != uoffset + size)
1414 goto nomerge;
1415
1416 /*
1417 * can't extend a shared amap. note: no need to lock amap to
1418 * look at refs since we don't care about its exact value.
1419 * if it is one (i.e. we have only reference) it will stay there.
1420 *
1421 * note that we also can't merge two amaps, so if we
1422 * merged with the previous entry which has an amap,
1423 * and the next entry also has an amap, we give up.
1424 *
1425 * Interesting cases:
1426 * amap, new, amap -> give up second merge (single fwd extend)
1427 * amap, new, none -> double forward extend (extend again here)
1428 * none, new, amap -> double backward extend (done here)
1429 * uobj, new, amap -> single backward extend (done here)
1430 *
1431 * XXX should we attempt to deal with someone refilling
1432 * the deallocated region between two entries that are
1433 * backed by the same amap (ie, arefs is 2, "prev" and
1434 * "next" refer to it, and adding this allocation will
1435 * close the hole, thus restoring arefs to 1 and
1436 * deallocating the "next" vm_map_entry)? -- @@@
1437 */
1438
1439 if (prev_entry->next->aref.ar_amap &&
1440 (amap_refs(prev_entry->next->aref.ar_amap) != 1 ||
1441 (merged && prev_entry->aref.ar_amap))) {
1442 goto nomerge;
1443 }
1444
1445 if (merged) {
1446 /*
1447 * Try to extend the amap of the previous entry to
1448 * cover the next entry as well. If it doesn't work
1449 * just skip on, don't actually give up, since we've
1450 * already completed the back merge.
1451 */
1452 if (prev_entry->aref.ar_amap) {
1453 if (amap_extend(prev_entry,
1454 prev_entry->next->end -
1455 prev_entry->next->start,
1456 amapwaitflag | AMAP_EXTEND_FORWARDS))
1457 goto nomerge;
1458 }
1459
1460 /*
1461 * Try to extend the amap of the *next* entry
1462 * back to cover the new allocation *and* the
1463 * previous entry as well (the previous merge
1464 * didn't have an amap already otherwise we
1465 * wouldn't be checking here for an amap). If
1466 * it doesn't work just skip on, again, don't
1467 * actually give up, since we've already
1468 * completed the back merge.
1469 */
1470 else if (prev_entry->next->aref.ar_amap) {
1471 if (amap_extend(prev_entry->next,
1472 prev_entry->end -
1473 prev_entry->start,
1474 amapwaitflag | AMAP_EXTEND_BACKWARDS))
1475 goto nomerge;
1476 }
1477 } else {
1478 /*
1479 * Pull the next entry's amap backwards to cover this
1480 * new allocation.
1481 */
1482 if (prev_entry->next->aref.ar_amap) {
1483 error = amap_extend(prev_entry->next, size,
1484 amapwaitflag | AMAP_EXTEND_BACKWARDS);
1485 if (error)
1486 goto nomerge;
1487 }
1488 }
1489
1490 if (merged) {
1491 if (kmap) {
1492 UVMMAP_EVCNT_DECR(kbackmerge);
1493 UVMMAP_EVCNT_INCR(kbimerge);
1494 } else {
1495 UVMMAP_EVCNT_DECR(ubackmerge);
1496 UVMMAP_EVCNT_INCR(ubimerge);
1497 }
1498 } else {
1499 if (kmap) {
1500 UVMMAP_EVCNT_INCR(kforwmerge);
1501 } else {
1502 UVMMAP_EVCNT_INCR(uforwmerge);
1503 }
1504 }
1505 UVMHIST_LOG(maphist," starting forward merge", 0, 0, 0, 0);
1506
1507 /*
1508 * drop our reference to uobj since we are extending a reference
1509 * that we already have (the ref count can not drop to zero).
1510 */
1511 if (uobj && uobj->pgops->pgo_detach)
1512 uobj->pgops->pgo_detach(uobj);
1513
1514 if (merged) {
1515 dead = prev_entry->next;
1516 prev_entry->end = dead->end;
1517 uvm_map_entry_unlink(map, dead);
1518 if (dead->aref.ar_amap != NULL) {
1519 prev_entry->aref = dead->aref;
1520 dead->aref.ar_amap = NULL;
1521 }
1522 } else {
1523 prev_entry->next->start -= size;
1524 if (prev_entry != &map->header) {
1525 prev_entry->gap -= size;
1526 KASSERT(prev_entry->gap == uvm_rb_gap(prev_entry));
1527 uvm_rb_fixup(map, prev_entry);
1528 }
1529 if (uobj)
1530 prev_entry->next->offset = uoffset;
1531 }
1532
1533 uvm_map_check(map, "map forwardmerged");
1534
1535 UVMHIST_LOG(maphist,"<- done forwardmerge", 0, 0, 0, 0);
1536 merged++;
1537 }
1538
1539 nomerge:
1540 if (!merged) {
1541 UVMHIST_LOG(maphist," allocating new map entry", 0, 0, 0, 0);
1542 if (kmap) {
1543 UVMMAP_EVCNT_INCR(knomerge);
1544 } else {
1545 UVMMAP_EVCNT_INCR(unomerge);
1546 }
1547
1548 /*
1549 * allocate new entry and link it in.
1550 */
1551
1552 if (new_entry == NULL) {
1553 new_entry = uvm_mapent_alloc(map,
1554 (flags & UVM_FLAG_NOWAIT));
1555 if (__predict_false(new_entry == NULL)) {
1556 error = ENOMEM;
1557 goto done;
1558 }
1559 }
1560 new_entry->start = start;
1561 new_entry->end = new_entry->start + size;
1562 new_entry->object.uvm_obj = uobj;
1563 new_entry->offset = uoffset;
1564
1565 new_entry->etype = newetype;
1566
1567 if (flags & UVM_FLAG_NOMERGE) {
1568 new_entry->flags |= UVM_MAP_NOMERGE;
1569 }
1570
1571 new_entry->protection = prot;
1572 new_entry->max_protection = maxprot;
1573 new_entry->inheritance = inherit;
1574 new_entry->wired_count = 0;
1575 new_entry->advice = advice;
1576 if (flags & UVM_FLAG_OVERLAY) {
1577
1578 /*
1579 * to_add: for BSS we overallocate a little since we
1580 * are likely to extend
1581 */
1582
1583 vaddr_t to_add = (flags & UVM_FLAG_AMAPPAD) ?
1584 UVM_AMAP_CHUNK << PAGE_SHIFT : 0;
1585 struct vm_amap *amap = amap_alloc(size, to_add,
1586 (flags & UVM_FLAG_NOWAIT));
1587 if (__predict_false(amap == NULL)) {
1588 error = ENOMEM;
1589 goto done;
1590 }
1591 new_entry->aref.ar_pageoff = 0;
1592 new_entry->aref.ar_amap = amap;
1593 } else {
1594 new_entry->aref.ar_pageoff = 0;
1595 new_entry->aref.ar_amap = NULL;
1596 }
1597 uvm_map_entry_link(map, prev_entry, new_entry);
1598
1599 /*
1600 * Update the free space hint
1601 */
1602
1603 if ((map->first_free == prev_entry) &&
1604 (prev_entry->end >= new_entry->start))
1605 map->first_free = new_entry;
1606
1607 new_entry = NULL;
1608 }
1609
1610 map->size += size;
1611
1612 UVMHIST_LOG(maphist,"<- done!", 0, 0, 0, 0);
1613
1614 error = 0;
1615
1616 done:
1617 vm_map_unlock(map);
1618
1619 if (new_entry) {
1620 uvm_mapent_free(new_entry);
1621 }
1622 if (dead) {
1623 KDASSERT(merged);
1624 uvm_mapent_free(dead);
1625 }
1626 if (dead_entries)
1627 uvm_unmap_detach(dead_entries, 0);
1628
1629 return error;
1630 }
1631
1632 /*
1633 * uvm_map_lookup_entry_bytree: lookup an entry in tree
1634 *
1635 * => map must at least be read-locked by caller.
1636 *
1637 * => If address lies in an entry, set *entry to it and return true;
1638 * then (*entry)->start <= address < (*entry)->end.
1639
1640 * => If address is below all entries in map, return false and set
1641 * *entry to &map->header.
1642 *
1643 * => Otherwise, return false and set *entry to the highest entry below
1644 * address, so (*entry)->end <= address, and if (*entry)->next is
1645 * not &map->header, address < (*entry)->next->start.
1646 */
1647
1648 static inline bool
1649 uvm_map_lookup_entry_bytree(struct vm_map *map, vaddr_t address,
1650 struct vm_map_entry **entry /* OUT */)
1651 {
1652 struct vm_map_entry *prev = &map->header;
1653 struct vm_map_entry *cur = ROOT_ENTRY(map);
1654
1655 KASSERT(rw_lock_held(&map->lock));
1656
1657 while (cur) {
1658 KASSERT(prev == &map->header || prev->end <= address);
1659 KASSERT(prev == &map->header || prev->end <= cur->start);
1660 UVMMAP_EVCNT_INCR(mlk_treeloop);
1661 if (address >= cur->start) {
1662 if (address < cur->end) {
1663 *entry = cur;
1664 return true;
1665 }
1666 prev = cur;
1667 KASSERT(prev->end <= address);
1668 cur = RIGHT_ENTRY(cur);
1669 KASSERT(cur == NULL || prev->end <= cur->start);
1670 } else
1671 cur = LEFT_ENTRY(cur);
1672 }
1673 KASSERT(prev == &map->header || prev->end <= address);
1674 KASSERT(prev->next == &map->header || address < prev->next->start);
1675 *entry = prev;
1676 return false;
1677 }
1678
1679 /*
1680 * uvm_map_lookup_entry: find map entry at or before an address
1681 *
1682 * => map must at least be read-locked by caller.
1683 *
1684 * => If address lies in an entry, set *entry to it and return true;
1685 * then (*entry)->start <= address < (*entry)->end.
1686
1687 * => If address is below all entries in map, return false and set
1688 * *entry to &map->header.
1689 *
1690 * => Otherwise, return false and set *entry to the highest entry below
1691 * address, so (*entry)->end <= address, and if (*entry)->next is
1692 * not &map->header, address < (*entry)->next->start.
1693 */
1694
1695 bool
1696 uvm_map_lookup_entry(struct vm_map *map, vaddr_t address,
1697 struct vm_map_entry **entry /* OUT */)
1698 {
1699 struct vm_map_entry *cur;
1700 UVMHIST_FUNC(__func__);
1701 UVMHIST_CALLARGS(maphist,"(map=%#jx,addr=%#jx,ent=%#jx)",
1702 (uintptr_t)map, address, (uintptr_t)entry, 0);
1703
1704 KDASSERT(rw_lock_held(&map->lock));
1705
1706 /*
1707 * make a quick check to see if we are already looking at
1708 * the entry we want (which is usually the case). note also
1709 * that we don't need to save the hint here... it is the
1710 * same hint (unless we are at the header, in which case the
1711 * hint didn't buy us anything anyway).
1712 */
1713
1714 cur = map->hint;
1715 UVMMAP_EVCNT_INCR(mlk_call);
1716 if (cur != &map->header &&
1717 address >= cur->start && cur->end > address) {
1718 UVMMAP_EVCNT_INCR(mlk_hint);
1719 *entry = cur;
1720 UVMHIST_LOG(maphist,"<- got it via hint (%#jx)",
1721 (uintptr_t)cur, 0, 0, 0);
1722 uvm_mapent_check(*entry);
1723 return (true);
1724 }
1725 uvm_map_check(map, __func__);
1726
1727 /*
1728 * lookup in the tree.
1729 */
1730
1731 UVMMAP_EVCNT_INCR(mlk_tree);
1732 if (__predict_true(uvm_map_lookup_entry_bytree(map, address, entry))) {
1733 SAVE_HINT(map, map->hint, *entry);
1734 UVMHIST_LOG(maphist,"<- search got it (%#jx)",
1735 (uintptr_t)cur, 0, 0, 0);
1736 KDASSERT((*entry)->start <= address);
1737 KDASSERT(address < (*entry)->end);
1738 uvm_mapent_check(*entry);
1739 return (true);
1740 }
1741
1742 SAVE_HINT(map, map->hint, *entry);
1743 UVMHIST_LOG(maphist,"<- failed!",0,0,0,0);
1744 KDASSERT((*entry) == &map->header || (*entry)->end <= address);
1745 KDASSERT((*entry)->next == &map->header ||
1746 address < (*entry)->next->start);
1747 return (false);
1748 }
1749
1750 /*
1751 * See if the range between start and start + length fits in the gap
1752 * entry->next->start and entry->end. Returns 1 if fits, 0 if doesn't
1753 * fit, and -1 address wraps around.
1754 */
1755 static int
1756 uvm_map_space_avail(vaddr_t *start, vsize_t length, voff_t uoffset,
1757 vsize_t align, int flags, int topdown, struct vm_map_entry *entry)
1758 {
1759 vaddr_t orig_start = *start;
1760 vaddr_t end;
1761
1762 #define INVARIANTS() \
1763 KASSERTMSG((topdown \
1764 ? *start <= orig_start \
1765 : *start >= orig_start), \
1766 "[%s] *start=%"PRIxVADDR" orig_start=%"PRIxVADDR \
1767 " length=%"PRIxVSIZE" uoffset=%#llx align=%"PRIxVSIZE \
1768 " flags=%x entry@%p=[%"PRIxVADDR",%"PRIxVADDR")" \
1769 " ncolors=%d colormask=%x", \
1770 topdown ? "topdown" : "bottomup", *start, orig_start, \
1771 length, (unsigned long long)uoffset, align, \
1772 flags, entry, entry->start, entry->end, \
1773 uvmexp.ncolors, uvmexp.colormask)
1774
1775 INVARIANTS();
1776
1777 #ifdef PMAP_PREFER
1778 /*
1779 * push start address forward as needed to avoid VAC alias problems.
1780 * we only do this if a valid offset is specified.
1781 */
1782
1783 if (uoffset != UVM_UNKNOWN_OFFSET) {
1784 PMAP_PREFER(uoffset, start, length, topdown);
1785 INVARIANTS();
1786 }
1787 #endif
1788 if ((flags & UVM_FLAG_COLORMATCH) != 0) {
1789 KASSERT(align < uvmexp.ncolors);
1790 if (uvmexp.ncolors > 1) {
1791 const u_int colormask = uvmexp.colormask;
1792 const u_int colorsize = colormask + 1;
1793 vaddr_t hint = atop(*start);
1794 const u_int color = hint & colormask;
1795 if (color != align) {
1796 hint -= color; /* adjust to color boundary */
1797 KASSERT((hint & colormask) == 0);
1798 if (topdown) {
1799 if (align > color)
1800 hint -= colorsize;
1801 } else {
1802 if (align < color)
1803 hint += colorsize;
1804 }
1805 *start = ptoa(hint + align); /* adjust to color */
1806 INVARIANTS();
1807 }
1808 }
1809 } else {
1810 KASSERT(powerof2(align));
1811 uvm_map_align_va(start, align, topdown);
1812 INVARIANTS();
1813 /*
1814 * XXX Should we PMAP_PREFER() here again?
1815 * eh...i think we're okay
1816 */
1817 }
1818
1819 /*
1820 * Find the end of the proposed new region. Be sure we didn't
1821 * wrap around the address; if so, we lose. Otherwise, if the
1822 * proposed new region fits before the next entry, we win.
1823 *
1824 * XXX Should this use vm_map_max(map) as the max?
1825 */
1826
1827 if (length > __type_max(vaddr_t) - *start)
1828 return (-1);
1829 end = *start + length;
1830
1831 if (entry->next->start >= end && *start >= entry->end)
1832 return (1);
1833
1834 return (0);
1835
1836 #undef INVARIANTS
1837 }
1838
1839 static void
1840 uvm_findspace_invariants(struct vm_map *map, vaddr_t orig_hint, vaddr_t length,
1841 struct uvm_object *uobj, voff_t uoffset, vsize_t align, int flags,
1842 vaddr_t hint, struct vm_map_entry *entry, int line)
1843 {
1844 const int topdown = map->flags & VM_MAP_TOPDOWN;
1845 const int hint_location_ok =
1846 topdown ? hint <= orig_hint
1847 : hint >= orig_hint;
1848
1849 #if !(defined(__sh3__) && defined(DIAGNOSTIC)) /* XXXRO: kern/51254 */
1850 #define UVM_FINDSPACE_KASSERTMSG KASSERTMSG
1851
1852 #else /* sh3 && DIAGNOSTIC */
1853 /* like KASSERTMSG but make it not fatal */
1854 #define UVM_FINDSPACE_KASSERTMSG(e, msg, ...) \
1855 (__predict_true((e)) ? (void)0 : \
1856 printf(__KASSERTSTR msg "\n", \
1857 "weak diagnostic ", #e, \
1858 __FILE__, __LINE__, ## __VA_ARGS__))
1859 #endif
1860
1861 UVM_FINDSPACE_KASSERTMSG(hint_location_ok,
1862 "%s map=%p hint=%#" PRIxVADDR " %s orig_hint=%#" PRIxVADDR
1863 " length=%#" PRIxVSIZE " uobj=%p uoffset=%#llx align=%" PRIxVSIZE
1864 " flags=%#x entry=%p (uvm_map_findspace line %d)",
1865 topdown ? "topdown" : "bottomup",
1866 map, hint, topdown ? ">" : "<", orig_hint,
1867 length, uobj, (unsigned long long)uoffset, align,
1868 flags, entry, line);
1869 }
1870
1871 /*
1872 * uvm_map_findspace: find "length" sized space in "map".
1873 *
1874 * => "hint" is a hint about where we want it, unless UVM_FLAG_FIXED is
1875 * set in "flags" (in which case we insist on using "hint").
1876 * => "result" is VA returned
1877 * => uobj/uoffset are to be used to handle VAC alignment, if required
1878 * => if "align" is non-zero, we attempt to align to that value.
1879 * => caller must at least have read-locked map
1880 * => returns NULL on failure, or pointer to prev. map entry if success
1881 * => note this is a cross between the old vm_map_findspace and vm_map_find
1882 */
1883
1884 struct vm_map_entry *
1885 uvm_map_findspace(struct vm_map *map, vaddr_t hint, vsize_t length,
1886 vaddr_t *result /* OUT */, struct uvm_object *uobj, voff_t uoffset,
1887 vsize_t align, int flags)
1888 {
1889 #define INVARIANTS() \
1890 uvm_findspace_invariants(map, orig_hint, length, uobj, uoffset, align,\
1891 flags, hint, entry, __LINE__)
1892 struct vm_map_entry *entry = NULL;
1893 struct vm_map_entry *child, *prev, *tmp;
1894 vaddr_t orig_hint __diagused;
1895 const int topdown = map->flags & VM_MAP_TOPDOWN;
1896 int avail;
1897 UVMHIST_FUNC(__func__);
1898 UVMHIST_CALLARGS(maphist, "(map=%#jx, hint=%#jx, len=%ju, flags=%#jx...",
1899 (uintptr_t)map, hint, length, flags);
1900 UVMHIST_LOG(maphist, " uobj=%#jx, uoffset=%#jx, align=%#jx)",
1901 (uintptr_t)uobj, uoffset, align, 0);
1902
1903 KASSERT((flags & UVM_FLAG_COLORMATCH) != 0 || powerof2(align));
1904 KASSERT((flags & UVM_FLAG_COLORMATCH) == 0 || align < uvmexp.ncolors);
1905 KASSERT((flags & UVM_FLAG_FIXED) == 0 || align == 0);
1906
1907 uvm_map_check(map, "map_findspace entry");
1908
1909 /*
1910 * Clamp the hint to the VM map's min/max address, and remmeber
1911 * the clamped original hint. Remember the original hint,
1912 * clamped to the min/max address. If we are aligning, then we
1913 * may have to try again with no alignment constraint if we
1914 * fail the first time.
1915 *
1916 * We use the original hint to verify later that the search has
1917 * been monotonic -- that is, nonincreasing or nondecreasing,
1918 * according to topdown or !topdown respectively. But the
1919 * clamping is not monotonic.
1920 */
1921 if (hint < vm_map_min(map)) { /* check ranges ... */
1922 if (flags & UVM_FLAG_FIXED) {
1923 UVMHIST_LOG(maphist,"<- VA below map range",0,0,0,0);
1924 return (NULL);
1925 }
1926 hint = vm_map_min(map);
1927 }
1928 if (hint > vm_map_max(map)) {
1929 UVMHIST_LOG(maphist,"<- VA %#jx > range [%#jx->%#jx]",
1930 hint, vm_map_min(map), vm_map_max(map), 0);
1931 return (NULL);
1932 }
1933 orig_hint = hint;
1934 INVARIANTS();
1935
1936 UVMHIST_LOG(maphist,"<- VA %#jx vs range [%#jx->%#jx]",
1937 hint, vm_map_min(map), vm_map_max(map), 0);
1938
1939 /*
1940 * hint may not be aligned properly; we need round up or down it
1941 * before proceeding further.
1942 */
1943 if ((flags & UVM_FLAG_COLORMATCH) == 0) {
1944 uvm_map_align_va(&hint, align, topdown);
1945 INVARIANTS();
1946 }
1947
1948 UVMHIST_LOG(maphist,"<- VA %#jx vs range [%#jx->%#jx]",
1949 hint, vm_map_min(map), vm_map_max(map), 0);
1950 /*
1951 * Look for the first possible address; if there's already
1952 * something at this address, we have to start after it.
1953 */
1954
1955 /*
1956 * @@@: there are four, no, eight cases to consider.
1957 *
1958 * 0: found, fixed, bottom up -> fail
1959 * 1: found, fixed, top down -> fail
1960 * 2: found, not fixed, bottom up -> start after entry->end,
1961 * loop up
1962 * 3: found, not fixed, top down -> start before entry->start,
1963 * loop down
1964 * 4: not found, fixed, bottom up -> check entry->next->start, fail
1965 * 5: not found, fixed, top down -> check entry->next->start, fail
1966 * 6: not found, not fixed, bottom up -> check entry->next->start,
1967 * loop up
1968 * 7: not found, not fixed, top down -> check entry->next->start,
1969 * loop down
1970 *
1971 * as you can see, it reduces to roughly five cases, and that
1972 * adding top down mapping only adds one unique case (without
1973 * it, there would be four cases).
1974 */
1975
1976 if ((flags & UVM_FLAG_FIXED) == 0 &&
1977 hint == (topdown ? vm_map_max(map) : vm_map_min(map))) {
1978 /*
1979 * The uvm_map_findspace algorithm is monotonic -- for
1980 * topdown VM it starts with a high hint and returns a
1981 * lower free address; for !topdown VM it starts with a
1982 * low hint and returns a higher free address. As an
1983 * optimization, start with the first (highest for
1984 * topdown, lowest for !topdown) free address.
1985 *
1986 * XXX This `optimization' probably doesn't actually do
1987 * much in practice unless userland explicitly passes
1988 * the VM map's minimum or maximum address, which
1989 * varies from machine to machine (VM_MAX/MIN_ADDRESS,
1990 * e.g. 0x7fbfdfeff000 on amd64 but 0xfffffffff000 on
1991 * aarch64) and may vary according to other factors
1992 * like sysctl vm.user_va0_disable. In particular, if
1993 * the user specifies 0 as a hint to mmap, then mmap
1994 * will choose a default address which is usually _not_
1995 * VM_MAX/MIN_ADDRESS but something else instead like
1996 * VM_MAX_ADDRESS - stack size - guard page overhead,
1997 * in which case this branch is never hit.
1998 *
1999 * In fact, this branch appears to have been broken for
2000 * two decades between when topdown was introduced in
2001 * ~2003 and when it was adapted to handle the topdown
2002 * case without violating the monotonicity assertion in
2003 * 2022. Maybe Someone^TM should either ditch the
2004 * optimization or find a better way to do it.
2005 */
2006 entry = map->first_free;
2007 } else if (uvm_map_lookup_entry(map, hint, &entry)) {
2008 KASSERT(entry->start <= hint);
2009 KASSERT(hint < entry->end);
2010 /* "hint" address already in use ... */
2011 if (flags & UVM_FLAG_FIXED) {
2012 UVMHIST_LOG(maphist, "<- fixed & VA in use",
2013 0, 0, 0, 0);
2014 return (NULL);
2015 }
2016 if (topdown)
2017 /* Start from lower gap. */
2018 entry = entry->prev;
2019 } else {
2020 KASSERT(entry == &map->header || entry->end <= hint);
2021 KASSERT(entry->next == &map->header ||
2022 hint < entry->next->start);
2023 if (flags & UVM_FLAG_FIXED) {
2024 if (entry->next->start >= hint &&
2025 length <= entry->next->start - hint)
2026 goto found;
2027
2028 /* "hint" address is gap but too small */
2029 UVMHIST_LOG(maphist, "<- fixed mapping failed",
2030 0, 0, 0, 0);
2031 return (NULL); /* only one shot at it ... */
2032 } else {
2033 /*
2034 * See if given hint fits in this gap.
2035 */
2036 avail = uvm_map_space_avail(&hint, length,
2037 uoffset, align, flags, topdown, entry);
2038 INVARIANTS();
2039 switch (avail) {
2040 case 1:
2041 goto found;
2042 case -1:
2043 goto wraparound;
2044 }
2045
2046 if (topdown) {
2047 /*
2048 * Still there is a chance to fit
2049 * if hint > entry->end.
2050 */
2051 } else {
2052 /* Start from higher gap. */
2053 entry = entry->next;
2054 if (entry == &map->header)
2055 goto notfound;
2056 goto nextgap;
2057 }
2058 }
2059 }
2060
2061 /*
2062 * Note that all UVM_FLAGS_FIXED case is already handled.
2063 */
2064 KDASSERT((flags & UVM_FLAG_FIXED) == 0);
2065
2066 /* Try to find the space in the red-black tree */
2067
2068 /* Check slot before any entry */
2069 if (topdown) {
2070 KASSERTMSG(entry->next->start >= vm_map_min(map),
2071 "map=%p entry=%p entry->next=%p"
2072 " entry->next->start=0x%"PRIxVADDR" min=0x%"PRIxVADDR,
2073 map, entry, entry->next,
2074 entry->next->start, vm_map_min(map));
2075 if (length > entry->next->start - vm_map_min(map))
2076 hint = vm_map_min(map); /* XXX goto wraparound? */
2077 else
2078 hint = entry->next->start - length;
2079 KASSERT(hint >= vm_map_min(map));
2080 } else {
2081 hint = entry->end;
2082 }
2083 INVARIANTS();
2084 avail = uvm_map_space_avail(&hint, length, uoffset, align, flags,
2085 topdown, entry);
2086 INVARIANTS();
2087 switch (avail) {
2088 case 1:
2089 goto found;
2090 case -1:
2091 goto wraparound;
2092 }
2093
2094 nextgap:
2095 KDASSERT((flags & UVM_FLAG_FIXED) == 0);
2096 /* If there is not enough space in the whole tree, we fail */
2097 tmp = ROOT_ENTRY(map);
2098 if (tmp == NULL || tmp->maxgap < length)
2099 goto notfound;
2100
2101 prev = NULL; /* previous candidate */
2102
2103 /* Find an entry close to hint that has enough space */
2104 for (; tmp;) {
2105 KASSERT(tmp->next->start == tmp->end + tmp->gap);
2106 if (topdown) {
2107 if (tmp->next->start < hint + length &&
2108 (prev == NULL || tmp->end > prev->end)) {
2109 if (tmp->gap >= length)
2110 prev = tmp;
2111 else if ((child = LEFT_ENTRY(tmp)) != NULL
2112 && child->maxgap >= length)
2113 prev = tmp;
2114 }
2115 } else {
2116 if (tmp->end >= hint &&
2117 (prev == NULL || tmp->end < prev->end)) {
2118 if (tmp->gap >= length)
2119 prev = tmp;
2120 else if ((child = RIGHT_ENTRY(tmp)) != NULL
2121 && child->maxgap >= length)
2122 prev = tmp;
2123 }
2124 }
2125 if (tmp->next->start < hint + length)
2126 child = RIGHT_ENTRY(tmp);
2127 else if (tmp->end > hint)
2128 child = LEFT_ENTRY(tmp);
2129 else {
2130 if (tmp->gap >= length)
2131 break;
2132 if (topdown)
2133 child = LEFT_ENTRY(tmp);
2134 else
2135 child = RIGHT_ENTRY(tmp);
2136 }
2137 if (child == NULL || child->maxgap < length)
2138 break;
2139 tmp = child;
2140 }
2141
2142 if (tmp != NULL && tmp->start < hint && hint < tmp->next->start) {
2143 /*
2144 * Check if the entry that we found satifies the
2145 * space requirement
2146 */
2147 if (topdown) {
2148 if (hint > tmp->next->start - length)
2149 hint = tmp->next->start - length;
2150 } else {
2151 if (hint < tmp->end)
2152 hint = tmp->end;
2153 }
2154 INVARIANTS();
2155 avail = uvm_map_space_avail(&hint, length, uoffset, align,
2156 flags, topdown, tmp);
2157 INVARIANTS();
2158 switch (avail) {
2159 case 1:
2160 entry = tmp;
2161 goto found;
2162 case -1:
2163 goto wraparound;
2164 }
2165 if (tmp->gap >= length)
2166 goto listsearch;
2167 }
2168 if (prev == NULL)
2169 goto notfound;
2170
2171 if (topdown) {
2172 KASSERT(orig_hint >= prev->next->start - length ||
2173 prev->next->start - length > prev->next->start);
2174 hint = prev->next->start - length;
2175 } else {
2176 KASSERT(orig_hint <= prev->end);
2177 hint = prev->end;
2178 }
2179 INVARIANTS();
2180 avail = uvm_map_space_avail(&hint, length, uoffset, align,
2181 flags, topdown, prev);
2182 INVARIANTS();
2183 switch (avail) {
2184 case 1:
2185 entry = prev;
2186 goto found;
2187 case -1:
2188 goto wraparound;
2189 }
2190 if (prev->gap >= length)
2191 goto listsearch;
2192
2193 if (topdown)
2194 tmp = LEFT_ENTRY(prev);
2195 else
2196 tmp = RIGHT_ENTRY(prev);
2197 for (;;) {
2198 KASSERT(tmp);
2199 KASSERTMSG(tmp->maxgap >= length,
2200 "tmp->maxgap=0x%"PRIxVSIZE" length=0x%"PRIxVSIZE,
2201 tmp->maxgap, length);
2202 if (topdown)
2203 child = RIGHT_ENTRY(tmp);
2204 else
2205 child = LEFT_ENTRY(tmp);
2206 if (child && child->maxgap >= length) {
2207 tmp = child;
2208 continue;
2209 }
2210 if (tmp->gap >= length)
2211 break;
2212 if (topdown)
2213 tmp = LEFT_ENTRY(tmp);
2214 else
2215 tmp = RIGHT_ENTRY(tmp);
2216 }
2217
2218 if (topdown) {
2219 KASSERT(orig_hint >= tmp->next->start - length ||
2220 tmp->next->start - length > tmp->next->start);
2221 hint = tmp->next->start - length;
2222 } else {
2223 KASSERT(orig_hint <= tmp->end);
2224 hint = tmp->end;
2225 }
2226 INVARIANTS();
2227 avail = uvm_map_space_avail(&hint, length, uoffset, align,
2228 flags, topdown, tmp);
2229 INVARIANTS();
2230 switch (avail) {
2231 case 1:
2232 entry = tmp;
2233 goto found;
2234 case -1:
2235 goto wraparound;
2236 }
2237
2238 /*
2239 * The tree fails to find an entry because of offset or alignment
2240 * restrictions. Search the list instead.
2241 */
2242 listsearch:
2243 /*
2244 * Look through the rest of the map, trying to fit a new region in
2245 * the gap between existing regions, or after the very last region.
2246 * note: entry->end = base VA of current gap,
2247 * entry->next->start = VA of end of current gap
2248 */
2249
2250 INVARIANTS();
2251 for (;;) {
2252 /* Update hint for current gap. */
2253 hint = topdown ? entry->next->start - length : entry->end;
2254 INVARIANTS();
2255
2256 /* See if it fits. */
2257 avail = uvm_map_space_avail(&hint, length, uoffset, align,
2258 flags, topdown, entry);
2259 INVARIANTS();
2260 switch (avail) {
2261 case 1:
2262 goto found;
2263 case -1:
2264 goto wraparound;
2265 }
2266
2267 /* Advance to next/previous gap */
2268 if (topdown) {
2269 if (entry == &map->header) {
2270 UVMHIST_LOG(maphist, "<- failed (off start)",
2271 0,0,0,0);
2272 goto notfound;
2273 }
2274 entry = entry->prev;
2275 } else {
2276 entry = entry->next;
2277 if (entry == &map->header) {
2278 UVMHIST_LOG(maphist, "<- failed (off end)",
2279 0,0,0,0);
2280 goto notfound;
2281 }
2282 }
2283 }
2284
2285 found:
2286 SAVE_HINT(map, map->hint, entry);
2287 *result = hint;
2288 UVMHIST_LOG(maphist,"<- got it! (result=%#jx)", hint, 0,0,0);
2289 INVARIANTS();
2290 KASSERT(entry->end <= hint);
2291 KASSERT(hint <= entry->next->start);
2292 KASSERT(length <= entry->next->start - hint);
2293 return (entry);
2294
2295 wraparound:
2296 UVMHIST_LOG(maphist, "<- failed (wrap around)", 0,0,0,0);
2297
2298 return (NULL);
2299
2300 notfound:
2301 UVMHIST_LOG(maphist, "<- failed (notfound)", 0,0,0,0);
2302
2303 return (NULL);
2304 #undef INVARIANTS
2305 }
2306
2307 /*
2308 * U N M A P - m a i n h e l p e r f u n c t i o n s
2309 */
2310
2311 /*
2312 * uvm_unmap_remove: remove mappings from a vm_map (from "start" up to "stop")
2313 *
2314 * => caller must check alignment and size
2315 * => map must be locked by caller
2316 * => we return a list of map entries that we've remove from the map
2317 * in "entry_list"
2318 */
2319
2320 void
2321 uvm_unmap_remove(struct vm_map *map, vaddr_t start, vaddr_t end,
2322 struct vm_map_entry **entry_list /* OUT */, int flags)
2323 {
2324 struct vm_map_entry *entry, *first_entry, *next;
2325 vaddr_t len;
2326 UVMHIST_FUNC(__func__);
2327 UVMHIST_CALLARGS(maphist,"(map=%#jx, start=%#jx, end=%#jx)",
2328 (uintptr_t)map, start, end, 0);
2329 VM_MAP_RANGE_CHECK(map, start, end);
2330
2331 uvm_map_check(map, "unmap_remove entry");
2332
2333 /*
2334 * find first entry
2335 */
2336
2337 if (uvm_map_lookup_entry(map, start, &first_entry) == true) {
2338 /* clip and go... */
2339 entry = first_entry;
2340 UVM_MAP_CLIP_START(map, entry, start);
2341 /* critical! prevents stale hint */
2342 SAVE_HINT(map, entry, entry->prev);
2343 } else {
2344 entry = first_entry->next;
2345 }
2346
2347 /*
2348 * save the free space hint
2349 */
2350
2351 if (map->first_free != &map->header && map->first_free->start >= start)
2352 map->first_free = entry->prev;
2353
2354 /*
2355 * note: we now re-use first_entry for a different task. we remove
2356 * a number of map entries from the map and save them in a linked
2357 * list headed by "first_entry". once we remove them from the map
2358 * the caller should unlock the map and drop the references to the
2359 * backing objects [c.f. uvm_unmap_detach]. the object is to
2360 * separate unmapping from reference dropping. why?
2361 * [1] the map has to be locked for unmapping
2362 * [2] the map need not be locked for reference dropping
2363 * [3] dropping references may trigger pager I/O, and if we hit
2364 * a pager that does synchronous I/O we may have to wait for it.
2365 * [4] we would like all waiting for I/O to occur with maps unlocked
2366 * so that we don't block other threads.
2367 */
2368
2369 first_entry = NULL;
2370 *entry_list = NULL;
2371
2372 /*
2373 * break up the area into map entry sized regions and unmap. note
2374 * that all mappings have to be removed before we can even consider
2375 * dropping references to amaps or VM objects (otherwise we could end
2376 * up with a mapping to a page on the free list which would be very bad)
2377 */
2378
2379 while ((entry != &map->header) && (entry->start < end)) {
2380 KASSERT((entry->flags & UVM_MAP_STATIC) == 0);
2381
2382 UVM_MAP_CLIP_END(map, entry, end);
2383 next = entry->next;
2384 len = entry->end - entry->start;
2385
2386 /*
2387 * unwire before removing addresses from the pmap; otherwise
2388 * unwiring will put the entries back into the pmap (XXX).
2389 */
2390
2391 if (VM_MAPENT_ISWIRED(entry)) {
2392 uvm_map_entry_unwire(map, entry);
2393 }
2394 if (flags & UVM_FLAG_VAONLY) {
2395
2396 /* nothing */
2397
2398 } else if ((map->flags & VM_MAP_PAGEABLE) == 0) {
2399
2400 /*
2401 * if the map is non-pageable, any pages mapped there
2402 * must be wired and entered with pmap_kenter_pa(),
2403 * and we should free any such pages immediately.
2404 * this is mostly used for kmem_map.
2405 */
2406 KASSERT(vm_map_pmap(map) == pmap_kernel());
2407
2408 uvm_km_pgremove_intrsafe(map, entry->start, entry->end);
2409 } else if (UVM_ET_ISOBJ(entry) &&
2410 UVM_OBJ_IS_KERN_OBJECT(entry->object.uvm_obj)) {
2411 panic("%s: kernel object %p %p\n",
2412 __func__, map, entry);
2413 } else if (UVM_ET_ISOBJ(entry) || entry->aref.ar_amap) {
2414 /*
2415 * remove mappings the standard way. lock object
2416 * and/or amap to ensure vm_page state does not
2417 * change while in pmap_remove().
2418 */
2419
2420 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
2421 uvm_map_lock_entry(entry, RW_WRITER);
2422 #else
2423 uvm_map_lock_entry(entry, RW_READER);
2424 #endif
2425 pmap_remove(map->pmap, entry->start, entry->end);
2426
2427 /*
2428 * note: if map is dying, leave pmap_update() for
2429 * later. if the map is to be reused (exec) then
2430 * pmap_update() will be called. if the map is
2431 * being disposed of (exit) then pmap_destroy()
2432 * will be called.
2433 */
2434
2435 if ((map->flags & VM_MAP_DYING) == 0) {
2436 pmap_update(vm_map_pmap(map));
2437 } else {
2438 KASSERT(vm_map_pmap(map) != pmap_kernel());
2439 }
2440
2441 uvm_map_unlock_entry(entry);
2442 }
2443
2444 #if defined(UVMDEBUG)
2445 /*
2446 * check if there's remaining mapping,
2447 * which is a bug in caller.
2448 */
2449
2450 vaddr_t va;
2451 for (va = entry->start; va < entry->end;
2452 va += PAGE_SIZE) {
2453 if (pmap_extract(vm_map_pmap(map), va, NULL)) {
2454 panic("%s: %#"PRIxVADDR" has mapping",
2455 __func__, va);
2456 }
2457 }
2458
2459 if (VM_MAP_IS_KERNEL(map) && (flags & UVM_FLAG_NOWAIT) == 0) {
2460 uvm_km_check_empty(map, entry->start, entry->end);
2461 }
2462 #endif /* defined(UVMDEBUG) */
2463
2464 /*
2465 * remove entry from map and put it on our list of entries
2466 * that we've nuked. then go to next entry.
2467 */
2468
2469 UVMHIST_LOG(maphist, " removed map entry %#jx",
2470 (uintptr_t)entry, 0, 0, 0);
2471
2472 /* critical! prevents stale hint */
2473 SAVE_HINT(map, entry, entry->prev);
2474
2475 uvm_map_entry_unlink(map, entry);
2476 KASSERT(map->size >= len);
2477 map->size -= len;
2478 entry->prev = NULL;
2479 entry->next = first_entry;
2480 first_entry = entry;
2481 entry = next;
2482 }
2483
2484 uvm_map_check(map, "unmap_remove leave");
2485
2486 /*
2487 * now we've cleaned up the map and are ready for the caller to drop
2488 * references to the mapped objects.
2489 */
2490
2491 *entry_list = first_entry;
2492 UVMHIST_LOG(maphist,"<- done!", 0, 0, 0, 0);
2493
2494 if (map->flags & VM_MAP_WANTVA) {
2495 mutex_enter(&map->misc_lock);
2496 map->flags &= ~VM_MAP_WANTVA;
2497 cv_broadcast(&map->cv);
2498 mutex_exit(&map->misc_lock);
2499 }
2500 }
2501
2502 /*
2503 * uvm_unmap_detach: drop references in a chain of map entries
2504 *
2505 * => we will free the map entries as we traverse the list.
2506 */
2507
2508 void
2509 uvm_unmap_detach(struct vm_map_entry *first_entry, int flags)
2510 {
2511 struct vm_map_entry *next_entry;
2512 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2513
2514 while (first_entry) {
2515 KASSERT(!VM_MAPENT_ISWIRED(first_entry));
2516 UVMHIST_LOG(maphist,
2517 " detach %#jx: amap=%#jx, obj=%#jx, submap?=%jd",
2518 (uintptr_t)first_entry,
2519 (uintptr_t)first_entry->aref.ar_amap,
2520 (uintptr_t)first_entry->object.uvm_obj,
2521 UVM_ET_ISSUBMAP(first_entry));
2522
2523 /*
2524 * drop reference to amap, if we've got one
2525 */
2526
2527 if (first_entry->aref.ar_amap)
2528 uvm_map_unreference_amap(first_entry, flags);
2529
2530 /*
2531 * drop reference to our backing object, if we've got one
2532 */
2533
2534 KASSERT(!UVM_ET_ISSUBMAP(first_entry));
2535 if (UVM_ET_ISOBJ(first_entry) &&
2536 first_entry->object.uvm_obj->pgops->pgo_detach) {
2537 (*first_entry->object.uvm_obj->pgops->pgo_detach)
2538 (first_entry->object.uvm_obj);
2539 }
2540 next_entry = first_entry->next;
2541 uvm_mapent_free(first_entry);
2542 first_entry = next_entry;
2543 }
2544 UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
2545 }
2546
2547 /*
2548 * E X T R A C T I O N F U N C T I O N S
2549 */
2550
2551 /*
2552 * uvm_map_reserve: reserve space in a vm_map for future use.
2553 *
2554 * => we reserve space in a map by putting a dummy map entry in the
2555 * map (dummy means obj=NULL, amap=NULL, prot=VM_PROT_NONE)
2556 * => map should be unlocked (we will write lock it)
2557 * => we return true if we were able to reserve space
2558 * => XXXCDC: should be inline?
2559 */
2560
2561 int
2562 uvm_map_reserve(struct vm_map *map, vsize_t size,
2563 vaddr_t offset /* hint for pmap_prefer */,
2564 vsize_t align /* alignment */,
2565 vaddr_t *raddr /* IN:hint, OUT: reserved VA */,
2566 uvm_flag_t flags /* UVM_FLAG_FIXED or UVM_FLAG_COLORMATCH or 0 */)
2567 {
2568 UVMHIST_FUNC(__func__);
2569 UVMHIST_CALLARGS(maphist, "(map=%#jx, size=%#jx, offset=%#jx, addr=%#jx)",
2570 (uintptr_t)map, size, offset, (uintptr_t)raddr);
2571
2572 size = round_page(size);
2573
2574 /*
2575 * reserve some virtual space.
2576 */
2577
2578 if (uvm_map(map, raddr, size, NULL, offset, align,
2579 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
2580 UVM_ADV_RANDOM, UVM_FLAG_NOMERGE|flags)) != 0) {
2581 UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
2582 return (false);
2583 }
2584
2585 UVMHIST_LOG(maphist, "<- done (*raddr=%#jx)", *raddr,0,0,0);
2586 return (true);
2587 }
2588
2589 /*
2590 * uvm_map_replace: replace a reserved (blank) area of memory with
2591 * real mappings.
2592 *
2593 * => caller must WRITE-LOCK the map
2594 * => we return true if replacement was a success
2595 * => we expect the newents chain to have nnewents entrys on it and
2596 * we expect newents->prev to point to the last entry on the list
2597 * => note newents is allowed to be NULL
2598 */
2599
2600 static int
2601 uvm_map_replace(struct vm_map *map, vaddr_t start, vaddr_t end,
2602 struct vm_map_entry *newents, int nnewents, vsize_t nsize,
2603 struct vm_map_entry **oldentryp)
2604 {
2605 struct vm_map_entry *oldent, *last;
2606
2607 uvm_map_check(map, "map_replace entry");
2608
2609 /*
2610 * first find the blank map entry at the specified address
2611 */
2612
2613 if (!uvm_map_lookup_entry(map, start, &oldent)) {
2614 return (false);
2615 }
2616
2617 /*
2618 * check to make sure we have a proper blank entry
2619 */
2620
2621 if (end < oldent->end) {
2622 UVM_MAP_CLIP_END(map, oldent, end);
2623 }
2624 if (oldent->start != start || oldent->end != end ||
2625 oldent->object.uvm_obj != NULL || oldent->aref.ar_amap != NULL) {
2626 return (false);
2627 }
2628
2629 #ifdef DIAGNOSTIC
2630
2631 /*
2632 * sanity check the newents chain
2633 */
2634
2635 {
2636 struct vm_map_entry *tmpent = newents;
2637 int nent = 0;
2638 vsize_t sz = 0;
2639 vaddr_t cur = start;
2640
2641 while (tmpent) {
2642 nent++;
2643 sz += tmpent->end - tmpent->start;
2644 if (tmpent->start < cur)
2645 panic("uvm_map_replace1");
2646 if (tmpent->start >= tmpent->end || tmpent->end > end) {
2647 panic("uvm_map_replace2: "
2648 "tmpent->start=%#"PRIxVADDR
2649 ", tmpent->end=%#"PRIxVADDR
2650 ", end=%#"PRIxVADDR,
2651 tmpent->start, tmpent->end, end);
2652 }
2653 cur = tmpent->end;
2654 if (tmpent->next) {
2655 if (tmpent->next->prev != tmpent)
2656 panic("uvm_map_replace3");
2657 } else {
2658 if (newents->prev != tmpent)
2659 panic("uvm_map_replace4");
2660 }
2661 tmpent = tmpent->next;
2662 }
2663 if (nent != nnewents)
2664 panic("uvm_map_replace5");
2665 if (sz != nsize)
2666 panic("uvm_map_replace6");
2667 }
2668 #endif
2669
2670 /*
2671 * map entry is a valid blank! replace it. (this does all the
2672 * work of map entry link/unlink...).
2673 */
2674
2675 if (newents) {
2676 last = newents->prev;
2677
2678 /* critical: flush stale hints out of map */
2679 SAVE_HINT(map, map->hint, newents);
2680 if (map->first_free == oldent)
2681 map->first_free = last;
2682
2683 last->next = oldent->next;
2684 last->next->prev = last;
2685
2686 /* Fix RB tree */
2687 uvm_rb_remove(map, oldent);
2688
2689 newents->prev = oldent->prev;
2690 newents->prev->next = newents;
2691 map->nentries = map->nentries + (nnewents - 1);
2692
2693 /* Fixup the RB tree */
2694 {
2695 int i;
2696 struct vm_map_entry *tmp;
2697
2698 tmp = newents;
2699 for (i = 0; i < nnewents && tmp; i++) {
2700 uvm_rb_insert(map, tmp);
2701 tmp = tmp->next;
2702 }
2703 }
2704 } else {
2705 /* NULL list of new entries: just remove the old one */
2706 clear_hints(map, oldent);
2707 uvm_map_entry_unlink(map, oldent);
2708 }
2709 map->size -= end - start - nsize;
2710
2711 uvm_map_check(map, "map_replace leave");
2712
2713 /*
2714 * now we can free the old blank entry and return.
2715 */
2716
2717 *oldentryp = oldent;
2718 return (true);
2719 }
2720
2721 /*
2722 * uvm_map_extract: extract a mapping from a map and put it somewhere
2723 * (maybe removing the old mapping)
2724 *
2725 * => maps should be unlocked (we will write lock them)
2726 * => returns 0 on success, error code otherwise
2727 * => start must be page aligned
2728 * => len must be page sized
2729 * => flags:
2730 * UVM_EXTRACT_REMOVE: remove mappings from srcmap
2731 * UVM_EXTRACT_CONTIG: abort if unmapped area (advisory only)
2732 * UVM_EXTRACT_QREF: for a temporary extraction do quick obj refs
2733 * UVM_EXTRACT_FIXPROT: set prot to maxprot as we go
2734 * UVM_EXTRACT_PROT_ALL: set prot to UVM_PROT_ALL as we go
2735 * >>>NOTE: if you set REMOVE, you are not allowed to use CONTIG or QREF!<<<
2736 * >>>NOTE: QREF's must be unmapped via the QREF path, thus should only
2737 * be used from within the kernel in a kernel level map <<<
2738 */
2739
2740 int
2741 uvm_map_extract(struct vm_map *srcmap, vaddr_t start, vsize_t len,
2742 struct vm_map *dstmap, vaddr_t *dstaddrp, int flags)
2743 {
2744 vaddr_t dstaddr, end, newend, oldoffset, fudge, orig_fudge;
2745 struct vm_map_entry *chain, *endchain, *entry, *orig_entry, *newentry,
2746 *deadentry, *oldentry;
2747 struct vm_map_entry *resentry = NULL; /* a dummy reservation entry */
2748 vsize_t elen __unused;
2749 int nchain, error, copy_ok;
2750 vsize_t nsize;
2751 UVMHIST_FUNC(__func__);
2752 UVMHIST_CALLARGS(maphist,"(srcmap=%#jx,start=%#jx, len=%#jx",
2753 (uintptr_t)srcmap, start, len, 0);
2754 UVMHIST_LOG(maphist," ...,dstmap=%#jx, flags=%#jx)",
2755 (uintptr_t)dstmap, flags, 0, 0);
2756
2757 /*
2758 * step 0: sanity check: start must be on a page boundary, length
2759 * must be page sized. can't ask for CONTIG/QREF if you asked for
2760 * REMOVE.
2761 */
2762
2763 KASSERTMSG((start & PAGE_MASK) == 0, "start=0x%"PRIxVADDR, start);
2764 KASSERTMSG((len & PAGE_MASK) == 0, "len=0x%"PRIxVADDR, len);
2765 KASSERT((flags & UVM_EXTRACT_REMOVE) == 0 ||
2766 (flags & (UVM_EXTRACT_CONTIG|UVM_EXTRACT_QREF)) == 0);
2767
2768 /*
2769 * step 1: reserve space in the target map for the extracted area
2770 */
2771
2772 if ((flags & UVM_EXTRACT_RESERVED) == 0) {
2773 dstaddr = vm_map_min(dstmap);
2774 if (!uvm_map_reserve(dstmap, len, start,
2775 atop(start) & uvmexp.colormask, &dstaddr,
2776 UVM_FLAG_COLORMATCH))
2777 return (ENOMEM);
2778 KASSERT((atop(start ^ dstaddr) & uvmexp.colormask) == 0);
2779 *dstaddrp = dstaddr; /* pass address back to caller */
2780 UVMHIST_LOG(maphist, " dstaddr=%#jx", dstaddr,0,0,0);
2781 } else {
2782 dstaddr = *dstaddrp;
2783 }
2784
2785 /*
2786 * step 2: setup for the extraction process loop by init'ing the
2787 * map entry chain, locking src map, and looking up the first useful
2788 * entry in the map.
2789 */
2790
2791 end = start + len;
2792 newend = dstaddr + len;
2793 chain = endchain = NULL;
2794 nchain = 0;
2795 nsize = 0;
2796 vm_map_lock(srcmap);
2797
2798 if (uvm_map_lookup_entry(srcmap, start, &entry)) {
2799
2800 /* "start" is within an entry */
2801 if (flags & UVM_EXTRACT_QREF) {
2802
2803 /*
2804 * for quick references we don't clip the entry, so
2805 * the entry may map space "before" the starting
2806 * virtual address... this is the "fudge" factor
2807 * (which can be non-zero only the first time
2808 * through the "while" loop in step 3).
2809 */
2810
2811 fudge = start - entry->start;
2812 } else {
2813
2814 /*
2815 * normal reference: we clip the map to fit (thus
2816 * fudge is zero)
2817 */
2818
2819 UVM_MAP_CLIP_START(srcmap, entry, start);
2820 SAVE_HINT(srcmap, srcmap->hint, entry->prev);
2821 fudge = 0;
2822 }
2823 } else {
2824
2825 /* "start" is not within an entry ... skip to next entry */
2826 if (flags & UVM_EXTRACT_CONTIG) {
2827 error = EINVAL;
2828 goto bad; /* definite hole here ... */
2829 }
2830
2831 entry = entry->next;
2832 fudge = 0;
2833 }
2834
2835 /* save values from srcmap for step 6 */
2836 orig_entry = entry;
2837 orig_fudge = fudge;
2838
2839 /*
2840 * step 3: now start looping through the map entries, extracting
2841 * as we go.
2842 */
2843
2844 while (entry->start < end && entry != &srcmap->header) {
2845
2846 /* if we are not doing a quick reference, clip it */
2847 if ((flags & UVM_EXTRACT_QREF) == 0)
2848 UVM_MAP_CLIP_END(srcmap, entry, end);
2849
2850 /* clear needs_copy (allow chunking) */
2851 if (UVM_ET_ISNEEDSCOPY(entry)) {
2852 amap_copy(srcmap, entry,
2853 AMAP_COPY_NOWAIT|AMAP_COPY_NOMERGE, start, end);
2854 if (UVM_ET_ISNEEDSCOPY(entry)) { /* failed? */
2855 error = ENOMEM;
2856 goto bad;
2857 }
2858
2859 /* amap_copy could clip (during chunk)! update fudge */
2860 if (fudge) {
2861 fudge = start - entry->start;
2862 orig_fudge = fudge;
2863 }
2864 }
2865
2866 /* calculate the offset of this from "start" */
2867 oldoffset = (entry->start + fudge) - start;
2868
2869 /* allocate a new map entry */
2870 newentry = uvm_mapent_alloc(dstmap, 0);
2871 if (newentry == NULL) {
2872 error = ENOMEM;
2873 goto bad;
2874 }
2875
2876 /* set up new map entry */
2877 newentry->next = NULL;
2878 newentry->prev = endchain;
2879 newentry->start = dstaddr + oldoffset;
2880 newentry->end =
2881 newentry->start + (entry->end - (entry->start + fudge));
2882 if (newentry->end > newend || newentry->end < newentry->start)
2883 newentry->end = newend;
2884 newentry->object.uvm_obj = entry->object.uvm_obj;
2885 if (newentry->object.uvm_obj) {
2886 if (newentry->object.uvm_obj->pgops->pgo_reference)
2887 newentry->object.uvm_obj->pgops->
2888 pgo_reference(newentry->object.uvm_obj);
2889 newentry->offset = entry->offset + fudge;
2890 } else {
2891 newentry->offset = 0;
2892 }
2893 newentry->etype = entry->etype;
2894 if (flags & UVM_EXTRACT_PROT_ALL) {
2895 newentry->protection = newentry->max_protection =
2896 UVM_PROT_ALL;
2897 } else {
2898 newentry->protection = (flags & UVM_EXTRACT_FIXPROT) ?
2899 entry->max_protection : entry->protection;
2900 newentry->max_protection = entry->max_protection;
2901 }
2902 newentry->inheritance = entry->inheritance;
2903 newentry->wired_count = 0;
2904 newentry->aref.ar_amap = entry->aref.ar_amap;
2905 if (newentry->aref.ar_amap) {
2906 newentry->aref.ar_pageoff =
2907 entry->aref.ar_pageoff + (fudge >> PAGE_SHIFT);
2908 uvm_map_reference_amap(newentry, AMAP_SHARED |
2909 ((flags & UVM_EXTRACT_QREF) ? AMAP_REFALL : 0));
2910 } else {
2911 newentry->aref.ar_pageoff = 0;
2912 }
2913 newentry->advice = entry->advice;
2914 if ((flags & UVM_EXTRACT_QREF) != 0) {
2915 newentry->flags |= UVM_MAP_NOMERGE;
2916 }
2917
2918 /* now link it on the chain */
2919 nchain++;
2920 nsize += newentry->end - newentry->start;
2921 if (endchain == NULL) {
2922 chain = endchain = newentry;
2923 } else {
2924 endchain->next = newentry;
2925 endchain = newentry;
2926 }
2927
2928 /* end of 'while' loop! */
2929 if ((flags & UVM_EXTRACT_CONTIG) && entry->end < end &&
2930 (entry->next == &srcmap->header ||
2931 entry->next->start != entry->end)) {
2932 error = EINVAL;
2933 goto bad;
2934 }
2935 entry = entry->next;
2936 fudge = 0;
2937 }
2938
2939 /*
2940 * step 4: close off chain (in format expected by uvm_map_replace)
2941 */
2942
2943 if (chain)
2944 chain->prev = endchain;
2945
2946 /*
2947 * step 5: attempt to lock the dest map so we can pmap_copy.
2948 * note usage of copy_ok:
2949 * 1 => dstmap locked, pmap_copy ok, and we "replace" here (step 5)
2950 * 0 => dstmap unlocked, NO pmap_copy, and we will "replace" in step 7
2951 */
2952
2953 if (srcmap == dstmap || vm_map_lock_try(dstmap) == true) {
2954 copy_ok = 1;
2955 if (!uvm_map_replace(dstmap, dstaddr, dstaddr+len, chain,
2956 nchain, nsize, &resentry)) {
2957 if (srcmap != dstmap)
2958 vm_map_unlock(dstmap);
2959 error = EIO;
2960 goto bad;
2961 }
2962 } else {
2963 copy_ok = 0;
2964 /* replace deferred until step 7 */
2965 }
2966
2967 /*
2968 * step 6: traverse the srcmap a second time to do the following:
2969 * - if we got a lock on the dstmap do pmap_copy
2970 * - if UVM_EXTRACT_REMOVE remove the entries
2971 * we make use of orig_entry and orig_fudge (saved in step 2)
2972 */
2973
2974 if (copy_ok || (flags & UVM_EXTRACT_REMOVE)) {
2975
2976 /* purge possible stale hints from srcmap */
2977 if (flags & UVM_EXTRACT_REMOVE) {
2978 SAVE_HINT(srcmap, srcmap->hint, orig_entry->prev);
2979 if (srcmap->first_free != &srcmap->header &&
2980 srcmap->first_free->start >= start)
2981 srcmap->first_free = orig_entry->prev;
2982 }
2983
2984 entry = orig_entry;
2985 fudge = orig_fudge;
2986 deadentry = NULL; /* for UVM_EXTRACT_REMOVE */
2987
2988 while (entry->start < end && entry != &srcmap->header) {
2989 if (copy_ok) {
2990 oldoffset = (entry->start + fudge) - start;
2991 elen = MIN(end, entry->end) -
2992 (entry->start + fudge);
2993 pmap_copy(dstmap->pmap, srcmap->pmap,
2994 dstaddr + oldoffset, elen,
2995 entry->start + fudge);
2996 }
2997
2998 /* we advance "entry" in the following if statement */
2999 if (flags & UVM_EXTRACT_REMOVE) {
3000 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
3001 uvm_map_lock_entry(entry, RW_WRITER);
3002 #else
3003 uvm_map_lock_entry(entry, RW_READER);
3004 #endif
3005 pmap_remove(srcmap->pmap, entry->start,
3006 entry->end);
3007 uvm_map_unlock_entry(entry);
3008 oldentry = entry; /* save entry */
3009 entry = entry->next; /* advance */
3010 uvm_map_entry_unlink(srcmap, oldentry);
3011 /* add to dead list */
3012 oldentry->next = deadentry;
3013 deadentry = oldentry;
3014 } else {
3015 entry = entry->next; /* advance */
3016 }
3017
3018 /* end of 'while' loop */
3019 fudge = 0;
3020 }
3021 pmap_update(srcmap->pmap);
3022
3023 /*
3024 * unlock dstmap. we will dispose of deadentry in
3025 * step 7 if needed
3026 */
3027
3028 if (copy_ok && srcmap != dstmap)
3029 vm_map_unlock(dstmap);
3030
3031 } else {
3032 deadentry = NULL;
3033 }
3034
3035 /*
3036 * step 7: we are done with the source map, unlock. if copy_ok
3037 * is 0 then we have not replaced the dummy mapping in dstmap yet
3038 * and we need to do so now.
3039 */
3040
3041 vm_map_unlock(srcmap);
3042 if ((flags & UVM_EXTRACT_REMOVE) && deadentry)
3043 uvm_unmap_detach(deadentry, 0); /* dispose of old entries */
3044
3045 /* now do the replacement if we didn't do it in step 5 */
3046 if (copy_ok == 0) {
3047 vm_map_lock(dstmap);
3048 error = uvm_map_replace(dstmap, dstaddr, dstaddr+len, chain,
3049 nchain, nsize, &resentry);
3050 vm_map_unlock(dstmap);
3051
3052 if (error == false) {
3053 error = EIO;
3054 goto bad2;
3055 }
3056 }
3057
3058 if (resentry != NULL)
3059 uvm_mapent_free(resentry);
3060
3061 return (0);
3062
3063 /*
3064 * bad: failure recovery
3065 */
3066 bad:
3067 vm_map_unlock(srcmap);
3068 bad2: /* src already unlocked */
3069 if (chain)
3070 uvm_unmap_detach(chain,
3071 (flags & UVM_EXTRACT_QREF) ? AMAP_REFALL : 0);
3072
3073 if (resentry != NULL)
3074 uvm_mapent_free(resentry);
3075
3076 if ((flags & UVM_EXTRACT_RESERVED) == 0) {
3077 uvm_unmap(dstmap, dstaddr, dstaddr+len); /* ??? */
3078 }
3079 return (error);
3080 }
3081
3082 /* end of extraction functions */
3083
3084 /*
3085 * uvm_map_submap: punch down part of a map into a submap
3086 *
3087 * => only the kernel_map is allowed to be submapped
3088 * => the purpose of submapping is to break up the locking granularity
3089 * of a larger map
3090 * => the range specified must have been mapped previously with a uvm_map()
3091 * call [with uobj==NULL] to create a blank map entry in the main map.
3092 * [And it had better still be blank!]
3093 * => maps which contain submaps should never be copied or forked.
3094 * => to remove a submap, use uvm_unmap() on the main map
3095 * and then uvm_map_deallocate() the submap.
3096 * => main map must be unlocked.
3097 * => submap must have been init'd and have a zero reference count.
3098 * [need not be locked as we don't actually reference it]
3099 */
3100
3101 int
3102 uvm_map_submap(struct vm_map *map, vaddr_t start, vaddr_t end,
3103 struct vm_map *submap)
3104 {
3105 struct vm_map_entry *entry;
3106 int error;
3107
3108 vm_map_lock(map);
3109 VM_MAP_RANGE_CHECK(map, start, end);
3110
3111 if (uvm_map_lookup_entry(map, start, &entry)) {
3112 UVM_MAP_CLIP_START(map, entry, start);
3113 UVM_MAP_CLIP_END(map, entry, end); /* to be safe */
3114 } else {
3115 entry = NULL;
3116 }
3117
3118 if (entry != NULL &&
3119 entry->start == start && entry->end == end &&
3120 entry->object.uvm_obj == NULL && entry->aref.ar_amap == NULL &&
3121 !UVM_ET_ISCOPYONWRITE(entry) && !UVM_ET_ISNEEDSCOPY(entry)) {
3122 entry->etype |= UVM_ET_SUBMAP;
3123 entry->object.sub_map = submap;
3124 entry->offset = 0;
3125 uvm_map_reference(submap);
3126 error = 0;
3127 } else {
3128 error = EINVAL;
3129 }
3130 vm_map_unlock(map);
3131
3132 return error;
3133 }
3134
3135 /*
3136 * uvm_map_protect_user: change map protection on behalf of the user.
3137 * Enforces PAX settings as necessary.
3138 */
3139 int
3140 uvm_map_protect_user(struct lwp *l, vaddr_t start, vaddr_t end,
3141 vm_prot_t new_prot)
3142 {
3143 int error;
3144
3145 if ((error = PAX_MPROTECT_VALIDATE(l, new_prot)))
3146 return error;
3147
3148 return uvm_map_protect(&l->l_proc->p_vmspace->vm_map, start, end,
3149 new_prot, false);
3150 }
3151
3152
3153 /*
3154 * uvm_map_protect: change map protection
3155 *
3156 * => set_max means set max_protection.
3157 * => map must be unlocked.
3158 */
3159
3160 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
3161 ~VM_PROT_WRITE : VM_PROT_ALL)
3162
3163 int
3164 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
3165 vm_prot_t new_prot, bool set_max)
3166 {
3167 struct vm_map_entry *current, *entry;
3168 int error = 0;
3169 UVMHIST_FUNC(__func__);
3170 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,new_prot=%#jx)",
3171 (uintptr_t)map, start, end, new_prot);
3172
3173 vm_map_lock(map);
3174 VM_MAP_RANGE_CHECK(map, start, end);
3175 if (uvm_map_lookup_entry(map, start, &entry)) {
3176 UVM_MAP_CLIP_START(map, entry, start);
3177 } else {
3178 entry = entry->next;
3179 }
3180
3181 /*
3182 * make a first pass to check for protection violations.
3183 */
3184
3185 current = entry;
3186 while ((current != &map->header) && (current->start < end)) {
3187 if (UVM_ET_ISSUBMAP(current)) {
3188 error = EINVAL;
3189 goto out;
3190 }
3191 if ((new_prot & current->max_protection) != new_prot) {
3192 error = EACCES;
3193 goto out;
3194 }
3195 /*
3196 * Don't allow VM_PROT_EXECUTE to be set on entries that
3197 * point to vnodes that are associated with a NOEXEC file
3198 * system.
3199 */
3200 if (UVM_ET_ISOBJ(current) &&
3201 UVM_OBJ_IS_VNODE(current->object.uvm_obj)) {
3202 struct vnode *vp =
3203 (struct vnode *) current->object.uvm_obj;
3204
3205 if ((new_prot & VM_PROT_EXECUTE) != 0 &&
3206 (vp->v_mount->mnt_flag & MNT_NOEXEC) != 0) {
3207 error = EACCES;
3208 goto out;
3209 }
3210 }
3211
3212 current = current->next;
3213 }
3214
3215 /* go back and fix up protections (no need to clip this time). */
3216
3217 current = entry;
3218 while ((current != &map->header) && (current->start < end)) {
3219 vm_prot_t old_prot;
3220
3221 UVM_MAP_CLIP_END(map, current, end);
3222 old_prot = current->protection;
3223 if (set_max)
3224 current->protection =
3225 (current->max_protection = new_prot) & old_prot;
3226 else
3227 current->protection = new_prot;
3228
3229 /*
3230 * update physical map if necessary. worry about copy-on-write
3231 * here -- CHECK THIS XXX
3232 */
3233
3234 if (current->protection != old_prot) {
3235 /* update pmap! */
3236 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
3237 uvm_map_lock_entry(current, RW_WRITER);
3238 #else
3239 uvm_map_lock_entry(current, RW_READER);
3240 #endif
3241 pmap_protect(map->pmap, current->start, current->end,
3242 current->protection & MASK(current));
3243 uvm_map_unlock_entry(current);
3244
3245 /*
3246 * If this entry points at a vnode, and the
3247 * protection includes VM_PROT_EXECUTE, mark
3248 * the vnode as VEXECMAP.
3249 */
3250 if (UVM_ET_ISOBJ(current)) {
3251 struct uvm_object *uobj =
3252 current->object.uvm_obj;
3253
3254 if (UVM_OBJ_IS_VNODE(uobj) &&
3255 (current->protection & VM_PROT_EXECUTE)) {
3256 vn_markexec((struct vnode *) uobj);
3257 }
3258 }
3259 }
3260
3261 /*
3262 * If the map is configured to lock any future mappings,
3263 * wire this entry now if the old protection was VM_PROT_NONE
3264 * and the new protection is not VM_PROT_NONE.
3265 */
3266
3267 if ((map->flags & VM_MAP_WIREFUTURE) != 0 &&
3268 VM_MAPENT_ISWIRED(current) == 0 &&
3269 old_prot == VM_PROT_NONE &&
3270 new_prot != VM_PROT_NONE) {
3271
3272 /*
3273 * We must call pmap_update() here because the
3274 * pmap_protect() call above might have removed some
3275 * pmap entries and uvm_map_pageable() might create
3276 * some new pmap entries that rely on the prior
3277 * removals being completely finished.
3278 */
3279
3280 pmap_update(map->pmap);
3281
3282 if (uvm_map_pageable(map, current->start,
3283 current->end, false,
3284 UVM_LK_ENTER|UVM_LK_EXIT) != 0) {
3285
3286 /*
3287 * If locking the entry fails, remember the
3288 * error if it's the first one. Note we
3289 * still continue setting the protection in
3290 * the map, but will return the error
3291 * condition regardless.
3292 *
3293 * XXX Ignore what the actual error is,
3294 * XXX just call it a resource shortage
3295 * XXX so that it doesn't get confused
3296 * XXX what uvm_map_protect() itself would
3297 * XXX normally return.
3298 */
3299
3300 error = ENOMEM;
3301 }
3302 }
3303 current = current->next;
3304 }
3305 pmap_update(map->pmap);
3306
3307 out:
3308 vm_map_unlock(map);
3309
3310 UVMHIST_LOG(maphist, "<- done, error=%jd",error,0,0,0);
3311 return error;
3312 }
3313
3314 #undef MASK
3315
3316 /*
3317 * uvm_map_inherit: set inheritance code for range of addrs in map.
3318 *
3319 * => map must be unlocked
3320 * => note that the inherit code is used during a "fork". see fork
3321 * code for details.
3322 */
3323
3324 int
3325 uvm_map_inherit(struct vm_map *map, vaddr_t start, vaddr_t end,
3326 vm_inherit_t new_inheritance)
3327 {
3328 struct vm_map_entry *entry, *temp_entry;
3329 UVMHIST_FUNC(__func__);
3330 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,new_inh=%#jx)",
3331 (uintptr_t)map, start, end, new_inheritance);
3332
3333 switch (new_inheritance) {
3334 case MAP_INHERIT_NONE:
3335 case MAP_INHERIT_COPY:
3336 case MAP_INHERIT_SHARE:
3337 case MAP_INHERIT_ZERO:
3338 break;
3339 default:
3340 UVMHIST_LOG(maphist,"<- done (INVALID ARG)",0,0,0,0);
3341 return EINVAL;
3342 }
3343
3344 vm_map_lock(map);
3345 VM_MAP_RANGE_CHECK(map, start, end);
3346 if (uvm_map_lookup_entry(map, start, &temp_entry)) {
3347 entry = temp_entry;
3348 UVM_MAP_CLIP_START(map, entry, start);
3349 } else {
3350 entry = temp_entry->next;
3351 }
3352 while ((entry != &map->header) && (entry->start < end)) {
3353 UVM_MAP_CLIP_END(map, entry, end);
3354 entry->inheritance = new_inheritance;
3355 entry = entry->next;
3356 }
3357 vm_map_unlock(map);
3358 UVMHIST_LOG(maphist,"<- done (OK)",0,0,0,0);
3359 return 0;
3360 }
3361
3362 /*
3363 * uvm_map_advice: set advice code for range of addrs in map.
3364 *
3365 * => map must be unlocked
3366 */
3367
3368 int
3369 uvm_map_advice(struct vm_map *map, vaddr_t start, vaddr_t end, int new_advice)
3370 {
3371 struct vm_map_entry *entry, *temp_entry;
3372 UVMHIST_FUNC(__func__);
3373 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,new_adv=%#jx)",
3374 (uintptr_t)map, start, end, new_advice);
3375
3376 vm_map_lock(map);
3377 VM_MAP_RANGE_CHECK(map, start, end);
3378 if (uvm_map_lookup_entry(map, start, &temp_entry)) {
3379 entry = temp_entry;
3380 UVM_MAP_CLIP_START(map, entry, start);
3381 } else {
3382 entry = temp_entry->next;
3383 }
3384
3385 /*
3386 * XXXJRT: disallow holes?
3387 */
3388
3389 while ((entry != &map->header) && (entry->start < end)) {
3390 UVM_MAP_CLIP_END(map, entry, end);
3391
3392 switch (new_advice) {
3393 case MADV_NORMAL:
3394 case MADV_RANDOM:
3395 case MADV_SEQUENTIAL:
3396 /* nothing special here */
3397 break;
3398
3399 default:
3400 vm_map_unlock(map);
3401 UVMHIST_LOG(maphist,"<- done (INVALID ARG)",0,0,0,0);
3402 return EINVAL;
3403 }
3404 entry->advice = new_advice;
3405 entry = entry->next;
3406 }
3407
3408 vm_map_unlock(map);
3409 UVMHIST_LOG(maphist,"<- done (OK)",0,0,0,0);
3410 return 0;
3411 }
3412
3413 /*
3414 * uvm_map_willneed: apply MADV_WILLNEED
3415 */
3416
3417 int
3418 uvm_map_willneed(struct vm_map *map, vaddr_t start, vaddr_t end)
3419 {
3420 struct vm_map_entry *entry;
3421 UVMHIST_FUNC(__func__);
3422 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx)",
3423 (uintptr_t)map, start, end, 0);
3424
3425 vm_map_lock_read(map);
3426 VM_MAP_RANGE_CHECK(map, start, end);
3427 if (!uvm_map_lookup_entry(map, start, &entry)) {
3428 entry = entry->next;
3429 }
3430 while (entry->start < end) {
3431 struct vm_amap * const amap = entry->aref.ar_amap;
3432 struct uvm_object * const uobj = entry->object.uvm_obj;
3433
3434 KASSERT(entry != &map->header);
3435 KASSERT(start < entry->end);
3436 /*
3437 * For now, we handle only the easy but commonly-requested case.
3438 * ie. start prefetching of backing uobj pages.
3439 *
3440 * XXX It might be useful to pmap_enter() the already-in-core
3441 * pages by inventing a "weak" mode for uvm_fault() which would
3442 * only do the PGO_LOCKED pgo_get().
3443 */
3444 if (UVM_ET_ISOBJ(entry) && amap == NULL && uobj != NULL) {
3445 off_t offset;
3446 off_t size;
3447
3448 offset = entry->offset;
3449 if (start < entry->start) {
3450 offset += entry->start - start;
3451 }
3452 size = entry->offset + (entry->end - entry->start);
3453 if (entry->end < end) {
3454 size -= end - entry->end;
3455 }
3456 uvm_readahead(uobj, offset, size);
3457 }
3458 entry = entry->next;
3459 }
3460 vm_map_unlock_read(map);
3461 UVMHIST_LOG(maphist,"<- done (OK)",0,0,0,0);
3462 return 0;
3463 }
3464
3465 /*
3466 * uvm_map_pageable: sets the pageability of a range in a map.
3467 *
3468 * => wires map entries. should not be used for transient page locking.
3469 * for that, use uvm_fault_wire()/uvm_fault_unwire() (see uvm_vslock()).
3470 * => regions specified as not pageable require lock-down (wired) memory
3471 * and page tables.
3472 * => map must never be read-locked
3473 * => if islocked is true, map is already write-locked
3474 * => we always unlock the map, since we must downgrade to a read-lock
3475 * to call uvm_fault_wire()
3476 * => XXXCDC: check this and try and clean it up.
3477 */
3478
3479 int
3480 uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end,
3481 bool new_pageable, int lockflags)
3482 {
3483 struct vm_map_entry *entry, *start_entry, *failed_entry;
3484 int rv;
3485 #ifdef DIAGNOSTIC
3486 u_int timestamp_save;
3487 #endif
3488 UVMHIST_FUNC(__func__);
3489 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,new_pageable=%ju)",
3490 (uintptr_t)map, start, end, new_pageable);
3491 KASSERT(map->flags & VM_MAP_PAGEABLE);
3492
3493 if ((lockflags & UVM_LK_ENTER) == 0)
3494 vm_map_lock(map);
3495 VM_MAP_RANGE_CHECK(map, start, end);
3496
3497 /*
3498 * only one pageability change may take place at one time, since
3499 * uvm_fault_wire assumes it will be called only once for each
3500 * wiring/unwiring. therefore, we have to make sure we're actually
3501 * changing the pageability for the entire region. we do so before
3502 * making any changes.
3503 */
3504
3505 if (uvm_map_lookup_entry(map, start, &start_entry) == false) {
3506 if ((lockflags & UVM_LK_EXIT) == 0)
3507 vm_map_unlock(map);
3508
3509 UVMHIST_LOG(maphist,"<- done (fault)",0,0,0,0);
3510 return EFAULT;
3511 }
3512 entry = start_entry;
3513
3514 if (start == end) { /* nothing required */
3515 if ((lockflags & UVM_LK_EXIT) == 0)
3516 vm_map_unlock(map);
3517
3518 UVMHIST_LOG(maphist,"<- done (nothing)",0,0,0,0);
3519 return 0;
3520 }
3521
3522 /*
3523 * handle wiring and unwiring separately.
3524 */
3525
3526 if (new_pageable) { /* unwire */
3527 UVM_MAP_CLIP_START(map, entry, start);
3528
3529 /*
3530 * unwiring. first ensure that the range to be unwired is
3531 * really wired down and that there are no holes.
3532 */
3533
3534 while ((entry != &map->header) && (entry->start < end)) {
3535 if (entry->wired_count == 0 ||
3536 (entry->end < end &&
3537 (entry->next == &map->header ||
3538 entry->next->start > entry->end))) {
3539 if ((lockflags & UVM_LK_EXIT) == 0)
3540 vm_map_unlock(map);
3541 UVMHIST_LOG(maphist, "<- done (INVAL)",0,0,0,0);
3542 return EINVAL;
3543 }
3544 entry = entry->next;
3545 }
3546
3547 /*
3548 * POSIX 1003.1b - a single munlock call unlocks a region,
3549 * regardless of the number of mlock calls made on that
3550 * region.
3551 */
3552
3553 entry = start_entry;
3554 while ((entry != &map->header) && (entry->start < end)) {
3555 UVM_MAP_CLIP_END(map, entry, end);
3556 if (VM_MAPENT_ISWIRED(entry))
3557 uvm_map_entry_unwire(map, entry);
3558 entry = entry->next;
3559 }
3560 if ((lockflags & UVM_LK_EXIT) == 0)
3561 vm_map_unlock(map);
3562 UVMHIST_LOG(maphist,"<- done (OK UNWIRE)",0,0,0,0);
3563 return 0;
3564 }
3565
3566 /*
3567 * wire case: in two passes [XXXCDC: ugly block of code here]
3568 *
3569 * 1: holding the write lock, we create any anonymous maps that need
3570 * to be created. then we clip each map entry to the region to
3571 * be wired and increment its wiring count.
3572 *
3573 * 2: we downgrade to a read lock, and call uvm_fault_wire to fault
3574 * in the pages for any newly wired area (wired_count == 1).
3575 *
3576 * downgrading to a read lock for uvm_fault_wire avoids a possible
3577 * deadlock with another thread that may have faulted on one of
3578 * the pages to be wired (it would mark the page busy, blocking
3579 * us, then in turn block on the map lock that we hold). because
3580 * of problems in the recursive lock package, we cannot upgrade
3581 * to a write lock in vm_map_lookup. thus, any actions that
3582 * require the write lock must be done beforehand. because we
3583 * keep the read lock on the map, the copy-on-write status of the
3584 * entries we modify here cannot change.
3585 */
3586
3587 while ((entry != &map->header) && (entry->start < end)) {
3588 if (VM_MAPENT_ISWIRED(entry) == 0) { /* not already wired? */
3589
3590 /*
3591 * perform actions of vm_map_lookup that need the
3592 * write lock on the map: create an anonymous map
3593 * for a copy-on-write region, or an anonymous map
3594 * for a zero-fill region. (XXXCDC: submap case
3595 * ok?)
3596 */
3597
3598 if (!UVM_ET_ISSUBMAP(entry)) { /* not submap */
3599 if (UVM_ET_ISNEEDSCOPY(entry) &&
3600 ((entry->max_protection & VM_PROT_WRITE) ||
3601 (entry->object.uvm_obj == NULL))) {
3602 amap_copy(map, entry, 0, start, end);
3603 /* XXXCDC: wait OK? */
3604 }
3605 }
3606 }
3607 UVM_MAP_CLIP_START(map, entry, start);
3608 UVM_MAP_CLIP_END(map, entry, end);
3609 entry->wired_count++;
3610
3611 /*
3612 * Check for holes
3613 */
3614
3615 if (entry->protection == VM_PROT_NONE ||
3616 (entry->end < end &&
3617 (entry->next == &map->header ||
3618 entry->next->start > entry->end))) {
3619
3620 /*
3621 * found one. amap creation actions do not need to
3622 * be undone, but the wired counts need to be restored.
3623 */
3624
3625 while (entry != &map->header && entry->end > start) {
3626 entry->wired_count--;
3627 entry = entry->prev;
3628 }
3629 if ((lockflags & UVM_LK_EXIT) == 0)
3630 vm_map_unlock(map);
3631 UVMHIST_LOG(maphist,"<- done (INVALID WIRE)",0,0,0,0);
3632 return EINVAL;
3633 }
3634 entry = entry->next;
3635 }
3636
3637 /*
3638 * Pass 2.
3639 */
3640
3641 #ifdef DIAGNOSTIC
3642 timestamp_save = map->timestamp;
3643 #endif
3644 vm_map_busy(map);
3645 vm_map_unlock(map);
3646
3647 rv = 0;
3648 entry = start_entry;
3649 while (entry != &map->header && entry->start < end) {
3650 if (entry->wired_count == 1) {
3651 rv = uvm_fault_wire(map, entry->start, entry->end,
3652 entry->max_protection, 1);
3653 if (rv) {
3654
3655 /*
3656 * wiring failed. break out of the loop.
3657 * we'll clean up the map below, once we
3658 * have a write lock again.
3659 */
3660
3661 break;
3662 }
3663 }
3664 entry = entry->next;
3665 }
3666
3667 if (rv) { /* failed? */
3668
3669 /*
3670 * Get back to an exclusive (write) lock.
3671 */
3672
3673 vm_map_lock(map);
3674 vm_map_unbusy(map);
3675
3676 #ifdef DIAGNOSTIC
3677 if (timestamp_save + 1 != map->timestamp)
3678 panic("uvm_map_pageable: stale map");
3679 #endif
3680
3681 /*
3682 * first drop the wiring count on all the entries
3683 * which haven't actually been wired yet.
3684 */
3685
3686 failed_entry = entry;
3687 while (entry != &map->header && entry->start < end) {
3688 entry->wired_count--;
3689 entry = entry->next;
3690 }
3691
3692 /*
3693 * now, unwire all the entries that were successfully
3694 * wired above.
3695 */
3696
3697 entry = start_entry;
3698 while (entry != failed_entry) {
3699 entry->wired_count--;
3700 if (VM_MAPENT_ISWIRED(entry) == 0)
3701 uvm_map_entry_unwire(map, entry);
3702 entry = entry->next;
3703 }
3704 if ((lockflags & UVM_LK_EXIT) == 0)
3705 vm_map_unlock(map);
3706 UVMHIST_LOG(maphist, "<- done (RV=%jd)", rv,0,0,0);
3707 return (rv);
3708 }
3709
3710 if ((lockflags & UVM_LK_EXIT) == 0) {
3711 vm_map_unbusy(map);
3712 } else {
3713
3714 /*
3715 * Get back to an exclusive (write) lock.
3716 */
3717
3718 vm_map_lock(map);
3719 vm_map_unbusy(map);
3720 }
3721
3722 UVMHIST_LOG(maphist,"<- done (OK WIRE)",0,0,0,0);
3723 return 0;
3724 }
3725
3726 /*
3727 * uvm_map_pageable_all: special case of uvm_map_pageable - affects
3728 * all mapped regions.
3729 *
3730 * => map must not be locked.
3731 * => if no flags are specified, all regions are unwired.
3732 * => XXXJRT: has some of the same problems as uvm_map_pageable() above.
3733 */
3734
3735 int
3736 uvm_map_pageable_all(struct vm_map *map, int flags, vsize_t limit)
3737 {
3738 struct vm_map_entry *entry, *failed_entry;
3739 vsize_t size;
3740 int rv;
3741 #ifdef DIAGNOSTIC
3742 u_int timestamp_save;
3743 #endif
3744 UVMHIST_FUNC(__func__);
3745 UVMHIST_CALLARGS(maphist,"(map=%#jx,flags=%#jx)", (uintptr_t)map, flags,
3746 0, 0);
3747
3748 KASSERT(map->flags & VM_MAP_PAGEABLE);
3749
3750 vm_map_lock(map);
3751
3752 /*
3753 * handle wiring and unwiring separately.
3754 */
3755
3756 if (flags == 0) { /* unwire */
3757
3758 /*
3759 * POSIX 1003.1b -- munlockall unlocks all regions,
3760 * regardless of how many times mlockall has been called.
3761 */
3762
3763 for (entry = map->header.next; entry != &map->header;
3764 entry = entry->next) {
3765 if (VM_MAPENT_ISWIRED(entry))
3766 uvm_map_entry_unwire(map, entry);
3767 }
3768 map->flags &= ~VM_MAP_WIREFUTURE;
3769 vm_map_unlock(map);
3770 UVMHIST_LOG(maphist,"<- done (OK UNWIRE)",0,0,0,0);
3771 return 0;
3772 }
3773
3774 if (flags & MCL_FUTURE) {
3775
3776 /*
3777 * must wire all future mappings; remember this.
3778 */
3779
3780 map->flags |= VM_MAP_WIREFUTURE;
3781 }
3782
3783 if ((flags & MCL_CURRENT) == 0) {
3784
3785 /*
3786 * no more work to do!
3787 */
3788
3789 UVMHIST_LOG(maphist,"<- done (OK no wire)",0,0,0,0);
3790 vm_map_unlock(map);
3791 return 0;
3792 }
3793
3794 /*
3795 * wire case: in three passes [XXXCDC: ugly block of code here]
3796 *
3797 * 1: holding the write lock, count all pages mapped by non-wired
3798 * entries. if this would cause us to go over our limit, we fail.
3799 *
3800 * 2: still holding the write lock, we create any anonymous maps that
3801 * need to be created. then we increment its wiring count.
3802 *
3803 * 3: we downgrade to a read lock, and call uvm_fault_wire to fault
3804 * in the pages for any newly wired area (wired_count == 1).
3805 *
3806 * downgrading to a read lock for uvm_fault_wire avoids a possible
3807 * deadlock with another thread that may have faulted on one of
3808 * the pages to be wired (it would mark the page busy, blocking
3809 * us, then in turn block on the map lock that we hold). because
3810 * of problems in the recursive lock package, we cannot upgrade
3811 * to a write lock in vm_map_lookup. thus, any actions that
3812 * require the write lock must be done beforehand. because we
3813 * keep the read lock on the map, the copy-on-write status of the
3814 * entries we modify here cannot change.
3815 */
3816
3817 for (size = 0, entry = map->header.next; entry != &map->header;
3818 entry = entry->next) {
3819 if (entry->protection != VM_PROT_NONE &&
3820 VM_MAPENT_ISWIRED(entry) == 0) { /* not already wired? */
3821 size += entry->end - entry->start;
3822 }
3823 }
3824
3825 if (atop(size) + uvmexp.wired > uvmexp.wiredmax) {
3826 vm_map_unlock(map);
3827 return ENOMEM;
3828 }
3829
3830 if (limit != 0 &&
3831 (size + ptoa(pmap_wired_count(vm_map_pmap(map))) > limit)) {
3832 vm_map_unlock(map);
3833 return ENOMEM;
3834 }
3835
3836 /*
3837 * Pass 2.
3838 */
3839
3840 for (entry = map->header.next; entry != &map->header;
3841 entry = entry->next) {
3842 if (entry->protection == VM_PROT_NONE)
3843 continue;
3844 if (VM_MAPENT_ISWIRED(entry) == 0) { /* not already wired? */
3845
3846 /*
3847 * perform actions of vm_map_lookup that need the
3848 * write lock on the map: create an anonymous map
3849 * for a copy-on-write region, or an anonymous map
3850 * for a zero-fill region. (XXXCDC: submap case
3851 * ok?)
3852 */
3853
3854 if (!UVM_ET_ISSUBMAP(entry)) { /* not submap */
3855 if (UVM_ET_ISNEEDSCOPY(entry) &&
3856 ((entry->max_protection & VM_PROT_WRITE) ||
3857 (entry->object.uvm_obj == NULL))) {
3858 amap_copy(map, entry, 0, entry->start,
3859 entry->end);
3860 /* XXXCDC: wait OK? */
3861 }
3862 }
3863 }
3864 entry->wired_count++;
3865 }
3866
3867 /*
3868 * Pass 3.
3869 */
3870
3871 #ifdef DIAGNOSTIC
3872 timestamp_save = map->timestamp;
3873 #endif
3874 vm_map_busy(map);
3875 vm_map_unlock(map);
3876
3877 rv = 0;
3878 for (entry = map->header.next; entry != &map->header;
3879 entry = entry->next) {
3880 if (entry->wired_count == 1) {
3881 rv = uvm_fault_wire(map, entry->start, entry->end,
3882 entry->max_protection, 1);
3883 if (rv) {
3884
3885 /*
3886 * wiring failed. break out of the loop.
3887 * we'll clean up the map below, once we
3888 * have a write lock again.
3889 */
3890
3891 break;
3892 }
3893 }
3894 }
3895
3896 if (rv) {
3897
3898 /*
3899 * Get back an exclusive (write) lock.
3900 */
3901
3902 vm_map_lock(map);
3903 vm_map_unbusy(map);
3904
3905 #ifdef DIAGNOSTIC
3906 if (timestamp_save + 1 != map->timestamp)
3907 panic("uvm_map_pageable_all: stale map");
3908 #endif
3909
3910 /*
3911 * first drop the wiring count on all the entries
3912 * which haven't actually been wired yet.
3913 *
3914 * Skip VM_PROT_NONE entries like we did above.
3915 */
3916
3917 failed_entry = entry;
3918 for (/* nothing */; entry != &map->header;
3919 entry = entry->next) {
3920 if (entry->protection == VM_PROT_NONE)
3921 continue;
3922 entry->wired_count--;
3923 }
3924
3925 /*
3926 * now, unwire all the entries that were successfully
3927 * wired above.
3928 *
3929 * Skip VM_PROT_NONE entries like we did above.
3930 */
3931
3932 for (entry = map->header.next; entry != failed_entry;
3933 entry = entry->next) {
3934 if (entry->protection == VM_PROT_NONE)
3935 continue;
3936 entry->wired_count--;
3937 if (VM_MAPENT_ISWIRED(entry))
3938 uvm_map_entry_unwire(map, entry);
3939 }
3940 vm_map_unlock(map);
3941 UVMHIST_LOG(maphist,"<- done (RV=%jd)", rv,0,0,0);
3942 return (rv);
3943 }
3944
3945 vm_map_unbusy(map);
3946
3947 UVMHIST_LOG(maphist,"<- done (OK WIRE)",0,0,0,0);
3948 return 0;
3949 }
3950
3951 /*
3952 * uvm_map_clean: clean out a map range
3953 *
3954 * => valid flags:
3955 * if (flags & PGO_CLEANIT): dirty pages are cleaned first
3956 * if (flags & PGO_SYNCIO): dirty pages are written synchronously
3957 * if (flags & PGO_DEACTIVATE): any cached pages are deactivated after clean
3958 * if (flags & PGO_FREE): any cached pages are freed after clean
3959 * => returns an error if any part of the specified range isn't mapped
3960 * => never a need to flush amap layer since the anonymous memory has
3961 * no permanent home, but may deactivate pages there
3962 * => called from sys_msync() and sys_madvise()
3963 * => caller must not have map locked
3964 */
3965
3966 int
3967 uvm_map_clean(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
3968 {
3969 struct vm_map_entry *current, *entry;
3970 struct uvm_object *uobj;
3971 struct vm_amap *amap;
3972 struct vm_anon *anon;
3973 struct vm_page *pg;
3974 vaddr_t offset;
3975 vsize_t size;
3976 voff_t uoff;
3977 int error, refs;
3978 UVMHIST_FUNC(__func__);
3979 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,flags=%#jx)",
3980 (uintptr_t)map, start, end, flags);
3981
3982 KASSERT((flags & (PGO_FREE|PGO_DEACTIVATE)) !=
3983 (PGO_FREE|PGO_DEACTIVATE));
3984
3985 vm_map_lock(map);
3986 VM_MAP_RANGE_CHECK(map, start, end);
3987 if (!uvm_map_lookup_entry(map, start, &entry)) {
3988 vm_map_unlock(map);
3989 return EFAULT;
3990 }
3991
3992 /*
3993 * Make a first pass to check for holes and wiring problems.
3994 */
3995
3996 for (current = entry; current->start < end; current = current->next) {
3997 if (UVM_ET_ISSUBMAP(current)) {
3998 vm_map_unlock(map);
3999 return EINVAL;
4000 }
4001 if ((flags & PGO_FREE) != 0 && VM_MAPENT_ISWIRED(entry)) {
4002 vm_map_unlock(map);
4003 return EBUSY;
4004 }
4005 if (end <= current->end) {
4006 break;
4007 }
4008 if (current->end != current->next->start) {
4009 vm_map_unlock(map);
4010 return EFAULT;
4011 }
4012 }
4013
4014 vm_map_busy(map);
4015 vm_map_unlock(map);
4016 error = 0;
4017 for (current = entry; start < end; current = current->next) {
4018 amap = current->aref.ar_amap; /* upper layer */
4019 uobj = current->object.uvm_obj; /* lower layer */
4020 KASSERT(start >= current->start);
4021
4022 /*
4023 * No amap cleaning necessary if:
4024 *
4025 * (1) There's no amap.
4026 *
4027 * (2) We're not deactivating or freeing pages.
4028 */
4029
4030 if (amap == NULL || (flags & (PGO_DEACTIVATE|PGO_FREE)) == 0)
4031 goto flush_object;
4032
4033 offset = start - current->start;
4034 size = MIN(end, current->end) - start;
4035
4036 amap_lock(amap, RW_WRITER);
4037 for ( ; size != 0; size -= PAGE_SIZE, offset += PAGE_SIZE) {
4038 anon = amap_lookup(¤t->aref, offset);
4039 if (anon == NULL)
4040 continue;
4041
4042 KASSERT(anon->an_lock == amap->am_lock);
4043 pg = anon->an_page;
4044 if (pg == NULL) {
4045 continue;
4046 }
4047 if (pg->flags & PG_BUSY) {
4048 continue;
4049 }
4050
4051 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
4052
4053 /*
4054 * In these first 3 cases, we just deactivate the page.
4055 */
4056
4057 case PGO_CLEANIT|PGO_FREE:
4058 case PGO_CLEANIT|PGO_DEACTIVATE:
4059 case PGO_DEACTIVATE:
4060 deactivate_it:
4061 /*
4062 * skip the page if it's loaned or wired,
4063 * since it shouldn't be on a paging queue
4064 * at all in these cases.
4065 */
4066
4067 if (pg->loan_count != 0 ||
4068 pg->wire_count != 0) {
4069 continue;
4070 }
4071 KASSERT(pg->uanon == anon);
4072 uvm_pagelock(pg);
4073 uvm_pagedeactivate(pg);
4074 uvm_pageunlock(pg);
4075 continue;
4076
4077 case PGO_FREE:
4078
4079 /*
4080 * If there are multiple references to
4081 * the amap, just deactivate the page.
4082 */
4083
4084 if (amap_refs(amap) > 1)
4085 goto deactivate_it;
4086
4087 /* skip the page if it's wired */
4088 if (pg->wire_count != 0) {
4089 continue;
4090 }
4091 amap_unadd(¤t->aref, offset);
4092 refs = --anon->an_ref;
4093 if (refs == 0) {
4094 uvm_anfree(anon);
4095 }
4096 continue;
4097 }
4098 }
4099 amap_unlock(amap);
4100
4101 flush_object:
4102 /*
4103 * flush pages if we've got a valid backing object.
4104 * note that we must always clean object pages before
4105 * freeing them since otherwise we could reveal stale
4106 * data from files.
4107 */
4108
4109 uoff = current->offset + (start - current->start);
4110 size = MIN(end, current->end) - start;
4111 if (uobj != NULL) {
4112 rw_enter(uobj->vmobjlock, RW_WRITER);
4113 if (uobj->pgops->pgo_put != NULL)
4114 error = (uobj->pgops->pgo_put)(uobj, uoff,
4115 uoff + size, flags | PGO_CLEANIT);
4116 else
4117 error = 0;
4118 }
4119 start += size;
4120 }
4121 vm_map_unbusy(map);
4122 return error;
4123 }
4124
4125
4126 /*
4127 * uvm_map_checkprot: check protection in map
4128 *
4129 * => must allow specified protection in a fully allocated region.
4130 * => map must be read or write locked by caller.
4131 */
4132
4133 bool
4134 uvm_map_checkprot(struct vm_map *map, vaddr_t start, vaddr_t end,
4135 vm_prot_t protection)
4136 {
4137 struct vm_map_entry *entry;
4138 struct vm_map_entry *tmp_entry;
4139
4140 if (!uvm_map_lookup_entry(map, start, &tmp_entry)) {
4141 return (false);
4142 }
4143 entry = tmp_entry;
4144 while (start < end) {
4145 if (entry == &map->header) {
4146 return (false);
4147 }
4148
4149 /*
4150 * no holes allowed
4151 */
4152
4153 if (start < entry->start) {
4154 return (false);
4155 }
4156
4157 /*
4158 * check protection associated with entry
4159 */
4160
4161 if ((entry->protection & protection) != protection) {
4162 return (false);
4163 }
4164 start = entry->end;
4165 entry = entry->next;
4166 }
4167 return (true);
4168 }
4169
4170 /*
4171 * uvmspace_alloc: allocate a vmspace structure.
4172 *
4173 * - structure includes vm_map and pmap
4174 * - XXX: no locking on this structure
4175 * - refcnt set to 1, rest must be init'd by caller
4176 */
4177 struct vmspace *
4178 uvmspace_alloc(vaddr_t vmin, vaddr_t vmax, bool topdown)
4179 {
4180 struct vmspace *vm;
4181 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4182
4183 vm = kmem_alloc(sizeof(*vm), KM_SLEEP);
4184 uvmspace_init(vm, NULL, vmin, vmax, topdown);
4185 UVMHIST_LOG(maphist,"<- done (vm=%#jx)", (uintptr_t)vm, 0, 0, 0);
4186 return (vm);
4187 }
4188
4189 /*
4190 * uvmspace_init: initialize a vmspace structure.
4191 *
4192 * - XXX: no locking on this structure
4193 * - refcnt set to 1, rest must be init'd by caller
4194 */
4195 void
4196 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin,
4197 vaddr_t vmax, bool topdown)
4198 {
4199 UVMHIST_FUNC(__func__);
4200 UVMHIST_CALLARGS(maphist, "(vm=%#jx, pmap=%#jx, vmin=%#jx, vmax=%#jx",
4201 (uintptr_t)vm, (uintptr_t)pmap, vmin, vmax);
4202 UVMHIST_LOG(maphist, " topdown=%ju)", topdown, 0, 0, 0);
4203
4204 memset(vm, 0, sizeof(*vm));
4205 uvm_map_setup(&vm->vm_map, vmin, vmax, VM_MAP_PAGEABLE
4206 | (topdown ? VM_MAP_TOPDOWN : 0)
4207 );
4208 if (pmap)
4209 pmap_reference(pmap);
4210 else
4211 pmap = pmap_create();
4212 vm->vm_map.pmap = pmap;
4213 vm->vm_refcnt = 1;
4214 UVMHIST_LOG(maphist,"<- done",0,0,0,0);
4215 }
4216
4217 /*
4218 * uvmspace_share: share a vmspace between two processes
4219 *
4220 * - used for vfork, threads(?)
4221 */
4222
4223 void
4224 uvmspace_share(struct proc *p1, struct proc *p2)
4225 {
4226
4227 uvmspace_addref(p1->p_vmspace);
4228 p2->p_vmspace = p1->p_vmspace;
4229 }
4230
4231 #if 0
4232
4233 /*
4234 * uvmspace_unshare: ensure that process "p" has its own, unshared, vmspace
4235 *
4236 * - XXX: no locking on vmspace
4237 */
4238
4239 void
4240 uvmspace_unshare(struct lwp *l)
4241 {
4242 struct proc *p = l->l_proc;
4243 struct vmspace *nvm, *ovm = p->p_vmspace;
4244
4245 if (ovm->vm_refcnt == 1)
4246 /* nothing to do: vmspace isn't shared in the first place */
4247 return;
4248
4249 /* make a new vmspace, still holding old one */
4250 nvm = uvmspace_fork(ovm);
4251
4252 kpreempt_disable();
4253 pmap_deactivate(l); /* unbind old vmspace */
4254 p->p_vmspace = nvm;
4255 pmap_activate(l); /* switch to new vmspace */
4256 kpreempt_enable();
4257
4258 uvmspace_free(ovm); /* drop reference to old vmspace */
4259 }
4260
4261 #endif
4262
4263
4264 /*
4265 * uvmspace_spawn: a new process has been spawned and needs a vmspace
4266 */
4267
4268 void
4269 uvmspace_spawn(struct lwp *l, vaddr_t start, vaddr_t end, bool topdown)
4270 {
4271 struct proc *p = l->l_proc;
4272 struct vmspace *nvm;
4273
4274 #ifdef __HAVE_CPU_VMSPACE_EXEC
4275 cpu_vmspace_exec(l, start, end);
4276 #endif
4277
4278 nvm = uvmspace_alloc(start, end, topdown);
4279 kpreempt_disable();
4280 p->p_vmspace = nvm;
4281 pmap_activate(l);
4282 kpreempt_enable();
4283 }
4284
4285 /*
4286 * uvmspace_exec: the process wants to exec a new program
4287 */
4288
4289 void
4290 uvmspace_exec(struct lwp *l, vaddr_t start, vaddr_t end, bool topdown)
4291 {
4292 struct proc *p = l->l_proc;
4293 struct vmspace *nvm, *ovm = p->p_vmspace;
4294 struct vm_map *map;
4295 int flags;
4296
4297 KASSERT(ovm != NULL);
4298 #ifdef __HAVE_CPU_VMSPACE_EXEC
4299 cpu_vmspace_exec(l, start, end);
4300 #endif
4301
4302 map = &ovm->vm_map;
4303 /*
4304 * see if more than one process is using this vmspace...
4305 */
4306
4307 if (ovm->vm_refcnt == 1
4308 && topdown == ((ovm->vm_map.flags & VM_MAP_TOPDOWN) != 0)) {
4309
4310 /*
4311 * if p is the only process using its vmspace then we can safely
4312 * recycle that vmspace for the program that is being exec'd.
4313 * But only if TOPDOWN matches the requested value for the new
4314 * vm space!
4315 */
4316
4317 /*
4318 * SYSV SHM semantics require us to kill all segments on an exec
4319 */
4320 if (uvm_shmexit && ovm->vm_shm)
4321 (*uvm_shmexit)(ovm);
4322
4323 /*
4324 * POSIX 1003.1b -- "lock future mappings" is revoked
4325 * when a process execs another program image.
4326 */
4327
4328 map->flags &= ~VM_MAP_WIREFUTURE;
4329
4330 /*
4331 * now unmap the old program.
4332 *
4333 * XXX set VM_MAP_DYING for the duration, so pmap_update()
4334 * is not called until the pmap has been totally cleared out
4335 * after pmap_remove_all(), or it can confuse some pmap
4336 * implementations. it would be nice to handle this by
4337 * deferring the pmap_update() while it is known the address
4338 * space is not visible to any user LWP other than curlwp,
4339 * but there isn't an elegant way of inferring that right
4340 * now.
4341 */
4342
4343 flags = pmap_remove_all(map->pmap) ? UVM_FLAG_VAONLY : 0;
4344 map->flags |= VM_MAP_DYING;
4345 uvm_unmap1(map, vm_map_min(map), vm_map_max(map), flags);
4346 map->flags &= ~VM_MAP_DYING;
4347 pmap_update(map->pmap);
4348 KASSERT(map->header.prev == &map->header);
4349 KASSERT(map->nentries == 0);
4350
4351 /*
4352 * resize the map
4353 */
4354
4355 vm_map_setmin(map, start);
4356 vm_map_setmax(map, end);
4357 } else {
4358
4359 /*
4360 * p's vmspace is being shared, so we can't reuse it for p since
4361 * it is still being used for others. allocate a new vmspace
4362 * for p
4363 */
4364
4365 nvm = uvmspace_alloc(start, end, topdown);
4366
4367 /*
4368 * install new vmspace and drop our ref to the old one.
4369 */
4370
4371 kpreempt_disable();
4372 pmap_deactivate(l);
4373 p->p_vmspace = nvm;
4374 pmap_activate(l);
4375 kpreempt_enable();
4376
4377 uvmspace_free(ovm);
4378 }
4379 }
4380
4381 /*
4382 * uvmspace_addref: add a reference to a vmspace.
4383 */
4384
4385 void
4386 uvmspace_addref(struct vmspace *vm)
4387 {
4388
4389 KASSERT((vm->vm_map.flags & VM_MAP_DYING) == 0);
4390 KASSERT(vm->vm_refcnt > 0);
4391 atomic_inc_uint(&vm->vm_refcnt);
4392 }
4393
4394 /*
4395 * uvmspace_free: free a vmspace data structure
4396 */
4397
4398 void
4399 uvmspace_free(struct vmspace *vm)
4400 {
4401 struct vm_map_entry *dead_entries;
4402 struct vm_map *map = &vm->vm_map;
4403 int flags;
4404
4405 UVMHIST_FUNC(__func__);
4406 UVMHIST_CALLARGS(maphist,"(vm=%#jx) ref=%jd", (uintptr_t)vm,
4407 vm->vm_refcnt, 0, 0);
4408
4409 membar_release();
4410 if (atomic_dec_uint_nv(&vm->vm_refcnt) > 0)
4411 return;
4412 membar_acquire();
4413
4414 /*
4415 * at this point, there should be no other references to the map.
4416 * delete all of the mappings, then destroy the pmap.
4417 */
4418
4419 map->flags |= VM_MAP_DYING;
4420 flags = pmap_remove_all(map->pmap) ? UVM_FLAG_VAONLY : 0;
4421
4422 /* Get rid of any SYSV shared memory segments. */
4423 if (uvm_shmexit && vm->vm_shm != NULL)
4424 (*uvm_shmexit)(vm);
4425
4426 if (map->nentries) {
4427 uvm_unmap_remove(map, vm_map_min(map), vm_map_max(map),
4428 &dead_entries, flags);
4429 if (dead_entries != NULL)
4430 uvm_unmap_detach(dead_entries, 0);
4431 }
4432 KASSERT(map->nentries == 0);
4433 KASSERT(map->size == 0);
4434
4435 mutex_destroy(&map->misc_lock);
4436 rw_destroy(&map->lock);
4437 cv_destroy(&map->cv);
4438 pmap_destroy(map->pmap);
4439 kmem_free(vm, sizeof(*vm));
4440 }
4441
4442 static struct vm_map_entry *
4443 uvm_mapent_clone(struct vm_map *new_map, struct vm_map_entry *old_entry,
4444 int flags)
4445 {
4446 struct vm_map_entry *new_entry;
4447
4448 new_entry = uvm_mapent_alloc(new_map, 0);
4449 /* old_entry -> new_entry */
4450 uvm_mapent_copy(old_entry, new_entry);
4451
4452 /* new pmap has nothing wired in it */
4453 new_entry->wired_count = 0;
4454
4455 /*
4456 * gain reference to object backing the map (can't
4457 * be a submap, already checked this case).
4458 */
4459
4460 if (new_entry->aref.ar_amap)
4461 uvm_map_reference_amap(new_entry, flags);
4462
4463 if (new_entry->object.uvm_obj &&
4464 new_entry->object.uvm_obj->pgops->pgo_reference)
4465 new_entry->object.uvm_obj->pgops->pgo_reference(
4466 new_entry->object.uvm_obj);
4467
4468 /* insert entry at end of new_map's entry list */
4469 uvm_map_entry_link(new_map, new_map->header.prev,
4470 new_entry);
4471
4472 return new_entry;
4473 }
4474
4475 /*
4476 * share the mapping: this means we want the old and
4477 * new entries to share amaps and backing objects.
4478 */
4479 static void
4480 uvm_mapent_forkshared(struct vm_map *new_map, struct vm_map *old_map,
4481 struct vm_map_entry *old_entry)
4482 {
4483 /*
4484 * if the old_entry needs a new amap (due to prev fork)
4485 * then we need to allocate it now so that we have
4486 * something we own to share with the new_entry. [in
4487 * other words, we need to clear needs_copy]
4488 */
4489
4490 if (UVM_ET_ISNEEDSCOPY(old_entry)) {
4491 /* get our own amap, clears needs_copy */
4492 amap_copy(old_map, old_entry, AMAP_COPY_NOCHUNK,
4493 0, 0);
4494 /* XXXCDC: WAITOK??? */
4495 }
4496
4497 uvm_mapent_clone(new_map, old_entry, AMAP_SHARED);
4498 }
4499
4500
4501 static void
4502 uvm_mapent_forkcopy(struct vm_map *new_map, struct vm_map *old_map,
4503 struct vm_map_entry *old_entry)
4504 {
4505 struct vm_map_entry *new_entry;
4506
4507 /*
4508 * copy-on-write the mapping (using mmap's
4509 * MAP_PRIVATE semantics)
4510 *
4511 * allocate new_entry, adjust reference counts.
4512 * (note that new references are read-only).
4513 */
4514
4515 new_entry = uvm_mapent_clone(new_map, old_entry, 0);
4516
4517 new_entry->etype |=
4518 (UVM_ET_COPYONWRITE|UVM_ET_NEEDSCOPY);
4519
4520 /*
4521 * the new entry will need an amap. it will either
4522 * need to be copied from the old entry or created
4523 * from scratch (if the old entry does not have an
4524 * amap). can we defer this process until later
4525 * (by setting "needs_copy") or do we need to copy
4526 * the amap now?
4527 *
4528 * we must copy the amap now if any of the following
4529 * conditions hold:
4530 * 1. the old entry has an amap and that amap is
4531 * being shared. this means that the old (parent)
4532 * process is sharing the amap with another
4533 * process. if we do not clear needs_copy here
4534 * we will end up in a situation where both the
4535 * parent and child process are referring to the
4536 * same amap with "needs_copy" set. if the
4537 * parent write-faults, the fault routine will
4538 * clear "needs_copy" in the parent by allocating
4539 * a new amap. this is wrong because the
4540 * parent is supposed to be sharing the old amap
4541 * and the new amap will break that.
4542 *
4543 * 2. if the old entry has an amap and a non-zero
4544 * wire count then we are going to have to call
4545 * amap_cow_now to avoid page faults in the
4546 * parent process. since amap_cow_now requires
4547 * "needs_copy" to be clear we might as well
4548 * clear it here as well.
4549 *
4550 */
4551
4552 if (old_entry->aref.ar_amap != NULL) {
4553 if ((amap_flags(old_entry->aref.ar_amap) & AMAP_SHARED) != 0 ||
4554 VM_MAPENT_ISWIRED(old_entry)) {
4555
4556 amap_copy(new_map, new_entry,
4557 AMAP_COPY_NOCHUNK, 0, 0);
4558 /* XXXCDC: M_WAITOK ... ok? */
4559 }
4560 }
4561
4562 /*
4563 * if the parent's entry is wired down, then the
4564 * parent process does not want page faults on
4565 * access to that memory. this means that we
4566 * cannot do copy-on-write because we can't write
4567 * protect the old entry. in this case we
4568 * resolve all copy-on-write faults now, using
4569 * amap_cow_now. note that we have already
4570 * allocated any needed amap (above).
4571 */
4572
4573 if (VM_MAPENT_ISWIRED(old_entry)) {
4574
4575 /*
4576 * resolve all copy-on-write faults now
4577 * (note that there is nothing to do if
4578 * the old mapping does not have an amap).
4579 */
4580 if (old_entry->aref.ar_amap)
4581 amap_cow_now(new_map, new_entry);
4582
4583 } else {
4584 /*
4585 * setup mappings to trigger copy-on-write faults
4586 * we must write-protect the parent if it has
4587 * an amap and it is not already "needs_copy"...
4588 * if it is already "needs_copy" then the parent
4589 * has already been write-protected by a previous
4590 * fork operation.
4591 */
4592 if (old_entry->aref.ar_amap &&
4593 !UVM_ET_ISNEEDSCOPY(old_entry)) {
4594 if (old_entry->max_protection & VM_PROT_WRITE) {
4595 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
4596 uvm_map_lock_entry(old_entry, RW_WRITER);
4597 #else
4598 uvm_map_lock_entry(old_entry, RW_READER);
4599 #endif
4600 pmap_protect(old_map->pmap,
4601 old_entry->start, old_entry->end,
4602 old_entry->protection & ~VM_PROT_WRITE);
4603 uvm_map_unlock_entry(old_entry);
4604 }
4605 old_entry->etype |= UVM_ET_NEEDSCOPY;
4606 }
4607 }
4608 }
4609
4610 /*
4611 * zero the mapping: the new entry will be zero initialized
4612 */
4613 static void
4614 uvm_mapent_forkzero(struct vm_map *new_map, struct vm_map *old_map,
4615 struct vm_map_entry *old_entry)
4616 {
4617 struct vm_map_entry *new_entry;
4618
4619 new_entry = uvm_mapent_clone(new_map, old_entry, 0);
4620
4621 new_entry->etype |=
4622 (UVM_ET_COPYONWRITE|UVM_ET_NEEDSCOPY);
4623
4624 if (new_entry->aref.ar_amap) {
4625 uvm_map_unreference_amap(new_entry, 0);
4626 new_entry->aref.ar_pageoff = 0;
4627 new_entry->aref.ar_amap = NULL;
4628 }
4629
4630 if (UVM_ET_ISOBJ(new_entry)) {
4631 if (new_entry->object.uvm_obj->pgops->pgo_detach)
4632 new_entry->object.uvm_obj->pgops->pgo_detach(
4633 new_entry->object.uvm_obj);
4634 new_entry->object.uvm_obj = NULL;
4635 new_entry->offset = 0;
4636 new_entry->etype &= ~UVM_ET_OBJ;
4637 }
4638 }
4639
4640 /*
4641 * F O R K - m a i n e n t r y p o i n t
4642 */
4643 /*
4644 * uvmspace_fork: fork a process' main map
4645 *
4646 * => create a new vmspace for child process from parent.
4647 * => parent's map must not be locked.
4648 */
4649
4650 struct vmspace *
4651 uvmspace_fork(struct vmspace *vm1)
4652 {
4653 struct vmspace *vm2;
4654 struct vm_map *old_map = &vm1->vm_map;
4655 struct vm_map *new_map;
4656 struct vm_map_entry *old_entry;
4657 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4658
4659 vm_map_lock(old_map);
4660
4661 vm2 = uvmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4662 vm1->vm_map.flags & VM_MAP_TOPDOWN);
4663 memcpy(&vm2->vm_startcopy, &vm1->vm_startcopy,
4664 (char *) (vm1 + 1) - (char *) &vm1->vm_startcopy);
4665 new_map = &vm2->vm_map; /* XXX */
4666
4667 old_entry = old_map->header.next;
4668 new_map->size = old_map->size;
4669
4670 /*
4671 * go entry-by-entry
4672 */
4673
4674 while (old_entry != &old_map->header) {
4675
4676 /*
4677 * first, some sanity checks on the old entry
4678 */
4679
4680 KASSERT(!UVM_ET_ISSUBMAP(old_entry));
4681 KASSERT(UVM_ET_ISCOPYONWRITE(old_entry) ||
4682 !UVM_ET_ISNEEDSCOPY(old_entry));
4683
4684 switch (old_entry->inheritance) {
4685 case MAP_INHERIT_NONE:
4686 /*
4687 * drop the mapping, modify size
4688 */
4689 new_map->size -= old_entry->end - old_entry->start;
4690 break;
4691
4692 case MAP_INHERIT_SHARE:
4693 uvm_mapent_forkshared(new_map, old_map, old_entry);
4694 break;
4695
4696 case MAP_INHERIT_COPY:
4697 uvm_mapent_forkcopy(new_map, old_map, old_entry);
4698 break;
4699
4700 case MAP_INHERIT_ZERO:
4701 uvm_mapent_forkzero(new_map, old_map, old_entry);
4702 break;
4703 default:
4704 KASSERT(0);
4705 break;
4706 }
4707 old_entry = old_entry->next;
4708 }
4709
4710 pmap_update(old_map->pmap);
4711 vm_map_unlock(old_map);
4712
4713 if (uvm_shmfork && vm1->vm_shm)
4714 (*uvm_shmfork)(vm1, vm2);
4715
4716 #ifdef PMAP_FORK
4717 pmap_fork(vm1->vm_map.pmap, vm2->vm_map.pmap);
4718 #endif
4719
4720 UVMHIST_LOG(maphist,"<- done",0,0,0,0);
4721 return (vm2);
4722 }
4723
4724
4725 /*
4726 * uvm_mapent_trymerge: try to merge an entry with its neighbors.
4727 *
4728 * => called with map locked.
4729 * => return non zero if successfully merged.
4730 */
4731
4732 int
4733 uvm_mapent_trymerge(struct vm_map *map, struct vm_map_entry *entry, int flags)
4734 {
4735 struct uvm_object *uobj;
4736 struct vm_map_entry *next;
4737 struct vm_map_entry *prev;
4738 vsize_t size;
4739 int merged = 0;
4740 bool copying;
4741 int newetype;
4742
4743 if (entry->aref.ar_amap != NULL) {
4744 return 0;
4745 }
4746 if ((entry->flags & UVM_MAP_NOMERGE) != 0) {
4747 return 0;
4748 }
4749
4750 uobj = entry->object.uvm_obj;
4751 size = entry->end - entry->start;
4752 copying = (flags & UVM_MERGE_COPYING) != 0;
4753 newetype = copying ? (entry->etype & ~UVM_ET_NEEDSCOPY) : entry->etype;
4754
4755 next = entry->next;
4756 if (next != &map->header &&
4757 next->start == entry->end &&
4758 ((copying && next->aref.ar_amap != NULL &&
4759 amap_refs(next->aref.ar_amap) == 1) ||
4760 (!copying && next->aref.ar_amap == NULL)) &&
4761 UVM_ET_ISCOMPATIBLE(next, newetype,
4762 uobj, entry->flags, entry->protection,
4763 entry->max_protection, entry->inheritance, entry->advice,
4764 entry->wired_count) &&
4765 (uobj == NULL || entry->offset + size == next->offset)) {
4766 int error;
4767
4768 if (copying) {
4769 error = amap_extend(next, size,
4770 AMAP_EXTEND_NOWAIT|AMAP_EXTEND_BACKWARDS);
4771 } else {
4772 error = 0;
4773 }
4774 if (error == 0) {
4775 if (uobj) {
4776 if (uobj->pgops->pgo_detach) {
4777 uobj->pgops->pgo_detach(uobj);
4778 }
4779 }
4780
4781 entry->end = next->end;
4782 clear_hints(map, next);
4783 uvm_map_entry_unlink(map, next);
4784 if (copying) {
4785 entry->aref = next->aref;
4786 entry->etype &= ~UVM_ET_NEEDSCOPY;
4787 }
4788 uvm_map_check(map, "trymerge forwardmerge");
4789 uvm_mapent_free(next);
4790 merged++;
4791 }
4792 }
4793
4794 prev = entry->prev;
4795 if (prev != &map->header &&
4796 prev->end == entry->start &&
4797 ((copying && !merged && prev->aref.ar_amap != NULL &&
4798 amap_refs(prev->aref.ar_amap) == 1) ||
4799 (!copying && prev->aref.ar_amap == NULL)) &&
4800 UVM_ET_ISCOMPATIBLE(prev, newetype,
4801 uobj, entry->flags, entry->protection,
4802 entry->max_protection, entry->inheritance, entry->advice,
4803 entry->wired_count) &&
4804 (uobj == NULL ||
4805 prev->offset + prev->end - prev->start == entry->offset)) {
4806 int error;
4807
4808 if (copying) {
4809 error = amap_extend(prev, size,
4810 AMAP_EXTEND_NOWAIT|AMAP_EXTEND_FORWARDS);
4811 } else {
4812 error = 0;
4813 }
4814 if (error == 0) {
4815 if (uobj) {
4816 if (uobj->pgops->pgo_detach) {
4817 uobj->pgops->pgo_detach(uobj);
4818 }
4819 entry->offset = prev->offset;
4820 }
4821
4822 entry->start = prev->start;
4823 clear_hints(map, prev);
4824 uvm_map_entry_unlink(map, prev);
4825 if (copying) {
4826 entry->aref = prev->aref;
4827 entry->etype &= ~UVM_ET_NEEDSCOPY;
4828 }
4829 uvm_map_check(map, "trymerge backmerge");
4830 uvm_mapent_free(prev);
4831 merged++;
4832 }
4833 }
4834
4835 return merged;
4836 }
4837
4838 /*
4839 * uvm_map_setup: init map
4840 *
4841 * => map must not be in service yet.
4842 */
4843
4844 void
4845 uvm_map_setup(struct vm_map *map, vaddr_t vmin, vaddr_t vmax, int flags)
4846 {
4847
4848 rb_tree_init(&map->rb_tree, &uvm_map_tree_ops);
4849 map->header.next = map->header.prev = &map->header;
4850 map->nentries = 0;
4851 map->size = 0;
4852 map->ref_count = 1;
4853 vm_map_setmin(map, vmin);
4854 vm_map_setmax(map, vmax);
4855 map->flags = flags;
4856 map->first_free = &map->header;
4857 map->hint = &map->header;
4858 map->timestamp = 0;
4859 map->busy = NULL;
4860
4861 rw_init(&map->lock);
4862 cv_init(&map->cv, "vm_map");
4863 mutex_init(&map->misc_lock, MUTEX_DRIVER, IPL_NONE);
4864 }
4865
4866 /*
4867 * U N M A P - m a i n e n t r y p o i n t
4868 */
4869
4870 /*
4871 * uvm_unmap1: remove mappings from a vm_map (from "start" up to "stop")
4872 *
4873 * => caller must check alignment and size
4874 * => map must be unlocked (we will lock it)
4875 * => flags is UVM_FLAG_QUANTUM or 0.
4876 */
4877
4878 void
4879 uvm_unmap1(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
4880 {
4881 struct vm_map_entry *dead_entries;
4882 UVMHIST_FUNC(__func__);
4883 UVMHIST_CALLARGS(maphist, " (map=%#jx, start=%#jx, end=%#jx)",
4884 (uintptr_t)map, start, end, 0);
4885
4886 KASSERTMSG(start < end,
4887 "%s: map %p: start %#jx < end %#jx", __func__, map,
4888 (uintmax_t)start, (uintmax_t)end);
4889 if (map == kernel_map) {
4890 LOCKDEBUG_MEM_CHECK((void *)start, end - start);
4891 }
4892
4893 /*
4894 * work now done by helper functions. wipe the pmap's and then
4895 * detach from the dead entries...
4896 */
4897 vm_map_lock(map);
4898 uvm_unmap_remove(map, start, end, &dead_entries, flags);
4899 vm_map_unlock(map);
4900
4901 if (dead_entries != NULL)
4902 uvm_unmap_detach(dead_entries, 0);
4903
4904 UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
4905 }
4906
4907
4908 /*
4909 * uvm_map_reference: add reference to a map
4910 *
4911 * => map need not be locked
4912 */
4913
4914 void
4915 uvm_map_reference(struct vm_map *map)
4916 {
4917
4918 atomic_inc_uint(&map->ref_count);
4919 }
4920
4921 void
4922 uvm_map_lock_entry(struct vm_map_entry *entry, krw_t op)
4923 {
4924
4925 if (entry->aref.ar_amap != NULL) {
4926 amap_lock(entry->aref.ar_amap, op);
4927 }
4928 if (UVM_ET_ISOBJ(entry)) {
4929 rw_enter(entry->object.uvm_obj->vmobjlock, op);
4930 }
4931 }
4932
4933 void
4934 uvm_map_unlock_entry(struct vm_map_entry *entry)
4935 {
4936
4937 if (UVM_ET_ISOBJ(entry)) {
4938 rw_exit(entry->object.uvm_obj->vmobjlock);
4939 }
4940 if (entry->aref.ar_amap != NULL) {
4941 amap_unlock(entry->aref.ar_amap);
4942 }
4943 }
4944
4945 #define UVM_VOADDR_TYPE_MASK 0x3UL
4946 #define UVM_VOADDR_TYPE_UOBJ 0x1UL
4947 #define UVM_VOADDR_TYPE_ANON 0x2UL
4948 #define UVM_VOADDR_OBJECT_MASK ~UVM_VOADDR_TYPE_MASK
4949
4950 #define UVM_VOADDR_GET_TYPE(voa) \
4951 ((voa)->object & UVM_VOADDR_TYPE_MASK)
4952 #define UVM_VOADDR_GET_OBJECT(voa) \
4953 ((voa)->object & UVM_VOADDR_OBJECT_MASK)
4954 #define UVM_VOADDR_SET_OBJECT(voa, obj, type) \
4955 do { \
4956 KASSERT(((uintptr_t)(obj) & UVM_VOADDR_TYPE_MASK) == 0); \
4957 (voa)->object = ((uintptr_t)(obj)) | (type); \
4958 } while (/*CONSTCOND*/0)
4959
4960 #define UVM_VOADDR_GET_UOBJ(voa) \
4961 ((struct uvm_object *)UVM_VOADDR_GET_OBJECT(voa))
4962 #define UVM_VOADDR_SET_UOBJ(voa, uobj) \
4963 UVM_VOADDR_SET_OBJECT(voa, uobj, UVM_VOADDR_TYPE_UOBJ)
4964
4965 #define UVM_VOADDR_GET_ANON(voa) \
4966 ((struct vm_anon *)UVM_VOADDR_GET_OBJECT(voa))
4967 #define UVM_VOADDR_SET_ANON(voa, anon) \
4968 UVM_VOADDR_SET_OBJECT(voa, anon, UVM_VOADDR_TYPE_ANON)
4969
4970 /*
4971 * uvm_voaddr_acquire: returns the virtual object address corresponding
4972 * to the specified virtual address.
4973 *
4974 * => resolves COW so the true page identity is tracked.
4975 *
4976 * => acquires a reference on the page's owner (uvm_object or vm_anon)
4977 */
4978 bool
4979 uvm_voaddr_acquire(struct vm_map * const map, vaddr_t const va,
4980 struct uvm_voaddr * const voaddr)
4981 {
4982 struct vm_map_entry *entry;
4983 struct vm_anon *anon = NULL;
4984 bool result = false;
4985 bool exclusive = false;
4986 void (*unlock_fn)(struct vm_map *);
4987
4988 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4989 UVMHIST_LOG(maphist,"(map=%#jx,va=%#jx)", (uintptr_t)map, va, 0, 0);
4990
4991 const vaddr_t start = trunc_page(va);
4992 const vaddr_t end = round_page(va+1);
4993
4994 lookup_again:
4995 if (__predict_false(exclusive)) {
4996 vm_map_lock(map);
4997 unlock_fn = vm_map_unlock;
4998 } else {
4999 vm_map_lock_read(map);
5000 unlock_fn = vm_map_unlock_read;
5001 }
5002
5003 if (__predict_false(!uvm_map_lookup_entry(map, start, &entry))) {
5004 unlock_fn(map);
5005 UVMHIST_LOG(maphist,"<- done (no entry)",0,0,0,0);
5006 return false;
5007 }
5008
5009 if (__predict_false(entry->protection == VM_PROT_NONE)) {
5010 unlock_fn(map);
5011 UVMHIST_LOG(maphist,"<- done (PROT_NONE)",0,0,0,0);
5012 return false;
5013 }
5014
5015 /*
5016 * We have a fast path for the common case of "no COW resolution
5017 * needed" whereby we have taken a read lock on the map and if
5018 * we don't encounter any need to create a vm_anon then great!
5019 * But if we do, we loop around again, instead taking an exclusive
5020 * lock so that we can perform the fault.
5021 *
5022 * In the event that we have to resolve the fault, we do nearly the
5023 * same work as uvm_map_pageable() does:
5024 *
5025 * 1: holding the write lock, we create any anonymous maps that need
5026 * to be created. however, we do NOT need to clip the map entries
5027 * in this case.
5028 *
5029 * 2: we downgrade to a read lock, and call uvm_fault_wire to fault
5030 * in the page (assuming the entry is not already wired). this
5031 * is done because we need the vm_anon to be present.
5032 */
5033 if (__predict_true(!VM_MAPENT_ISWIRED(entry))) {
5034
5035 bool need_fault = false;
5036
5037 /*
5038 * perform the action of vm_map_lookup that need the
5039 * write lock on the map: create an anonymous map for
5040 * a copy-on-write region, or an anonymous map for
5041 * a zero-fill region.
5042 */
5043 if (__predict_false(UVM_ET_ISSUBMAP(entry))) {
5044 unlock_fn(map);
5045 UVMHIST_LOG(maphist,"<- done (submap)",0,0,0,0);
5046 return false;
5047 }
5048 if (__predict_false(UVM_ET_ISNEEDSCOPY(entry) &&
5049 ((entry->max_protection & VM_PROT_WRITE) ||
5050 (entry->object.uvm_obj == NULL)))) {
5051 if (!exclusive) {
5052 /* need to take the slow path */
5053 KASSERT(unlock_fn == vm_map_unlock_read);
5054 vm_map_unlock_read(map);
5055 exclusive = true;
5056 goto lookup_again;
5057 }
5058 need_fault = true;
5059 amap_copy(map, entry, 0, start, end);
5060 /* XXXCDC: wait OK? */
5061 }
5062
5063 /*
5064 * do a quick check to see if the fault has already
5065 * been resolved to the upper layer.
5066 */
5067 if (__predict_true(entry->aref.ar_amap != NULL &&
5068 need_fault == false)) {
5069 amap_lock(entry->aref.ar_amap, RW_WRITER);
5070 anon = amap_lookup(&entry->aref, start - entry->start);
5071 if (__predict_true(anon != NULL)) {
5072 /* amap unlocked below */
5073 goto found_anon;
5074 }
5075 amap_unlock(entry->aref.ar_amap);
5076 need_fault = true;
5077 }
5078
5079 /*
5080 * we predict this test as false because if we reach
5081 * this point, then we are likely dealing with a
5082 * shared memory region backed by a uvm_object, in
5083 * which case a fault to create the vm_anon is not
5084 * necessary.
5085 */
5086 if (__predict_false(need_fault)) {
5087 if (exclusive) {
5088 vm_map_busy(map);
5089 vm_map_unlock(map);
5090 unlock_fn = vm_map_unbusy;
5091 }
5092
5093 if (uvm_fault_wire(map, start, end,
5094 entry->max_protection, 1)) {
5095 /* wiring failed */
5096 unlock_fn(map);
5097 UVMHIST_LOG(maphist,"<- done (wire failed)",
5098 0,0,0,0);
5099 return false;
5100 }
5101
5102 /*
5103 * now that we have resolved the fault, we can unwire
5104 * the page.
5105 */
5106 if (exclusive) {
5107 vm_map_lock(map);
5108 vm_map_unbusy(map);
5109 unlock_fn = vm_map_unlock;
5110 }
5111
5112 uvm_fault_unwire_locked(map, start, end);
5113 }
5114 }
5115
5116 /* check the upper layer */
5117 if (entry->aref.ar_amap) {
5118 amap_lock(entry->aref.ar_amap, RW_WRITER);
5119 anon = amap_lookup(&entry->aref, start - entry->start);
5120 if (anon) {
5121 found_anon: KASSERT(anon->an_lock == entry->aref.ar_amap->am_lock);
5122 anon->an_ref++;
5123 rw_obj_hold(anon->an_lock);
5124 KASSERT(anon->an_ref != 0);
5125 UVM_VOADDR_SET_ANON(voaddr, anon);
5126 voaddr->offset = va & PAGE_MASK;
5127 result = true;
5128 }
5129 amap_unlock(entry->aref.ar_amap);
5130 }
5131
5132 /* check the lower layer */
5133 if (!result && UVM_ET_ISOBJ(entry)) {
5134 struct uvm_object *uobj = entry->object.uvm_obj;
5135
5136 KASSERT(uobj != NULL);
5137 (*uobj->pgops->pgo_reference)(uobj);
5138 UVM_VOADDR_SET_UOBJ(voaddr, uobj);
5139 voaddr->offset = entry->offset + (va - entry->start);
5140 result = true;
5141 }
5142
5143 unlock_fn(map);
5144
5145 if (result) {
5146 UVMHIST_LOG(maphist,
5147 "<- done OK (type=%jd,owner=%#jx,offset=%#jx)",
5148 UVM_VOADDR_GET_TYPE(voaddr),
5149 UVM_VOADDR_GET_OBJECT(voaddr),
5150 voaddr->offset, 0);
5151 } else {
5152 UVMHIST_LOG(maphist,"<- done (failed)",0,0,0,0);
5153 }
5154
5155 return result;
5156 }
5157
5158 /*
5159 * uvm_voaddr_release: release the references held by the
5160 * vitual object address.
5161 */
5162 void
5163 uvm_voaddr_release(struct uvm_voaddr * const voaddr)
5164 {
5165
5166 switch (UVM_VOADDR_GET_TYPE(voaddr)) {
5167 case UVM_VOADDR_TYPE_UOBJ: {
5168 struct uvm_object * const uobj = UVM_VOADDR_GET_UOBJ(voaddr);
5169
5170 KASSERT(uobj != NULL);
5171 KASSERT(uobj->pgops->pgo_detach != NULL);
5172 (*uobj->pgops->pgo_detach)(uobj);
5173 break;
5174 }
5175 case UVM_VOADDR_TYPE_ANON: {
5176 struct vm_anon * const anon = UVM_VOADDR_GET_ANON(voaddr);
5177 krwlock_t *lock;
5178
5179 KASSERT(anon != NULL);
5180 rw_enter((lock = anon->an_lock), RW_WRITER);
5181 KASSERT(anon->an_ref > 0);
5182 if (--anon->an_ref == 0) {
5183 uvm_anfree(anon);
5184 }
5185 rw_exit(lock);
5186 rw_obj_free(lock);
5187 break;
5188 }
5189 default:
5190 panic("uvm_voaddr_release: bad type");
5191 }
5192 memset(voaddr, 0, sizeof(*voaddr));
5193 }
5194
5195 /*
5196 * uvm_voaddr_compare: compare two uvm_voaddr objects.
5197 *
5198 * => memcmp() semantics
5199 */
5200 int
5201 uvm_voaddr_compare(const struct uvm_voaddr * const voaddr1,
5202 const struct uvm_voaddr * const voaddr2)
5203 {
5204 const uintptr_t type1 = UVM_VOADDR_GET_TYPE(voaddr1);
5205 const uintptr_t type2 = UVM_VOADDR_GET_TYPE(voaddr2);
5206
5207 KASSERT(type1 == UVM_VOADDR_TYPE_UOBJ ||
5208 type1 == UVM_VOADDR_TYPE_ANON);
5209
5210 KASSERT(type2 == UVM_VOADDR_TYPE_UOBJ ||
5211 type2 == UVM_VOADDR_TYPE_ANON);
5212
5213 if (type1 < type2)
5214 return -1;
5215 if (type1 > type2)
5216 return 1;
5217
5218 const uintptr_t addr1 = UVM_VOADDR_GET_OBJECT(voaddr1);
5219 const uintptr_t addr2 = UVM_VOADDR_GET_OBJECT(voaddr2);
5220
5221 if (addr1 < addr2)
5222 return -1;
5223 if (addr1 > addr2)
5224 return 1;
5225
5226 if (voaddr1->offset < voaddr2->offset)
5227 return -1;
5228 if (voaddr1->offset > voaddr2->offset)
5229 return 1;
5230
5231 return 0;
5232 }
5233
5234 #if defined(DDB) || defined(DEBUGPRINT)
5235
5236 /*
5237 * uvm_map_printit: actually prints the map
5238 */
5239
5240 void
5241 uvm_map_printit(struct vm_map *map, bool full,
5242 void (*pr)(const char *, ...))
5243 {
5244 struct vm_map_entry *entry;
5245
5246 (*pr)("MAP %p: [%#lx->%#lx]\n", map, vm_map_min(map),
5247 vm_map_max(map));
5248 (*pr)("\t#ent=%d, sz=%d, ref=%d, version=%d, flags=%#x\n",
5249 map->nentries, map->size, map->ref_count, map->timestamp,
5250 map->flags);
5251 (*pr)("\tpmap=%p(resident=%ld, wired=%ld)\n", map->pmap,
5252 pmap_resident_count(map->pmap), pmap_wired_count(map->pmap));
5253 if (!full)
5254 return;
5255 for (entry = map->header.next; entry != &map->header;
5256 entry = entry->next) {
5257 (*pr)(" - %p: %#lx->%#lx: obj=%p/%#llx, amap=%p/%d\n",
5258 entry, entry->start, entry->end, entry->object.uvm_obj,
5259 (long long)entry->offset, entry->aref.ar_amap,
5260 entry->aref.ar_pageoff);
5261 (*pr)(
5262 "\tsubmap=%c, cow=%c, nc=%c, prot(max)=%d/%d, inh=%d, "
5263 "wc=%d, adv=%d%s\n",
5264 (entry->etype & UVM_ET_SUBMAP) ? 'T' : 'F',
5265 (entry->etype & UVM_ET_COPYONWRITE) ? 'T' : 'F',
5266 (entry->etype & UVM_ET_NEEDSCOPY) ? 'T' : 'F',
5267 entry->protection, entry->max_protection,
5268 entry->inheritance, entry->wired_count, entry->advice,
5269 entry == map->first_free ? " (first_free)" : "");
5270 }
5271 }
5272
5273 void
5274 uvm_whatis(uintptr_t addr, void (*pr)(const char *, ...))
5275 {
5276 struct vm_map *map;
5277
5278 for (map = kernel_map;;) {
5279 struct vm_map_entry *entry;
5280
5281 if (!uvm_map_lookup_entry_bytree(map, (vaddr_t)addr, &entry)) {
5282 break;
5283 }
5284 (*pr)("%p is %p+%zu from VMMAP %p\n",
5285 (void *)addr, (void *)entry->start,
5286 (size_t)(addr - (uintptr_t)entry->start), map);
5287 if (!UVM_ET_ISSUBMAP(entry)) {
5288 break;
5289 }
5290 map = entry->object.sub_map;
5291 }
5292 }
5293
5294 #endif /* DDB || DEBUGPRINT */
5295
5296 #ifndef __USER_VA0_IS_SAFE
5297 static int
5298 sysctl_user_va0_disable(SYSCTLFN_ARGS)
5299 {
5300 struct sysctlnode node;
5301 int t, error;
5302
5303 node = *rnode;
5304 node.sysctl_data = &t;
5305 t = user_va0_disable;
5306 error = sysctl_lookup(SYSCTLFN_CALL(&node));
5307 if (error || newp == NULL)
5308 return (error);
5309
5310 if (!t && user_va0_disable &&
5311 kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_MAP_VA_ZERO, 0,
5312 NULL, NULL, NULL))
5313 return EPERM;
5314
5315 user_va0_disable = !!t;
5316 return 0;
5317 }
5318 #endif
5319
5320 static int
5321 fill_vmentry(struct lwp *l, struct proc *p, struct kinfo_vmentry *kve,
5322 struct vm_map *m, struct vm_map_entry *e)
5323 {
5324 #ifndef _RUMPKERNEL
5325 int error;
5326
5327 memset(kve, 0, sizeof(*kve));
5328 KASSERT(e != NULL);
5329 if (UVM_ET_ISOBJ(e)) {
5330 struct uvm_object *uobj = e->object.uvm_obj;
5331 KASSERT(uobj != NULL);
5332 kve->kve_ref_count = uobj->uo_refs;
5333 kve->kve_count = uobj->uo_npages;
5334 if (UVM_OBJ_IS_VNODE(uobj)) {
5335 struct vattr va;
5336 struct vnode *vp = (struct vnode *)uobj;
5337 vn_lock(vp, LK_SHARED | LK_RETRY);
5338 error = VOP_GETATTR(vp, &va, l->l_cred);
5339 VOP_UNLOCK(vp);
5340 kve->kve_type = KVME_TYPE_VNODE;
5341 if (error == 0) {
5342 kve->kve_vn_size = vp->v_size;
5343 kve->kve_vn_type = (int)vp->v_type;
5344 kve->kve_vn_mode = va.va_mode;
5345 kve->kve_vn_rdev = va.va_rdev;
5346 kve->kve_vn_fileid = va.va_fileid;
5347 kve->kve_vn_fsid = va.va_fsid;
5348 error = vnode_to_path(kve->kve_path,
5349 sizeof(kve->kve_path) / 2, vp, l, p);
5350 }
5351 } else if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
5352 kve->kve_type = KVME_TYPE_KERN;
5353 } else if (UVM_OBJ_IS_DEVICE(uobj)) {
5354 kve->kve_type = KVME_TYPE_DEVICE;
5355 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
5356 kve->kve_type = KVME_TYPE_ANON;
5357 } else {
5358 kve->kve_type = KVME_TYPE_OBJECT;
5359 }
5360 } else if (UVM_ET_ISSUBMAP(e)) {
5361 struct vm_map *map = e->object.sub_map;
5362 KASSERT(map != NULL);
5363 kve->kve_ref_count = map->ref_count;
5364 kve->kve_count = map->nentries;
5365 kve->kve_type = KVME_TYPE_SUBMAP;
5366 } else
5367 kve->kve_type = KVME_TYPE_UNKNOWN;
5368
5369 kve->kve_start = e->start;
5370 kve->kve_end = e->end;
5371 kve->kve_offset = e->offset;
5372 kve->kve_wired_count = e->wired_count;
5373 kve->kve_inheritance = e->inheritance;
5374 kve->kve_attributes = 0; /* unused */
5375 kve->kve_advice = e->advice;
5376 #define PROT(p) (((p) & VM_PROT_READ) ? KVME_PROT_READ : 0) | \
5377 (((p) & VM_PROT_WRITE) ? KVME_PROT_WRITE : 0) | \
5378 (((p) & VM_PROT_EXECUTE) ? KVME_PROT_EXEC : 0)
5379 kve->kve_protection = PROT(e->protection);
5380 kve->kve_max_protection = PROT(e->max_protection);
5381 kve->kve_flags |= (e->etype & UVM_ET_COPYONWRITE)
5382 ? KVME_FLAG_COW : 0;
5383 kve->kve_flags |= (e->etype & UVM_ET_NEEDSCOPY)
5384 ? KVME_FLAG_NEEDS_COPY : 0;
5385 kve->kve_flags |= (m->flags & VM_MAP_TOPDOWN)
5386 ? KVME_FLAG_GROWS_DOWN : KVME_FLAG_GROWS_UP;
5387 kve->kve_flags |= (m->flags & VM_MAP_PAGEABLE)
5388 ? KVME_FLAG_PAGEABLE : 0;
5389 #endif
5390 return 0;
5391 }
5392
5393 static int
5394 fill_vmentries(struct lwp *l, pid_t pid, u_int elem_size, void *oldp,
5395 size_t *oldlenp)
5396 {
5397 int error;
5398 struct proc *p;
5399 struct kinfo_vmentry *vme;
5400 struct vmspace *vm;
5401 struct vm_map *map;
5402 struct vm_map_entry *entry;
5403 char *dp;
5404 size_t count, vmesize;
5405
5406 if (elem_size == 0 || elem_size > 2 * sizeof(*vme))
5407 return EINVAL;
5408
5409 if (oldp) {
5410 if (*oldlenp > 10UL * 1024UL * 1024UL)
5411 return E2BIG;
5412 count = *oldlenp / elem_size;
5413 if (count == 0)
5414 return ENOMEM;
5415 vmesize = count * sizeof(*vme);
5416 } else
5417 vmesize = 0;
5418
5419 if ((error = proc_find_locked(l, &p, pid)) != 0)
5420 return error;
5421
5422 vme = NULL;
5423 count = 0;
5424
5425 if ((error = proc_vmspace_getref(p, &vm)) != 0)
5426 goto out;
5427
5428 map = &vm->vm_map;
5429 vm_map_lock_read(map);
5430
5431 dp = oldp;
5432 if (oldp)
5433 vme = kmem_alloc(vmesize, KM_SLEEP);
5434 for (entry = map->header.next; entry != &map->header;
5435 entry = entry->next) {
5436 if (oldp && (dp - (char *)oldp) < vmesize) {
5437 error = fill_vmentry(l, p, &vme[count], map, entry);
5438 if (error)
5439 goto out;
5440 dp += elem_size;
5441 }
5442 count++;
5443 }
5444 vm_map_unlock_read(map);
5445 uvmspace_free(vm);
5446
5447 out:
5448 if (pid != -1)
5449 mutex_exit(p->p_lock);
5450 if (error == 0) {
5451 const u_int esize = uimin(sizeof(*vme), elem_size);
5452 dp = oldp;
5453 for (size_t i = 0; i < count; i++) {
5454 if (oldp && (dp - (char *)oldp) < vmesize) {
5455 error = sysctl_copyout(l, &vme[i], dp, esize);
5456 if (error)
5457 break;
5458 dp += elem_size;
5459 } else
5460 break;
5461 }
5462 count *= elem_size;
5463 if (oldp != NULL && *oldlenp < count)
5464 error = ENOSPC;
5465 *oldlenp = count;
5466 }
5467 if (vme)
5468 kmem_free(vme, vmesize);
5469 return error;
5470 }
5471
5472 static int
5473 sysctl_vmproc(SYSCTLFN_ARGS)
5474 {
5475 int error;
5476
5477 if (namelen == 1 && name[0] == CTL_QUERY)
5478 return (sysctl_query(SYSCTLFN_CALL(rnode)));
5479
5480 if (namelen == 0)
5481 return EINVAL;
5482
5483 switch (name[0]) {
5484 case VM_PROC_MAP:
5485 if (namelen != 3)
5486 return EINVAL;
5487 sysctl_unlock();
5488 error = fill_vmentries(l, name[1], name[2], oldp, oldlenp);
5489 sysctl_relock();
5490 return error;
5491 default:
5492 return EINVAL;
5493 }
5494 }
5495
5496 SYSCTL_SETUP(sysctl_uvmmap_setup, "sysctl uvmmap setup")
5497 {
5498
5499 sysctl_createv(clog, 0, NULL, NULL,
5500 CTLFLAG_PERMANENT,
5501 CTLTYPE_STRUCT, "proc",
5502 SYSCTL_DESCR("Process vm information"),
5503 sysctl_vmproc, 0, NULL, 0,
5504 CTL_VM, VM_PROC, CTL_EOL);
5505 #ifndef __USER_VA0_IS_SAFE
5506 sysctl_createv(clog, 0, NULL, NULL,
5507 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5508 CTLTYPE_INT, "user_va0_disable",
5509 SYSCTL_DESCR("Disable VA 0"),
5510 sysctl_user_va0_disable, 0, &user_va0_disable, 0,
5511 CTL_VM, CTL_CREATE, CTL_EOL);
5512 #endif
5513 }
5514