uvm_map.c revision 1.420 1 /* $NetBSD: uvm_map.c,v 1.420 2024/08/14 00:42:02 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vm_map.c 8.3 (Berkeley) 1/12/94
37 * from: Id: uvm_map.c,v 1.1.2.27 1998/02/07 01:16:54 chs Exp
38 *
39 *
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
48 *
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 *
53 * Carnegie Mellon requests users of this software to return to
54 *
55 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 * School of Computer Science
57 * Carnegie Mellon University
58 * Pittsburgh PA 15213-3890
59 *
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
62 */
63
64 /*
65 * uvm_map.c: uvm map operations
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: uvm_map.c,v 1.420 2024/08/14 00:42:02 riastradh Exp $");
70
71 #include "opt_ddb.h"
72 #include "opt_pax.h"
73 #include "opt_uvmhist.h"
74 #include "opt_uvm.h"
75 #include "opt_sysv.h"
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/mman.h>
80 #include <sys/proc.h>
81 #include <sys/pool.h>
82 #include <sys/kernel.h>
83 #include <sys/mount.h>
84 #include <sys/pax.h>
85 #include <sys/vnode.h>
86 #include <sys/filedesc.h>
87 #include <sys/lockdebug.h>
88 #include <sys/atomic.h>
89 #include <sys/sysctl.h>
90 #ifndef __USER_VA0_IS_SAFE
91 #include <sys/kauth.h>
92 #include "opt_user_va0_disable_default.h"
93 #endif
94
95 #include <sys/shm.h>
96
97 #include <uvm/uvm.h>
98 #include <uvm/uvm_readahead.h>
99
100 #if defined(DDB) || defined(DEBUGPRINT)
101 #include <uvm/uvm_ddb.h>
102 #endif
103
104 #ifdef UVMHIST
105 #ifndef UVMHIST_MAPHIST_SIZE
106 #define UVMHIST_MAPHIST_SIZE 100
107 #endif
108 static struct kern_history_ent maphistbuf[UVMHIST_MAPHIST_SIZE];
109 UVMHIST_DEFINE(maphist) = UVMHIST_INITIALIZER(maphist, maphistbuf);
110 #endif
111
112 #if !defined(UVMMAP_COUNTERS)
113
114 #define UVMMAP_EVCNT_DEFINE(name) /* nothing */
115 #define UVMMAP_EVCNT_INCR(ev) /* nothing */
116 #define UVMMAP_EVCNT_DECR(ev) /* nothing */
117
118 #else /* defined(UVMMAP_NOCOUNTERS) */
119
120 #include <sys/evcnt.h>
121 #define UVMMAP_EVCNT_DEFINE(name) \
122 struct evcnt uvmmap_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
123 "uvmmap", #name); \
124 EVCNT_ATTACH_STATIC(uvmmap_evcnt_##name);
125 #define UVMMAP_EVCNT_INCR(ev) uvmmap_evcnt_##ev.ev_count++
126 #define UVMMAP_EVCNT_DECR(ev) uvmmap_evcnt_##ev.ev_count--
127
128 #endif /* defined(UVMMAP_NOCOUNTERS) */
129
130 UVMMAP_EVCNT_DEFINE(ubackmerge)
131 UVMMAP_EVCNT_DEFINE(uforwmerge)
132 UVMMAP_EVCNT_DEFINE(ubimerge)
133 UVMMAP_EVCNT_DEFINE(unomerge)
134 UVMMAP_EVCNT_DEFINE(kbackmerge)
135 UVMMAP_EVCNT_DEFINE(kforwmerge)
136 UVMMAP_EVCNT_DEFINE(kbimerge)
137 UVMMAP_EVCNT_DEFINE(knomerge)
138 UVMMAP_EVCNT_DEFINE(map_call)
139 UVMMAP_EVCNT_DEFINE(mlk_call)
140 UVMMAP_EVCNT_DEFINE(mlk_hint)
141 UVMMAP_EVCNT_DEFINE(mlk_tree)
142 UVMMAP_EVCNT_DEFINE(mlk_treeloop)
143
144 const char vmmapbsy[] = "vmmapbsy";
145
146 /*
147 * cache for dynamically-allocated map entries.
148 */
149
150 static struct pool_cache uvm_map_entry_cache;
151
152 #ifdef PMAP_GROWKERNEL
153 /*
154 * This global represents the end of the kernel virtual address
155 * space. If we want to exceed this, we must grow the kernel
156 * virtual address space dynamically.
157 *
158 * Note, this variable is locked by kernel_map's lock.
159 */
160 vaddr_t uvm_maxkaddr;
161 #endif
162
163 #ifndef __USER_VA0_IS_SAFE
164 #ifndef __USER_VA0_DISABLE_DEFAULT
165 #define __USER_VA0_DISABLE_DEFAULT 1
166 #endif
167 #ifdef USER_VA0_DISABLE_DEFAULT /* kernel config option overrides */
168 #undef __USER_VA0_DISABLE_DEFAULT
169 #define __USER_VA0_DISABLE_DEFAULT USER_VA0_DISABLE_DEFAULT
170 #endif
171 int user_va0_disable = __USER_VA0_DISABLE_DEFAULT;
172 #endif
173
174 /*
175 * macros
176 */
177
178 /*
179 * uvm_map_align_va: round down or up virtual address
180 */
181 static __inline void
182 uvm_map_align_va(vaddr_t *vap, vsize_t align, int topdown)
183 {
184
185 KASSERT(powerof2(align));
186
187 if (align != 0 && (*vap & (align - 1)) != 0) {
188 if (topdown)
189 *vap = rounddown2(*vap, align);
190 else
191 *vap = roundup2(*vap, align);
192 }
193 }
194
195 /*
196 * UVM_ET_ISCOMPATIBLE: check some requirements for map entry merging
197 */
198 extern struct vm_map *pager_map;
199
200 #define UVM_ET_ISCOMPATIBLE(ent, type, uobj, meflags, \
201 prot, maxprot, inh, adv, wire) \
202 ((ent)->etype == (type) && \
203 (((ent)->flags ^ (meflags)) & (UVM_MAP_NOMERGE)) == 0 && \
204 (ent)->object.uvm_obj == (uobj) && \
205 (ent)->protection == (prot) && \
206 (ent)->max_protection == (maxprot) && \
207 (ent)->inheritance == (inh) && \
208 (ent)->advice == (adv) && \
209 (ent)->wired_count == (wire))
210
211 /*
212 * uvm_map_entry_link: insert entry into a map
213 *
214 * => map must be locked
215 */
216 #define uvm_map_entry_link(map, after_where, entry) do { \
217 uvm_mapent_check(entry); \
218 (map)->nentries++; \
219 (entry)->prev = (after_where); \
220 (entry)->next = (after_where)->next; \
221 (entry)->prev->next = (entry); \
222 (entry)->next->prev = (entry); \
223 uvm_rb_insert((map), (entry)); \
224 } while (/*CONSTCOND*/ 0)
225
226 /*
227 * uvm_map_entry_unlink: remove entry from a map
228 *
229 * => map must be locked
230 */
231 #define uvm_map_entry_unlink(map, entry) do { \
232 KASSERT((entry) != (map)->first_free); \
233 KASSERT((entry) != (map)->hint); \
234 uvm_mapent_check(entry); \
235 (map)->nentries--; \
236 (entry)->next->prev = (entry)->prev; \
237 (entry)->prev->next = (entry)->next; \
238 uvm_rb_remove((map), (entry)); \
239 } while (/*CONSTCOND*/ 0)
240
241 /*
242 * SAVE_HINT: saves the specified entry as the hint for future lookups.
243 *
244 * => map need not be locked.
245 */
246 #define SAVE_HINT(map, check, value) do { \
247 if ((map)->hint == (check)) \
248 (map)->hint = (value); \
249 } while (/*CONSTCOND*/ 0)
250
251 /*
252 * clear_hints: ensure that hints don't point to the entry.
253 *
254 * => map must be write-locked.
255 */
256 static void
257 clear_hints(struct vm_map *map, struct vm_map_entry *ent)
258 {
259
260 SAVE_HINT(map, ent, ent->prev);
261 if (map->first_free == ent) {
262 map->first_free = ent->prev;
263 }
264 }
265
266 /*
267 * VM_MAP_RANGE_CHECK: check and correct range
268 *
269 * => map must at least be read locked
270 */
271
272 #define VM_MAP_RANGE_CHECK(map, start, end) do { \
273 if (start < vm_map_min(map)) \
274 start = vm_map_min(map); \
275 if (end > vm_map_max(map)) \
276 end = vm_map_max(map); \
277 if (start > end) \
278 start = end; \
279 } while (/*CONSTCOND*/ 0)
280
281 /*
282 * local prototypes
283 */
284
285 static struct vm_map_entry *
286 uvm_mapent_alloc(struct vm_map *, int);
287 static void uvm_mapent_copy(struct vm_map_entry *, struct vm_map_entry *);
288 static void uvm_mapent_free(struct vm_map_entry *);
289 #if defined(DEBUG)
290 static void _uvm_mapent_check(const struct vm_map_entry *, int);
291 #define uvm_mapent_check(map) _uvm_mapent_check(map, __LINE__)
292 #else /* defined(DEBUG) */
293 #define uvm_mapent_check(e) /* nothing */
294 #endif /* defined(DEBUG) */
295
296 static void uvm_map_entry_unwire(struct vm_map *, struct vm_map_entry *);
297 static void uvm_map_reference_amap(struct vm_map_entry *, int);
298 static int uvm_map_space_avail(vaddr_t *, vsize_t, voff_t, vsize_t, int,
299 int, struct vm_map_entry *);
300 static void uvm_map_unreference_amap(struct vm_map_entry *, int);
301
302 int _uvm_map_sanity(struct vm_map *);
303 int _uvm_tree_sanity(struct vm_map *);
304 static vsize_t uvm_rb_maxgap(const struct vm_map_entry *);
305
306 /*
307 * Tree iteration. We violate the rbtree(9) abstraction for various
308 * things here. Entries are ascending left to right, so, provided the
309 * child entry in question exists:
310 *
311 * LEFT_ENTRY(entry)->end <= entry->start
312 * entry->end <= RIGHT_ENTRY(entry)->start
313 */
314 __CTASSERT(offsetof(struct vm_map_entry, rb_node) == 0);
315 #define ROOT_ENTRY(map) \
316 ((struct vm_map_entry *)(map)->rb_tree.rbt_root)
317 #define LEFT_ENTRY(entry) \
318 ((struct vm_map_entry *)(entry)->rb_node.rb_left)
319 #define RIGHT_ENTRY(entry) \
320 ((struct vm_map_entry *)(entry)->rb_node.rb_right)
321 #define PARENT_ENTRY(map, entry) \
322 (ROOT_ENTRY(map) == (entry) \
323 ? NULL : (struct vm_map_entry *)RB_FATHER(&(entry)->rb_node))
324
325 /*
326 * These get filled in if/when SYSVSHM shared memory code is loaded
327 *
328 * We do this with function pointers rather the #ifdef SYSVSHM so the
329 * SYSVSHM code can be loaded and unloaded
330 */
331 void (*uvm_shmexit)(struct vmspace *) = NULL;
332 void (*uvm_shmfork)(struct vmspace *, struct vmspace *) = NULL;
333
334 static int
335 uvm_map_compare_nodes(void *ctx, const void *nparent, const void *nkey)
336 {
337 const struct vm_map_entry *eparent = nparent;
338 const struct vm_map_entry *ekey = nkey;
339
340 KASSERT(eparent->start < ekey->start || eparent->start >= ekey->end);
341 KASSERT(ekey->start < eparent->start || ekey->start >= eparent->end);
342
343 if (eparent->start < ekey->start)
344 return -1;
345 if (eparent->end >= ekey->start)
346 return 1;
347 return 0;
348 }
349
350 static int
351 uvm_map_compare_key(void *ctx, const void *nparent, const void *vkey)
352 {
353 const struct vm_map_entry *eparent = nparent;
354 const vaddr_t va = *(const vaddr_t *) vkey;
355
356 if (eparent->start < va)
357 return -1;
358 if (eparent->end >= va)
359 return 1;
360 return 0;
361 }
362
363 static const rb_tree_ops_t uvm_map_tree_ops = {
364 .rbto_compare_nodes = uvm_map_compare_nodes,
365 .rbto_compare_key = uvm_map_compare_key,
366 .rbto_node_offset = offsetof(struct vm_map_entry, rb_node),
367 .rbto_context = NULL
368 };
369
370 /*
371 * uvm_rb_gap: return the gap size between our entry and next entry.
372 */
373 static inline vsize_t
374 uvm_rb_gap(const struct vm_map_entry *entry)
375 {
376
377 KASSERT(entry->next != NULL);
378 return entry->next->start - entry->end;
379 }
380
381 static vsize_t
382 uvm_rb_maxgap(const struct vm_map_entry *entry)
383 {
384 struct vm_map_entry *child;
385 vsize_t maxgap = entry->gap;
386
387 /*
388 * We need maxgap to be the largest gap of us or any of our
389 * descendents. Since each of our children's maxgap is the
390 * cached value of their largest gap of themselves or their
391 * descendents, we can just use that value and avoid recursing
392 * down the tree to calculate it.
393 */
394 if ((child = LEFT_ENTRY(entry)) != NULL && maxgap < child->maxgap)
395 maxgap = child->maxgap;
396
397 if ((child = RIGHT_ENTRY(entry)) != NULL && maxgap < child->maxgap)
398 maxgap = child->maxgap;
399
400 return maxgap;
401 }
402
403 static void
404 uvm_rb_fixup(struct vm_map *map, struct vm_map_entry *entry)
405 {
406 struct vm_map_entry *parent;
407
408 KASSERT(entry->gap == uvm_rb_gap(entry));
409 entry->maxgap = uvm_rb_maxgap(entry);
410
411 while ((parent = PARENT_ENTRY(map, entry)) != NULL) {
412 struct vm_map_entry *brother;
413 vsize_t maxgap = parent->gap;
414 unsigned int which;
415
416 KDASSERT(parent->gap == uvm_rb_gap(parent));
417 if (maxgap < entry->maxgap)
418 maxgap = entry->maxgap;
419 /*
420 * Since we work towards the root, we know entry's maxgap
421 * value is OK, but its brothers may now be out-of-date due
422 * to rebalancing. So refresh it.
423 */
424 which = RB_POSITION(&entry->rb_node) ^ RB_DIR_OTHER;
425 brother = (struct vm_map_entry *)parent->rb_node.rb_nodes[which];
426 if (brother != NULL) {
427 KDASSERT(brother->gap == uvm_rb_gap(brother));
428 brother->maxgap = uvm_rb_maxgap(brother);
429 if (maxgap < brother->maxgap)
430 maxgap = brother->maxgap;
431 }
432
433 parent->maxgap = maxgap;
434 entry = parent;
435 }
436 }
437
438 static void
439 uvm_rb_insert(struct vm_map *map, struct vm_map_entry *entry)
440 {
441 struct vm_map_entry *ret __diagused;
442
443 entry->gap = entry->maxgap = uvm_rb_gap(entry);
444 if (entry->prev != &map->header)
445 entry->prev->gap = uvm_rb_gap(entry->prev);
446
447 ret = rb_tree_insert_node(&map->rb_tree, entry);
448 KASSERTMSG(ret == entry,
449 "uvm_rb_insert: map %p: duplicate entry %p", map, ret);
450
451 /*
452 * If the previous entry is not our immediate left child, then it's an
453 * ancestor and will be fixed up on the way to the root. We don't
454 * have to check entry->prev against &map->header since &map->header
455 * will never be in the tree.
456 */
457 uvm_rb_fixup(map,
458 LEFT_ENTRY(entry) == entry->prev ? entry->prev : entry);
459 }
460
461 static void
462 uvm_rb_remove(struct vm_map *map, struct vm_map_entry *entry)
463 {
464 struct vm_map_entry *prev_parent = NULL, *next_parent = NULL;
465
466 /*
467 * If we are removing an interior node, then an adjacent node will
468 * be used to replace its position in the tree. Therefore we will
469 * need to fixup the tree starting at the parent of the replacement
470 * node. So record their parents for later use.
471 */
472 if (entry->prev != &map->header)
473 prev_parent = PARENT_ENTRY(map, entry->prev);
474 if (entry->next != &map->header)
475 next_parent = PARENT_ENTRY(map, entry->next);
476
477 rb_tree_remove_node(&map->rb_tree, entry);
478
479 /*
480 * If the previous node has a new parent, fixup the tree starting
481 * at the previous node's old parent.
482 */
483 if (entry->prev != &map->header) {
484 /*
485 * Update the previous entry's gap due to our absence.
486 */
487 entry->prev->gap = uvm_rb_gap(entry->prev);
488 uvm_rb_fixup(map, entry->prev);
489 if (prev_parent != NULL
490 && prev_parent != entry
491 && prev_parent != PARENT_ENTRY(map, entry->prev))
492 uvm_rb_fixup(map, prev_parent);
493 }
494
495 /*
496 * If the next node has a new parent, fixup the tree starting
497 * at the next node's old parent.
498 */
499 if (entry->next != &map->header) {
500 uvm_rb_fixup(map, entry->next);
501 if (next_parent != NULL
502 && next_parent != entry
503 && next_parent != PARENT_ENTRY(map, entry->next))
504 uvm_rb_fixup(map, next_parent);
505 }
506 }
507
508 #if defined(DEBUG)
509 int uvm_debug_check_map = 0;
510 int uvm_debug_check_rbtree = 0;
511 #define uvm_map_check(map, name) \
512 _uvm_map_check((map), (name), __FILE__, __LINE__)
513 static void
514 _uvm_map_check(struct vm_map *map, const char *name,
515 const char *file, int line)
516 {
517
518 if ((uvm_debug_check_map && _uvm_map_sanity(map)) ||
519 (uvm_debug_check_rbtree && _uvm_tree_sanity(map))) {
520 panic("uvm_map_check failed: \"%s\" map=%p (%s:%d)",
521 name, map, file, line);
522 }
523 }
524 #else /* defined(DEBUG) */
525 #define uvm_map_check(map, name) /* nothing */
526 #endif /* defined(DEBUG) */
527
528 #if defined(DEBUG) || defined(DDB)
529 int
530 _uvm_map_sanity(struct vm_map *map)
531 {
532 bool first_free_found = false;
533 bool hint_found = false;
534 const struct vm_map_entry *e;
535 struct vm_map_entry *hint = map->hint;
536
537 e = &map->header;
538 for (;;) {
539 if (map->first_free == e) {
540 first_free_found = true;
541 } else if (!first_free_found && e->next->start > e->end) {
542 printf("first_free %p should be %p\n",
543 map->first_free, e);
544 return -1;
545 }
546 if (hint == e) {
547 hint_found = true;
548 }
549
550 e = e->next;
551 if (e == &map->header) {
552 break;
553 }
554 }
555 if (!first_free_found) {
556 printf("stale first_free\n");
557 return -1;
558 }
559 if (!hint_found) {
560 printf("stale hint\n");
561 return -1;
562 }
563 return 0;
564 }
565
566 int
567 _uvm_tree_sanity(struct vm_map *map)
568 {
569 struct vm_map_entry *tmp, *trtmp;
570 int n = 0, i = 1;
571
572 for (tmp = map->header.next; tmp != &map->header; tmp = tmp->next) {
573 if (tmp->gap != uvm_rb_gap(tmp)) {
574 printf("%d/%d gap %#lx != %#lx %s\n",
575 n + 1, map->nentries,
576 (ulong)tmp->gap, (ulong)uvm_rb_gap(tmp),
577 tmp->next == &map->header ? "(last)" : "");
578 goto error;
579 }
580 /*
581 * If any entries are out of order, tmp->gap will be unsigned
582 * and will likely exceed the size of the map.
583 */
584 if (tmp->gap >= vm_map_max(map) - vm_map_min(map)) {
585 printf("too large gap %zu\n", (size_t)tmp->gap);
586 goto error;
587 }
588 n++;
589 }
590
591 if (n != map->nentries) {
592 printf("nentries: %d vs %d\n", n, map->nentries);
593 goto error;
594 }
595
596 trtmp = NULL;
597 for (tmp = map->header.next; tmp != &map->header; tmp = tmp->next) {
598 if (tmp->maxgap != uvm_rb_maxgap(tmp)) {
599 printf("maxgap %#lx != %#lx\n",
600 (ulong)tmp->maxgap,
601 (ulong)uvm_rb_maxgap(tmp));
602 goto error;
603 }
604 if (trtmp != NULL && trtmp->start >= tmp->start) {
605 printf("corrupt: 0x%"PRIxVADDR"x >= 0x%"PRIxVADDR"x\n",
606 trtmp->start, tmp->start);
607 goto error;
608 }
609
610 trtmp = tmp;
611 }
612
613 for (tmp = map->header.next; tmp != &map->header;
614 tmp = tmp->next, i++) {
615 trtmp = rb_tree_iterate(&map->rb_tree, tmp, RB_DIR_LEFT);
616 if (trtmp == NULL)
617 trtmp = &map->header;
618 if (tmp->prev != trtmp) {
619 printf("lookup: %d: %p->prev=%p: %p\n",
620 i, tmp, tmp->prev, trtmp);
621 goto error;
622 }
623 trtmp = rb_tree_iterate(&map->rb_tree, tmp, RB_DIR_RIGHT);
624 if (trtmp == NULL)
625 trtmp = &map->header;
626 if (tmp->next != trtmp) {
627 printf("lookup: %d: %p->next=%p: %p\n",
628 i, tmp, tmp->next, trtmp);
629 goto error;
630 }
631 trtmp = rb_tree_find_node(&map->rb_tree, &tmp->start);
632 if (trtmp != tmp) {
633 printf("lookup: %d: %p - %p: %p\n", i, tmp, trtmp,
634 PARENT_ENTRY(map, tmp));
635 goto error;
636 }
637 }
638
639 return (0);
640 error:
641 return (-1);
642 }
643 #endif /* defined(DEBUG) || defined(DDB) */
644
645 /*
646 * vm_map_lock: acquire an exclusive (write) lock on a map.
647 *
648 * => The locking protocol provides for guaranteed upgrade from shared ->
649 * exclusive by whichever thread currently has the map marked busy.
650 * See "LOCKING PROTOCOL NOTES" in uvm_map.h. This is horrible; among
651 * other problems, it defeats any fairness guarantees provided by RW
652 * locks.
653 */
654
655 void
656 vm_map_lock(struct vm_map *map)
657 {
658
659 for (;;) {
660 rw_enter(&map->lock, RW_WRITER);
661 if (map->busy == NULL || map->busy == curlwp) {
662 break;
663 }
664 mutex_enter(&map->misc_lock);
665 rw_exit(&map->lock);
666 if (map->busy != NULL) {
667 cv_wait(&map->cv, &map->misc_lock);
668 }
669 mutex_exit(&map->misc_lock);
670 }
671 map->timestamp++;
672 }
673
674 /*
675 * vm_map_lock_try: try to lock a map, failing if it is already locked.
676 */
677
678 bool
679 vm_map_lock_try(struct vm_map *map)
680 {
681
682 if (!rw_tryenter(&map->lock, RW_WRITER)) {
683 return false;
684 }
685 if (map->busy != NULL) {
686 rw_exit(&map->lock);
687 return false;
688 }
689 map->timestamp++;
690 return true;
691 }
692
693 /*
694 * vm_map_unlock: release an exclusive lock on a map.
695 */
696
697 void
698 vm_map_unlock(struct vm_map *map)
699 {
700
701 KASSERT(rw_write_held(&map->lock));
702 KASSERT(map->busy == NULL || map->busy == curlwp);
703 rw_exit(&map->lock);
704 }
705
706 /*
707 * vm_map_unbusy: mark the map as unbusy, and wake any waiters that
708 * want an exclusive lock.
709 */
710
711 void
712 vm_map_unbusy(struct vm_map *map)
713 {
714
715 KASSERT(map->busy == curlwp);
716
717 /*
718 * Safe to clear 'busy' and 'waiters' with only a read lock held:
719 *
720 * o they can only be set with a write lock held
721 * o writers are blocked out with a read or write hold
722 * o at any time, only one thread owns the set of values
723 */
724 mutex_enter(&map->misc_lock);
725 map->busy = NULL;
726 cv_broadcast(&map->cv);
727 mutex_exit(&map->misc_lock);
728 }
729
730 /*
731 * vm_map_lock_read: acquire a shared (read) lock on a map.
732 */
733
734 void
735 vm_map_lock_read(struct vm_map *map)
736 {
737
738 rw_enter(&map->lock, RW_READER);
739 }
740
741 /*
742 * vm_map_unlock_read: release a shared lock on a map.
743 */
744
745 void
746 vm_map_unlock_read(struct vm_map *map)
747 {
748
749 rw_exit(&map->lock);
750 }
751
752 /*
753 * vm_map_busy: mark a map as busy.
754 *
755 * => the caller must hold the map write locked
756 */
757
758 void
759 vm_map_busy(struct vm_map *map)
760 {
761
762 KASSERT(rw_write_held(&map->lock));
763 KASSERT(map->busy == NULL);
764
765 map->busy = curlwp;
766 }
767
768 /*
769 * vm_map_locked_p: return true if the map is write locked.
770 *
771 * => only for debug purposes like KASSERTs.
772 * => should not be used to verify that a map is not locked.
773 */
774
775 bool
776 vm_map_locked_p(struct vm_map *map)
777 {
778
779 return rw_write_held(&map->lock);
780 }
781
782 /*
783 * uvm_mapent_alloc: allocate a map entry
784 */
785
786 static struct vm_map_entry *
787 uvm_mapent_alloc(struct vm_map *map, int flags)
788 {
789 struct vm_map_entry *me;
790 int pflags = (flags & UVM_FLAG_NOWAIT) ? PR_NOWAIT : PR_WAITOK;
791 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
792
793 me = pool_cache_get(&uvm_map_entry_cache, pflags);
794 if (__predict_false(me == NULL)) {
795 return NULL;
796 }
797 me->flags = 0;
798
799 UVMHIST_LOG(maphist, "<- new entry=%#jx [kentry=%jd]", (uintptr_t)me,
800 (map == kernel_map), 0, 0);
801 return me;
802 }
803
804 /*
805 * uvm_mapent_free: free map entry
806 */
807
808 static void
809 uvm_mapent_free(struct vm_map_entry *me)
810 {
811 UVMHIST_FUNC(__func__);
812 UVMHIST_CALLARGS(maphist,"<- freeing map entry=%#jx [flags=%#jx]",
813 (uintptr_t)me, me->flags, 0, 0);
814 pool_cache_put(&uvm_map_entry_cache, me);
815 }
816
817 /*
818 * uvm_mapent_copy: copy a map entry, preserving flags
819 */
820
821 static inline void
822 uvm_mapent_copy(struct vm_map_entry *src, struct vm_map_entry *dst)
823 {
824
825 memcpy(dst, src, sizeof(*dst));
826 dst->flags = 0;
827 }
828
829 #if defined(DEBUG)
830 static void
831 _uvm_mapent_check(const struct vm_map_entry *entry, int line)
832 {
833
834 if (entry->start >= entry->end) {
835 goto bad;
836 }
837 if (UVM_ET_ISOBJ(entry)) {
838 if (entry->object.uvm_obj == NULL) {
839 goto bad;
840 }
841 } else if (UVM_ET_ISSUBMAP(entry)) {
842 if (entry->object.sub_map == NULL) {
843 goto bad;
844 }
845 } else {
846 if (entry->object.uvm_obj != NULL ||
847 entry->object.sub_map != NULL) {
848 goto bad;
849 }
850 }
851 if (!UVM_ET_ISOBJ(entry)) {
852 if (entry->offset != 0) {
853 goto bad;
854 }
855 }
856
857 return;
858
859 bad:
860 panic("%s: bad entry %p, line %d", __func__, entry, line);
861 }
862 #endif /* defined(DEBUG) */
863
864 /*
865 * uvm_map_entry_unwire: unwire a map entry
866 *
867 * => map should be locked by caller
868 */
869
870 static inline void
871 uvm_map_entry_unwire(struct vm_map *map, struct vm_map_entry *entry)
872 {
873
874 entry->wired_count = 0;
875 uvm_fault_unwire_locked(map, entry->start, entry->end);
876 }
877
878
879 /*
880 * wrapper for calling amap_ref()
881 */
882 static inline void
883 uvm_map_reference_amap(struct vm_map_entry *entry, int flags)
884 {
885
886 amap_ref(entry->aref.ar_amap, entry->aref.ar_pageoff,
887 (entry->end - entry->start) >> PAGE_SHIFT, flags);
888 }
889
890
891 /*
892 * wrapper for calling amap_unref()
893 */
894 static inline void
895 uvm_map_unreference_amap(struct vm_map_entry *entry, int flags)
896 {
897
898 amap_unref(entry->aref.ar_amap, entry->aref.ar_pageoff,
899 (entry->end - entry->start) >> PAGE_SHIFT, flags);
900 }
901
902
903 /*
904 * uvm_map_init: init mapping system at boot time.
905 */
906
907 void
908 uvm_map_init(void)
909 {
910 /*
911 * first, init logging system.
912 */
913
914 UVMHIST_FUNC(__func__);
915 UVMHIST_LINK_STATIC(maphist);
916 UVMHIST_LINK_STATIC(pdhist);
917 UVMHIST_CALLED(maphist);
918 UVMHIST_LOG(maphist,"<starting uvm map system>", 0, 0, 0, 0);
919
920 /*
921 * initialize the global lock for kernel map entry.
922 */
923
924 mutex_init(&uvm_kentry_lock, MUTEX_DRIVER, IPL_VM);
925 }
926
927 /*
928 * uvm_map_init_caches: init mapping system caches.
929 */
930 void
931 uvm_map_init_caches(void)
932 {
933 /*
934 * initialize caches.
935 */
936
937 pool_cache_bootstrap(&uvm_map_entry_cache, sizeof(struct vm_map_entry),
938 coherency_unit, 0, PR_LARGECACHE, "vmmpepl", NULL, IPL_NONE, NULL,
939 NULL, NULL);
940 }
941
942 /*
943 * clippers
944 */
945
946 /*
947 * uvm_mapent_splitadj: adjust map entries for splitting, after uvm_mapent_copy.
948 */
949
950 static void
951 uvm_mapent_splitadj(struct vm_map_entry *entry1, struct vm_map_entry *entry2,
952 vaddr_t splitat)
953 {
954 vaddr_t adj;
955
956 KASSERT(entry1->start < splitat);
957 KASSERT(splitat < entry1->end);
958
959 adj = splitat - entry1->start;
960 entry1->end = entry2->start = splitat;
961
962 if (entry1->aref.ar_amap) {
963 amap_splitref(&entry1->aref, &entry2->aref, adj);
964 }
965 if (UVM_ET_ISSUBMAP(entry1)) {
966 /* ... unlikely to happen, but play it safe */
967 uvm_map_reference(entry1->object.sub_map);
968 } else if (UVM_ET_ISOBJ(entry1)) {
969 KASSERT(entry1->object.uvm_obj != NULL); /* suppress coverity */
970 entry2->offset += adj;
971 if (entry1->object.uvm_obj->pgops &&
972 entry1->object.uvm_obj->pgops->pgo_reference)
973 entry1->object.uvm_obj->pgops->pgo_reference(
974 entry1->object.uvm_obj);
975 }
976 }
977
978 /*
979 * uvm_map_clip_start: ensure that the entry begins at or after
980 * the starting address, if it doesn't we split the entry.
981 *
982 * => caller should use UVM_MAP_CLIP_START macro rather than calling
983 * this directly
984 * => map must be locked by caller
985 */
986
987 void
988 uvm_map_clip_start(struct vm_map *map, struct vm_map_entry *entry,
989 vaddr_t start)
990 {
991 struct vm_map_entry *new_entry;
992
993 /* uvm_map_simplify_entry(map, entry); */ /* XXX */
994
995 uvm_map_check(map, "clip_start entry");
996 uvm_mapent_check(entry);
997
998 /*
999 * Split off the front portion. note that we must insert the new
1000 * entry BEFORE this one, so that this entry has the specified
1001 * starting address.
1002 */
1003 new_entry = uvm_mapent_alloc(map, 0);
1004 uvm_mapent_copy(entry, new_entry); /* entry -> new_entry */
1005 uvm_mapent_splitadj(new_entry, entry, start);
1006 uvm_map_entry_link(map, entry->prev, new_entry);
1007
1008 uvm_map_check(map, "clip_start leave");
1009 }
1010
1011 /*
1012 * uvm_map_clip_end: ensure that the entry ends at or before
1013 * the ending address, if it does't we split the reference
1014 *
1015 * => caller should use UVM_MAP_CLIP_END macro rather than calling
1016 * this directly
1017 * => map must be locked by caller
1018 */
1019
1020 void
1021 uvm_map_clip_end(struct vm_map *map, struct vm_map_entry *entry, vaddr_t end)
1022 {
1023 struct vm_map_entry *new_entry;
1024
1025 uvm_map_check(map, "clip_end entry");
1026 uvm_mapent_check(entry);
1027
1028 /*
1029 * Create a new entry and insert it
1030 * AFTER the specified entry
1031 */
1032 new_entry = uvm_mapent_alloc(map, 0);
1033 uvm_mapent_copy(entry, new_entry); /* entry -> new_entry */
1034 uvm_mapent_splitadj(entry, new_entry, end);
1035 uvm_map_entry_link(map, entry, new_entry);
1036
1037 uvm_map_check(map, "clip_end leave");
1038 }
1039
1040 /*
1041 * M A P - m a i n e n t r y p o i n t
1042 */
1043 /*
1044 * uvm_map: establish a valid mapping in a map
1045 *
1046 * => assume startp is page aligned.
1047 * => assume size is a multiple of PAGE_SIZE.
1048 * => assume sys_mmap provides enough of a "hint" to have us skip
1049 * over text/data/bss area.
1050 * => map must be unlocked (we will lock it)
1051 * => <uobj,uoffset> value meanings (4 cases):
1052 * [1] <NULL,uoffset> == uoffset is a hint for PMAP_PREFER
1053 * [2] <NULL,UVM_UNKNOWN_OFFSET> == don't PMAP_PREFER
1054 * [3] <uobj,uoffset> == normal mapping
1055 * [4] <uobj,UVM_UNKNOWN_OFFSET> == uvm_map finds offset based on VA
1056 *
1057 * case [4] is for kernel mappings where we don't know the offset until
1058 * we've found a virtual address. note that kernel object offsets are
1059 * always relative to vm_map_min(kernel_map).
1060 *
1061 * => if `align' is non-zero, we align the virtual address to the specified
1062 * alignment.
1063 * this is provided as a mechanism for large pages.
1064 *
1065 * => XXXCDC: need way to map in external amap?
1066 */
1067
1068 int
1069 uvm_map(struct vm_map *map, vaddr_t *startp /* IN/OUT */, vsize_t size,
1070 struct uvm_object *uobj, voff_t uoffset, vsize_t align, uvm_flag_t flags)
1071 {
1072 struct uvm_map_args args;
1073 struct vm_map_entry *new_entry;
1074 int error;
1075
1076 KASSERT((size & PAGE_MASK) == 0);
1077 KASSERT((flags & UVM_FLAG_FIXED) == 0 || align == 0);
1078
1079 /*
1080 * for pager_map, allocate the new entry first to avoid sleeping
1081 * for memory while we have the map locked.
1082 */
1083
1084 new_entry = NULL;
1085 if (map == pager_map) {
1086 new_entry = uvm_mapent_alloc(map, (flags & UVM_FLAG_NOWAIT));
1087 if (__predict_false(new_entry == NULL))
1088 return ENOMEM;
1089 }
1090 if (map == pager_map)
1091 flags |= UVM_FLAG_NOMERGE;
1092
1093 error = uvm_map_prepare(map, *startp, size, uobj, uoffset, align,
1094 flags, &args);
1095 if (!error) {
1096 error = uvm_map_enter(map, &args, new_entry);
1097 *startp = args.uma_start;
1098 } else if (new_entry) {
1099 uvm_mapent_free(new_entry);
1100 }
1101
1102 #if defined(DEBUG)
1103 if (!error && VM_MAP_IS_KERNEL(map) && (flags & UVM_FLAG_NOWAIT) == 0) {
1104 uvm_km_check_empty(map, *startp, *startp + size);
1105 }
1106 #endif /* defined(DEBUG) */
1107
1108 return error;
1109 }
1110
1111 /*
1112 * uvm_map_prepare:
1113 *
1114 * called with map unlocked.
1115 * on success, returns the map locked.
1116 */
1117
1118 int
1119 uvm_map_prepare(struct vm_map *map, vaddr_t start, vsize_t size,
1120 struct uvm_object *uobj, voff_t uoffset, vsize_t align, uvm_flag_t flags,
1121 struct uvm_map_args *args)
1122 {
1123 struct vm_map_entry *prev_entry;
1124 vm_prot_t prot = UVM_PROTECTION(flags);
1125 vm_prot_t maxprot = UVM_MAXPROTECTION(flags);
1126
1127 UVMHIST_FUNC(__func__);
1128 UVMHIST_CALLARGS(maphist, "(map=%#jx, start=%#jx, size=%jx, flags=%#jx)",
1129 (uintptr_t)map, start, size, flags);
1130 UVMHIST_LOG(maphist, " uobj/offset %#jx/%jd", (uintptr_t)uobj,
1131 uoffset,0,0);
1132
1133 /*
1134 * detect a popular device driver bug.
1135 */
1136
1137 KASSERT(doing_shutdown || curlwp != NULL);
1138
1139 /*
1140 * zero-sized mapping doesn't make any sense.
1141 */
1142 KASSERT(size > 0);
1143
1144 KASSERT((~flags & (UVM_FLAG_NOWAIT | UVM_FLAG_WAITVA)) != 0);
1145
1146 uvm_map_check(map, "map entry");
1147
1148 /*
1149 * check sanity of protection code
1150 */
1151
1152 if ((prot & maxprot) != prot) {
1153 UVMHIST_LOG(maphist, "<- prot. failure: prot=%#jx, max=%#jx",
1154 prot, maxprot,0,0);
1155 return EACCES;
1156 }
1157
1158 /*
1159 * figure out where to put new VM range
1160 */
1161 retry:
1162 if (vm_map_lock_try(map) == false) {
1163 if ((flags & UVM_FLAG_TRYLOCK) != 0) {
1164 return EAGAIN;
1165 }
1166 vm_map_lock(map); /* could sleep here */
1167 }
1168 if (flags & UVM_FLAG_UNMAP) {
1169 KASSERT(flags & UVM_FLAG_FIXED);
1170 KASSERT((flags & UVM_FLAG_NOWAIT) == 0);
1171
1172 /*
1173 * Set prev_entry to what it will need to be after any existing
1174 * entries are removed later in uvm_map_enter().
1175 */
1176
1177 if (uvm_map_lookup_entry(map, start, &prev_entry)) {
1178 if (start == prev_entry->start)
1179 prev_entry = prev_entry->prev;
1180 else
1181 UVM_MAP_CLIP_END(map, prev_entry, start);
1182 SAVE_HINT(map, map->hint, prev_entry);
1183 }
1184 } else {
1185 prev_entry = uvm_map_findspace(map, start, size, &start,
1186 uobj, uoffset, align, flags);
1187 }
1188 if (prev_entry == NULL) {
1189 unsigned int timestamp;
1190
1191 timestamp = map->timestamp;
1192 UVMHIST_LOG(maphist,"waiting va timestamp=%#jx",
1193 timestamp,0,0,0);
1194 map->flags |= VM_MAP_WANTVA;
1195 vm_map_unlock(map);
1196
1197 /*
1198 * try to reclaim kva and wait until someone does unmap.
1199 * fragile locking here, so we awaken every second to
1200 * recheck the condition.
1201 */
1202
1203 mutex_enter(&map->misc_lock);
1204 while ((map->flags & VM_MAP_WANTVA) != 0 &&
1205 map->timestamp == timestamp) {
1206 if ((flags & UVM_FLAG_WAITVA) == 0) {
1207 mutex_exit(&map->misc_lock);
1208 UVMHIST_LOG(maphist,
1209 "<- uvm_map_findspace failed!", 0,0,0,0);
1210 return ENOMEM;
1211 } else {
1212 cv_timedwait(&map->cv, &map->misc_lock, hz);
1213 }
1214 }
1215 mutex_exit(&map->misc_lock);
1216 goto retry;
1217 }
1218
1219 #ifdef PMAP_GROWKERNEL
1220 /*
1221 * If the kernel pmap can't map the requested space,
1222 * then allocate more resources for it.
1223 */
1224 if (map == kernel_map && uvm_maxkaddr < (start + size))
1225 uvm_maxkaddr = pmap_growkernel(start + size);
1226 #endif
1227
1228 UVMMAP_EVCNT_INCR(map_call);
1229
1230 /*
1231 * if uobj is null, then uoffset is either a VAC hint for PMAP_PREFER
1232 * [typically from uvm_map_reserve] or it is UVM_UNKNOWN_OFFSET. in
1233 * either case we want to zero it before storing it in the map entry
1234 * (because it looks strange and confusing when debugging...)
1235 *
1236 * if uobj is not null
1237 * if uoffset is not UVM_UNKNOWN_OFFSET then we have a normal mapping
1238 * and we do not need to change uoffset.
1239 * if uoffset is UVM_UNKNOWN_OFFSET then we need to find the offset
1240 * now (based on the starting address of the map). this case is
1241 * for kernel object mappings where we don't know the offset until
1242 * the virtual address is found (with uvm_map_findspace). the
1243 * offset is the distance we are from the start of the map.
1244 */
1245
1246 if (uobj == NULL) {
1247 uoffset = 0;
1248 } else {
1249 if (uoffset == UVM_UNKNOWN_OFFSET) {
1250 KASSERT(UVM_OBJ_IS_KERN_OBJECT(uobj));
1251 uoffset = start - vm_map_min(kernel_map);
1252 }
1253 }
1254
1255 args->uma_flags = flags;
1256 args->uma_prev = prev_entry;
1257 args->uma_start = start;
1258 args->uma_size = size;
1259 args->uma_uobj = uobj;
1260 args->uma_uoffset = uoffset;
1261
1262 UVMHIST_LOG(maphist, "<- done!", 0,0,0,0);
1263 return 0;
1264 }
1265
1266 /*
1267 * uvm_map_enter:
1268 *
1269 * called with map locked.
1270 * unlock the map before returning.
1271 */
1272
1273 int
1274 uvm_map_enter(struct vm_map *map, const struct uvm_map_args *args,
1275 struct vm_map_entry *new_entry)
1276 {
1277 struct vm_map_entry *prev_entry = args->uma_prev;
1278 struct vm_map_entry *dead = NULL, *dead_entries = NULL;
1279
1280 const uvm_flag_t flags = args->uma_flags;
1281 const vm_prot_t prot = UVM_PROTECTION(flags);
1282 const vm_prot_t maxprot = UVM_MAXPROTECTION(flags);
1283 const vm_inherit_t inherit = UVM_INHERIT(flags);
1284 const int amapwaitflag = (flags & UVM_FLAG_NOWAIT) ?
1285 AMAP_EXTEND_NOWAIT : 0;
1286 const int advice = UVM_ADVICE(flags);
1287
1288 vaddr_t start = args->uma_start;
1289 vsize_t size = args->uma_size;
1290 struct uvm_object *uobj = args->uma_uobj;
1291 voff_t uoffset = args->uma_uoffset;
1292
1293 const int kmap = (vm_map_pmap(map) == pmap_kernel());
1294 int merged = 0;
1295 int error;
1296 int newetype;
1297
1298 UVMHIST_FUNC(__func__);
1299 UVMHIST_CALLARGS(maphist, "(map=%#jx, start=%#jx, size=%ju, flags=%#jx)",
1300 (uintptr_t)map, start, size, flags);
1301 UVMHIST_LOG(maphist, " uobj/offset %#jx/%jd", (uintptr_t)uobj,
1302 uoffset,0,0);
1303
1304 KASSERT(map->hint == prev_entry); /* bimerge case assumes this */
1305 KASSERT(vm_map_locked_p(map));
1306 KASSERT((flags & (UVM_FLAG_NOWAIT | UVM_FLAG_UNMAP)) !=
1307 (UVM_FLAG_NOWAIT | UVM_FLAG_UNMAP));
1308
1309 if (uobj)
1310 newetype = UVM_ET_OBJ;
1311 else
1312 newetype = 0;
1313
1314 if (flags & UVM_FLAG_COPYONW) {
1315 newetype |= UVM_ET_COPYONWRITE;
1316 if ((flags & UVM_FLAG_OVERLAY) == 0)
1317 newetype |= UVM_ET_NEEDSCOPY;
1318 }
1319
1320 /*
1321 * For mappings with unmap, remove any old entries now. Adding the new
1322 * entry cannot fail because that can only happen if UVM_FLAG_NOWAIT
1323 * is set, and we do not support nowait and unmap together.
1324 */
1325
1326 if (flags & UVM_FLAG_UNMAP) {
1327 KASSERT(flags & UVM_FLAG_FIXED);
1328 uvm_unmap_remove(map, start, start + size, &dead_entries, 0);
1329 #ifdef DEBUG
1330 struct vm_map_entry *tmp_entry __diagused;
1331 bool rv __diagused;
1332
1333 rv = uvm_map_lookup_entry(map, start, &tmp_entry);
1334 KASSERT(!rv);
1335 KASSERTMSG(prev_entry == tmp_entry,
1336 "args %p prev_entry %p tmp_entry %p",
1337 args, prev_entry, tmp_entry);
1338 #endif
1339 SAVE_HINT(map, map->hint, prev_entry);
1340 }
1341
1342 /*
1343 * try and insert in map by extending previous entry, if possible.
1344 * XXX: we don't try and pull back the next entry. might be useful
1345 * for a stack, but we are currently allocating our stack in advance.
1346 */
1347
1348 if (flags & UVM_FLAG_NOMERGE)
1349 goto nomerge;
1350
1351 if (prev_entry->end == start &&
1352 prev_entry != &map->header &&
1353 UVM_ET_ISCOMPATIBLE(prev_entry, newetype, uobj, 0,
1354 prot, maxprot, inherit, advice, 0)) {
1355
1356 if (uobj && prev_entry->offset +
1357 (prev_entry->end - prev_entry->start) != uoffset)
1358 goto forwardmerge;
1359
1360 /*
1361 * can't extend a shared amap. note: no need to lock amap to
1362 * look at refs since we don't care about its exact value.
1363 * if it is one (i.e. we have only reference) it will stay there
1364 */
1365
1366 if (prev_entry->aref.ar_amap &&
1367 amap_refs(prev_entry->aref.ar_amap) != 1) {
1368 goto forwardmerge;
1369 }
1370
1371 if (prev_entry->aref.ar_amap) {
1372 error = amap_extend(prev_entry, size,
1373 amapwaitflag | AMAP_EXTEND_FORWARDS);
1374 if (error)
1375 goto nomerge;
1376 }
1377
1378 if (kmap) {
1379 UVMMAP_EVCNT_INCR(kbackmerge);
1380 } else {
1381 UVMMAP_EVCNT_INCR(ubackmerge);
1382 }
1383 UVMHIST_LOG(maphist," starting back merge", 0, 0, 0, 0);
1384
1385 /*
1386 * drop our reference to uobj since we are extending a reference
1387 * that we already have (the ref count can not drop to zero).
1388 */
1389
1390 if (uobj && uobj->pgops->pgo_detach)
1391 uobj->pgops->pgo_detach(uobj);
1392
1393 /*
1394 * Now that we've merged the entries, note that we've grown
1395 * and our gap has shrunk. Then fix the tree.
1396 */
1397 prev_entry->end += size;
1398 prev_entry->gap -= size;
1399 uvm_rb_fixup(map, prev_entry);
1400
1401 uvm_map_check(map, "map backmerged");
1402
1403 UVMHIST_LOG(maphist,"<- done (via backmerge)!", 0, 0, 0, 0);
1404 merged++;
1405 }
1406
1407 forwardmerge:
1408 if (prev_entry->next->start == (start + size) &&
1409 prev_entry->next != &map->header &&
1410 UVM_ET_ISCOMPATIBLE(prev_entry->next, newetype, uobj, 0,
1411 prot, maxprot, inherit, advice, 0)) {
1412
1413 if (uobj && prev_entry->next->offset != uoffset + size)
1414 goto nomerge;
1415
1416 /*
1417 * can't extend a shared amap. note: no need to lock amap to
1418 * look at refs since we don't care about its exact value.
1419 * if it is one (i.e. we have only reference) it will stay there.
1420 *
1421 * note that we also can't merge two amaps, so if we
1422 * merged with the previous entry which has an amap,
1423 * and the next entry also has an amap, we give up.
1424 *
1425 * Interesting cases:
1426 * amap, new, amap -> give up second merge (single fwd extend)
1427 * amap, new, none -> double forward extend (extend again here)
1428 * none, new, amap -> double backward extend (done here)
1429 * uobj, new, amap -> single backward extend (done here)
1430 *
1431 * XXX should we attempt to deal with someone refilling
1432 * the deallocated region between two entries that are
1433 * backed by the same amap (ie, arefs is 2, "prev" and
1434 * "next" refer to it, and adding this allocation will
1435 * close the hole, thus restoring arefs to 1 and
1436 * deallocating the "next" vm_map_entry)? -- @@@
1437 */
1438
1439 if (prev_entry->next->aref.ar_amap &&
1440 (amap_refs(prev_entry->next->aref.ar_amap) != 1 ||
1441 (merged && prev_entry->aref.ar_amap))) {
1442 goto nomerge;
1443 }
1444
1445 if (merged) {
1446 /*
1447 * Try to extend the amap of the previous entry to
1448 * cover the next entry as well. If it doesn't work
1449 * just skip on, don't actually give up, since we've
1450 * already completed the back merge.
1451 */
1452 if (prev_entry->aref.ar_amap) {
1453 if (amap_extend(prev_entry,
1454 prev_entry->next->end -
1455 prev_entry->next->start,
1456 amapwaitflag | AMAP_EXTEND_FORWARDS))
1457 goto nomerge;
1458 }
1459
1460 /*
1461 * Try to extend the amap of the *next* entry
1462 * back to cover the new allocation *and* the
1463 * previous entry as well (the previous merge
1464 * didn't have an amap already otherwise we
1465 * wouldn't be checking here for an amap). If
1466 * it doesn't work just skip on, again, don't
1467 * actually give up, since we've already
1468 * completed the back merge.
1469 */
1470 else if (prev_entry->next->aref.ar_amap) {
1471 if (amap_extend(prev_entry->next,
1472 prev_entry->end -
1473 prev_entry->start,
1474 amapwaitflag | AMAP_EXTEND_BACKWARDS))
1475 goto nomerge;
1476 }
1477 } else {
1478 /*
1479 * Pull the next entry's amap backwards to cover this
1480 * new allocation.
1481 */
1482 if (prev_entry->next->aref.ar_amap) {
1483 error = amap_extend(prev_entry->next, size,
1484 amapwaitflag | AMAP_EXTEND_BACKWARDS);
1485 if (error)
1486 goto nomerge;
1487 }
1488 }
1489
1490 if (merged) {
1491 if (kmap) {
1492 UVMMAP_EVCNT_DECR(kbackmerge);
1493 UVMMAP_EVCNT_INCR(kbimerge);
1494 } else {
1495 UVMMAP_EVCNT_DECR(ubackmerge);
1496 UVMMAP_EVCNT_INCR(ubimerge);
1497 }
1498 } else {
1499 if (kmap) {
1500 UVMMAP_EVCNT_INCR(kforwmerge);
1501 } else {
1502 UVMMAP_EVCNT_INCR(uforwmerge);
1503 }
1504 }
1505 UVMHIST_LOG(maphist," starting forward merge", 0, 0, 0, 0);
1506
1507 /*
1508 * drop our reference to uobj since we are extending a reference
1509 * that we already have (the ref count can not drop to zero).
1510 */
1511 if (uobj && uobj->pgops->pgo_detach)
1512 uobj->pgops->pgo_detach(uobj);
1513
1514 if (merged) {
1515 dead = prev_entry->next;
1516 prev_entry->end = dead->end;
1517 uvm_map_entry_unlink(map, dead);
1518 if (dead->aref.ar_amap != NULL) {
1519 prev_entry->aref = dead->aref;
1520 dead->aref.ar_amap = NULL;
1521 }
1522 } else {
1523 prev_entry->next->start -= size;
1524 if (prev_entry != &map->header) {
1525 prev_entry->gap -= size;
1526 KASSERT(prev_entry->gap == uvm_rb_gap(prev_entry));
1527 uvm_rb_fixup(map, prev_entry);
1528 }
1529 if (uobj)
1530 prev_entry->next->offset = uoffset;
1531 }
1532
1533 uvm_map_check(map, "map forwardmerged");
1534
1535 UVMHIST_LOG(maphist,"<- done forwardmerge", 0, 0, 0, 0);
1536 merged++;
1537 }
1538
1539 nomerge:
1540 if (!merged) {
1541 UVMHIST_LOG(maphist," allocating new map entry", 0, 0, 0, 0);
1542 if (kmap) {
1543 UVMMAP_EVCNT_INCR(knomerge);
1544 } else {
1545 UVMMAP_EVCNT_INCR(unomerge);
1546 }
1547
1548 /*
1549 * allocate new entry and link it in.
1550 */
1551
1552 if (new_entry == NULL) {
1553 new_entry = uvm_mapent_alloc(map,
1554 (flags & UVM_FLAG_NOWAIT));
1555 if (__predict_false(new_entry == NULL)) {
1556 error = ENOMEM;
1557 goto done;
1558 }
1559 }
1560 new_entry->start = start;
1561 new_entry->end = new_entry->start + size;
1562 new_entry->object.uvm_obj = uobj;
1563 new_entry->offset = uoffset;
1564
1565 new_entry->etype = newetype;
1566
1567 if (flags & UVM_FLAG_NOMERGE) {
1568 new_entry->flags |= UVM_MAP_NOMERGE;
1569 }
1570
1571 new_entry->protection = prot;
1572 new_entry->max_protection = maxprot;
1573 new_entry->inheritance = inherit;
1574 new_entry->wired_count = 0;
1575 new_entry->advice = advice;
1576 if (flags & UVM_FLAG_OVERLAY) {
1577
1578 /*
1579 * to_add: for BSS we overallocate a little since we
1580 * are likely to extend
1581 */
1582
1583 vaddr_t to_add = (flags & UVM_FLAG_AMAPPAD) ?
1584 UVM_AMAP_CHUNK << PAGE_SHIFT : 0;
1585 struct vm_amap *amap = amap_alloc(size, to_add,
1586 (flags & UVM_FLAG_NOWAIT));
1587 if (__predict_false(amap == NULL)) {
1588 error = ENOMEM;
1589 goto done;
1590 }
1591 new_entry->aref.ar_pageoff = 0;
1592 new_entry->aref.ar_amap = amap;
1593 } else {
1594 new_entry->aref.ar_pageoff = 0;
1595 new_entry->aref.ar_amap = NULL;
1596 }
1597 uvm_map_entry_link(map, prev_entry, new_entry);
1598
1599 /*
1600 * Update the free space hint
1601 */
1602
1603 if ((map->first_free == prev_entry) &&
1604 (prev_entry->end >= new_entry->start))
1605 map->first_free = new_entry;
1606
1607 new_entry = NULL;
1608 }
1609
1610 map->size += size;
1611
1612 UVMHIST_LOG(maphist,"<- done!", 0, 0, 0, 0);
1613
1614 error = 0;
1615
1616 done:
1617 vm_map_unlock(map);
1618
1619 if (new_entry) {
1620 uvm_mapent_free(new_entry);
1621 }
1622 if (dead) {
1623 KDASSERT(merged);
1624 uvm_mapent_free(dead);
1625 }
1626 if (dead_entries)
1627 uvm_unmap_detach(dead_entries, 0);
1628
1629 return error;
1630 }
1631
1632 /*
1633 * uvm_map_lookup_entry_bytree: lookup an entry in tree
1634 *
1635 * => map must at least be read-locked by caller.
1636 *
1637 * => If address lies in an entry, set *entry to it and return true;
1638 * then (*entry)->start <= address < (*entry)->end.
1639
1640 * => If address is below all entries in map, return false and set
1641 * *entry to &map->header.
1642 *
1643 * => Otherwise, return false and set *entry to the highest entry below
1644 * address, so (*entry)->end <= address, and if (*entry)->next is
1645 * not &map->header, address < (*entry)->next->start.
1646 */
1647
1648 static inline bool
1649 uvm_map_lookup_entry_bytree(struct vm_map *map, vaddr_t address,
1650 struct vm_map_entry **entry /* OUT */)
1651 {
1652 struct vm_map_entry *prev = &map->header;
1653 struct vm_map_entry *cur = ROOT_ENTRY(map);
1654
1655 KASSERT(rw_lock_held(&map->lock));
1656
1657 while (cur) {
1658 KASSERT(prev == &map->header || prev->end <= address);
1659 KASSERT(prev == &map->header || prev->end <= cur->start);
1660 UVMMAP_EVCNT_INCR(mlk_treeloop);
1661 if (address >= cur->start) {
1662 if (address < cur->end) {
1663 *entry = cur;
1664 return true;
1665 }
1666 prev = cur;
1667 KASSERT(prev->end <= address);
1668 cur = RIGHT_ENTRY(cur);
1669 KASSERT(cur == NULL || prev->end <= cur->start);
1670 } else
1671 cur = LEFT_ENTRY(cur);
1672 }
1673 KASSERT(prev == &map->header || prev->end <= address);
1674 KASSERT(prev->next == &map->header || address < prev->next->start);
1675 *entry = prev;
1676 return false;
1677 }
1678
1679 /*
1680 * uvm_map_lookup_entry: find map entry at or before an address
1681 *
1682 * => map must at least be read-locked by caller.
1683 *
1684 * => If address lies in an entry, set *entry to it and return true;
1685 * then (*entry)->start <= address < (*entry)->end.
1686
1687 * => If address is below all entries in map, return false and set
1688 * *entry to &map->header.
1689 *
1690 * => Otherwise, return false and set *entry to the highest entry below
1691 * address, so (*entry)->end <= address, and if (*entry)->next is
1692 * not &map->header, address < (*entry)->next->start.
1693 */
1694
1695 bool
1696 uvm_map_lookup_entry(struct vm_map *map, vaddr_t address,
1697 struct vm_map_entry **entry /* OUT */)
1698 {
1699 struct vm_map_entry *cur;
1700 UVMHIST_FUNC(__func__);
1701 UVMHIST_CALLARGS(maphist,"(map=%#jx,addr=%#jx,ent=%#jx)",
1702 (uintptr_t)map, address, (uintptr_t)entry, 0);
1703
1704 KDASSERT(rw_lock_held(&map->lock));
1705
1706 /*
1707 * make a quick check to see if we are already looking at
1708 * the entry we want (which is usually the case). note also
1709 * that we don't need to save the hint here... it is the
1710 * same hint (unless we are at the header, in which case the
1711 * hint didn't buy us anything anyway).
1712 */
1713
1714 cur = map->hint;
1715 UVMMAP_EVCNT_INCR(mlk_call);
1716 if (cur != &map->header &&
1717 address >= cur->start && cur->end > address) {
1718 UVMMAP_EVCNT_INCR(mlk_hint);
1719 *entry = cur;
1720 UVMHIST_LOG(maphist,"<- got it via hint (%#jx)",
1721 (uintptr_t)cur, 0, 0, 0);
1722 uvm_mapent_check(*entry);
1723 return (true);
1724 }
1725 uvm_map_check(map, __func__);
1726
1727 /*
1728 * lookup in the tree.
1729 */
1730
1731 UVMMAP_EVCNT_INCR(mlk_tree);
1732 if (__predict_true(uvm_map_lookup_entry_bytree(map, address, entry))) {
1733 SAVE_HINT(map, map->hint, *entry);
1734 UVMHIST_LOG(maphist,"<- search got it (%#jx)",
1735 (uintptr_t)cur, 0, 0, 0);
1736 KDASSERT((*entry)->start <= address);
1737 KDASSERT(address < (*entry)->end);
1738 uvm_mapent_check(*entry);
1739 return (true);
1740 }
1741
1742 SAVE_HINT(map, map->hint, *entry);
1743 UVMHIST_LOG(maphist,"<- failed!",0,0,0,0);
1744 KDASSERT((*entry) == &map->header || (*entry)->end <= address);
1745 KDASSERT((*entry)->next == &map->header ||
1746 address < (*entry)->next->start);
1747 return (false);
1748 }
1749
1750 /*
1751 * See if the range between start and start + length fits in the gap
1752 * entry->next->start and entry->end. Returns 1 if fits, 0 if doesn't
1753 * fit, and -1 address wraps around.
1754 */
1755 static int
1756 uvm_map_space_avail(vaddr_t *start, vsize_t length, voff_t uoffset,
1757 vsize_t align, int flags, int topdown, struct vm_map_entry *entry)
1758 {
1759 vaddr_t orig_start = *start;
1760 vaddr_t end;
1761
1762 #define INVARIANTS() \
1763 KASSERTMSG((topdown \
1764 ? *start <= orig_start \
1765 : *start >= orig_start), \
1766 "[%s] *start=%"PRIxVADDR" orig_start=%"PRIxVADDR \
1767 " length=%"PRIxVSIZE" uoffset=%#llx align=%"PRIxVSIZE \
1768 " flags=%x entry@%p=[%"PRIxVADDR",%"PRIxVADDR")" \
1769 " ncolors=%d colormask=%x", \
1770 topdown ? "topdown" : "bottomup", *start, orig_start, \
1771 length, (unsigned long long)uoffset, align, \
1772 flags, entry, entry->start, entry->end, \
1773 uvmexp.ncolors, uvmexp.colormask)
1774
1775 INVARIANTS();
1776
1777 #ifdef PMAP_PREFER
1778 /*
1779 * push start address forward as needed to avoid VAC alias problems.
1780 * we only do this if a valid offset is specified.
1781 */
1782
1783 if (uoffset != UVM_UNKNOWN_OFFSET) {
1784 PMAP_PREFER(uoffset, start, length, topdown);
1785 INVARIANTS();
1786 }
1787 #endif
1788 if ((flags & UVM_FLAG_COLORMATCH) != 0) {
1789 KASSERT(align < uvmexp.ncolors);
1790 if (uvmexp.ncolors > 1) {
1791 const u_int colormask = uvmexp.colormask;
1792 const u_int colorsize = colormask + 1;
1793 vaddr_t hint = atop(*start);
1794 const u_int color = hint & colormask;
1795 if (color != align) {
1796 hint -= color; /* adjust to color boundary */
1797 KASSERT((hint & colormask) == 0);
1798 if (topdown) {
1799 if (align > color)
1800 hint -= colorsize;
1801 } else {
1802 if (align < color)
1803 hint += colorsize;
1804 }
1805 *start = ptoa(hint + align); /* adjust to color */
1806 INVARIANTS();
1807 }
1808 }
1809 } else {
1810 KASSERT(powerof2(align));
1811 uvm_map_align_va(start, align, topdown);
1812 INVARIANTS();
1813 /*
1814 * XXX Should we PMAP_PREFER() here again?
1815 * eh...i think we're okay
1816 */
1817 }
1818
1819 /*
1820 * Find the end of the proposed new region. Be sure we didn't
1821 * wrap around the address; if so, we lose. Otherwise, if the
1822 * proposed new region fits before the next entry, we win.
1823 *
1824 * XXX Should this use vm_map_max(map) as the max?
1825 */
1826
1827 if (length > __type_max(vaddr_t) - *start)
1828 return (-1);
1829 end = *start + length;
1830
1831 if (entry->next->start >= end && *start >= entry->end)
1832 return (1);
1833
1834 return (0);
1835
1836 #undef INVARIANTS
1837 }
1838
1839 static void
1840 uvm_findspace_invariants(struct vm_map *map, vaddr_t orig_hint, vaddr_t length,
1841 struct uvm_object *uobj, voff_t uoffset, vsize_t align, int flags,
1842 vaddr_t hint, struct vm_map_entry *entry, int line)
1843 {
1844 const int topdown = map->flags & VM_MAP_TOPDOWN;
1845 const int hint_location_ok =
1846 topdown ? hint <= orig_hint
1847 : hint >= orig_hint;
1848
1849 #if !(defined(__sh3__) && defined(DIAGNOSTIC)) /* XXXRO: kern/51254 */
1850 #define UVM_FINDSPACE_KASSERTMSG KASSERTMSG
1851
1852 #else /* sh3 && DIAGNOSTIC */
1853 /* like KASSERTMSG but make it not fatal */
1854 #define UVM_FINDSPACE_KASSERTMSG(e, msg, ...) \
1855 (__predict_true((e)) ? (void)0 : \
1856 printf(__KASSERTSTR msg "\n", \
1857 "weak diagnostic ", #e, \
1858 __FILE__, __LINE__, ## __VA_ARGS__))
1859 #endif
1860
1861 UVM_FINDSPACE_KASSERTMSG(hint_location_ok,
1862 "%s map=%p hint=%#" PRIxVADDR " %s orig_hint=%#" PRIxVADDR
1863 " length=%#" PRIxVSIZE " uobj=%p uoffset=%#llx align=%" PRIxVSIZE
1864 " flags=%#x entry@%p=[%" PRIxVADDR ",%" PRIxVADDR ")"
1865 " (uvm_map_findspace line %d)",
1866 topdown ? "topdown" : "bottomup",
1867 map, hint, topdown ? ">" : "<", orig_hint,
1868 length, uobj, (unsigned long long)uoffset, align,
1869 flags, entry, entry ? entry->start : 0, entry ? entry->end : 0,
1870 line);
1871 }
1872
1873 /*
1874 * uvm_map_findspace: find "length" sized space in "map".
1875 *
1876 * => "hint" is a hint about where we want it, unless UVM_FLAG_FIXED is
1877 * set in "flags" (in which case we insist on using "hint").
1878 * => "result" is VA returned
1879 * => uobj/uoffset are to be used to handle VAC alignment, if required
1880 * => if "align" is non-zero, we attempt to align to that value.
1881 * => caller must at least have read-locked map
1882 * => returns NULL on failure, or pointer to prev. map entry if success
1883 * => note this is a cross between the old vm_map_findspace and vm_map_find
1884 */
1885
1886 struct vm_map_entry *
1887 uvm_map_findspace(struct vm_map *map, vaddr_t hint, vsize_t length,
1888 vaddr_t *result /* OUT */, struct uvm_object *uobj, voff_t uoffset,
1889 vsize_t align, int flags)
1890 {
1891 #define INVARIANTS() \
1892 uvm_findspace_invariants(map, orig_hint, length, uobj, uoffset, align,\
1893 flags, hint, entry, __LINE__)
1894 struct vm_map_entry *entry = NULL;
1895 struct vm_map_entry *child, *prev, *tmp;
1896 vaddr_t orig_hint __diagused;
1897 const int topdown = map->flags & VM_MAP_TOPDOWN;
1898 int avail;
1899 UVMHIST_FUNC(__func__);
1900 UVMHIST_CALLARGS(maphist, "(map=%#jx, hint=%#jx, len=%ju, flags=%#jx...",
1901 (uintptr_t)map, hint, length, flags);
1902 UVMHIST_LOG(maphist, " uobj=%#jx, uoffset=%#jx, align=%#jx)",
1903 (uintptr_t)uobj, uoffset, align, 0);
1904
1905 KASSERT((flags & UVM_FLAG_COLORMATCH) != 0 || powerof2(align));
1906 KASSERT((flags & UVM_FLAG_COLORMATCH) == 0 || align < uvmexp.ncolors);
1907 KASSERT((flags & UVM_FLAG_FIXED) == 0 || align == 0);
1908
1909 uvm_map_check(map, "map_findspace entry");
1910
1911 /*
1912 * Clamp the hint to the VM map's min/max address, and remmeber
1913 * the clamped original hint. Remember the original hint,
1914 * clamped to the min/max address. If we are aligning, then we
1915 * may have to try again with no alignment constraint if we
1916 * fail the first time.
1917 *
1918 * We use the original hint to verify later that the search has
1919 * been monotonic -- that is, nonincreasing or nondecreasing,
1920 * according to topdown or !topdown respectively. But the
1921 * clamping is not monotonic.
1922 */
1923 if (hint < vm_map_min(map)) { /* check ranges ... */
1924 if (flags & UVM_FLAG_FIXED) {
1925 UVMHIST_LOG(maphist,"<- VA below map range",0,0,0,0);
1926 return (NULL);
1927 }
1928 hint = vm_map_min(map);
1929 }
1930 if (hint > vm_map_max(map)) {
1931 UVMHIST_LOG(maphist,"<- VA %#jx > range [%#jx->%#jx]",
1932 hint, vm_map_min(map), vm_map_max(map), 0);
1933 return (NULL);
1934 }
1935 orig_hint = hint;
1936 INVARIANTS();
1937
1938 UVMHIST_LOG(maphist,"<- VA %#jx vs range [%#jx->%#jx]",
1939 hint, vm_map_min(map), vm_map_max(map), 0);
1940
1941 /*
1942 * hint may not be aligned properly; we need round up or down it
1943 * before proceeding further.
1944 */
1945 if ((flags & UVM_FLAG_COLORMATCH) == 0) {
1946 uvm_map_align_va(&hint, align, topdown);
1947 INVARIANTS();
1948 }
1949
1950 UVMHIST_LOG(maphist,"<- VA %#jx vs range [%#jx->%#jx]",
1951 hint, vm_map_min(map), vm_map_max(map), 0);
1952 /*
1953 * Look for the first possible address; if there's already
1954 * something at this address, we have to start after it.
1955 */
1956
1957 /*
1958 * @@@: there are four, no, eight cases to consider.
1959 *
1960 * 0: found, fixed, bottom up -> fail
1961 * 1: found, fixed, top down -> fail
1962 * 2: found, not fixed, bottom up -> start after entry->end,
1963 * loop up
1964 * 3: found, not fixed, top down -> start before entry->start,
1965 * loop down
1966 * 4: not found, fixed, bottom up -> check entry->next->start, fail
1967 * 5: not found, fixed, top down -> check entry->next->start, fail
1968 * 6: not found, not fixed, bottom up -> check entry->next->start,
1969 * loop up
1970 * 7: not found, not fixed, top down -> check entry->next->start,
1971 * loop down
1972 *
1973 * as you can see, it reduces to roughly five cases, and that
1974 * adding top down mapping only adds one unique case (without
1975 * it, there would be four cases).
1976 */
1977
1978 if ((flags & UVM_FLAG_FIXED) == 0 &&
1979 hint == (topdown ? vm_map_max(map) : vm_map_min(map))) {
1980 /*
1981 * The uvm_map_findspace algorithm is monotonic -- for
1982 * topdown VM it starts with a high hint and returns a
1983 * lower free address; for !topdown VM it starts with a
1984 * low hint and returns a higher free address. As an
1985 * optimization, start with the first (highest for
1986 * topdown, lowest for !topdown) free address.
1987 *
1988 * XXX This `optimization' probably doesn't actually do
1989 * much in practice unless userland explicitly passes
1990 * the VM map's minimum or maximum address, which
1991 * varies from machine to machine (VM_MAX/MIN_ADDRESS,
1992 * e.g. 0x7fbfdfeff000 on amd64 but 0xfffffffff000 on
1993 * aarch64) and may vary according to other factors
1994 * like sysctl vm.user_va0_disable. In particular, if
1995 * the user specifies 0 as a hint to mmap, then mmap
1996 * will choose a default address which is usually _not_
1997 * VM_MAX/MIN_ADDRESS but something else instead like
1998 * VM_MAX_ADDRESS - stack size - guard page overhead,
1999 * in which case this branch is never hit.
2000 *
2001 * In fact, this branch appears to have been broken for
2002 * two decades between when topdown was introduced in
2003 * ~2003 and when it was adapted to handle the topdown
2004 * case without violating the monotonicity assertion in
2005 * 2022. Maybe Someone^TM should either ditch the
2006 * optimization or find a better way to do it.
2007 */
2008 entry = map->first_free;
2009 } else if (uvm_map_lookup_entry(map, hint, &entry)) {
2010 KASSERT(entry->start <= hint);
2011 KASSERT(hint < entry->end);
2012 /* "hint" address already in use ... */
2013 if (flags & UVM_FLAG_FIXED) {
2014 UVMHIST_LOG(maphist, "<- fixed & VA in use",
2015 0, 0, 0, 0);
2016 return (NULL);
2017 }
2018 if (topdown)
2019 /* Start from lower gap. */
2020 entry = entry->prev;
2021 } else {
2022 KASSERT(entry == &map->header || entry->end <= hint);
2023 KASSERT(entry->next == &map->header ||
2024 hint < entry->next->start);
2025 if (flags & UVM_FLAG_FIXED) {
2026 if (entry->next->start >= hint &&
2027 length <= entry->next->start - hint)
2028 goto found;
2029
2030 /* "hint" address is gap but too small */
2031 UVMHIST_LOG(maphist, "<- fixed mapping failed",
2032 0, 0, 0, 0);
2033 return (NULL); /* only one shot at it ... */
2034 } else {
2035 /*
2036 * See if given hint fits in this gap.
2037 */
2038 avail = uvm_map_space_avail(&hint, length,
2039 uoffset, align, flags, topdown, entry);
2040 INVARIANTS();
2041 switch (avail) {
2042 case 1:
2043 goto found;
2044 case -1:
2045 goto wraparound;
2046 }
2047
2048 if (topdown) {
2049 /*
2050 * Still there is a chance to fit
2051 * if hint > entry->end.
2052 */
2053 } else {
2054 /* Start from higher gap. */
2055 entry = entry->next;
2056 if (entry == &map->header)
2057 goto notfound;
2058 goto nextgap;
2059 }
2060 }
2061 }
2062
2063 /*
2064 * Note that all UVM_FLAGS_FIXED case is already handled.
2065 */
2066 KDASSERT((flags & UVM_FLAG_FIXED) == 0);
2067
2068 /* Try to find the space in the red-black tree */
2069
2070 /* Check slot before any entry */
2071 if (topdown) {
2072 KASSERTMSG(entry->next->start >= vm_map_min(map),
2073 "map=%p entry=%p entry->next=%p"
2074 " entry->next->start=0x%"PRIxVADDR" min=0x%"PRIxVADDR,
2075 map, entry, entry->next,
2076 entry->next->start, vm_map_min(map));
2077 if (length > entry->next->start - vm_map_min(map))
2078 hint = vm_map_min(map); /* XXX goto wraparound? */
2079 else
2080 hint = entry->next->start - length;
2081 KASSERT(hint >= vm_map_min(map));
2082 } else {
2083 hint = entry->end;
2084 }
2085 INVARIANTS();
2086 avail = uvm_map_space_avail(&hint, length, uoffset, align, flags,
2087 topdown, entry);
2088 INVARIANTS();
2089 switch (avail) {
2090 case 1:
2091 goto found;
2092 case -1:
2093 goto wraparound;
2094 }
2095
2096 nextgap:
2097 KDASSERT((flags & UVM_FLAG_FIXED) == 0);
2098 /* If there is not enough space in the whole tree, we fail */
2099 tmp = ROOT_ENTRY(map);
2100 if (tmp == NULL || tmp->maxgap < length)
2101 goto notfound;
2102
2103 prev = NULL; /* previous candidate */
2104
2105 /* Find an entry close to hint that has enough space */
2106 for (; tmp;) {
2107 KASSERT(tmp->next->start == tmp->end + tmp->gap);
2108 if (topdown) {
2109 if (tmp->next->start < hint + length &&
2110 (prev == NULL || tmp->end > prev->end)) {
2111 if (tmp->gap >= length)
2112 prev = tmp;
2113 else if ((child = LEFT_ENTRY(tmp)) != NULL
2114 && child->maxgap >= length)
2115 prev = tmp;
2116 }
2117 } else {
2118 if (tmp->end >= hint &&
2119 (prev == NULL || tmp->end < prev->end)) {
2120 if (tmp->gap >= length)
2121 prev = tmp;
2122 else if ((child = RIGHT_ENTRY(tmp)) != NULL
2123 && child->maxgap >= length)
2124 prev = tmp;
2125 }
2126 }
2127 if (tmp->next->start < hint + length)
2128 child = RIGHT_ENTRY(tmp);
2129 else if (tmp->end > hint)
2130 child = LEFT_ENTRY(tmp);
2131 else {
2132 if (tmp->gap >= length)
2133 break;
2134 if (topdown)
2135 child = LEFT_ENTRY(tmp);
2136 else
2137 child = RIGHT_ENTRY(tmp);
2138 }
2139 if (child == NULL || child->maxgap < length)
2140 break;
2141 tmp = child;
2142 }
2143
2144 if (tmp != NULL && tmp->start < hint && hint < tmp->next->start) {
2145 /*
2146 * Check if the entry that we found satifies the
2147 * space requirement
2148 */
2149 if (topdown) {
2150 if (hint > tmp->next->start - length)
2151 hint = tmp->next->start - length;
2152 } else {
2153 if (hint < tmp->end)
2154 hint = tmp->end;
2155 }
2156 INVARIANTS();
2157 avail = uvm_map_space_avail(&hint, length, uoffset, align,
2158 flags, topdown, tmp);
2159 INVARIANTS();
2160 switch (avail) {
2161 case 1:
2162 entry = tmp;
2163 goto found;
2164 case -1:
2165 goto wraparound;
2166 }
2167 if (tmp->gap >= length)
2168 goto listsearch;
2169 }
2170 if (prev == NULL)
2171 goto notfound;
2172
2173 if (topdown) {
2174 KASSERT(orig_hint >= prev->next->start - length ||
2175 prev->next->start - length > prev->next->start);
2176 hint = prev->next->start - length;
2177 } else {
2178 KASSERT(orig_hint <= prev->end);
2179 hint = prev->end;
2180 }
2181 INVARIANTS();
2182 avail = uvm_map_space_avail(&hint, length, uoffset, align,
2183 flags, topdown, prev);
2184 INVARIANTS();
2185 switch (avail) {
2186 case 1:
2187 entry = prev;
2188 goto found;
2189 case -1:
2190 goto wraparound;
2191 }
2192 if (prev->gap >= length)
2193 goto listsearch;
2194
2195 if (topdown)
2196 tmp = LEFT_ENTRY(prev);
2197 else
2198 tmp = RIGHT_ENTRY(prev);
2199 for (;;) {
2200 KASSERT(tmp);
2201 KASSERTMSG(tmp->maxgap >= length,
2202 "tmp->maxgap=0x%"PRIxVSIZE" length=0x%"PRIxVSIZE,
2203 tmp->maxgap, length);
2204 if (topdown)
2205 child = RIGHT_ENTRY(tmp);
2206 else
2207 child = LEFT_ENTRY(tmp);
2208 if (child && child->maxgap >= length) {
2209 tmp = child;
2210 continue;
2211 }
2212 if (tmp->gap >= length)
2213 break;
2214 if (topdown)
2215 tmp = LEFT_ENTRY(tmp);
2216 else
2217 tmp = RIGHT_ENTRY(tmp);
2218 }
2219
2220 if (topdown) {
2221 KASSERT(orig_hint >= tmp->next->start - length ||
2222 tmp->next->start - length > tmp->next->start);
2223 hint = tmp->next->start - length;
2224 } else {
2225 KASSERT(orig_hint <= tmp->end);
2226 hint = tmp->end;
2227 }
2228 INVARIANTS();
2229 avail = uvm_map_space_avail(&hint, length, uoffset, align,
2230 flags, topdown, tmp);
2231 INVARIANTS();
2232 switch (avail) {
2233 case 1:
2234 entry = tmp;
2235 goto found;
2236 case -1:
2237 goto wraparound;
2238 }
2239
2240 /*
2241 * The tree fails to find an entry because of offset or alignment
2242 * restrictions. Search the list instead.
2243 */
2244 listsearch:
2245 /*
2246 * Look through the rest of the map, trying to fit a new region in
2247 * the gap between existing regions, or after the very last region.
2248 * note: entry->end = base VA of current gap,
2249 * entry->next->start = VA of end of current gap
2250 */
2251
2252 INVARIANTS();
2253 for (;;) {
2254 /* Update hint for current gap. */
2255 hint = topdown ? entry->next->start - length : entry->end;
2256 INVARIANTS();
2257
2258 /* See if it fits. */
2259 avail = uvm_map_space_avail(&hint, length, uoffset, align,
2260 flags, topdown, entry);
2261 INVARIANTS();
2262 switch (avail) {
2263 case 1:
2264 goto found;
2265 case -1:
2266 goto wraparound;
2267 }
2268
2269 /* Advance to next/previous gap */
2270 if (topdown) {
2271 if (entry == &map->header) {
2272 UVMHIST_LOG(maphist, "<- failed (off start)",
2273 0,0,0,0);
2274 goto notfound;
2275 }
2276 entry = entry->prev;
2277 } else {
2278 entry = entry->next;
2279 if (entry == &map->header) {
2280 UVMHIST_LOG(maphist, "<- failed (off end)",
2281 0,0,0,0);
2282 goto notfound;
2283 }
2284 }
2285 }
2286
2287 found:
2288 SAVE_HINT(map, map->hint, entry);
2289 *result = hint;
2290 UVMHIST_LOG(maphist,"<- got it! (result=%#jx)", hint, 0,0,0);
2291 INVARIANTS();
2292 KASSERT(entry->end <= hint);
2293 KASSERT(hint <= entry->next->start);
2294 KASSERT(length <= entry->next->start - hint);
2295 return (entry);
2296
2297 wraparound:
2298 UVMHIST_LOG(maphist, "<- failed (wrap around)", 0,0,0,0);
2299
2300 return (NULL);
2301
2302 notfound:
2303 UVMHIST_LOG(maphist, "<- failed (notfound)", 0,0,0,0);
2304
2305 return (NULL);
2306 #undef INVARIANTS
2307 }
2308
2309 /*
2310 * U N M A P - m a i n h e l p e r f u n c t i o n s
2311 */
2312
2313 /*
2314 * uvm_unmap_remove: remove mappings from a vm_map (from "start" up to "stop")
2315 *
2316 * => caller must check alignment and size
2317 * => map must be locked by caller
2318 * => we return a list of map entries that we've remove from the map
2319 * in "entry_list"
2320 */
2321
2322 void
2323 uvm_unmap_remove(struct vm_map *map, vaddr_t start, vaddr_t end,
2324 struct vm_map_entry **entry_list /* OUT */, int flags)
2325 {
2326 struct vm_map_entry *entry, *first_entry, *next;
2327 vaddr_t len;
2328 UVMHIST_FUNC(__func__);
2329 UVMHIST_CALLARGS(maphist,"(map=%#jx, start=%#jx, end=%#jx)",
2330 (uintptr_t)map, start, end, 0);
2331 VM_MAP_RANGE_CHECK(map, start, end);
2332
2333 uvm_map_check(map, "unmap_remove entry");
2334
2335 /*
2336 * find first entry
2337 */
2338
2339 if (uvm_map_lookup_entry(map, start, &first_entry) == true) {
2340 /* clip and go... */
2341 entry = first_entry;
2342 UVM_MAP_CLIP_START(map, entry, start);
2343 /* critical! prevents stale hint */
2344 SAVE_HINT(map, entry, entry->prev);
2345 } else {
2346 entry = first_entry->next;
2347 }
2348
2349 /*
2350 * save the free space hint
2351 */
2352
2353 if (map->first_free != &map->header && map->first_free->start >= start)
2354 map->first_free = entry->prev;
2355
2356 /*
2357 * note: we now re-use first_entry for a different task. we remove
2358 * a number of map entries from the map and save them in a linked
2359 * list headed by "first_entry". once we remove them from the map
2360 * the caller should unlock the map and drop the references to the
2361 * backing objects [c.f. uvm_unmap_detach]. the object is to
2362 * separate unmapping from reference dropping. why?
2363 * [1] the map has to be locked for unmapping
2364 * [2] the map need not be locked for reference dropping
2365 * [3] dropping references may trigger pager I/O, and if we hit
2366 * a pager that does synchronous I/O we may have to wait for it.
2367 * [4] we would like all waiting for I/O to occur with maps unlocked
2368 * so that we don't block other threads.
2369 */
2370
2371 first_entry = NULL;
2372 *entry_list = NULL;
2373
2374 /*
2375 * break up the area into map entry sized regions and unmap. note
2376 * that all mappings have to be removed before we can even consider
2377 * dropping references to amaps or VM objects (otherwise we could end
2378 * up with a mapping to a page on the free list which would be very bad)
2379 */
2380
2381 while ((entry != &map->header) && (entry->start < end)) {
2382 KASSERT((entry->flags & UVM_MAP_STATIC) == 0);
2383
2384 UVM_MAP_CLIP_END(map, entry, end);
2385 next = entry->next;
2386 len = entry->end - entry->start;
2387
2388 /*
2389 * unwire before removing addresses from the pmap; otherwise
2390 * unwiring will put the entries back into the pmap (XXX).
2391 */
2392
2393 if (VM_MAPENT_ISWIRED(entry)) {
2394 uvm_map_entry_unwire(map, entry);
2395 }
2396 if (flags & UVM_FLAG_VAONLY) {
2397
2398 /* nothing */
2399
2400 } else if ((map->flags & VM_MAP_PAGEABLE) == 0) {
2401
2402 /*
2403 * if the map is non-pageable, any pages mapped there
2404 * must be wired and entered with pmap_kenter_pa(),
2405 * and we should free any such pages immediately.
2406 * this is mostly used for kmem_map.
2407 */
2408 KASSERT(vm_map_pmap(map) == pmap_kernel());
2409
2410 uvm_km_pgremove_intrsafe(map, entry->start, entry->end);
2411 } else if (UVM_ET_ISOBJ(entry) &&
2412 UVM_OBJ_IS_KERN_OBJECT(entry->object.uvm_obj)) {
2413 panic("%s: kernel object %p %p\n",
2414 __func__, map, entry);
2415 } else if (UVM_ET_ISOBJ(entry) || entry->aref.ar_amap) {
2416 /*
2417 * remove mappings the standard way. lock object
2418 * and/or amap to ensure vm_page state does not
2419 * change while in pmap_remove().
2420 */
2421
2422 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
2423 uvm_map_lock_entry(entry, RW_WRITER);
2424 #else
2425 uvm_map_lock_entry(entry, RW_READER);
2426 #endif
2427 pmap_remove(map->pmap, entry->start, entry->end);
2428
2429 /*
2430 * note: if map is dying, leave pmap_update() for
2431 * later. if the map is to be reused (exec) then
2432 * pmap_update() will be called. if the map is
2433 * being disposed of (exit) then pmap_destroy()
2434 * will be called.
2435 */
2436
2437 if ((map->flags & VM_MAP_DYING) == 0) {
2438 pmap_update(vm_map_pmap(map));
2439 } else {
2440 KASSERT(vm_map_pmap(map) != pmap_kernel());
2441 }
2442
2443 uvm_map_unlock_entry(entry);
2444 }
2445
2446 #if defined(UVMDEBUG)
2447 /*
2448 * check if there's remaining mapping,
2449 * which is a bug in caller.
2450 */
2451
2452 vaddr_t va;
2453 for (va = entry->start; va < entry->end;
2454 va += PAGE_SIZE) {
2455 if (pmap_extract(vm_map_pmap(map), va, NULL)) {
2456 panic("%s: %#"PRIxVADDR" has mapping",
2457 __func__, va);
2458 }
2459 }
2460
2461 if (VM_MAP_IS_KERNEL(map) && (flags & UVM_FLAG_NOWAIT) == 0) {
2462 uvm_km_check_empty(map, entry->start, entry->end);
2463 }
2464 #endif /* defined(UVMDEBUG) */
2465
2466 /*
2467 * remove entry from map and put it on our list of entries
2468 * that we've nuked. then go to next entry.
2469 */
2470
2471 UVMHIST_LOG(maphist, " removed map entry %#jx",
2472 (uintptr_t)entry, 0, 0, 0);
2473
2474 /* critical! prevents stale hint */
2475 SAVE_HINT(map, entry, entry->prev);
2476
2477 uvm_map_entry_unlink(map, entry);
2478 KASSERT(map->size >= len);
2479 map->size -= len;
2480 entry->prev = NULL;
2481 entry->next = first_entry;
2482 first_entry = entry;
2483 entry = next;
2484 }
2485
2486 uvm_map_check(map, "unmap_remove leave");
2487
2488 /*
2489 * now we've cleaned up the map and are ready for the caller to drop
2490 * references to the mapped objects.
2491 */
2492
2493 *entry_list = first_entry;
2494 UVMHIST_LOG(maphist,"<- done!", 0, 0, 0, 0);
2495
2496 if (map->flags & VM_MAP_WANTVA) {
2497 mutex_enter(&map->misc_lock);
2498 map->flags &= ~VM_MAP_WANTVA;
2499 cv_broadcast(&map->cv);
2500 mutex_exit(&map->misc_lock);
2501 }
2502 }
2503
2504 /*
2505 * uvm_unmap_detach: drop references in a chain of map entries
2506 *
2507 * => we will free the map entries as we traverse the list.
2508 */
2509
2510 void
2511 uvm_unmap_detach(struct vm_map_entry *first_entry, int flags)
2512 {
2513 struct vm_map_entry *next_entry;
2514 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2515
2516 while (first_entry) {
2517 KASSERT(!VM_MAPENT_ISWIRED(first_entry));
2518 UVMHIST_LOG(maphist,
2519 " detach %#jx: amap=%#jx, obj=%#jx, submap?=%jd",
2520 (uintptr_t)first_entry,
2521 (uintptr_t)first_entry->aref.ar_amap,
2522 (uintptr_t)first_entry->object.uvm_obj,
2523 UVM_ET_ISSUBMAP(first_entry));
2524
2525 /*
2526 * drop reference to amap, if we've got one
2527 */
2528
2529 if (first_entry->aref.ar_amap)
2530 uvm_map_unreference_amap(first_entry, flags);
2531
2532 /*
2533 * drop reference to our backing object, if we've got one
2534 */
2535
2536 KASSERT(!UVM_ET_ISSUBMAP(first_entry));
2537 if (UVM_ET_ISOBJ(first_entry) &&
2538 first_entry->object.uvm_obj->pgops->pgo_detach) {
2539 (*first_entry->object.uvm_obj->pgops->pgo_detach)
2540 (first_entry->object.uvm_obj);
2541 }
2542 next_entry = first_entry->next;
2543 uvm_mapent_free(first_entry);
2544 first_entry = next_entry;
2545 }
2546 UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
2547 }
2548
2549 /*
2550 * E X T R A C T I O N F U N C T I O N S
2551 */
2552
2553 /*
2554 * uvm_map_reserve: reserve space in a vm_map for future use.
2555 *
2556 * => we reserve space in a map by putting a dummy map entry in the
2557 * map (dummy means obj=NULL, amap=NULL, prot=VM_PROT_NONE)
2558 * => map should be unlocked (we will write lock it)
2559 * => we return true if we were able to reserve space
2560 * => XXXCDC: should be inline?
2561 */
2562
2563 int
2564 uvm_map_reserve(struct vm_map *map, vsize_t size,
2565 vaddr_t offset /* hint for pmap_prefer */,
2566 vsize_t align /* alignment */,
2567 vaddr_t *raddr /* IN:hint, OUT: reserved VA */,
2568 uvm_flag_t flags /* UVM_FLAG_FIXED or UVM_FLAG_COLORMATCH or 0 */)
2569 {
2570 UVMHIST_FUNC(__func__);
2571 UVMHIST_CALLARGS(maphist, "(map=%#jx, size=%#jx, offset=%#jx, addr=%#jx)",
2572 (uintptr_t)map, size, offset, (uintptr_t)raddr);
2573
2574 size = round_page(size);
2575
2576 /*
2577 * reserve some virtual space.
2578 */
2579
2580 if (uvm_map(map, raddr, size, NULL, offset, align,
2581 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
2582 UVM_ADV_RANDOM, UVM_FLAG_NOMERGE|flags)) != 0) {
2583 UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
2584 return (false);
2585 }
2586
2587 UVMHIST_LOG(maphist, "<- done (*raddr=%#jx)", *raddr,0,0,0);
2588 return (true);
2589 }
2590
2591 /*
2592 * uvm_map_replace: replace a reserved (blank) area of memory with
2593 * real mappings.
2594 *
2595 * => caller must WRITE-LOCK the map
2596 * => we return true if replacement was a success
2597 * => we expect the newents chain to have nnewents entrys on it and
2598 * we expect newents->prev to point to the last entry on the list
2599 * => note newents is allowed to be NULL
2600 */
2601
2602 static int
2603 uvm_map_replace(struct vm_map *map, vaddr_t start, vaddr_t end,
2604 struct vm_map_entry *newents, int nnewents, vsize_t nsize,
2605 struct vm_map_entry **oldentryp)
2606 {
2607 struct vm_map_entry *oldent, *last;
2608
2609 uvm_map_check(map, "map_replace entry");
2610
2611 /*
2612 * first find the blank map entry at the specified address
2613 */
2614
2615 if (!uvm_map_lookup_entry(map, start, &oldent)) {
2616 return (false);
2617 }
2618
2619 /*
2620 * check to make sure we have a proper blank entry
2621 */
2622
2623 if (end < oldent->end) {
2624 UVM_MAP_CLIP_END(map, oldent, end);
2625 }
2626 if (oldent->start != start || oldent->end != end ||
2627 oldent->object.uvm_obj != NULL || oldent->aref.ar_amap != NULL) {
2628 return (false);
2629 }
2630
2631 #ifdef DIAGNOSTIC
2632
2633 /*
2634 * sanity check the newents chain
2635 */
2636
2637 {
2638 struct vm_map_entry *tmpent = newents;
2639 int nent = 0;
2640 vsize_t sz = 0;
2641 vaddr_t cur = start;
2642
2643 while (tmpent) {
2644 nent++;
2645 sz += tmpent->end - tmpent->start;
2646 if (tmpent->start < cur)
2647 panic("uvm_map_replace1");
2648 if (tmpent->start >= tmpent->end || tmpent->end > end) {
2649 panic("uvm_map_replace2: "
2650 "tmpent->start=%#"PRIxVADDR
2651 ", tmpent->end=%#"PRIxVADDR
2652 ", end=%#"PRIxVADDR,
2653 tmpent->start, tmpent->end, end);
2654 }
2655 cur = tmpent->end;
2656 if (tmpent->next) {
2657 if (tmpent->next->prev != tmpent)
2658 panic("uvm_map_replace3");
2659 } else {
2660 if (newents->prev != tmpent)
2661 panic("uvm_map_replace4");
2662 }
2663 tmpent = tmpent->next;
2664 }
2665 if (nent != nnewents)
2666 panic("uvm_map_replace5");
2667 if (sz != nsize)
2668 panic("uvm_map_replace6");
2669 }
2670 #endif
2671
2672 /*
2673 * map entry is a valid blank! replace it. (this does all the
2674 * work of map entry link/unlink...).
2675 */
2676
2677 if (newents) {
2678 last = newents->prev;
2679
2680 /* critical: flush stale hints out of map */
2681 SAVE_HINT(map, map->hint, newents);
2682 if (map->first_free == oldent)
2683 map->first_free = last;
2684
2685 last->next = oldent->next;
2686 last->next->prev = last;
2687
2688 /* Fix RB tree */
2689 uvm_rb_remove(map, oldent);
2690
2691 newents->prev = oldent->prev;
2692 newents->prev->next = newents;
2693 map->nentries = map->nentries + (nnewents - 1);
2694
2695 /* Fixup the RB tree */
2696 {
2697 int i;
2698 struct vm_map_entry *tmp;
2699
2700 tmp = newents;
2701 for (i = 0; i < nnewents && tmp; i++) {
2702 uvm_rb_insert(map, tmp);
2703 tmp = tmp->next;
2704 }
2705 }
2706 } else {
2707 /* NULL list of new entries: just remove the old one */
2708 clear_hints(map, oldent);
2709 uvm_map_entry_unlink(map, oldent);
2710 }
2711 map->size -= end - start - nsize;
2712
2713 uvm_map_check(map, "map_replace leave");
2714
2715 /*
2716 * now we can free the old blank entry and return.
2717 */
2718
2719 *oldentryp = oldent;
2720 return (true);
2721 }
2722
2723 /*
2724 * uvm_map_extract: extract a mapping from a map and put it somewhere
2725 * (maybe removing the old mapping)
2726 *
2727 * => maps should be unlocked (we will write lock them)
2728 * => returns 0 on success, error code otherwise
2729 * => start must be page aligned
2730 * => len must be page sized
2731 * => flags:
2732 * UVM_EXTRACT_REMOVE: remove mappings from srcmap
2733 * UVM_EXTRACT_CONTIG: abort if unmapped area (advisory only)
2734 * UVM_EXTRACT_QREF: for a temporary extraction do quick obj refs
2735 * UVM_EXTRACT_FIXPROT: set prot to maxprot as we go
2736 * UVM_EXTRACT_PROT_ALL: set prot to UVM_PROT_ALL as we go
2737 * >>>NOTE: if you set REMOVE, you are not allowed to use CONTIG or QREF!<<<
2738 * >>>NOTE: QREF's must be unmapped via the QREF path, thus should only
2739 * be used from within the kernel in a kernel level map <<<
2740 */
2741
2742 int
2743 uvm_map_extract(struct vm_map *srcmap, vaddr_t start, vsize_t len,
2744 struct vm_map *dstmap, vaddr_t *dstaddrp, int flags)
2745 {
2746 vaddr_t dstaddr, end, newend, oldoffset, fudge, orig_fudge;
2747 struct vm_map_entry *chain, *endchain, *entry, *orig_entry, *newentry,
2748 *deadentry, *oldentry;
2749 struct vm_map_entry *resentry = NULL; /* a dummy reservation entry */
2750 vsize_t elen __unused;
2751 int nchain, error, copy_ok;
2752 vsize_t nsize;
2753 UVMHIST_FUNC(__func__);
2754 UVMHIST_CALLARGS(maphist,"(srcmap=%#jx,start=%#jx, len=%#jx",
2755 (uintptr_t)srcmap, start, len, 0);
2756 UVMHIST_LOG(maphist," ...,dstmap=%#jx, flags=%#jx)",
2757 (uintptr_t)dstmap, flags, 0, 0);
2758
2759 /*
2760 * step 0: sanity check: start must be on a page boundary, length
2761 * must be page sized. can't ask for CONTIG/QREF if you asked for
2762 * REMOVE.
2763 */
2764
2765 KASSERTMSG((start & PAGE_MASK) == 0, "start=0x%"PRIxVADDR, start);
2766 KASSERTMSG((len & PAGE_MASK) == 0, "len=0x%"PRIxVADDR, len);
2767 KASSERT((flags & UVM_EXTRACT_REMOVE) == 0 ||
2768 (flags & (UVM_EXTRACT_CONTIG|UVM_EXTRACT_QREF)) == 0);
2769
2770 /*
2771 * step 1: reserve space in the target map for the extracted area
2772 */
2773
2774 if ((flags & UVM_EXTRACT_RESERVED) == 0) {
2775 dstaddr = vm_map_min(dstmap);
2776 if (!uvm_map_reserve(dstmap, len, start,
2777 atop(start) & uvmexp.colormask, &dstaddr,
2778 UVM_FLAG_COLORMATCH))
2779 return (ENOMEM);
2780 KASSERT((atop(start ^ dstaddr) & uvmexp.colormask) == 0);
2781 *dstaddrp = dstaddr; /* pass address back to caller */
2782 UVMHIST_LOG(maphist, " dstaddr=%#jx", dstaddr,0,0,0);
2783 } else {
2784 dstaddr = *dstaddrp;
2785 }
2786
2787 /*
2788 * step 2: setup for the extraction process loop by init'ing the
2789 * map entry chain, locking src map, and looking up the first useful
2790 * entry in the map.
2791 */
2792
2793 end = start + len;
2794 newend = dstaddr + len;
2795 chain = endchain = NULL;
2796 nchain = 0;
2797 nsize = 0;
2798 vm_map_lock(srcmap);
2799
2800 if (uvm_map_lookup_entry(srcmap, start, &entry)) {
2801
2802 /* "start" is within an entry */
2803 if (flags & UVM_EXTRACT_QREF) {
2804
2805 /*
2806 * for quick references we don't clip the entry, so
2807 * the entry may map space "before" the starting
2808 * virtual address... this is the "fudge" factor
2809 * (which can be non-zero only the first time
2810 * through the "while" loop in step 3).
2811 */
2812
2813 fudge = start - entry->start;
2814 } else {
2815
2816 /*
2817 * normal reference: we clip the map to fit (thus
2818 * fudge is zero)
2819 */
2820
2821 UVM_MAP_CLIP_START(srcmap, entry, start);
2822 SAVE_HINT(srcmap, srcmap->hint, entry->prev);
2823 fudge = 0;
2824 }
2825 } else {
2826
2827 /* "start" is not within an entry ... skip to next entry */
2828 if (flags & UVM_EXTRACT_CONTIG) {
2829 error = EINVAL;
2830 goto bad; /* definite hole here ... */
2831 }
2832
2833 entry = entry->next;
2834 fudge = 0;
2835 }
2836
2837 /* save values from srcmap for step 6 */
2838 orig_entry = entry;
2839 orig_fudge = fudge;
2840
2841 /*
2842 * step 3: now start looping through the map entries, extracting
2843 * as we go.
2844 */
2845
2846 while (entry->start < end && entry != &srcmap->header) {
2847
2848 /* if we are not doing a quick reference, clip it */
2849 if ((flags & UVM_EXTRACT_QREF) == 0)
2850 UVM_MAP_CLIP_END(srcmap, entry, end);
2851
2852 /* clear needs_copy (allow chunking) */
2853 if (UVM_ET_ISNEEDSCOPY(entry)) {
2854 amap_copy(srcmap, entry,
2855 AMAP_COPY_NOWAIT|AMAP_COPY_NOMERGE, start, end);
2856 if (UVM_ET_ISNEEDSCOPY(entry)) { /* failed? */
2857 error = ENOMEM;
2858 goto bad;
2859 }
2860
2861 /* amap_copy could clip (during chunk)! update fudge */
2862 if (fudge) {
2863 fudge = start - entry->start;
2864 orig_fudge = fudge;
2865 }
2866 }
2867
2868 /* calculate the offset of this from "start" */
2869 oldoffset = (entry->start + fudge) - start;
2870
2871 /* allocate a new map entry */
2872 newentry = uvm_mapent_alloc(dstmap, 0);
2873 if (newentry == NULL) {
2874 error = ENOMEM;
2875 goto bad;
2876 }
2877
2878 /* set up new map entry */
2879 newentry->next = NULL;
2880 newentry->prev = endchain;
2881 newentry->start = dstaddr + oldoffset;
2882 newentry->end =
2883 newentry->start + (entry->end - (entry->start + fudge));
2884 if (newentry->end > newend || newentry->end < newentry->start)
2885 newentry->end = newend;
2886 newentry->object.uvm_obj = entry->object.uvm_obj;
2887 if (newentry->object.uvm_obj) {
2888 if (newentry->object.uvm_obj->pgops->pgo_reference)
2889 newentry->object.uvm_obj->pgops->
2890 pgo_reference(newentry->object.uvm_obj);
2891 newentry->offset = entry->offset + fudge;
2892 } else {
2893 newentry->offset = 0;
2894 }
2895 newentry->etype = entry->etype;
2896 if (flags & UVM_EXTRACT_PROT_ALL) {
2897 newentry->protection = newentry->max_protection =
2898 UVM_PROT_ALL;
2899 } else {
2900 newentry->protection = (flags & UVM_EXTRACT_FIXPROT) ?
2901 entry->max_protection : entry->protection;
2902 newentry->max_protection = entry->max_protection;
2903 }
2904 newentry->inheritance = entry->inheritance;
2905 newentry->wired_count = 0;
2906 newentry->aref.ar_amap = entry->aref.ar_amap;
2907 if (newentry->aref.ar_amap) {
2908 newentry->aref.ar_pageoff =
2909 entry->aref.ar_pageoff + (fudge >> PAGE_SHIFT);
2910 uvm_map_reference_amap(newentry, AMAP_SHARED |
2911 ((flags & UVM_EXTRACT_QREF) ? AMAP_REFALL : 0));
2912 } else {
2913 newentry->aref.ar_pageoff = 0;
2914 }
2915 newentry->advice = entry->advice;
2916 if ((flags & UVM_EXTRACT_QREF) != 0) {
2917 newentry->flags |= UVM_MAP_NOMERGE;
2918 }
2919
2920 /* now link it on the chain */
2921 nchain++;
2922 nsize += newentry->end - newentry->start;
2923 if (endchain == NULL) {
2924 chain = endchain = newentry;
2925 } else {
2926 endchain->next = newentry;
2927 endchain = newentry;
2928 }
2929
2930 /* end of 'while' loop! */
2931 if ((flags & UVM_EXTRACT_CONTIG) && entry->end < end &&
2932 (entry->next == &srcmap->header ||
2933 entry->next->start != entry->end)) {
2934 error = EINVAL;
2935 goto bad;
2936 }
2937 entry = entry->next;
2938 fudge = 0;
2939 }
2940
2941 /*
2942 * step 4: close off chain (in format expected by uvm_map_replace)
2943 */
2944
2945 if (chain)
2946 chain->prev = endchain;
2947
2948 /*
2949 * step 5: attempt to lock the dest map so we can pmap_copy.
2950 * note usage of copy_ok:
2951 * 1 => dstmap locked, pmap_copy ok, and we "replace" here (step 5)
2952 * 0 => dstmap unlocked, NO pmap_copy, and we will "replace" in step 7
2953 */
2954
2955 if (srcmap == dstmap || vm_map_lock_try(dstmap) == true) {
2956 copy_ok = 1;
2957 if (!uvm_map_replace(dstmap, dstaddr, dstaddr+len, chain,
2958 nchain, nsize, &resentry)) {
2959 if (srcmap != dstmap)
2960 vm_map_unlock(dstmap);
2961 error = EIO;
2962 goto bad;
2963 }
2964 } else {
2965 copy_ok = 0;
2966 /* replace deferred until step 7 */
2967 }
2968
2969 /*
2970 * step 6: traverse the srcmap a second time to do the following:
2971 * - if we got a lock on the dstmap do pmap_copy
2972 * - if UVM_EXTRACT_REMOVE remove the entries
2973 * we make use of orig_entry and orig_fudge (saved in step 2)
2974 */
2975
2976 if (copy_ok || (flags & UVM_EXTRACT_REMOVE)) {
2977
2978 /* purge possible stale hints from srcmap */
2979 if (flags & UVM_EXTRACT_REMOVE) {
2980 SAVE_HINT(srcmap, srcmap->hint, orig_entry->prev);
2981 if (srcmap->first_free != &srcmap->header &&
2982 srcmap->first_free->start >= start)
2983 srcmap->first_free = orig_entry->prev;
2984 }
2985
2986 entry = orig_entry;
2987 fudge = orig_fudge;
2988 deadentry = NULL; /* for UVM_EXTRACT_REMOVE */
2989
2990 while (entry->start < end && entry != &srcmap->header) {
2991 if (copy_ok) {
2992 oldoffset = (entry->start + fudge) - start;
2993 elen = MIN(end, entry->end) -
2994 (entry->start + fudge);
2995 pmap_copy(dstmap->pmap, srcmap->pmap,
2996 dstaddr + oldoffset, elen,
2997 entry->start + fudge);
2998 }
2999
3000 /* we advance "entry" in the following if statement */
3001 if (flags & UVM_EXTRACT_REMOVE) {
3002 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
3003 uvm_map_lock_entry(entry, RW_WRITER);
3004 #else
3005 uvm_map_lock_entry(entry, RW_READER);
3006 #endif
3007 pmap_remove(srcmap->pmap, entry->start,
3008 entry->end);
3009 uvm_map_unlock_entry(entry);
3010 oldentry = entry; /* save entry */
3011 entry = entry->next; /* advance */
3012 uvm_map_entry_unlink(srcmap, oldentry);
3013 /* add to dead list */
3014 oldentry->next = deadentry;
3015 deadentry = oldentry;
3016 } else {
3017 entry = entry->next; /* advance */
3018 }
3019
3020 /* end of 'while' loop */
3021 fudge = 0;
3022 }
3023 pmap_update(srcmap->pmap);
3024
3025 /*
3026 * unlock dstmap. we will dispose of deadentry in
3027 * step 7 if needed
3028 */
3029
3030 if (copy_ok && srcmap != dstmap)
3031 vm_map_unlock(dstmap);
3032
3033 } else {
3034 deadentry = NULL;
3035 }
3036
3037 /*
3038 * step 7: we are done with the source map, unlock. if copy_ok
3039 * is 0 then we have not replaced the dummy mapping in dstmap yet
3040 * and we need to do so now.
3041 */
3042
3043 vm_map_unlock(srcmap);
3044 if ((flags & UVM_EXTRACT_REMOVE) && deadentry)
3045 uvm_unmap_detach(deadentry, 0); /* dispose of old entries */
3046
3047 /* now do the replacement if we didn't do it in step 5 */
3048 if (copy_ok == 0) {
3049 vm_map_lock(dstmap);
3050 error = uvm_map_replace(dstmap, dstaddr, dstaddr+len, chain,
3051 nchain, nsize, &resentry);
3052 vm_map_unlock(dstmap);
3053
3054 if (error == false) {
3055 error = EIO;
3056 goto bad2;
3057 }
3058 }
3059
3060 if (resentry != NULL)
3061 uvm_mapent_free(resentry);
3062
3063 return (0);
3064
3065 /*
3066 * bad: failure recovery
3067 */
3068 bad:
3069 vm_map_unlock(srcmap);
3070 bad2: /* src already unlocked */
3071 if (chain)
3072 uvm_unmap_detach(chain,
3073 (flags & UVM_EXTRACT_QREF) ? AMAP_REFALL : 0);
3074
3075 if (resentry != NULL)
3076 uvm_mapent_free(resentry);
3077
3078 if ((flags & UVM_EXTRACT_RESERVED) == 0) {
3079 uvm_unmap(dstmap, dstaddr, dstaddr+len); /* ??? */
3080 }
3081 return (error);
3082 }
3083
3084 /* end of extraction functions */
3085
3086 /*
3087 * uvm_map_submap: punch down part of a map into a submap
3088 *
3089 * => only the kernel_map is allowed to be submapped
3090 * => the purpose of submapping is to break up the locking granularity
3091 * of a larger map
3092 * => the range specified must have been mapped previously with a uvm_map()
3093 * call [with uobj==NULL] to create a blank map entry in the main map.
3094 * [And it had better still be blank!]
3095 * => maps which contain submaps should never be copied or forked.
3096 * => to remove a submap, use uvm_unmap() on the main map
3097 * and then uvm_map_deallocate() the submap.
3098 * => main map must be unlocked.
3099 * => submap must have been init'd and have a zero reference count.
3100 * [need not be locked as we don't actually reference it]
3101 */
3102
3103 int
3104 uvm_map_submap(struct vm_map *map, vaddr_t start, vaddr_t end,
3105 struct vm_map *submap)
3106 {
3107 struct vm_map_entry *entry;
3108 int error;
3109
3110 vm_map_lock(map);
3111 VM_MAP_RANGE_CHECK(map, start, end);
3112
3113 if (uvm_map_lookup_entry(map, start, &entry)) {
3114 UVM_MAP_CLIP_START(map, entry, start);
3115 UVM_MAP_CLIP_END(map, entry, end); /* to be safe */
3116 } else {
3117 entry = NULL;
3118 }
3119
3120 if (entry != NULL &&
3121 entry->start == start && entry->end == end &&
3122 entry->object.uvm_obj == NULL && entry->aref.ar_amap == NULL &&
3123 !UVM_ET_ISCOPYONWRITE(entry) && !UVM_ET_ISNEEDSCOPY(entry)) {
3124 entry->etype |= UVM_ET_SUBMAP;
3125 entry->object.sub_map = submap;
3126 entry->offset = 0;
3127 uvm_map_reference(submap);
3128 error = 0;
3129 } else {
3130 error = EINVAL;
3131 }
3132 vm_map_unlock(map);
3133
3134 return error;
3135 }
3136
3137 /*
3138 * uvm_map_protect_user: change map protection on behalf of the user.
3139 * Enforces PAX settings as necessary.
3140 */
3141 int
3142 uvm_map_protect_user(struct lwp *l, vaddr_t start, vaddr_t end,
3143 vm_prot_t new_prot)
3144 {
3145 int error;
3146
3147 if ((error = PAX_MPROTECT_VALIDATE(l, new_prot)))
3148 return error;
3149
3150 return uvm_map_protect(&l->l_proc->p_vmspace->vm_map, start, end,
3151 new_prot, false);
3152 }
3153
3154
3155 /*
3156 * uvm_map_protect: change map protection
3157 *
3158 * => set_max means set max_protection.
3159 * => map must be unlocked.
3160 */
3161
3162 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
3163 ~VM_PROT_WRITE : VM_PROT_ALL)
3164
3165 int
3166 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
3167 vm_prot_t new_prot, bool set_max)
3168 {
3169 struct vm_map_entry *current, *entry;
3170 int error = 0;
3171 UVMHIST_FUNC(__func__);
3172 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,new_prot=%#jx)",
3173 (uintptr_t)map, start, end, new_prot);
3174
3175 vm_map_lock(map);
3176 VM_MAP_RANGE_CHECK(map, start, end);
3177 if (uvm_map_lookup_entry(map, start, &entry)) {
3178 UVM_MAP_CLIP_START(map, entry, start);
3179 } else {
3180 entry = entry->next;
3181 }
3182
3183 /*
3184 * make a first pass to check for protection violations.
3185 */
3186
3187 current = entry;
3188 while ((current != &map->header) && (current->start < end)) {
3189 if (UVM_ET_ISSUBMAP(current)) {
3190 error = EINVAL;
3191 goto out;
3192 }
3193 if ((new_prot & current->max_protection) != new_prot) {
3194 error = EACCES;
3195 goto out;
3196 }
3197 /*
3198 * Don't allow VM_PROT_EXECUTE to be set on entries that
3199 * point to vnodes that are associated with a NOEXEC file
3200 * system.
3201 */
3202 if (UVM_ET_ISOBJ(current) &&
3203 UVM_OBJ_IS_VNODE(current->object.uvm_obj)) {
3204 struct vnode *vp =
3205 (struct vnode *) current->object.uvm_obj;
3206
3207 if ((new_prot & VM_PROT_EXECUTE) != 0 &&
3208 (vp->v_mount->mnt_flag & MNT_NOEXEC) != 0) {
3209 error = EACCES;
3210 goto out;
3211 }
3212 }
3213
3214 current = current->next;
3215 }
3216
3217 /* go back and fix up protections (no need to clip this time). */
3218
3219 current = entry;
3220 while ((current != &map->header) && (current->start < end)) {
3221 vm_prot_t old_prot;
3222
3223 UVM_MAP_CLIP_END(map, current, end);
3224 old_prot = current->protection;
3225 if (set_max)
3226 current->protection =
3227 (current->max_protection = new_prot) & old_prot;
3228 else
3229 current->protection = new_prot;
3230
3231 /*
3232 * update physical map if necessary. worry about copy-on-write
3233 * here -- CHECK THIS XXX
3234 */
3235
3236 if (current->protection != old_prot) {
3237 /* update pmap! */
3238 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
3239 uvm_map_lock_entry(current, RW_WRITER);
3240 #else
3241 uvm_map_lock_entry(current, RW_READER);
3242 #endif
3243 pmap_protect(map->pmap, current->start, current->end,
3244 current->protection & MASK(current));
3245 uvm_map_unlock_entry(current);
3246
3247 /*
3248 * If this entry points at a vnode, and the
3249 * protection includes VM_PROT_EXECUTE, mark
3250 * the vnode as VEXECMAP.
3251 */
3252 if (UVM_ET_ISOBJ(current)) {
3253 struct uvm_object *uobj =
3254 current->object.uvm_obj;
3255
3256 if (UVM_OBJ_IS_VNODE(uobj) &&
3257 (current->protection & VM_PROT_EXECUTE)) {
3258 vn_markexec((struct vnode *) uobj);
3259 }
3260 }
3261 }
3262
3263 /*
3264 * If the map is configured to lock any future mappings,
3265 * wire this entry now if the old protection was VM_PROT_NONE
3266 * and the new protection is not VM_PROT_NONE.
3267 */
3268
3269 if ((map->flags & VM_MAP_WIREFUTURE) != 0 &&
3270 VM_MAPENT_ISWIRED(current) == 0 &&
3271 old_prot == VM_PROT_NONE &&
3272 new_prot != VM_PROT_NONE) {
3273
3274 /*
3275 * We must call pmap_update() here because the
3276 * pmap_protect() call above might have removed some
3277 * pmap entries and uvm_map_pageable() might create
3278 * some new pmap entries that rely on the prior
3279 * removals being completely finished.
3280 */
3281
3282 pmap_update(map->pmap);
3283
3284 if (uvm_map_pageable(map, current->start,
3285 current->end, false,
3286 UVM_LK_ENTER|UVM_LK_EXIT) != 0) {
3287
3288 /*
3289 * If locking the entry fails, remember the
3290 * error if it's the first one. Note we
3291 * still continue setting the protection in
3292 * the map, but will return the error
3293 * condition regardless.
3294 *
3295 * XXX Ignore what the actual error is,
3296 * XXX just call it a resource shortage
3297 * XXX so that it doesn't get confused
3298 * XXX what uvm_map_protect() itself would
3299 * XXX normally return.
3300 */
3301
3302 error = ENOMEM;
3303 }
3304 }
3305 current = current->next;
3306 }
3307 pmap_update(map->pmap);
3308
3309 out:
3310 vm_map_unlock(map);
3311
3312 UVMHIST_LOG(maphist, "<- done, error=%jd",error,0,0,0);
3313 return error;
3314 }
3315
3316 #undef MASK
3317
3318 /*
3319 * uvm_map_inherit: set inheritance code for range of addrs in map.
3320 *
3321 * => map must be unlocked
3322 * => note that the inherit code is used during a "fork". see fork
3323 * code for details.
3324 */
3325
3326 int
3327 uvm_map_inherit(struct vm_map *map, vaddr_t start, vaddr_t end,
3328 vm_inherit_t new_inheritance)
3329 {
3330 struct vm_map_entry *entry, *temp_entry;
3331 UVMHIST_FUNC(__func__);
3332 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,new_inh=%#jx)",
3333 (uintptr_t)map, start, end, new_inheritance);
3334
3335 switch (new_inheritance) {
3336 case MAP_INHERIT_NONE:
3337 case MAP_INHERIT_COPY:
3338 case MAP_INHERIT_SHARE:
3339 case MAP_INHERIT_ZERO:
3340 break;
3341 default:
3342 UVMHIST_LOG(maphist,"<- done (INVALID ARG)",0,0,0,0);
3343 return EINVAL;
3344 }
3345
3346 vm_map_lock(map);
3347 VM_MAP_RANGE_CHECK(map, start, end);
3348 if (uvm_map_lookup_entry(map, start, &temp_entry)) {
3349 entry = temp_entry;
3350 UVM_MAP_CLIP_START(map, entry, start);
3351 } else {
3352 entry = temp_entry->next;
3353 }
3354 while ((entry != &map->header) && (entry->start < end)) {
3355 UVM_MAP_CLIP_END(map, entry, end);
3356 entry->inheritance = new_inheritance;
3357 entry = entry->next;
3358 }
3359 vm_map_unlock(map);
3360 UVMHIST_LOG(maphist,"<- done (OK)",0,0,0,0);
3361 return 0;
3362 }
3363
3364 /*
3365 * uvm_map_advice: set advice code for range of addrs in map.
3366 *
3367 * => map must be unlocked
3368 */
3369
3370 int
3371 uvm_map_advice(struct vm_map *map, vaddr_t start, vaddr_t end, int new_advice)
3372 {
3373 struct vm_map_entry *entry, *temp_entry;
3374 UVMHIST_FUNC(__func__);
3375 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,new_adv=%#jx)",
3376 (uintptr_t)map, start, end, new_advice);
3377
3378 vm_map_lock(map);
3379 VM_MAP_RANGE_CHECK(map, start, end);
3380 if (uvm_map_lookup_entry(map, start, &temp_entry)) {
3381 entry = temp_entry;
3382 UVM_MAP_CLIP_START(map, entry, start);
3383 } else {
3384 entry = temp_entry->next;
3385 }
3386
3387 /*
3388 * XXXJRT: disallow holes?
3389 */
3390
3391 while ((entry != &map->header) && (entry->start < end)) {
3392 UVM_MAP_CLIP_END(map, entry, end);
3393
3394 switch (new_advice) {
3395 case MADV_NORMAL:
3396 case MADV_RANDOM:
3397 case MADV_SEQUENTIAL:
3398 /* nothing special here */
3399 break;
3400
3401 default:
3402 vm_map_unlock(map);
3403 UVMHIST_LOG(maphist,"<- done (INVALID ARG)",0,0,0,0);
3404 return EINVAL;
3405 }
3406 entry->advice = new_advice;
3407 entry = entry->next;
3408 }
3409
3410 vm_map_unlock(map);
3411 UVMHIST_LOG(maphist,"<- done (OK)",0,0,0,0);
3412 return 0;
3413 }
3414
3415 /*
3416 * uvm_map_willneed: apply MADV_WILLNEED
3417 */
3418
3419 int
3420 uvm_map_willneed(struct vm_map *map, vaddr_t start, vaddr_t end)
3421 {
3422 struct vm_map_entry *entry;
3423 UVMHIST_FUNC(__func__);
3424 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx)",
3425 (uintptr_t)map, start, end, 0);
3426
3427 vm_map_lock_read(map);
3428 VM_MAP_RANGE_CHECK(map, start, end);
3429 if (!uvm_map_lookup_entry(map, start, &entry)) {
3430 entry = entry->next;
3431 }
3432 while (entry->start < end) {
3433 struct vm_amap * const amap = entry->aref.ar_amap;
3434 struct uvm_object * const uobj = entry->object.uvm_obj;
3435
3436 KASSERT(entry != &map->header);
3437 KASSERT(start < entry->end);
3438 /*
3439 * For now, we handle only the easy but commonly-requested case.
3440 * ie. start prefetching of backing uobj pages.
3441 *
3442 * XXX It might be useful to pmap_enter() the already-in-core
3443 * pages by inventing a "weak" mode for uvm_fault() which would
3444 * only do the PGO_LOCKED pgo_get().
3445 */
3446 if (UVM_ET_ISOBJ(entry) && amap == NULL && uobj != NULL) {
3447 off_t offset;
3448 off_t size;
3449
3450 offset = entry->offset;
3451 if (start < entry->start) {
3452 offset += entry->start - start;
3453 }
3454 size = entry->offset + (entry->end - entry->start);
3455 if (entry->end < end) {
3456 size -= end - entry->end;
3457 }
3458 uvm_readahead(uobj, offset, size);
3459 }
3460 entry = entry->next;
3461 }
3462 vm_map_unlock_read(map);
3463 UVMHIST_LOG(maphist,"<- done (OK)",0,0,0,0);
3464 return 0;
3465 }
3466
3467 /*
3468 * uvm_map_pageable: sets the pageability of a range in a map.
3469 *
3470 * => wires map entries. should not be used for transient page locking.
3471 * for that, use uvm_fault_wire()/uvm_fault_unwire() (see uvm_vslock()).
3472 * => regions specified as not pageable require lock-down (wired) memory
3473 * and page tables.
3474 * => map must never be read-locked
3475 * => if islocked is true, map is already write-locked
3476 * => we always unlock the map, since we must downgrade to a read-lock
3477 * to call uvm_fault_wire()
3478 * => XXXCDC: check this and try and clean it up.
3479 */
3480
3481 int
3482 uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end,
3483 bool new_pageable, int lockflags)
3484 {
3485 struct vm_map_entry *entry, *start_entry, *failed_entry;
3486 int rv;
3487 #ifdef DIAGNOSTIC
3488 u_int timestamp_save;
3489 #endif
3490 UVMHIST_FUNC(__func__);
3491 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,new_pageable=%ju)",
3492 (uintptr_t)map, start, end, new_pageable);
3493 KASSERT(map->flags & VM_MAP_PAGEABLE);
3494
3495 if ((lockflags & UVM_LK_ENTER) == 0)
3496 vm_map_lock(map);
3497 VM_MAP_RANGE_CHECK(map, start, end);
3498
3499 /*
3500 * only one pageability change may take place at one time, since
3501 * uvm_fault_wire assumes it will be called only once for each
3502 * wiring/unwiring. therefore, we have to make sure we're actually
3503 * changing the pageability for the entire region. we do so before
3504 * making any changes.
3505 */
3506
3507 if (uvm_map_lookup_entry(map, start, &start_entry) == false) {
3508 if ((lockflags & UVM_LK_EXIT) == 0)
3509 vm_map_unlock(map);
3510
3511 UVMHIST_LOG(maphist,"<- done (fault)",0,0,0,0);
3512 return EFAULT;
3513 }
3514 entry = start_entry;
3515
3516 if (start == end) { /* nothing required */
3517 if ((lockflags & UVM_LK_EXIT) == 0)
3518 vm_map_unlock(map);
3519
3520 UVMHIST_LOG(maphist,"<- done (nothing)",0,0,0,0);
3521 return 0;
3522 }
3523
3524 /*
3525 * handle wiring and unwiring separately.
3526 */
3527
3528 if (new_pageable) { /* unwire */
3529 UVM_MAP_CLIP_START(map, entry, start);
3530
3531 /*
3532 * unwiring. first ensure that the range to be unwired is
3533 * really wired down and that there are no holes.
3534 */
3535
3536 while ((entry != &map->header) && (entry->start < end)) {
3537 if (entry->wired_count == 0 ||
3538 (entry->end < end &&
3539 (entry->next == &map->header ||
3540 entry->next->start > entry->end))) {
3541 if ((lockflags & UVM_LK_EXIT) == 0)
3542 vm_map_unlock(map);
3543 UVMHIST_LOG(maphist, "<- done (INVAL)",0,0,0,0);
3544 return EINVAL;
3545 }
3546 entry = entry->next;
3547 }
3548
3549 /*
3550 * POSIX 1003.1b - a single munlock call unlocks a region,
3551 * regardless of the number of mlock calls made on that
3552 * region.
3553 */
3554
3555 entry = start_entry;
3556 while ((entry != &map->header) && (entry->start < end)) {
3557 UVM_MAP_CLIP_END(map, entry, end);
3558 if (VM_MAPENT_ISWIRED(entry))
3559 uvm_map_entry_unwire(map, entry);
3560 entry = entry->next;
3561 }
3562 if ((lockflags & UVM_LK_EXIT) == 0)
3563 vm_map_unlock(map);
3564 UVMHIST_LOG(maphist,"<- done (OK UNWIRE)",0,0,0,0);
3565 return 0;
3566 }
3567
3568 /*
3569 * wire case: in two passes [XXXCDC: ugly block of code here]
3570 *
3571 * 1: holding the write lock, we create any anonymous maps that need
3572 * to be created. then we clip each map entry to the region to
3573 * be wired and increment its wiring count.
3574 *
3575 * 2: we downgrade to a read lock, and call uvm_fault_wire to fault
3576 * in the pages for any newly wired area (wired_count == 1).
3577 *
3578 * downgrading to a read lock for uvm_fault_wire avoids a possible
3579 * deadlock with another thread that may have faulted on one of
3580 * the pages to be wired (it would mark the page busy, blocking
3581 * us, then in turn block on the map lock that we hold). because
3582 * of problems in the recursive lock package, we cannot upgrade
3583 * to a write lock in vm_map_lookup. thus, any actions that
3584 * require the write lock must be done beforehand. because we
3585 * keep the read lock on the map, the copy-on-write status of the
3586 * entries we modify here cannot change.
3587 */
3588
3589 while ((entry != &map->header) && (entry->start < end)) {
3590 if (VM_MAPENT_ISWIRED(entry) == 0) { /* not already wired? */
3591
3592 /*
3593 * perform actions of vm_map_lookup that need the
3594 * write lock on the map: create an anonymous map
3595 * for a copy-on-write region, or an anonymous map
3596 * for a zero-fill region. (XXXCDC: submap case
3597 * ok?)
3598 */
3599
3600 if (!UVM_ET_ISSUBMAP(entry)) { /* not submap */
3601 if (UVM_ET_ISNEEDSCOPY(entry) &&
3602 ((entry->max_protection & VM_PROT_WRITE) ||
3603 (entry->object.uvm_obj == NULL))) {
3604 amap_copy(map, entry, 0, start, end);
3605 /* XXXCDC: wait OK? */
3606 }
3607 }
3608 }
3609 UVM_MAP_CLIP_START(map, entry, start);
3610 UVM_MAP_CLIP_END(map, entry, end);
3611 entry->wired_count++;
3612
3613 /*
3614 * Check for holes
3615 */
3616
3617 if (entry->protection == VM_PROT_NONE ||
3618 (entry->end < end &&
3619 (entry->next == &map->header ||
3620 entry->next->start > entry->end))) {
3621
3622 /*
3623 * found one. amap creation actions do not need to
3624 * be undone, but the wired counts need to be restored.
3625 */
3626
3627 while (entry != &map->header && entry->end > start) {
3628 entry->wired_count--;
3629 entry = entry->prev;
3630 }
3631 if ((lockflags & UVM_LK_EXIT) == 0)
3632 vm_map_unlock(map);
3633 UVMHIST_LOG(maphist,"<- done (INVALID WIRE)",0,0,0,0);
3634 return EINVAL;
3635 }
3636 entry = entry->next;
3637 }
3638
3639 /*
3640 * Pass 2.
3641 */
3642
3643 #ifdef DIAGNOSTIC
3644 timestamp_save = map->timestamp;
3645 #endif
3646 vm_map_busy(map);
3647 vm_map_unlock(map);
3648
3649 rv = 0;
3650 entry = start_entry;
3651 while (entry != &map->header && entry->start < end) {
3652 if (entry->wired_count == 1) {
3653 rv = uvm_fault_wire(map, entry->start, entry->end,
3654 entry->max_protection, 1);
3655 if (rv) {
3656
3657 /*
3658 * wiring failed. break out of the loop.
3659 * we'll clean up the map below, once we
3660 * have a write lock again.
3661 */
3662
3663 break;
3664 }
3665 }
3666 entry = entry->next;
3667 }
3668
3669 if (rv) { /* failed? */
3670
3671 /*
3672 * Get back to an exclusive (write) lock.
3673 */
3674
3675 vm_map_lock(map);
3676 vm_map_unbusy(map);
3677
3678 #ifdef DIAGNOSTIC
3679 if (timestamp_save + 1 != map->timestamp)
3680 panic("uvm_map_pageable: stale map");
3681 #endif
3682
3683 /*
3684 * first drop the wiring count on all the entries
3685 * which haven't actually been wired yet.
3686 */
3687
3688 failed_entry = entry;
3689 while (entry != &map->header && entry->start < end) {
3690 entry->wired_count--;
3691 entry = entry->next;
3692 }
3693
3694 /*
3695 * now, unwire all the entries that were successfully
3696 * wired above.
3697 */
3698
3699 entry = start_entry;
3700 while (entry != failed_entry) {
3701 entry->wired_count--;
3702 if (VM_MAPENT_ISWIRED(entry) == 0)
3703 uvm_map_entry_unwire(map, entry);
3704 entry = entry->next;
3705 }
3706 if ((lockflags & UVM_LK_EXIT) == 0)
3707 vm_map_unlock(map);
3708 UVMHIST_LOG(maphist, "<- done (RV=%jd)", rv,0,0,0);
3709 return (rv);
3710 }
3711
3712 if ((lockflags & UVM_LK_EXIT) == 0) {
3713 vm_map_unbusy(map);
3714 } else {
3715
3716 /*
3717 * Get back to an exclusive (write) lock.
3718 */
3719
3720 vm_map_lock(map);
3721 vm_map_unbusy(map);
3722 }
3723
3724 UVMHIST_LOG(maphist,"<- done (OK WIRE)",0,0,0,0);
3725 return 0;
3726 }
3727
3728 /*
3729 * uvm_map_pageable_all: special case of uvm_map_pageable - affects
3730 * all mapped regions.
3731 *
3732 * => map must not be locked.
3733 * => if no flags are specified, all regions are unwired.
3734 * => XXXJRT: has some of the same problems as uvm_map_pageable() above.
3735 */
3736
3737 int
3738 uvm_map_pageable_all(struct vm_map *map, int flags, vsize_t limit)
3739 {
3740 struct vm_map_entry *entry, *failed_entry;
3741 vsize_t size;
3742 int rv;
3743 #ifdef DIAGNOSTIC
3744 u_int timestamp_save;
3745 #endif
3746 UVMHIST_FUNC(__func__);
3747 UVMHIST_CALLARGS(maphist,"(map=%#jx,flags=%#jx)", (uintptr_t)map, flags,
3748 0, 0);
3749
3750 KASSERT(map->flags & VM_MAP_PAGEABLE);
3751
3752 vm_map_lock(map);
3753
3754 /*
3755 * handle wiring and unwiring separately.
3756 */
3757
3758 if (flags == 0) { /* unwire */
3759
3760 /*
3761 * POSIX 1003.1b -- munlockall unlocks all regions,
3762 * regardless of how many times mlockall has been called.
3763 */
3764
3765 for (entry = map->header.next; entry != &map->header;
3766 entry = entry->next) {
3767 if (VM_MAPENT_ISWIRED(entry))
3768 uvm_map_entry_unwire(map, entry);
3769 }
3770 map->flags &= ~VM_MAP_WIREFUTURE;
3771 vm_map_unlock(map);
3772 UVMHIST_LOG(maphist,"<- done (OK UNWIRE)",0,0,0,0);
3773 return 0;
3774 }
3775
3776 if (flags & MCL_FUTURE) {
3777
3778 /*
3779 * must wire all future mappings; remember this.
3780 */
3781
3782 map->flags |= VM_MAP_WIREFUTURE;
3783 }
3784
3785 if ((flags & MCL_CURRENT) == 0) {
3786
3787 /*
3788 * no more work to do!
3789 */
3790
3791 UVMHIST_LOG(maphist,"<- done (OK no wire)",0,0,0,0);
3792 vm_map_unlock(map);
3793 return 0;
3794 }
3795
3796 /*
3797 * wire case: in three passes [XXXCDC: ugly block of code here]
3798 *
3799 * 1: holding the write lock, count all pages mapped by non-wired
3800 * entries. if this would cause us to go over our limit, we fail.
3801 *
3802 * 2: still holding the write lock, we create any anonymous maps that
3803 * need to be created. then we increment its wiring count.
3804 *
3805 * 3: we downgrade to a read lock, and call uvm_fault_wire to fault
3806 * in the pages for any newly wired area (wired_count == 1).
3807 *
3808 * downgrading to a read lock for uvm_fault_wire avoids a possible
3809 * deadlock with another thread that may have faulted on one of
3810 * the pages to be wired (it would mark the page busy, blocking
3811 * us, then in turn block on the map lock that we hold). because
3812 * of problems in the recursive lock package, we cannot upgrade
3813 * to a write lock in vm_map_lookup. thus, any actions that
3814 * require the write lock must be done beforehand. because we
3815 * keep the read lock on the map, the copy-on-write status of the
3816 * entries we modify here cannot change.
3817 */
3818
3819 for (size = 0, entry = map->header.next; entry != &map->header;
3820 entry = entry->next) {
3821 if (entry->protection != VM_PROT_NONE &&
3822 VM_MAPENT_ISWIRED(entry) == 0) { /* not already wired? */
3823 size += entry->end - entry->start;
3824 }
3825 }
3826
3827 if (atop(size) + uvmexp.wired > uvmexp.wiredmax) {
3828 vm_map_unlock(map);
3829 return ENOMEM;
3830 }
3831
3832 if (limit != 0 &&
3833 (size + ptoa(pmap_wired_count(vm_map_pmap(map))) > limit)) {
3834 vm_map_unlock(map);
3835 return ENOMEM;
3836 }
3837
3838 /*
3839 * Pass 2.
3840 */
3841
3842 for (entry = map->header.next; entry != &map->header;
3843 entry = entry->next) {
3844 if (entry->protection == VM_PROT_NONE)
3845 continue;
3846 if (VM_MAPENT_ISWIRED(entry) == 0) { /* not already wired? */
3847
3848 /*
3849 * perform actions of vm_map_lookup that need the
3850 * write lock on the map: create an anonymous map
3851 * for a copy-on-write region, or an anonymous map
3852 * for a zero-fill region. (XXXCDC: submap case
3853 * ok?)
3854 */
3855
3856 if (!UVM_ET_ISSUBMAP(entry)) { /* not submap */
3857 if (UVM_ET_ISNEEDSCOPY(entry) &&
3858 ((entry->max_protection & VM_PROT_WRITE) ||
3859 (entry->object.uvm_obj == NULL))) {
3860 amap_copy(map, entry, 0, entry->start,
3861 entry->end);
3862 /* XXXCDC: wait OK? */
3863 }
3864 }
3865 }
3866 entry->wired_count++;
3867 }
3868
3869 /*
3870 * Pass 3.
3871 */
3872
3873 #ifdef DIAGNOSTIC
3874 timestamp_save = map->timestamp;
3875 #endif
3876 vm_map_busy(map);
3877 vm_map_unlock(map);
3878
3879 rv = 0;
3880 for (entry = map->header.next; entry != &map->header;
3881 entry = entry->next) {
3882 if (entry->wired_count == 1) {
3883 rv = uvm_fault_wire(map, entry->start, entry->end,
3884 entry->max_protection, 1);
3885 if (rv) {
3886
3887 /*
3888 * wiring failed. break out of the loop.
3889 * we'll clean up the map below, once we
3890 * have a write lock again.
3891 */
3892
3893 break;
3894 }
3895 }
3896 }
3897
3898 if (rv) {
3899
3900 /*
3901 * Get back an exclusive (write) lock.
3902 */
3903
3904 vm_map_lock(map);
3905 vm_map_unbusy(map);
3906
3907 #ifdef DIAGNOSTIC
3908 if (timestamp_save + 1 != map->timestamp)
3909 panic("uvm_map_pageable_all: stale map");
3910 #endif
3911
3912 /*
3913 * first drop the wiring count on all the entries
3914 * which haven't actually been wired yet.
3915 *
3916 * Skip VM_PROT_NONE entries like we did above.
3917 */
3918
3919 failed_entry = entry;
3920 for (/* nothing */; entry != &map->header;
3921 entry = entry->next) {
3922 if (entry->protection == VM_PROT_NONE)
3923 continue;
3924 entry->wired_count--;
3925 }
3926
3927 /*
3928 * now, unwire all the entries that were successfully
3929 * wired above.
3930 *
3931 * Skip VM_PROT_NONE entries like we did above.
3932 */
3933
3934 for (entry = map->header.next; entry != failed_entry;
3935 entry = entry->next) {
3936 if (entry->protection == VM_PROT_NONE)
3937 continue;
3938 entry->wired_count--;
3939 if (VM_MAPENT_ISWIRED(entry))
3940 uvm_map_entry_unwire(map, entry);
3941 }
3942 vm_map_unlock(map);
3943 UVMHIST_LOG(maphist,"<- done (RV=%jd)", rv,0,0,0);
3944 return (rv);
3945 }
3946
3947 vm_map_unbusy(map);
3948
3949 UVMHIST_LOG(maphist,"<- done (OK WIRE)",0,0,0,0);
3950 return 0;
3951 }
3952
3953 /*
3954 * uvm_map_clean: clean out a map range
3955 *
3956 * => valid flags:
3957 * if (flags & PGO_CLEANIT): dirty pages are cleaned first
3958 * if (flags & PGO_SYNCIO): dirty pages are written synchronously
3959 * if (flags & PGO_DEACTIVATE): any cached pages are deactivated after clean
3960 * if (flags & PGO_FREE): any cached pages are freed after clean
3961 * => returns an error if any part of the specified range isn't mapped
3962 * => never a need to flush amap layer since the anonymous memory has
3963 * no permanent home, but may deactivate pages there
3964 * => called from sys_msync() and sys_madvise()
3965 * => caller must not have map locked
3966 */
3967
3968 int
3969 uvm_map_clean(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
3970 {
3971 struct vm_map_entry *current, *entry;
3972 struct uvm_object *uobj;
3973 struct vm_amap *amap;
3974 struct vm_anon *anon;
3975 struct vm_page *pg;
3976 vaddr_t offset;
3977 vsize_t size;
3978 voff_t uoff;
3979 int error, refs;
3980 UVMHIST_FUNC(__func__);
3981 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,flags=%#jx)",
3982 (uintptr_t)map, start, end, flags);
3983
3984 KASSERT((flags & (PGO_FREE|PGO_DEACTIVATE)) !=
3985 (PGO_FREE|PGO_DEACTIVATE));
3986
3987 vm_map_lock(map);
3988 VM_MAP_RANGE_CHECK(map, start, end);
3989 if (!uvm_map_lookup_entry(map, start, &entry)) {
3990 vm_map_unlock(map);
3991 return EFAULT;
3992 }
3993
3994 /*
3995 * Make a first pass to check for holes and wiring problems.
3996 */
3997
3998 for (current = entry; current->start < end; current = current->next) {
3999 if (UVM_ET_ISSUBMAP(current)) {
4000 vm_map_unlock(map);
4001 return EINVAL;
4002 }
4003 if ((flags & PGO_FREE) != 0 && VM_MAPENT_ISWIRED(entry)) {
4004 vm_map_unlock(map);
4005 return EBUSY;
4006 }
4007 if (end <= current->end) {
4008 break;
4009 }
4010 if (current->end != current->next->start) {
4011 vm_map_unlock(map);
4012 return EFAULT;
4013 }
4014 }
4015
4016 vm_map_busy(map);
4017 vm_map_unlock(map);
4018 error = 0;
4019 for (current = entry; start < end; current = current->next) {
4020 amap = current->aref.ar_amap; /* upper layer */
4021 uobj = current->object.uvm_obj; /* lower layer */
4022 KASSERT(start >= current->start);
4023
4024 /*
4025 * No amap cleaning necessary if:
4026 *
4027 * (1) There's no amap.
4028 *
4029 * (2) We're not deactivating or freeing pages.
4030 */
4031
4032 if (amap == NULL || (flags & (PGO_DEACTIVATE|PGO_FREE)) == 0)
4033 goto flush_object;
4034
4035 offset = start - current->start;
4036 size = MIN(end, current->end) - start;
4037
4038 amap_lock(amap, RW_WRITER);
4039 for ( ; size != 0; size -= PAGE_SIZE, offset += PAGE_SIZE) {
4040 anon = amap_lookup(¤t->aref, offset);
4041 if (anon == NULL)
4042 continue;
4043
4044 KASSERT(anon->an_lock == amap->am_lock);
4045 pg = anon->an_page;
4046 if (pg == NULL) {
4047 continue;
4048 }
4049 if (pg->flags & PG_BUSY) {
4050 continue;
4051 }
4052
4053 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
4054
4055 /*
4056 * In these first 3 cases, we just deactivate the page.
4057 */
4058
4059 case PGO_CLEANIT|PGO_FREE:
4060 case PGO_CLEANIT|PGO_DEACTIVATE:
4061 case PGO_DEACTIVATE:
4062 deactivate_it:
4063 /*
4064 * skip the page if it's loaned or wired,
4065 * since it shouldn't be on a paging queue
4066 * at all in these cases.
4067 */
4068
4069 if (pg->loan_count != 0 ||
4070 pg->wire_count != 0) {
4071 continue;
4072 }
4073 KASSERT(pg->uanon == anon);
4074 uvm_pagelock(pg);
4075 uvm_pagedeactivate(pg);
4076 uvm_pageunlock(pg);
4077 continue;
4078
4079 case PGO_FREE:
4080
4081 /*
4082 * If there are multiple references to
4083 * the amap, just deactivate the page.
4084 */
4085
4086 if (amap_refs(amap) > 1)
4087 goto deactivate_it;
4088
4089 /* skip the page if it's wired */
4090 if (pg->wire_count != 0) {
4091 continue;
4092 }
4093 amap_unadd(¤t->aref, offset);
4094 refs = --anon->an_ref;
4095 if (refs == 0) {
4096 uvm_anfree(anon);
4097 }
4098 continue;
4099 }
4100 }
4101 amap_unlock(amap);
4102
4103 flush_object:
4104 /*
4105 * flush pages if we've got a valid backing object.
4106 * note that we must always clean object pages before
4107 * freeing them since otherwise we could reveal stale
4108 * data from files.
4109 */
4110
4111 uoff = current->offset + (start - current->start);
4112 size = MIN(end, current->end) - start;
4113 if (uobj != NULL) {
4114 rw_enter(uobj->vmobjlock, RW_WRITER);
4115 if (uobj->pgops->pgo_put != NULL)
4116 error = (uobj->pgops->pgo_put)(uobj, uoff,
4117 uoff + size, flags | PGO_CLEANIT);
4118 else
4119 error = 0;
4120 }
4121 start += size;
4122 }
4123 vm_map_unbusy(map);
4124 return error;
4125 }
4126
4127
4128 /*
4129 * uvm_map_checkprot: check protection in map
4130 *
4131 * => must allow specified protection in a fully allocated region.
4132 * => map must be read or write locked by caller.
4133 */
4134
4135 bool
4136 uvm_map_checkprot(struct vm_map *map, vaddr_t start, vaddr_t end,
4137 vm_prot_t protection)
4138 {
4139 struct vm_map_entry *entry;
4140 struct vm_map_entry *tmp_entry;
4141
4142 if (!uvm_map_lookup_entry(map, start, &tmp_entry)) {
4143 return (false);
4144 }
4145 entry = tmp_entry;
4146 while (start < end) {
4147 if (entry == &map->header) {
4148 return (false);
4149 }
4150
4151 /*
4152 * no holes allowed
4153 */
4154
4155 if (start < entry->start) {
4156 return (false);
4157 }
4158
4159 /*
4160 * check protection associated with entry
4161 */
4162
4163 if ((entry->protection & protection) != protection) {
4164 return (false);
4165 }
4166 start = entry->end;
4167 entry = entry->next;
4168 }
4169 return (true);
4170 }
4171
4172 /*
4173 * uvmspace_alloc: allocate a vmspace structure.
4174 *
4175 * - structure includes vm_map and pmap
4176 * - XXX: no locking on this structure
4177 * - refcnt set to 1, rest must be init'd by caller
4178 */
4179 struct vmspace *
4180 uvmspace_alloc(vaddr_t vmin, vaddr_t vmax, bool topdown)
4181 {
4182 struct vmspace *vm;
4183 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4184
4185 vm = kmem_alloc(sizeof(*vm), KM_SLEEP);
4186 uvmspace_init(vm, NULL, vmin, vmax, topdown);
4187 UVMHIST_LOG(maphist,"<- done (vm=%#jx)", (uintptr_t)vm, 0, 0, 0);
4188 return (vm);
4189 }
4190
4191 /*
4192 * uvmspace_init: initialize a vmspace structure.
4193 *
4194 * - XXX: no locking on this structure
4195 * - refcnt set to 1, rest must be init'd by caller
4196 */
4197 void
4198 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin,
4199 vaddr_t vmax, bool topdown)
4200 {
4201 UVMHIST_FUNC(__func__);
4202 UVMHIST_CALLARGS(maphist, "(vm=%#jx, pmap=%#jx, vmin=%#jx, vmax=%#jx",
4203 (uintptr_t)vm, (uintptr_t)pmap, vmin, vmax);
4204 UVMHIST_LOG(maphist, " topdown=%ju)", topdown, 0, 0, 0);
4205
4206 memset(vm, 0, sizeof(*vm));
4207 uvm_map_setup(&vm->vm_map, vmin, vmax, VM_MAP_PAGEABLE
4208 | (topdown ? VM_MAP_TOPDOWN : 0)
4209 );
4210 if (pmap)
4211 pmap_reference(pmap);
4212 else
4213 pmap = pmap_create();
4214 vm->vm_map.pmap = pmap;
4215 vm->vm_refcnt = 1;
4216 UVMHIST_LOG(maphist,"<- done",0,0,0,0);
4217 }
4218
4219 /*
4220 * uvmspace_share: share a vmspace between two processes
4221 *
4222 * - used for vfork, threads(?)
4223 */
4224
4225 void
4226 uvmspace_share(struct proc *p1, struct proc *p2)
4227 {
4228
4229 uvmspace_addref(p1->p_vmspace);
4230 p2->p_vmspace = p1->p_vmspace;
4231 }
4232
4233 #if 0
4234
4235 /*
4236 * uvmspace_unshare: ensure that process "p" has its own, unshared, vmspace
4237 *
4238 * - XXX: no locking on vmspace
4239 */
4240
4241 void
4242 uvmspace_unshare(struct lwp *l)
4243 {
4244 struct proc *p = l->l_proc;
4245 struct vmspace *nvm, *ovm = p->p_vmspace;
4246
4247 if (ovm->vm_refcnt == 1)
4248 /* nothing to do: vmspace isn't shared in the first place */
4249 return;
4250
4251 /* make a new vmspace, still holding old one */
4252 nvm = uvmspace_fork(ovm);
4253
4254 kpreempt_disable();
4255 pmap_deactivate(l); /* unbind old vmspace */
4256 p->p_vmspace = nvm;
4257 pmap_activate(l); /* switch to new vmspace */
4258 kpreempt_enable();
4259
4260 uvmspace_free(ovm); /* drop reference to old vmspace */
4261 }
4262
4263 #endif
4264
4265
4266 /*
4267 * uvmspace_spawn: a new process has been spawned and needs a vmspace
4268 */
4269
4270 void
4271 uvmspace_spawn(struct lwp *l, vaddr_t start, vaddr_t end, bool topdown)
4272 {
4273 struct proc *p = l->l_proc;
4274 struct vmspace *nvm;
4275
4276 #ifdef __HAVE_CPU_VMSPACE_EXEC
4277 cpu_vmspace_exec(l, start, end);
4278 #endif
4279
4280 nvm = uvmspace_alloc(start, end, topdown);
4281 kpreempt_disable();
4282 p->p_vmspace = nvm;
4283 pmap_activate(l);
4284 kpreempt_enable();
4285 }
4286
4287 /*
4288 * uvmspace_exec: the process wants to exec a new program
4289 */
4290
4291 void
4292 uvmspace_exec(struct lwp *l, vaddr_t start, vaddr_t end, bool topdown)
4293 {
4294 struct proc *p = l->l_proc;
4295 struct vmspace *nvm, *ovm = p->p_vmspace;
4296 struct vm_map *map;
4297 int flags;
4298
4299 KASSERT(ovm != NULL);
4300 #ifdef __HAVE_CPU_VMSPACE_EXEC
4301 cpu_vmspace_exec(l, start, end);
4302 #endif
4303
4304 map = &ovm->vm_map;
4305 /*
4306 * see if more than one process is using this vmspace...
4307 */
4308
4309 if (ovm->vm_refcnt == 1
4310 && topdown == ((ovm->vm_map.flags & VM_MAP_TOPDOWN) != 0)) {
4311
4312 /*
4313 * if p is the only process using its vmspace then we can safely
4314 * recycle that vmspace for the program that is being exec'd.
4315 * But only if TOPDOWN matches the requested value for the new
4316 * vm space!
4317 */
4318
4319 /*
4320 * SYSV SHM semantics require us to kill all segments on an exec
4321 */
4322 if (uvm_shmexit && ovm->vm_shm)
4323 (*uvm_shmexit)(ovm);
4324
4325 /*
4326 * POSIX 1003.1b -- "lock future mappings" is revoked
4327 * when a process execs another program image.
4328 */
4329
4330 map->flags &= ~VM_MAP_WIREFUTURE;
4331
4332 /*
4333 * now unmap the old program.
4334 *
4335 * XXX set VM_MAP_DYING for the duration, so pmap_update()
4336 * is not called until the pmap has been totally cleared out
4337 * after pmap_remove_all(), or it can confuse some pmap
4338 * implementations. it would be nice to handle this by
4339 * deferring the pmap_update() while it is known the address
4340 * space is not visible to any user LWP other than curlwp,
4341 * but there isn't an elegant way of inferring that right
4342 * now.
4343 */
4344
4345 flags = pmap_remove_all(map->pmap) ? UVM_FLAG_VAONLY : 0;
4346 map->flags |= VM_MAP_DYING;
4347 uvm_unmap1(map, vm_map_min(map), vm_map_max(map), flags);
4348 map->flags &= ~VM_MAP_DYING;
4349 pmap_update(map->pmap);
4350 KASSERT(map->header.prev == &map->header);
4351 KASSERT(map->nentries == 0);
4352
4353 /*
4354 * resize the map
4355 */
4356
4357 vm_map_setmin(map, start);
4358 vm_map_setmax(map, end);
4359 } else {
4360
4361 /*
4362 * p's vmspace is being shared, so we can't reuse it for p since
4363 * it is still being used for others. allocate a new vmspace
4364 * for p
4365 */
4366
4367 nvm = uvmspace_alloc(start, end, topdown);
4368
4369 /*
4370 * install new vmspace and drop our ref to the old one.
4371 */
4372
4373 kpreempt_disable();
4374 pmap_deactivate(l);
4375 p->p_vmspace = nvm;
4376 pmap_activate(l);
4377 kpreempt_enable();
4378
4379 uvmspace_free(ovm);
4380 }
4381 }
4382
4383 /*
4384 * uvmspace_addref: add a reference to a vmspace.
4385 */
4386
4387 void
4388 uvmspace_addref(struct vmspace *vm)
4389 {
4390
4391 KASSERT((vm->vm_map.flags & VM_MAP_DYING) == 0);
4392 KASSERT(vm->vm_refcnt > 0);
4393 atomic_inc_uint(&vm->vm_refcnt);
4394 }
4395
4396 /*
4397 * uvmspace_free: free a vmspace data structure
4398 */
4399
4400 void
4401 uvmspace_free(struct vmspace *vm)
4402 {
4403 struct vm_map_entry *dead_entries;
4404 struct vm_map *map = &vm->vm_map;
4405 int flags;
4406
4407 UVMHIST_FUNC(__func__);
4408 UVMHIST_CALLARGS(maphist,"(vm=%#jx) ref=%jd", (uintptr_t)vm,
4409 vm->vm_refcnt, 0, 0);
4410
4411 membar_release();
4412 if (atomic_dec_uint_nv(&vm->vm_refcnt) > 0)
4413 return;
4414 membar_acquire();
4415
4416 /*
4417 * at this point, there should be no other references to the map.
4418 * delete all of the mappings, then destroy the pmap.
4419 */
4420
4421 map->flags |= VM_MAP_DYING;
4422 flags = pmap_remove_all(map->pmap) ? UVM_FLAG_VAONLY : 0;
4423
4424 /* Get rid of any SYSV shared memory segments. */
4425 if (uvm_shmexit && vm->vm_shm != NULL)
4426 (*uvm_shmexit)(vm);
4427
4428 if (map->nentries) {
4429 uvm_unmap_remove(map, vm_map_min(map), vm_map_max(map),
4430 &dead_entries, flags);
4431 if (dead_entries != NULL)
4432 uvm_unmap_detach(dead_entries, 0);
4433 }
4434 KASSERT(map->nentries == 0);
4435 KASSERT(map->size == 0);
4436
4437 mutex_destroy(&map->misc_lock);
4438 rw_destroy(&map->lock);
4439 cv_destroy(&map->cv);
4440 pmap_destroy(map->pmap);
4441 kmem_free(vm, sizeof(*vm));
4442 }
4443
4444 static struct vm_map_entry *
4445 uvm_mapent_clone(struct vm_map *new_map, struct vm_map_entry *old_entry,
4446 int flags)
4447 {
4448 struct vm_map_entry *new_entry;
4449
4450 new_entry = uvm_mapent_alloc(new_map, 0);
4451 /* old_entry -> new_entry */
4452 uvm_mapent_copy(old_entry, new_entry);
4453
4454 /* new pmap has nothing wired in it */
4455 new_entry->wired_count = 0;
4456
4457 /*
4458 * gain reference to object backing the map (can't
4459 * be a submap, already checked this case).
4460 */
4461
4462 if (new_entry->aref.ar_amap)
4463 uvm_map_reference_amap(new_entry, flags);
4464
4465 if (new_entry->object.uvm_obj &&
4466 new_entry->object.uvm_obj->pgops->pgo_reference)
4467 new_entry->object.uvm_obj->pgops->pgo_reference(
4468 new_entry->object.uvm_obj);
4469
4470 /* insert entry at end of new_map's entry list */
4471 uvm_map_entry_link(new_map, new_map->header.prev,
4472 new_entry);
4473
4474 return new_entry;
4475 }
4476
4477 /*
4478 * share the mapping: this means we want the old and
4479 * new entries to share amaps and backing objects.
4480 */
4481 static void
4482 uvm_mapent_forkshared(struct vm_map *new_map, struct vm_map *old_map,
4483 struct vm_map_entry *old_entry)
4484 {
4485 /*
4486 * if the old_entry needs a new amap (due to prev fork)
4487 * then we need to allocate it now so that we have
4488 * something we own to share with the new_entry. [in
4489 * other words, we need to clear needs_copy]
4490 */
4491
4492 if (UVM_ET_ISNEEDSCOPY(old_entry)) {
4493 /* get our own amap, clears needs_copy */
4494 amap_copy(old_map, old_entry, AMAP_COPY_NOCHUNK,
4495 0, 0);
4496 /* XXXCDC: WAITOK??? */
4497 }
4498
4499 uvm_mapent_clone(new_map, old_entry, AMAP_SHARED);
4500 }
4501
4502
4503 static void
4504 uvm_mapent_forkcopy(struct vm_map *new_map, struct vm_map *old_map,
4505 struct vm_map_entry *old_entry)
4506 {
4507 struct vm_map_entry *new_entry;
4508
4509 /*
4510 * copy-on-write the mapping (using mmap's
4511 * MAP_PRIVATE semantics)
4512 *
4513 * allocate new_entry, adjust reference counts.
4514 * (note that new references are read-only).
4515 */
4516
4517 new_entry = uvm_mapent_clone(new_map, old_entry, 0);
4518
4519 new_entry->etype |=
4520 (UVM_ET_COPYONWRITE|UVM_ET_NEEDSCOPY);
4521
4522 /*
4523 * the new entry will need an amap. it will either
4524 * need to be copied from the old entry or created
4525 * from scratch (if the old entry does not have an
4526 * amap). can we defer this process until later
4527 * (by setting "needs_copy") or do we need to copy
4528 * the amap now?
4529 *
4530 * we must copy the amap now if any of the following
4531 * conditions hold:
4532 * 1. the old entry has an amap and that amap is
4533 * being shared. this means that the old (parent)
4534 * process is sharing the amap with another
4535 * process. if we do not clear needs_copy here
4536 * we will end up in a situation where both the
4537 * parent and child process are referring to the
4538 * same amap with "needs_copy" set. if the
4539 * parent write-faults, the fault routine will
4540 * clear "needs_copy" in the parent by allocating
4541 * a new amap. this is wrong because the
4542 * parent is supposed to be sharing the old amap
4543 * and the new amap will break that.
4544 *
4545 * 2. if the old entry has an amap and a non-zero
4546 * wire count then we are going to have to call
4547 * amap_cow_now to avoid page faults in the
4548 * parent process. since amap_cow_now requires
4549 * "needs_copy" to be clear we might as well
4550 * clear it here as well.
4551 *
4552 */
4553
4554 if (old_entry->aref.ar_amap != NULL) {
4555 if ((amap_flags(old_entry->aref.ar_amap) & AMAP_SHARED) != 0 ||
4556 VM_MAPENT_ISWIRED(old_entry)) {
4557
4558 amap_copy(new_map, new_entry,
4559 AMAP_COPY_NOCHUNK, 0, 0);
4560 /* XXXCDC: M_WAITOK ... ok? */
4561 }
4562 }
4563
4564 /*
4565 * if the parent's entry is wired down, then the
4566 * parent process does not want page faults on
4567 * access to that memory. this means that we
4568 * cannot do copy-on-write because we can't write
4569 * protect the old entry. in this case we
4570 * resolve all copy-on-write faults now, using
4571 * amap_cow_now. note that we have already
4572 * allocated any needed amap (above).
4573 */
4574
4575 if (VM_MAPENT_ISWIRED(old_entry)) {
4576
4577 /*
4578 * resolve all copy-on-write faults now
4579 * (note that there is nothing to do if
4580 * the old mapping does not have an amap).
4581 */
4582 if (old_entry->aref.ar_amap)
4583 amap_cow_now(new_map, new_entry);
4584
4585 } else {
4586 /*
4587 * setup mappings to trigger copy-on-write faults
4588 * we must write-protect the parent if it has
4589 * an amap and it is not already "needs_copy"...
4590 * if it is already "needs_copy" then the parent
4591 * has already been write-protected by a previous
4592 * fork operation.
4593 */
4594 if (old_entry->aref.ar_amap &&
4595 !UVM_ET_ISNEEDSCOPY(old_entry)) {
4596 if (old_entry->max_protection & VM_PROT_WRITE) {
4597 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
4598 uvm_map_lock_entry(old_entry, RW_WRITER);
4599 #else
4600 uvm_map_lock_entry(old_entry, RW_READER);
4601 #endif
4602 pmap_protect(old_map->pmap,
4603 old_entry->start, old_entry->end,
4604 old_entry->protection & ~VM_PROT_WRITE);
4605 uvm_map_unlock_entry(old_entry);
4606 }
4607 old_entry->etype |= UVM_ET_NEEDSCOPY;
4608 }
4609 }
4610 }
4611
4612 /*
4613 * zero the mapping: the new entry will be zero initialized
4614 */
4615 static void
4616 uvm_mapent_forkzero(struct vm_map *new_map, struct vm_map *old_map,
4617 struct vm_map_entry *old_entry)
4618 {
4619 struct vm_map_entry *new_entry;
4620
4621 new_entry = uvm_mapent_clone(new_map, old_entry, 0);
4622
4623 new_entry->etype |=
4624 (UVM_ET_COPYONWRITE|UVM_ET_NEEDSCOPY);
4625
4626 if (new_entry->aref.ar_amap) {
4627 uvm_map_unreference_amap(new_entry, 0);
4628 new_entry->aref.ar_pageoff = 0;
4629 new_entry->aref.ar_amap = NULL;
4630 }
4631
4632 if (UVM_ET_ISOBJ(new_entry)) {
4633 if (new_entry->object.uvm_obj->pgops->pgo_detach)
4634 new_entry->object.uvm_obj->pgops->pgo_detach(
4635 new_entry->object.uvm_obj);
4636 new_entry->object.uvm_obj = NULL;
4637 new_entry->offset = 0;
4638 new_entry->etype &= ~UVM_ET_OBJ;
4639 }
4640 }
4641
4642 /*
4643 * F O R K - m a i n e n t r y p o i n t
4644 */
4645 /*
4646 * uvmspace_fork: fork a process' main map
4647 *
4648 * => create a new vmspace for child process from parent.
4649 * => parent's map must not be locked.
4650 */
4651
4652 struct vmspace *
4653 uvmspace_fork(struct vmspace *vm1)
4654 {
4655 struct vmspace *vm2;
4656 struct vm_map *old_map = &vm1->vm_map;
4657 struct vm_map *new_map;
4658 struct vm_map_entry *old_entry;
4659 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4660
4661 vm_map_lock(old_map);
4662
4663 vm2 = uvmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4664 vm1->vm_map.flags & VM_MAP_TOPDOWN);
4665 memcpy(&vm2->vm_startcopy, &vm1->vm_startcopy,
4666 (char *) (vm1 + 1) - (char *) &vm1->vm_startcopy);
4667 new_map = &vm2->vm_map; /* XXX */
4668
4669 old_entry = old_map->header.next;
4670 new_map->size = old_map->size;
4671
4672 /*
4673 * go entry-by-entry
4674 */
4675
4676 while (old_entry != &old_map->header) {
4677
4678 /*
4679 * first, some sanity checks on the old entry
4680 */
4681
4682 KASSERT(!UVM_ET_ISSUBMAP(old_entry));
4683 KASSERT(UVM_ET_ISCOPYONWRITE(old_entry) ||
4684 !UVM_ET_ISNEEDSCOPY(old_entry));
4685
4686 switch (old_entry->inheritance) {
4687 case MAP_INHERIT_NONE:
4688 /*
4689 * drop the mapping, modify size
4690 */
4691 new_map->size -= old_entry->end - old_entry->start;
4692 break;
4693
4694 case MAP_INHERIT_SHARE:
4695 uvm_mapent_forkshared(new_map, old_map, old_entry);
4696 break;
4697
4698 case MAP_INHERIT_COPY:
4699 uvm_mapent_forkcopy(new_map, old_map, old_entry);
4700 break;
4701
4702 case MAP_INHERIT_ZERO:
4703 uvm_mapent_forkzero(new_map, old_map, old_entry);
4704 break;
4705 default:
4706 KASSERT(0);
4707 break;
4708 }
4709 old_entry = old_entry->next;
4710 }
4711
4712 pmap_update(old_map->pmap);
4713 vm_map_unlock(old_map);
4714
4715 if (uvm_shmfork && vm1->vm_shm)
4716 (*uvm_shmfork)(vm1, vm2);
4717
4718 #ifdef PMAP_FORK
4719 pmap_fork(vm1->vm_map.pmap, vm2->vm_map.pmap);
4720 #endif
4721
4722 UVMHIST_LOG(maphist,"<- done",0,0,0,0);
4723 return (vm2);
4724 }
4725
4726
4727 /*
4728 * uvm_mapent_trymerge: try to merge an entry with its neighbors.
4729 *
4730 * => called with map locked.
4731 * => return non zero if successfully merged.
4732 */
4733
4734 int
4735 uvm_mapent_trymerge(struct vm_map *map, struct vm_map_entry *entry, int flags)
4736 {
4737 struct uvm_object *uobj;
4738 struct vm_map_entry *next;
4739 struct vm_map_entry *prev;
4740 vsize_t size;
4741 int merged = 0;
4742 bool copying;
4743 int newetype;
4744
4745 if (entry->aref.ar_amap != NULL) {
4746 return 0;
4747 }
4748 if ((entry->flags & UVM_MAP_NOMERGE) != 0) {
4749 return 0;
4750 }
4751
4752 uobj = entry->object.uvm_obj;
4753 size = entry->end - entry->start;
4754 copying = (flags & UVM_MERGE_COPYING) != 0;
4755 newetype = copying ? (entry->etype & ~UVM_ET_NEEDSCOPY) : entry->etype;
4756
4757 next = entry->next;
4758 if (next != &map->header &&
4759 next->start == entry->end &&
4760 ((copying && next->aref.ar_amap != NULL &&
4761 amap_refs(next->aref.ar_amap) == 1) ||
4762 (!copying && next->aref.ar_amap == NULL)) &&
4763 UVM_ET_ISCOMPATIBLE(next, newetype,
4764 uobj, entry->flags, entry->protection,
4765 entry->max_protection, entry->inheritance, entry->advice,
4766 entry->wired_count) &&
4767 (uobj == NULL || entry->offset + size == next->offset)) {
4768 int error;
4769
4770 if (copying) {
4771 error = amap_extend(next, size,
4772 AMAP_EXTEND_NOWAIT|AMAP_EXTEND_BACKWARDS);
4773 } else {
4774 error = 0;
4775 }
4776 if (error == 0) {
4777 if (uobj) {
4778 if (uobj->pgops->pgo_detach) {
4779 uobj->pgops->pgo_detach(uobj);
4780 }
4781 }
4782
4783 entry->end = next->end;
4784 clear_hints(map, next);
4785 uvm_map_entry_unlink(map, next);
4786 if (copying) {
4787 entry->aref = next->aref;
4788 entry->etype &= ~UVM_ET_NEEDSCOPY;
4789 }
4790 uvm_map_check(map, "trymerge forwardmerge");
4791 uvm_mapent_free(next);
4792 merged++;
4793 }
4794 }
4795
4796 prev = entry->prev;
4797 if (prev != &map->header &&
4798 prev->end == entry->start &&
4799 ((copying && !merged && prev->aref.ar_amap != NULL &&
4800 amap_refs(prev->aref.ar_amap) == 1) ||
4801 (!copying && prev->aref.ar_amap == NULL)) &&
4802 UVM_ET_ISCOMPATIBLE(prev, newetype,
4803 uobj, entry->flags, entry->protection,
4804 entry->max_protection, entry->inheritance, entry->advice,
4805 entry->wired_count) &&
4806 (uobj == NULL ||
4807 prev->offset + prev->end - prev->start == entry->offset)) {
4808 int error;
4809
4810 if (copying) {
4811 error = amap_extend(prev, size,
4812 AMAP_EXTEND_NOWAIT|AMAP_EXTEND_FORWARDS);
4813 } else {
4814 error = 0;
4815 }
4816 if (error == 0) {
4817 if (uobj) {
4818 if (uobj->pgops->pgo_detach) {
4819 uobj->pgops->pgo_detach(uobj);
4820 }
4821 entry->offset = prev->offset;
4822 }
4823
4824 entry->start = prev->start;
4825 clear_hints(map, prev);
4826 uvm_map_entry_unlink(map, prev);
4827 if (copying) {
4828 entry->aref = prev->aref;
4829 entry->etype &= ~UVM_ET_NEEDSCOPY;
4830 }
4831 uvm_map_check(map, "trymerge backmerge");
4832 uvm_mapent_free(prev);
4833 merged++;
4834 }
4835 }
4836
4837 return merged;
4838 }
4839
4840 /*
4841 * uvm_map_setup: init map
4842 *
4843 * => map must not be in service yet.
4844 */
4845
4846 void
4847 uvm_map_setup(struct vm_map *map, vaddr_t vmin, vaddr_t vmax, int flags)
4848 {
4849
4850 rb_tree_init(&map->rb_tree, &uvm_map_tree_ops);
4851 map->header.next = map->header.prev = &map->header;
4852 map->nentries = 0;
4853 map->size = 0;
4854 map->ref_count = 1;
4855 vm_map_setmin(map, vmin);
4856 vm_map_setmax(map, vmax);
4857 map->flags = flags;
4858 map->first_free = &map->header;
4859 map->hint = &map->header;
4860 map->timestamp = 0;
4861 map->busy = NULL;
4862
4863 rw_init(&map->lock);
4864 cv_init(&map->cv, "vm_map");
4865 mutex_init(&map->misc_lock, MUTEX_DRIVER, IPL_NONE);
4866 }
4867
4868 /*
4869 * U N M A P - m a i n e n t r y p o i n t
4870 */
4871
4872 /*
4873 * uvm_unmap1: remove mappings from a vm_map (from "start" up to "stop")
4874 *
4875 * => caller must check alignment and size
4876 * => map must be unlocked (we will lock it)
4877 * => flags is UVM_FLAG_QUANTUM or 0.
4878 */
4879
4880 void
4881 uvm_unmap1(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
4882 {
4883 struct vm_map_entry *dead_entries;
4884 UVMHIST_FUNC(__func__);
4885 UVMHIST_CALLARGS(maphist, " (map=%#jx, start=%#jx, end=%#jx)",
4886 (uintptr_t)map, start, end, 0);
4887
4888 KASSERTMSG(start < end,
4889 "%s: map %p: start %#jx < end %#jx", __func__, map,
4890 (uintmax_t)start, (uintmax_t)end);
4891 if (map == kernel_map) {
4892 LOCKDEBUG_MEM_CHECK((void *)start, end - start);
4893 }
4894
4895 /*
4896 * work now done by helper functions. wipe the pmap's and then
4897 * detach from the dead entries...
4898 */
4899 vm_map_lock(map);
4900 uvm_unmap_remove(map, start, end, &dead_entries, flags);
4901 vm_map_unlock(map);
4902
4903 if (dead_entries != NULL)
4904 uvm_unmap_detach(dead_entries, 0);
4905
4906 UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
4907 }
4908
4909
4910 /*
4911 * uvm_map_reference: add reference to a map
4912 *
4913 * => map need not be locked
4914 */
4915
4916 void
4917 uvm_map_reference(struct vm_map *map)
4918 {
4919
4920 atomic_inc_uint(&map->ref_count);
4921 }
4922
4923 void
4924 uvm_map_lock_entry(struct vm_map_entry *entry, krw_t op)
4925 {
4926
4927 if (entry->aref.ar_amap != NULL) {
4928 amap_lock(entry->aref.ar_amap, op);
4929 }
4930 if (UVM_ET_ISOBJ(entry)) {
4931 rw_enter(entry->object.uvm_obj->vmobjlock, op);
4932 }
4933 }
4934
4935 void
4936 uvm_map_unlock_entry(struct vm_map_entry *entry)
4937 {
4938
4939 if (UVM_ET_ISOBJ(entry)) {
4940 rw_exit(entry->object.uvm_obj->vmobjlock);
4941 }
4942 if (entry->aref.ar_amap != NULL) {
4943 amap_unlock(entry->aref.ar_amap);
4944 }
4945 }
4946
4947 #define UVM_VOADDR_TYPE_MASK 0x3UL
4948 #define UVM_VOADDR_TYPE_UOBJ 0x1UL
4949 #define UVM_VOADDR_TYPE_ANON 0x2UL
4950 #define UVM_VOADDR_OBJECT_MASK ~UVM_VOADDR_TYPE_MASK
4951
4952 #define UVM_VOADDR_GET_TYPE(voa) \
4953 ((voa)->object & UVM_VOADDR_TYPE_MASK)
4954 #define UVM_VOADDR_GET_OBJECT(voa) \
4955 ((voa)->object & UVM_VOADDR_OBJECT_MASK)
4956 #define UVM_VOADDR_SET_OBJECT(voa, obj, type) \
4957 do { \
4958 KASSERT(((uintptr_t)(obj) & UVM_VOADDR_TYPE_MASK) == 0); \
4959 (voa)->object = ((uintptr_t)(obj)) | (type); \
4960 } while (/*CONSTCOND*/0)
4961
4962 #define UVM_VOADDR_GET_UOBJ(voa) \
4963 ((struct uvm_object *)UVM_VOADDR_GET_OBJECT(voa))
4964 #define UVM_VOADDR_SET_UOBJ(voa, uobj) \
4965 UVM_VOADDR_SET_OBJECT(voa, uobj, UVM_VOADDR_TYPE_UOBJ)
4966
4967 #define UVM_VOADDR_GET_ANON(voa) \
4968 ((struct vm_anon *)UVM_VOADDR_GET_OBJECT(voa))
4969 #define UVM_VOADDR_SET_ANON(voa, anon) \
4970 UVM_VOADDR_SET_OBJECT(voa, anon, UVM_VOADDR_TYPE_ANON)
4971
4972 /*
4973 * uvm_voaddr_acquire: returns the virtual object address corresponding
4974 * to the specified virtual address.
4975 *
4976 * => resolves COW so the true page identity is tracked.
4977 *
4978 * => acquires a reference on the page's owner (uvm_object or vm_anon)
4979 */
4980 bool
4981 uvm_voaddr_acquire(struct vm_map * const map, vaddr_t const va,
4982 struct uvm_voaddr * const voaddr)
4983 {
4984 struct vm_map_entry *entry;
4985 struct vm_anon *anon = NULL;
4986 bool result = false;
4987 bool exclusive = false;
4988 void (*unlock_fn)(struct vm_map *);
4989
4990 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4991 UVMHIST_LOG(maphist,"(map=%#jx,va=%#jx)", (uintptr_t)map, va, 0, 0);
4992
4993 const vaddr_t start = trunc_page(va);
4994 const vaddr_t end = round_page(va+1);
4995
4996 lookup_again:
4997 if (__predict_false(exclusive)) {
4998 vm_map_lock(map);
4999 unlock_fn = vm_map_unlock;
5000 } else {
5001 vm_map_lock_read(map);
5002 unlock_fn = vm_map_unlock_read;
5003 }
5004
5005 if (__predict_false(!uvm_map_lookup_entry(map, start, &entry))) {
5006 unlock_fn(map);
5007 UVMHIST_LOG(maphist,"<- done (no entry)",0,0,0,0);
5008 return false;
5009 }
5010
5011 if (__predict_false(entry->protection == VM_PROT_NONE)) {
5012 unlock_fn(map);
5013 UVMHIST_LOG(maphist,"<- done (PROT_NONE)",0,0,0,0);
5014 return false;
5015 }
5016
5017 /*
5018 * We have a fast path for the common case of "no COW resolution
5019 * needed" whereby we have taken a read lock on the map and if
5020 * we don't encounter any need to create a vm_anon then great!
5021 * But if we do, we loop around again, instead taking an exclusive
5022 * lock so that we can perform the fault.
5023 *
5024 * In the event that we have to resolve the fault, we do nearly the
5025 * same work as uvm_map_pageable() does:
5026 *
5027 * 1: holding the write lock, we create any anonymous maps that need
5028 * to be created. however, we do NOT need to clip the map entries
5029 * in this case.
5030 *
5031 * 2: we downgrade to a read lock, and call uvm_fault_wire to fault
5032 * in the page (assuming the entry is not already wired). this
5033 * is done because we need the vm_anon to be present.
5034 */
5035 if (__predict_true(!VM_MAPENT_ISWIRED(entry))) {
5036
5037 bool need_fault = false;
5038
5039 /*
5040 * perform the action of vm_map_lookup that need the
5041 * write lock on the map: create an anonymous map for
5042 * a copy-on-write region, or an anonymous map for
5043 * a zero-fill region.
5044 */
5045 if (__predict_false(UVM_ET_ISSUBMAP(entry))) {
5046 unlock_fn(map);
5047 UVMHIST_LOG(maphist,"<- done (submap)",0,0,0,0);
5048 return false;
5049 }
5050 if (__predict_false(UVM_ET_ISNEEDSCOPY(entry) &&
5051 ((entry->max_protection & VM_PROT_WRITE) ||
5052 (entry->object.uvm_obj == NULL)))) {
5053 if (!exclusive) {
5054 /* need to take the slow path */
5055 KASSERT(unlock_fn == vm_map_unlock_read);
5056 vm_map_unlock_read(map);
5057 exclusive = true;
5058 goto lookup_again;
5059 }
5060 need_fault = true;
5061 amap_copy(map, entry, 0, start, end);
5062 /* XXXCDC: wait OK? */
5063 }
5064
5065 /*
5066 * do a quick check to see if the fault has already
5067 * been resolved to the upper layer.
5068 */
5069 if (__predict_true(entry->aref.ar_amap != NULL &&
5070 need_fault == false)) {
5071 amap_lock(entry->aref.ar_amap, RW_WRITER);
5072 anon = amap_lookup(&entry->aref, start - entry->start);
5073 if (__predict_true(anon != NULL)) {
5074 /* amap unlocked below */
5075 goto found_anon;
5076 }
5077 amap_unlock(entry->aref.ar_amap);
5078 need_fault = true;
5079 }
5080
5081 /*
5082 * we predict this test as false because if we reach
5083 * this point, then we are likely dealing with a
5084 * shared memory region backed by a uvm_object, in
5085 * which case a fault to create the vm_anon is not
5086 * necessary.
5087 */
5088 if (__predict_false(need_fault)) {
5089 if (exclusive) {
5090 vm_map_busy(map);
5091 vm_map_unlock(map);
5092 unlock_fn = vm_map_unbusy;
5093 }
5094
5095 if (uvm_fault_wire(map, start, end,
5096 entry->max_protection, 1)) {
5097 /* wiring failed */
5098 unlock_fn(map);
5099 UVMHIST_LOG(maphist,"<- done (wire failed)",
5100 0,0,0,0);
5101 return false;
5102 }
5103
5104 /*
5105 * now that we have resolved the fault, we can unwire
5106 * the page.
5107 */
5108 if (exclusive) {
5109 vm_map_lock(map);
5110 vm_map_unbusy(map);
5111 unlock_fn = vm_map_unlock;
5112 }
5113
5114 uvm_fault_unwire_locked(map, start, end);
5115 }
5116 }
5117
5118 /* check the upper layer */
5119 if (entry->aref.ar_amap) {
5120 amap_lock(entry->aref.ar_amap, RW_WRITER);
5121 anon = amap_lookup(&entry->aref, start - entry->start);
5122 if (anon) {
5123 found_anon: KASSERT(anon->an_lock == entry->aref.ar_amap->am_lock);
5124 anon->an_ref++;
5125 rw_obj_hold(anon->an_lock);
5126 KASSERT(anon->an_ref != 0);
5127 UVM_VOADDR_SET_ANON(voaddr, anon);
5128 voaddr->offset = va & PAGE_MASK;
5129 result = true;
5130 }
5131 amap_unlock(entry->aref.ar_amap);
5132 }
5133
5134 /* check the lower layer */
5135 if (!result && UVM_ET_ISOBJ(entry)) {
5136 struct uvm_object *uobj = entry->object.uvm_obj;
5137
5138 KASSERT(uobj != NULL);
5139 (*uobj->pgops->pgo_reference)(uobj);
5140 UVM_VOADDR_SET_UOBJ(voaddr, uobj);
5141 voaddr->offset = entry->offset + (va - entry->start);
5142 result = true;
5143 }
5144
5145 unlock_fn(map);
5146
5147 if (result) {
5148 UVMHIST_LOG(maphist,
5149 "<- done OK (type=%jd,owner=%#jx,offset=%#jx)",
5150 UVM_VOADDR_GET_TYPE(voaddr),
5151 UVM_VOADDR_GET_OBJECT(voaddr),
5152 voaddr->offset, 0);
5153 } else {
5154 UVMHIST_LOG(maphist,"<- done (failed)",0,0,0,0);
5155 }
5156
5157 return result;
5158 }
5159
5160 /*
5161 * uvm_voaddr_release: release the references held by the
5162 * vitual object address.
5163 */
5164 void
5165 uvm_voaddr_release(struct uvm_voaddr * const voaddr)
5166 {
5167
5168 switch (UVM_VOADDR_GET_TYPE(voaddr)) {
5169 case UVM_VOADDR_TYPE_UOBJ: {
5170 struct uvm_object * const uobj = UVM_VOADDR_GET_UOBJ(voaddr);
5171
5172 KASSERT(uobj != NULL);
5173 KASSERT(uobj->pgops->pgo_detach != NULL);
5174 (*uobj->pgops->pgo_detach)(uobj);
5175 break;
5176 }
5177 case UVM_VOADDR_TYPE_ANON: {
5178 struct vm_anon * const anon = UVM_VOADDR_GET_ANON(voaddr);
5179 krwlock_t *lock;
5180
5181 KASSERT(anon != NULL);
5182 rw_enter((lock = anon->an_lock), RW_WRITER);
5183 KASSERT(anon->an_ref > 0);
5184 if (--anon->an_ref == 0) {
5185 uvm_anfree(anon);
5186 }
5187 rw_exit(lock);
5188 rw_obj_free(lock);
5189 break;
5190 }
5191 default:
5192 panic("uvm_voaddr_release: bad type");
5193 }
5194 memset(voaddr, 0, sizeof(*voaddr));
5195 }
5196
5197 /*
5198 * uvm_voaddr_compare: compare two uvm_voaddr objects.
5199 *
5200 * => memcmp() semantics
5201 */
5202 int
5203 uvm_voaddr_compare(const struct uvm_voaddr * const voaddr1,
5204 const struct uvm_voaddr * const voaddr2)
5205 {
5206 const uintptr_t type1 = UVM_VOADDR_GET_TYPE(voaddr1);
5207 const uintptr_t type2 = UVM_VOADDR_GET_TYPE(voaddr2);
5208
5209 KASSERT(type1 == UVM_VOADDR_TYPE_UOBJ ||
5210 type1 == UVM_VOADDR_TYPE_ANON);
5211
5212 KASSERT(type2 == UVM_VOADDR_TYPE_UOBJ ||
5213 type2 == UVM_VOADDR_TYPE_ANON);
5214
5215 if (type1 < type2)
5216 return -1;
5217 if (type1 > type2)
5218 return 1;
5219
5220 const uintptr_t addr1 = UVM_VOADDR_GET_OBJECT(voaddr1);
5221 const uintptr_t addr2 = UVM_VOADDR_GET_OBJECT(voaddr2);
5222
5223 if (addr1 < addr2)
5224 return -1;
5225 if (addr1 > addr2)
5226 return 1;
5227
5228 if (voaddr1->offset < voaddr2->offset)
5229 return -1;
5230 if (voaddr1->offset > voaddr2->offset)
5231 return 1;
5232
5233 return 0;
5234 }
5235
5236 #if defined(DDB) || defined(DEBUGPRINT)
5237
5238 /*
5239 * uvm_map_printit: actually prints the map
5240 */
5241
5242 void
5243 uvm_map_printit(struct vm_map *map, bool full,
5244 void (*pr)(const char *, ...))
5245 {
5246 struct vm_map_entry *entry;
5247
5248 (*pr)("MAP %p: [%#lx->%#lx]\n", map, vm_map_min(map),
5249 vm_map_max(map));
5250 (*pr)("\t#ent=%d, sz=%d, ref=%d, version=%d, flags=%#x\n",
5251 map->nentries, map->size, map->ref_count, map->timestamp,
5252 map->flags);
5253 (*pr)("\tpmap=%p(resident=%ld, wired=%ld)\n", map->pmap,
5254 pmap_resident_count(map->pmap), pmap_wired_count(map->pmap));
5255 if (!full)
5256 return;
5257 for (entry = map->header.next; entry != &map->header;
5258 entry = entry->next) {
5259 (*pr)(" - %p: %#lx->%#lx: obj=%p/%#llx, amap=%p/%d\n",
5260 entry, entry->start, entry->end, entry->object.uvm_obj,
5261 (long long)entry->offset, entry->aref.ar_amap,
5262 entry->aref.ar_pageoff);
5263 (*pr)(
5264 "\tsubmap=%c, cow=%c, nc=%c, prot(max)=%d/%d, inh=%d, "
5265 "wc=%d, adv=%d%s\n",
5266 (entry->etype & UVM_ET_SUBMAP) ? 'T' : 'F',
5267 (entry->etype & UVM_ET_COPYONWRITE) ? 'T' : 'F',
5268 (entry->etype & UVM_ET_NEEDSCOPY) ? 'T' : 'F',
5269 entry->protection, entry->max_protection,
5270 entry->inheritance, entry->wired_count, entry->advice,
5271 entry == map->first_free ? " (first_free)" : "");
5272 }
5273 }
5274
5275 void
5276 uvm_whatis(uintptr_t addr, void (*pr)(const char *, ...))
5277 {
5278 struct vm_map *map;
5279
5280 for (map = kernel_map;;) {
5281 struct vm_map_entry *entry;
5282
5283 if (!uvm_map_lookup_entry_bytree(map, (vaddr_t)addr, &entry)) {
5284 break;
5285 }
5286 (*pr)("%p is %p+%zu from VMMAP %p\n",
5287 (void *)addr, (void *)entry->start,
5288 (size_t)(addr - (uintptr_t)entry->start), map);
5289 if (!UVM_ET_ISSUBMAP(entry)) {
5290 break;
5291 }
5292 map = entry->object.sub_map;
5293 }
5294 }
5295
5296 #endif /* DDB || DEBUGPRINT */
5297
5298 #ifndef __USER_VA0_IS_SAFE
5299 static int
5300 sysctl_user_va0_disable(SYSCTLFN_ARGS)
5301 {
5302 struct sysctlnode node;
5303 int t, error;
5304
5305 node = *rnode;
5306 node.sysctl_data = &t;
5307 t = user_va0_disable;
5308 error = sysctl_lookup(SYSCTLFN_CALL(&node));
5309 if (error || newp == NULL)
5310 return (error);
5311
5312 if (!t && user_va0_disable &&
5313 kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_MAP_VA_ZERO, 0,
5314 NULL, NULL, NULL))
5315 return EPERM;
5316
5317 user_va0_disable = !!t;
5318 return 0;
5319 }
5320 #endif
5321
5322 static int
5323 fill_vmentry(struct lwp *l, struct proc *p, struct kinfo_vmentry *kve,
5324 struct vm_map *m, struct vm_map_entry *e)
5325 {
5326 #ifndef _RUMPKERNEL
5327 int error;
5328
5329 memset(kve, 0, sizeof(*kve));
5330 KASSERT(e != NULL);
5331 if (UVM_ET_ISOBJ(e)) {
5332 struct uvm_object *uobj = e->object.uvm_obj;
5333 KASSERT(uobj != NULL);
5334 kve->kve_ref_count = uobj->uo_refs;
5335 kve->kve_count = uobj->uo_npages;
5336 if (UVM_OBJ_IS_VNODE(uobj)) {
5337 struct vattr va;
5338 struct vnode *vp = (struct vnode *)uobj;
5339 vn_lock(vp, LK_SHARED | LK_RETRY);
5340 error = VOP_GETATTR(vp, &va, l->l_cred);
5341 VOP_UNLOCK(vp);
5342 kve->kve_type = KVME_TYPE_VNODE;
5343 if (error == 0) {
5344 kve->kve_vn_size = vp->v_size;
5345 kve->kve_vn_type = (int)vp->v_type;
5346 kve->kve_vn_mode = va.va_mode;
5347 kve->kve_vn_rdev = va.va_rdev;
5348 kve->kve_vn_fileid = va.va_fileid;
5349 kve->kve_vn_fsid = va.va_fsid;
5350 error = vnode_to_path(kve->kve_path,
5351 sizeof(kve->kve_path) / 2, vp, l, p);
5352 }
5353 } else if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
5354 kve->kve_type = KVME_TYPE_KERN;
5355 } else if (UVM_OBJ_IS_DEVICE(uobj)) {
5356 kve->kve_type = KVME_TYPE_DEVICE;
5357 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
5358 kve->kve_type = KVME_TYPE_ANON;
5359 } else {
5360 kve->kve_type = KVME_TYPE_OBJECT;
5361 }
5362 } else if (UVM_ET_ISSUBMAP(e)) {
5363 struct vm_map *map = e->object.sub_map;
5364 KASSERT(map != NULL);
5365 kve->kve_ref_count = map->ref_count;
5366 kve->kve_count = map->nentries;
5367 kve->kve_type = KVME_TYPE_SUBMAP;
5368 } else
5369 kve->kve_type = KVME_TYPE_UNKNOWN;
5370
5371 kve->kve_start = e->start;
5372 kve->kve_end = e->end;
5373 kve->kve_offset = e->offset;
5374 kve->kve_wired_count = e->wired_count;
5375 kve->kve_inheritance = e->inheritance;
5376 kve->kve_attributes = 0; /* unused */
5377 kve->kve_advice = e->advice;
5378 #define PROT(p) (((p) & VM_PROT_READ) ? KVME_PROT_READ : 0) | \
5379 (((p) & VM_PROT_WRITE) ? KVME_PROT_WRITE : 0) | \
5380 (((p) & VM_PROT_EXECUTE) ? KVME_PROT_EXEC : 0)
5381 kve->kve_protection = PROT(e->protection);
5382 kve->kve_max_protection = PROT(e->max_protection);
5383 kve->kve_flags |= (e->etype & UVM_ET_COPYONWRITE)
5384 ? KVME_FLAG_COW : 0;
5385 kve->kve_flags |= (e->etype & UVM_ET_NEEDSCOPY)
5386 ? KVME_FLAG_NEEDS_COPY : 0;
5387 kve->kve_flags |= (m->flags & VM_MAP_TOPDOWN)
5388 ? KVME_FLAG_GROWS_DOWN : KVME_FLAG_GROWS_UP;
5389 kve->kve_flags |= (m->flags & VM_MAP_PAGEABLE)
5390 ? KVME_FLAG_PAGEABLE : 0;
5391 #endif
5392 return 0;
5393 }
5394
5395 static int
5396 fill_vmentries(struct lwp *l, pid_t pid, u_int elem_size, void *oldp,
5397 size_t *oldlenp)
5398 {
5399 int error;
5400 struct proc *p;
5401 struct kinfo_vmentry *vme;
5402 struct vmspace *vm;
5403 struct vm_map *map;
5404 struct vm_map_entry *entry;
5405 char *dp;
5406 size_t count, vmesize;
5407
5408 if (elem_size == 0 || elem_size > 2 * sizeof(*vme))
5409 return EINVAL;
5410
5411 if (oldp) {
5412 if (*oldlenp > 10UL * 1024UL * 1024UL)
5413 return E2BIG;
5414 count = *oldlenp / elem_size;
5415 if (count == 0)
5416 return ENOMEM;
5417 vmesize = count * sizeof(*vme);
5418 } else
5419 vmesize = 0;
5420
5421 if ((error = proc_find_locked(l, &p, pid)) != 0)
5422 return error;
5423
5424 vme = NULL;
5425 count = 0;
5426
5427 if ((error = proc_vmspace_getref(p, &vm)) != 0)
5428 goto out;
5429
5430 map = &vm->vm_map;
5431 vm_map_lock_read(map);
5432
5433 dp = oldp;
5434 if (oldp)
5435 vme = kmem_alloc(vmesize, KM_SLEEP);
5436 for (entry = map->header.next; entry != &map->header;
5437 entry = entry->next) {
5438 if (oldp && (dp - (char *)oldp) < vmesize) {
5439 error = fill_vmentry(l, p, &vme[count], map, entry);
5440 if (error)
5441 goto out;
5442 dp += elem_size;
5443 }
5444 count++;
5445 }
5446 vm_map_unlock_read(map);
5447 uvmspace_free(vm);
5448
5449 out:
5450 if (pid != -1)
5451 mutex_exit(p->p_lock);
5452 if (error == 0) {
5453 const u_int esize = uimin(sizeof(*vme), elem_size);
5454 dp = oldp;
5455 for (size_t i = 0; i < count; i++) {
5456 if (oldp && (dp - (char *)oldp) < vmesize) {
5457 error = sysctl_copyout(l, &vme[i], dp, esize);
5458 if (error)
5459 break;
5460 dp += elem_size;
5461 } else
5462 break;
5463 }
5464 count *= elem_size;
5465 if (oldp != NULL && *oldlenp < count)
5466 error = ENOSPC;
5467 *oldlenp = count;
5468 }
5469 if (vme)
5470 kmem_free(vme, vmesize);
5471 return error;
5472 }
5473
5474 static int
5475 sysctl_vmproc(SYSCTLFN_ARGS)
5476 {
5477 int error;
5478
5479 if (namelen == 1 && name[0] == CTL_QUERY)
5480 return (sysctl_query(SYSCTLFN_CALL(rnode)));
5481
5482 if (namelen == 0)
5483 return EINVAL;
5484
5485 switch (name[0]) {
5486 case VM_PROC_MAP:
5487 if (namelen != 3)
5488 return EINVAL;
5489 sysctl_unlock();
5490 error = fill_vmentries(l, name[1], name[2], oldp, oldlenp);
5491 sysctl_relock();
5492 return error;
5493 default:
5494 return EINVAL;
5495 }
5496 }
5497
5498 SYSCTL_SETUP(sysctl_uvmmap_setup, "sysctl uvmmap setup")
5499 {
5500
5501 sysctl_createv(clog, 0, NULL, NULL,
5502 CTLFLAG_PERMANENT,
5503 CTLTYPE_STRUCT, "proc",
5504 SYSCTL_DESCR("Process vm information"),
5505 sysctl_vmproc, 0, NULL, 0,
5506 CTL_VM, VM_PROC, CTL_EOL);
5507 #ifndef __USER_VA0_IS_SAFE
5508 sysctl_createv(clog, 0, NULL, NULL,
5509 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5510 CTLTYPE_INT, "user_va0_disable",
5511 SYSCTL_DESCR("Disable VA 0"),
5512 sysctl_user_va0_disable, 0, &user_va0_disable, 0,
5513 CTL_VM, CTL_CREATE, CTL_EOL);
5514 #endif
5515 }
5516