uvm_map.c revision 1.421 1 /* $NetBSD: uvm_map.c,v 1.421 2024/08/14 01:26:25 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vm_map.c 8.3 (Berkeley) 1/12/94
37 * from: Id: uvm_map.c,v 1.1.2.27 1998/02/07 01:16:54 chs Exp
38 *
39 *
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
48 *
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 *
53 * Carnegie Mellon requests users of this software to return to
54 *
55 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 * School of Computer Science
57 * Carnegie Mellon University
58 * Pittsburgh PA 15213-3890
59 *
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
62 */
63
64 /*
65 * uvm_map.c: uvm map operations
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: uvm_map.c,v 1.421 2024/08/14 01:26:25 riastradh Exp $");
70
71 #include "opt_ddb.h"
72 #include "opt_pax.h"
73 #include "opt_uvmhist.h"
74 #include "opt_uvm.h"
75 #include "opt_sysv.h"
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/mman.h>
80 #include <sys/proc.h>
81 #include <sys/pool.h>
82 #include <sys/kernel.h>
83 #include <sys/mount.h>
84 #include <sys/pax.h>
85 #include <sys/vnode.h>
86 #include <sys/filedesc.h>
87 #include <sys/lockdebug.h>
88 #include <sys/atomic.h>
89 #include <sys/sysctl.h>
90 #ifndef __USER_VA0_IS_SAFE
91 #include <sys/kauth.h>
92 #include "opt_user_va0_disable_default.h"
93 #endif
94
95 #include <sys/shm.h>
96
97 #include <uvm/uvm.h>
98 #include <uvm/uvm_readahead.h>
99
100 #if defined(DDB) || defined(DEBUGPRINT)
101 #include <uvm/uvm_ddb.h>
102 #endif
103
104 #ifdef UVMHIST
105 #ifndef UVMHIST_MAPHIST_SIZE
106 #define UVMHIST_MAPHIST_SIZE 100
107 #endif
108 static struct kern_history_ent maphistbuf[UVMHIST_MAPHIST_SIZE];
109 UVMHIST_DEFINE(maphist) = UVMHIST_INITIALIZER(maphist, maphistbuf);
110 #endif
111
112 #if !defined(UVMMAP_COUNTERS)
113
114 #define UVMMAP_EVCNT_DEFINE(name) /* nothing */
115 #define UVMMAP_EVCNT_INCR(ev) /* nothing */
116 #define UVMMAP_EVCNT_DECR(ev) /* nothing */
117
118 #else /* defined(UVMMAP_NOCOUNTERS) */
119
120 #include <sys/evcnt.h>
121 #define UVMMAP_EVCNT_DEFINE(name) \
122 struct evcnt uvmmap_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
123 "uvmmap", #name); \
124 EVCNT_ATTACH_STATIC(uvmmap_evcnt_##name);
125 #define UVMMAP_EVCNT_INCR(ev) uvmmap_evcnt_##ev.ev_count++
126 #define UVMMAP_EVCNT_DECR(ev) uvmmap_evcnt_##ev.ev_count--
127
128 #endif /* defined(UVMMAP_NOCOUNTERS) */
129
130 UVMMAP_EVCNT_DEFINE(ubackmerge)
131 UVMMAP_EVCNT_DEFINE(uforwmerge)
132 UVMMAP_EVCNT_DEFINE(ubimerge)
133 UVMMAP_EVCNT_DEFINE(unomerge)
134 UVMMAP_EVCNT_DEFINE(kbackmerge)
135 UVMMAP_EVCNT_DEFINE(kforwmerge)
136 UVMMAP_EVCNT_DEFINE(kbimerge)
137 UVMMAP_EVCNT_DEFINE(knomerge)
138 UVMMAP_EVCNT_DEFINE(map_call)
139 UVMMAP_EVCNT_DEFINE(mlk_call)
140 UVMMAP_EVCNT_DEFINE(mlk_hint)
141 UVMMAP_EVCNT_DEFINE(mlk_tree)
142 UVMMAP_EVCNT_DEFINE(mlk_treeloop)
143
144 const char vmmapbsy[] = "vmmapbsy";
145
146 /*
147 * cache for dynamically-allocated map entries.
148 */
149
150 static struct pool_cache uvm_map_entry_cache;
151
152 #ifdef PMAP_GROWKERNEL
153 /*
154 * This global represents the end of the kernel virtual address
155 * space. If we want to exceed this, we must grow the kernel
156 * virtual address space dynamically.
157 *
158 * Note, this variable is locked by kernel_map's lock.
159 */
160 vaddr_t uvm_maxkaddr;
161 #endif
162
163 #ifndef __USER_VA0_IS_SAFE
164 #ifndef __USER_VA0_DISABLE_DEFAULT
165 #define __USER_VA0_DISABLE_DEFAULT 1
166 #endif
167 #ifdef USER_VA0_DISABLE_DEFAULT /* kernel config option overrides */
168 #undef __USER_VA0_DISABLE_DEFAULT
169 #define __USER_VA0_DISABLE_DEFAULT USER_VA0_DISABLE_DEFAULT
170 #endif
171 int user_va0_disable = __USER_VA0_DISABLE_DEFAULT;
172 #endif
173
174 /*
175 * macros
176 */
177
178 /*
179 * uvm_map_align_va: round down or up virtual address
180 */
181 static __inline void
182 uvm_map_align_va(vaddr_t *vap, vsize_t align, int topdown)
183 {
184
185 KASSERT(powerof2(align));
186
187 if (align != 0 && (*vap & (align - 1)) != 0) {
188 if (topdown)
189 *vap = rounddown2(*vap, align);
190 else
191 *vap = roundup2(*vap, align);
192 }
193 }
194
195 /*
196 * UVM_ET_ISCOMPATIBLE: check some requirements for map entry merging
197 */
198 extern struct vm_map *pager_map;
199
200 #define UVM_ET_ISCOMPATIBLE(ent, type, uobj, meflags, \
201 prot, maxprot, inh, adv, wire) \
202 ((ent)->etype == (type) && \
203 (((ent)->flags ^ (meflags)) & (UVM_MAP_NOMERGE)) == 0 && \
204 (ent)->object.uvm_obj == (uobj) && \
205 (ent)->protection == (prot) && \
206 (ent)->max_protection == (maxprot) && \
207 (ent)->inheritance == (inh) && \
208 (ent)->advice == (adv) && \
209 (ent)->wired_count == (wire))
210
211 /*
212 * uvm_map_entry_link: insert entry into a map
213 *
214 * => map must be locked
215 */
216 #define uvm_map_entry_link(map, after_where, entry) do { \
217 uvm_mapent_check(entry); \
218 (map)->nentries++; \
219 (entry)->prev = (after_where); \
220 (entry)->next = (after_where)->next; \
221 (entry)->prev->next = (entry); \
222 (entry)->next->prev = (entry); \
223 uvm_rb_insert((map), (entry)); \
224 } while (/*CONSTCOND*/ 0)
225
226 /*
227 * uvm_map_entry_unlink: remove entry from a map
228 *
229 * => map must be locked
230 */
231 #define uvm_map_entry_unlink(map, entry) do { \
232 KASSERT((entry) != (map)->first_free); \
233 KASSERT((entry) != (map)->hint); \
234 uvm_mapent_check(entry); \
235 (map)->nentries--; \
236 (entry)->next->prev = (entry)->prev; \
237 (entry)->prev->next = (entry)->next; \
238 uvm_rb_remove((map), (entry)); \
239 } while (/*CONSTCOND*/ 0)
240
241 /*
242 * SAVE_HINT: saves the specified entry as the hint for future lookups.
243 *
244 * => map need not be locked.
245 */
246 #define SAVE_HINT(map, check, value) do { \
247 if ((map)->hint == (check)) \
248 (map)->hint = (value); \
249 } while (/*CONSTCOND*/ 0)
250
251 /*
252 * clear_hints: ensure that hints don't point to the entry.
253 *
254 * => map must be write-locked.
255 */
256 static void
257 clear_hints(struct vm_map *map, struct vm_map_entry *ent)
258 {
259
260 SAVE_HINT(map, ent, ent->prev);
261 if (map->first_free == ent) {
262 map->first_free = ent->prev;
263 }
264 }
265
266 /*
267 * VM_MAP_RANGE_CHECK: check and correct range
268 *
269 * => map must at least be read locked
270 */
271
272 #define VM_MAP_RANGE_CHECK(map, start, end) do { \
273 if (start < vm_map_min(map)) \
274 start = vm_map_min(map); \
275 if (end > vm_map_max(map)) \
276 end = vm_map_max(map); \
277 if (start > end) \
278 start = end; \
279 } while (/*CONSTCOND*/ 0)
280
281 /*
282 * local prototypes
283 */
284
285 static struct vm_map_entry *
286 uvm_mapent_alloc(struct vm_map *, int);
287 static void uvm_mapent_copy(struct vm_map_entry *, struct vm_map_entry *);
288 static void uvm_mapent_free(struct vm_map_entry *);
289 #if defined(DEBUG)
290 static void _uvm_mapent_check(const struct vm_map_entry *, int);
291 #define uvm_mapent_check(map) _uvm_mapent_check(map, __LINE__)
292 #else /* defined(DEBUG) */
293 #define uvm_mapent_check(e) /* nothing */
294 #endif /* defined(DEBUG) */
295
296 static void uvm_map_entry_unwire(struct vm_map *, struct vm_map_entry *);
297 static void uvm_map_reference_amap(struct vm_map_entry *, int);
298 static int uvm_map_space_avail(vaddr_t *, vsize_t, voff_t, vsize_t, int,
299 int, struct vm_map_entry *);
300 static void uvm_map_unreference_amap(struct vm_map_entry *, int);
301
302 int _uvm_map_sanity(struct vm_map *);
303 int _uvm_tree_sanity(struct vm_map *);
304 static vsize_t uvm_rb_maxgap(const struct vm_map_entry *);
305
306 /*
307 * Tree iteration. We violate the rbtree(9) abstraction for various
308 * things here. Entries are ascending left to right, so, provided the
309 * child entry in question exists:
310 *
311 * LEFT_ENTRY(entry)->end <= entry->start
312 * entry->end <= RIGHT_ENTRY(entry)->start
313 */
314 __CTASSERT(offsetof(struct vm_map_entry, rb_node) == 0);
315 #define ROOT_ENTRY(map) \
316 ((struct vm_map_entry *)(map)->rb_tree.rbt_root)
317 #define LEFT_ENTRY(entry) \
318 ((struct vm_map_entry *)(entry)->rb_node.rb_left)
319 #define RIGHT_ENTRY(entry) \
320 ((struct vm_map_entry *)(entry)->rb_node.rb_right)
321 #define PARENT_ENTRY(map, entry) \
322 (ROOT_ENTRY(map) == (entry) \
323 ? NULL : (struct vm_map_entry *)RB_FATHER(&(entry)->rb_node))
324
325 /*
326 * These get filled in if/when SYSVSHM shared memory code is loaded
327 *
328 * We do this with function pointers rather the #ifdef SYSVSHM so the
329 * SYSVSHM code can be loaded and unloaded
330 */
331 void (*uvm_shmexit)(struct vmspace *) = NULL;
332 void (*uvm_shmfork)(struct vmspace *, struct vmspace *) = NULL;
333
334 static int
335 uvm_map_compare_nodes(void *ctx, const void *nparent, const void *nkey)
336 {
337 const struct vm_map_entry *eparent = nparent;
338 const struct vm_map_entry *ekey = nkey;
339
340 KASSERT(eparent->start < ekey->start || eparent->start >= ekey->end);
341 KASSERT(ekey->start < eparent->start || ekey->start >= eparent->end);
342
343 if (eparent->start < ekey->start)
344 return -1;
345 if (eparent->end >= ekey->start)
346 return 1;
347 return 0;
348 }
349
350 static int
351 uvm_map_compare_key(void *ctx, const void *nparent, const void *vkey)
352 {
353 const struct vm_map_entry *eparent = nparent;
354 const vaddr_t va = *(const vaddr_t *) vkey;
355
356 if (eparent->start < va)
357 return -1;
358 if (eparent->end >= va)
359 return 1;
360 return 0;
361 }
362
363 static const rb_tree_ops_t uvm_map_tree_ops = {
364 .rbto_compare_nodes = uvm_map_compare_nodes,
365 .rbto_compare_key = uvm_map_compare_key,
366 .rbto_node_offset = offsetof(struct vm_map_entry, rb_node),
367 .rbto_context = NULL
368 };
369
370 /*
371 * uvm_rb_gap: return the gap size between our entry and next entry.
372 */
373 static inline vsize_t
374 uvm_rb_gap(const struct vm_map_entry *entry)
375 {
376
377 KASSERT(entry->next != NULL);
378 return entry->next->start - entry->end;
379 }
380
381 static vsize_t
382 uvm_rb_maxgap(const struct vm_map_entry *entry)
383 {
384 struct vm_map_entry *child;
385 vsize_t maxgap = entry->gap;
386
387 /*
388 * We need maxgap to be the largest gap of us or any of our
389 * descendents. Since each of our children's maxgap is the
390 * cached value of their largest gap of themselves or their
391 * descendents, we can just use that value and avoid recursing
392 * down the tree to calculate it.
393 */
394 if ((child = LEFT_ENTRY(entry)) != NULL && maxgap < child->maxgap)
395 maxgap = child->maxgap;
396
397 if ((child = RIGHT_ENTRY(entry)) != NULL && maxgap < child->maxgap)
398 maxgap = child->maxgap;
399
400 return maxgap;
401 }
402
403 static void
404 uvm_rb_fixup(struct vm_map *map, struct vm_map_entry *entry)
405 {
406 struct vm_map_entry *parent;
407
408 KASSERT(entry->gap == uvm_rb_gap(entry));
409 entry->maxgap = uvm_rb_maxgap(entry);
410
411 while ((parent = PARENT_ENTRY(map, entry)) != NULL) {
412 struct vm_map_entry *brother;
413 vsize_t maxgap = parent->gap;
414 unsigned int which;
415
416 KDASSERT(parent->gap == uvm_rb_gap(parent));
417 if (maxgap < entry->maxgap)
418 maxgap = entry->maxgap;
419 /*
420 * Since we work towards the root, we know entry's maxgap
421 * value is OK, but its brothers may now be out-of-date due
422 * to rebalancing. So refresh it.
423 */
424 which = RB_POSITION(&entry->rb_node) ^ RB_DIR_OTHER;
425 brother = (struct vm_map_entry *)parent->rb_node.rb_nodes[which];
426 if (brother != NULL) {
427 KDASSERT(brother->gap == uvm_rb_gap(brother));
428 brother->maxgap = uvm_rb_maxgap(brother);
429 if (maxgap < brother->maxgap)
430 maxgap = brother->maxgap;
431 }
432
433 parent->maxgap = maxgap;
434 entry = parent;
435 }
436 }
437
438 static void
439 uvm_rb_insert(struct vm_map *map, struct vm_map_entry *entry)
440 {
441 struct vm_map_entry *ret __diagused;
442
443 entry->gap = entry->maxgap = uvm_rb_gap(entry);
444 if (entry->prev != &map->header)
445 entry->prev->gap = uvm_rb_gap(entry->prev);
446
447 ret = rb_tree_insert_node(&map->rb_tree, entry);
448 KASSERTMSG(ret == entry,
449 "uvm_rb_insert: map %p: duplicate entry %p", map, ret);
450
451 /*
452 * If the previous entry is not our immediate left child, then it's an
453 * ancestor and will be fixed up on the way to the root. We don't
454 * have to check entry->prev against &map->header since &map->header
455 * will never be in the tree.
456 */
457 uvm_rb_fixup(map,
458 LEFT_ENTRY(entry) == entry->prev ? entry->prev : entry);
459 }
460
461 static void
462 uvm_rb_remove(struct vm_map *map, struct vm_map_entry *entry)
463 {
464 struct vm_map_entry *prev_parent = NULL, *next_parent = NULL;
465
466 /*
467 * If we are removing an interior node, then an adjacent node will
468 * be used to replace its position in the tree. Therefore we will
469 * need to fixup the tree starting at the parent of the replacement
470 * node. So record their parents for later use.
471 */
472 if (entry->prev != &map->header)
473 prev_parent = PARENT_ENTRY(map, entry->prev);
474 if (entry->next != &map->header)
475 next_parent = PARENT_ENTRY(map, entry->next);
476
477 rb_tree_remove_node(&map->rb_tree, entry);
478
479 /*
480 * If the previous node has a new parent, fixup the tree starting
481 * at the previous node's old parent.
482 */
483 if (entry->prev != &map->header) {
484 /*
485 * Update the previous entry's gap due to our absence.
486 */
487 entry->prev->gap = uvm_rb_gap(entry->prev);
488 uvm_rb_fixup(map, entry->prev);
489 if (prev_parent != NULL
490 && prev_parent != entry
491 && prev_parent != PARENT_ENTRY(map, entry->prev))
492 uvm_rb_fixup(map, prev_parent);
493 }
494
495 /*
496 * If the next node has a new parent, fixup the tree starting
497 * at the next node's old parent.
498 */
499 if (entry->next != &map->header) {
500 uvm_rb_fixup(map, entry->next);
501 if (next_parent != NULL
502 && next_parent != entry
503 && next_parent != PARENT_ENTRY(map, entry->next))
504 uvm_rb_fixup(map, next_parent);
505 }
506 }
507
508 #if defined(DEBUG)
509 int uvm_debug_check_map = 0;
510 int uvm_debug_check_rbtree = 0;
511 #define uvm_map_check(map, name) \
512 _uvm_map_check((map), (name), __FILE__, __LINE__)
513 static void
514 _uvm_map_check(struct vm_map *map, const char *name,
515 const char *file, int line)
516 {
517
518 if ((uvm_debug_check_map && _uvm_map_sanity(map)) ||
519 (uvm_debug_check_rbtree && _uvm_tree_sanity(map))) {
520 panic("uvm_map_check failed: \"%s\" map=%p (%s:%d)",
521 name, map, file, line);
522 }
523 }
524 #else /* defined(DEBUG) */
525 #define uvm_map_check(map, name) /* nothing */
526 #endif /* defined(DEBUG) */
527
528 #if defined(DEBUG) || defined(DDB)
529 int
530 _uvm_map_sanity(struct vm_map *map)
531 {
532 bool first_free_found = false;
533 bool hint_found = false;
534 const struct vm_map_entry *e;
535 struct vm_map_entry *hint = map->hint;
536
537 e = &map->header;
538 for (;;) {
539 if (map->first_free == e) {
540 first_free_found = true;
541 } else if (!first_free_found && e->next->start > e->end) {
542 printf("first_free %p should be %p\n",
543 map->first_free, e);
544 return -1;
545 }
546 if (hint == e) {
547 hint_found = true;
548 }
549
550 e = e->next;
551 if (e == &map->header) {
552 break;
553 }
554 }
555 if (!first_free_found) {
556 printf("stale first_free\n");
557 return -1;
558 }
559 if (!hint_found) {
560 printf("stale hint\n");
561 return -1;
562 }
563 return 0;
564 }
565
566 int
567 _uvm_tree_sanity(struct vm_map *map)
568 {
569 struct vm_map_entry *tmp, *trtmp;
570 int n = 0, i = 1;
571
572 for (tmp = map->header.next; tmp != &map->header; tmp = tmp->next) {
573 if (tmp->gap != uvm_rb_gap(tmp)) {
574 printf("%d/%d gap %#lx != %#lx %s\n",
575 n + 1, map->nentries,
576 (ulong)tmp->gap, (ulong)uvm_rb_gap(tmp),
577 tmp->next == &map->header ? "(last)" : "");
578 goto error;
579 }
580 /*
581 * If any entries are out of order, tmp->gap will be unsigned
582 * and will likely exceed the size of the map.
583 */
584 if (tmp->gap >= vm_map_max(map) - vm_map_min(map)) {
585 printf("too large gap %zu\n", (size_t)tmp->gap);
586 goto error;
587 }
588 n++;
589 }
590
591 if (n != map->nentries) {
592 printf("nentries: %d vs %d\n", n, map->nentries);
593 goto error;
594 }
595
596 trtmp = NULL;
597 for (tmp = map->header.next; tmp != &map->header; tmp = tmp->next) {
598 if (tmp->maxgap != uvm_rb_maxgap(tmp)) {
599 printf("maxgap %#lx != %#lx\n",
600 (ulong)tmp->maxgap,
601 (ulong)uvm_rb_maxgap(tmp));
602 goto error;
603 }
604 if (trtmp != NULL && trtmp->start >= tmp->start) {
605 printf("corrupt: 0x%"PRIxVADDR"x >= 0x%"PRIxVADDR"x\n",
606 trtmp->start, tmp->start);
607 goto error;
608 }
609
610 trtmp = tmp;
611 }
612
613 for (tmp = map->header.next; tmp != &map->header;
614 tmp = tmp->next, i++) {
615 trtmp = rb_tree_iterate(&map->rb_tree, tmp, RB_DIR_LEFT);
616 if (trtmp == NULL)
617 trtmp = &map->header;
618 if (tmp->prev != trtmp) {
619 printf("lookup: %d: %p->prev=%p: %p\n",
620 i, tmp, tmp->prev, trtmp);
621 goto error;
622 }
623 trtmp = rb_tree_iterate(&map->rb_tree, tmp, RB_DIR_RIGHT);
624 if (trtmp == NULL)
625 trtmp = &map->header;
626 if (tmp->next != trtmp) {
627 printf("lookup: %d: %p->next=%p: %p\n",
628 i, tmp, tmp->next, trtmp);
629 goto error;
630 }
631 trtmp = rb_tree_find_node(&map->rb_tree, &tmp->start);
632 if (trtmp != tmp) {
633 printf("lookup: %d: %p - %p: %p\n", i, tmp, trtmp,
634 PARENT_ENTRY(map, tmp));
635 goto error;
636 }
637 }
638
639 return (0);
640 error:
641 return (-1);
642 }
643 #endif /* defined(DEBUG) || defined(DDB) */
644
645 /*
646 * vm_map_lock: acquire an exclusive (write) lock on a map.
647 *
648 * => The locking protocol provides for guaranteed upgrade from shared ->
649 * exclusive by whichever thread currently has the map marked busy.
650 * See "LOCKING PROTOCOL NOTES" in uvm_map.h. This is horrible; among
651 * other problems, it defeats any fairness guarantees provided by RW
652 * locks.
653 */
654
655 void
656 vm_map_lock(struct vm_map *map)
657 {
658
659 for (;;) {
660 rw_enter(&map->lock, RW_WRITER);
661 if (map->busy == NULL || map->busy == curlwp) {
662 break;
663 }
664 mutex_enter(&map->misc_lock);
665 rw_exit(&map->lock);
666 if (map->busy != NULL) {
667 cv_wait(&map->cv, &map->misc_lock);
668 }
669 mutex_exit(&map->misc_lock);
670 }
671 map->timestamp++;
672 }
673
674 /*
675 * vm_map_lock_try: try to lock a map, failing if it is already locked.
676 */
677
678 bool
679 vm_map_lock_try(struct vm_map *map)
680 {
681
682 if (!rw_tryenter(&map->lock, RW_WRITER)) {
683 return false;
684 }
685 if (map->busy != NULL) {
686 rw_exit(&map->lock);
687 return false;
688 }
689 map->timestamp++;
690 return true;
691 }
692
693 /*
694 * vm_map_unlock: release an exclusive lock on a map.
695 */
696
697 void
698 vm_map_unlock(struct vm_map *map)
699 {
700
701 KASSERT(rw_write_held(&map->lock));
702 KASSERT(map->busy == NULL || map->busy == curlwp);
703 rw_exit(&map->lock);
704 }
705
706 /*
707 * vm_map_unbusy: mark the map as unbusy, and wake any waiters that
708 * want an exclusive lock.
709 */
710
711 void
712 vm_map_unbusy(struct vm_map *map)
713 {
714
715 KASSERT(map->busy == curlwp);
716
717 /*
718 * Safe to clear 'busy' and 'waiters' with only a read lock held:
719 *
720 * o they can only be set with a write lock held
721 * o writers are blocked out with a read or write hold
722 * o at any time, only one thread owns the set of values
723 */
724 mutex_enter(&map->misc_lock);
725 map->busy = NULL;
726 cv_broadcast(&map->cv);
727 mutex_exit(&map->misc_lock);
728 }
729
730 /*
731 * vm_map_lock_read: acquire a shared (read) lock on a map.
732 */
733
734 void
735 vm_map_lock_read(struct vm_map *map)
736 {
737
738 rw_enter(&map->lock, RW_READER);
739 }
740
741 /*
742 * vm_map_unlock_read: release a shared lock on a map.
743 */
744
745 void
746 vm_map_unlock_read(struct vm_map *map)
747 {
748
749 rw_exit(&map->lock);
750 }
751
752 /*
753 * vm_map_busy: mark a map as busy.
754 *
755 * => the caller must hold the map write locked
756 */
757
758 void
759 vm_map_busy(struct vm_map *map)
760 {
761
762 KASSERT(rw_write_held(&map->lock));
763 KASSERT(map->busy == NULL);
764
765 map->busy = curlwp;
766 }
767
768 /*
769 * vm_map_locked_p: return true if the map is write locked.
770 *
771 * => only for debug purposes like KASSERTs.
772 * => should not be used to verify that a map is not locked.
773 */
774
775 bool
776 vm_map_locked_p(struct vm_map *map)
777 {
778
779 return rw_write_held(&map->lock);
780 }
781
782 /*
783 * uvm_mapent_alloc: allocate a map entry
784 */
785
786 static struct vm_map_entry *
787 uvm_mapent_alloc(struct vm_map *map, int flags)
788 {
789 struct vm_map_entry *me;
790 int pflags = (flags & UVM_FLAG_NOWAIT) ? PR_NOWAIT : PR_WAITOK;
791 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
792
793 me = pool_cache_get(&uvm_map_entry_cache, pflags);
794 if (__predict_false(me == NULL)) {
795 return NULL;
796 }
797 me->flags = 0;
798
799 UVMHIST_LOG(maphist, "<- new entry=%#jx [kentry=%jd]", (uintptr_t)me,
800 (map == kernel_map), 0, 0);
801 return me;
802 }
803
804 /*
805 * uvm_mapent_free: free map entry
806 */
807
808 static void
809 uvm_mapent_free(struct vm_map_entry *me)
810 {
811 UVMHIST_FUNC(__func__);
812 UVMHIST_CALLARGS(maphist,"<- freeing map entry=%#jx [flags=%#jx]",
813 (uintptr_t)me, me->flags, 0, 0);
814 pool_cache_put(&uvm_map_entry_cache, me);
815 }
816
817 /*
818 * uvm_mapent_copy: copy a map entry, preserving flags
819 */
820
821 static inline void
822 uvm_mapent_copy(struct vm_map_entry *src, struct vm_map_entry *dst)
823 {
824
825 memcpy(dst, src, sizeof(*dst));
826 dst->flags = 0;
827 }
828
829 #if defined(DEBUG)
830 static void
831 _uvm_mapent_check(const struct vm_map_entry *entry, int line)
832 {
833
834 if (entry->start >= entry->end) {
835 goto bad;
836 }
837 if (UVM_ET_ISOBJ(entry)) {
838 if (entry->object.uvm_obj == NULL) {
839 goto bad;
840 }
841 } else if (UVM_ET_ISSUBMAP(entry)) {
842 if (entry->object.sub_map == NULL) {
843 goto bad;
844 }
845 } else {
846 if (entry->object.uvm_obj != NULL ||
847 entry->object.sub_map != NULL) {
848 goto bad;
849 }
850 }
851 if (!UVM_ET_ISOBJ(entry)) {
852 if (entry->offset != 0) {
853 goto bad;
854 }
855 }
856
857 return;
858
859 bad:
860 panic("%s: bad entry %p, line %d", __func__, entry, line);
861 }
862 #endif /* defined(DEBUG) */
863
864 /*
865 * uvm_map_entry_unwire: unwire a map entry
866 *
867 * => map should be locked by caller
868 */
869
870 static inline void
871 uvm_map_entry_unwire(struct vm_map *map, struct vm_map_entry *entry)
872 {
873
874 entry->wired_count = 0;
875 uvm_fault_unwire_locked(map, entry->start, entry->end);
876 }
877
878
879 /*
880 * wrapper for calling amap_ref()
881 */
882 static inline void
883 uvm_map_reference_amap(struct vm_map_entry *entry, int flags)
884 {
885
886 amap_ref(entry->aref.ar_amap, entry->aref.ar_pageoff,
887 (entry->end - entry->start) >> PAGE_SHIFT, flags);
888 }
889
890
891 /*
892 * wrapper for calling amap_unref()
893 */
894 static inline void
895 uvm_map_unreference_amap(struct vm_map_entry *entry, int flags)
896 {
897
898 amap_unref(entry->aref.ar_amap, entry->aref.ar_pageoff,
899 (entry->end - entry->start) >> PAGE_SHIFT, flags);
900 }
901
902
903 /*
904 * uvm_map_init: init mapping system at boot time.
905 */
906
907 void
908 uvm_map_init(void)
909 {
910 /*
911 * first, init logging system.
912 */
913
914 UVMHIST_FUNC(__func__);
915 UVMHIST_LINK_STATIC(maphist);
916 UVMHIST_LINK_STATIC(pdhist);
917 UVMHIST_CALLED(maphist);
918 UVMHIST_LOG(maphist,"<starting uvm map system>", 0, 0, 0, 0);
919
920 /*
921 * initialize the global lock for kernel map entry.
922 */
923
924 mutex_init(&uvm_kentry_lock, MUTEX_DRIVER, IPL_VM);
925 }
926
927 /*
928 * uvm_map_init_caches: init mapping system caches.
929 */
930 void
931 uvm_map_init_caches(void)
932 {
933 /*
934 * initialize caches.
935 */
936
937 pool_cache_bootstrap(&uvm_map_entry_cache, sizeof(struct vm_map_entry),
938 coherency_unit, 0, PR_LARGECACHE, "vmmpepl", NULL, IPL_NONE, NULL,
939 NULL, NULL);
940 }
941
942 /*
943 * clippers
944 */
945
946 /*
947 * uvm_mapent_splitadj: adjust map entries for splitting, after uvm_mapent_copy.
948 */
949
950 static void
951 uvm_mapent_splitadj(struct vm_map_entry *entry1, struct vm_map_entry *entry2,
952 vaddr_t splitat)
953 {
954 vaddr_t adj;
955
956 KASSERT(entry1->start < splitat);
957 KASSERT(splitat < entry1->end);
958
959 adj = splitat - entry1->start;
960 entry1->end = entry2->start = splitat;
961
962 if (entry1->aref.ar_amap) {
963 amap_splitref(&entry1->aref, &entry2->aref, adj);
964 }
965 if (UVM_ET_ISSUBMAP(entry1)) {
966 /* ... unlikely to happen, but play it safe */
967 uvm_map_reference(entry1->object.sub_map);
968 } else if (UVM_ET_ISOBJ(entry1)) {
969 KASSERT(entry1->object.uvm_obj != NULL); /* suppress coverity */
970 entry2->offset += adj;
971 if (entry1->object.uvm_obj->pgops &&
972 entry1->object.uvm_obj->pgops->pgo_reference)
973 entry1->object.uvm_obj->pgops->pgo_reference(
974 entry1->object.uvm_obj);
975 }
976 }
977
978 /*
979 * uvm_map_clip_start: ensure that the entry begins at or after
980 * the starting address, if it doesn't we split the entry.
981 *
982 * => caller should use UVM_MAP_CLIP_START macro rather than calling
983 * this directly
984 * => map must be locked by caller
985 */
986
987 void
988 uvm_map_clip_start(struct vm_map *map, struct vm_map_entry *entry,
989 vaddr_t start)
990 {
991 struct vm_map_entry *new_entry;
992
993 /* uvm_map_simplify_entry(map, entry); */ /* XXX */
994
995 uvm_map_check(map, "clip_start entry");
996 uvm_mapent_check(entry);
997
998 /*
999 * Split off the front portion. note that we must insert the new
1000 * entry BEFORE this one, so that this entry has the specified
1001 * starting address.
1002 */
1003 new_entry = uvm_mapent_alloc(map, 0);
1004 uvm_mapent_copy(entry, new_entry); /* entry -> new_entry */
1005 uvm_mapent_splitadj(new_entry, entry, start);
1006 uvm_map_entry_link(map, entry->prev, new_entry);
1007
1008 uvm_map_check(map, "clip_start leave");
1009 }
1010
1011 /*
1012 * uvm_map_clip_end: ensure that the entry ends at or before
1013 * the ending address, if it does't we split the reference
1014 *
1015 * => caller should use UVM_MAP_CLIP_END macro rather than calling
1016 * this directly
1017 * => map must be locked by caller
1018 */
1019
1020 void
1021 uvm_map_clip_end(struct vm_map *map, struct vm_map_entry *entry, vaddr_t end)
1022 {
1023 struct vm_map_entry *new_entry;
1024
1025 uvm_map_check(map, "clip_end entry");
1026 uvm_mapent_check(entry);
1027
1028 /*
1029 * Create a new entry and insert it
1030 * AFTER the specified entry
1031 */
1032 new_entry = uvm_mapent_alloc(map, 0);
1033 uvm_mapent_copy(entry, new_entry); /* entry -> new_entry */
1034 uvm_mapent_splitadj(entry, new_entry, end);
1035 uvm_map_entry_link(map, entry, new_entry);
1036
1037 uvm_map_check(map, "clip_end leave");
1038 }
1039
1040 /*
1041 * M A P - m a i n e n t r y p o i n t
1042 */
1043 /*
1044 * uvm_map: establish a valid mapping in a map
1045 *
1046 * => assume startp is page aligned.
1047 * => assume size is a multiple of PAGE_SIZE.
1048 * => assume sys_mmap provides enough of a "hint" to have us skip
1049 * over text/data/bss area.
1050 * => map must be unlocked (we will lock it)
1051 * => <uobj,uoffset> value meanings (4 cases):
1052 * [1] <NULL,uoffset> == uoffset is a hint for PMAP_PREFER
1053 * [2] <NULL,UVM_UNKNOWN_OFFSET> == don't PMAP_PREFER
1054 * [3] <uobj,uoffset> == normal mapping
1055 * [4] <uobj,UVM_UNKNOWN_OFFSET> == uvm_map finds offset based on VA
1056 *
1057 * case [4] is for kernel mappings where we don't know the offset until
1058 * we've found a virtual address. note that kernel object offsets are
1059 * always relative to vm_map_min(kernel_map).
1060 *
1061 * => if `align' is non-zero, we align the virtual address to the specified
1062 * alignment.
1063 * this is provided as a mechanism for large pages.
1064 *
1065 * => XXXCDC: need way to map in external amap?
1066 */
1067
1068 int
1069 uvm_map(struct vm_map *map, vaddr_t *startp /* IN/OUT */, vsize_t size,
1070 struct uvm_object *uobj, voff_t uoffset, vsize_t align, uvm_flag_t flags)
1071 {
1072 struct uvm_map_args args;
1073 struct vm_map_entry *new_entry;
1074 int error;
1075
1076 KASSERT((size & PAGE_MASK) == 0);
1077 KASSERT((flags & UVM_FLAG_FIXED) == 0 || align == 0);
1078
1079 /*
1080 * for pager_map, allocate the new entry first to avoid sleeping
1081 * for memory while we have the map locked.
1082 */
1083
1084 new_entry = NULL;
1085 if (map == pager_map) {
1086 new_entry = uvm_mapent_alloc(map, (flags & UVM_FLAG_NOWAIT));
1087 if (__predict_false(new_entry == NULL))
1088 return ENOMEM;
1089 }
1090 if (map == pager_map)
1091 flags |= UVM_FLAG_NOMERGE;
1092
1093 error = uvm_map_prepare(map, *startp, size, uobj, uoffset, align,
1094 flags, &args);
1095 if (!error) {
1096 error = uvm_map_enter(map, &args, new_entry);
1097 *startp = args.uma_start;
1098 } else if (new_entry) {
1099 uvm_mapent_free(new_entry);
1100 }
1101
1102 #if defined(DEBUG)
1103 if (!error && VM_MAP_IS_KERNEL(map) && (flags & UVM_FLAG_NOWAIT) == 0) {
1104 uvm_km_check_empty(map, *startp, *startp + size);
1105 }
1106 #endif /* defined(DEBUG) */
1107
1108 return error;
1109 }
1110
1111 /*
1112 * uvm_map_prepare:
1113 *
1114 * called with map unlocked.
1115 * on success, returns the map locked.
1116 */
1117
1118 int
1119 uvm_map_prepare(struct vm_map *map, vaddr_t start, vsize_t size,
1120 struct uvm_object *uobj, voff_t uoffset, vsize_t align, uvm_flag_t flags,
1121 struct uvm_map_args *args)
1122 {
1123 struct vm_map_entry *prev_entry;
1124 vm_prot_t prot = UVM_PROTECTION(flags);
1125 vm_prot_t maxprot = UVM_MAXPROTECTION(flags);
1126
1127 UVMHIST_FUNC(__func__);
1128 UVMHIST_CALLARGS(maphist, "(map=%#jx, start=%#jx, size=%jx, flags=%#jx)",
1129 (uintptr_t)map, start, size, flags);
1130 UVMHIST_LOG(maphist, " uobj/offset %#jx/%jd", (uintptr_t)uobj,
1131 uoffset,0,0);
1132
1133 /*
1134 * detect a popular device driver bug.
1135 */
1136
1137 KASSERT(doing_shutdown || curlwp != NULL);
1138
1139 /*
1140 * zero-sized mapping doesn't make any sense.
1141 */
1142 KASSERT(size > 0);
1143
1144 KASSERT((~flags & (UVM_FLAG_NOWAIT | UVM_FLAG_WAITVA)) != 0);
1145
1146 uvm_map_check(map, "map entry");
1147
1148 /*
1149 * check sanity of protection code
1150 */
1151
1152 if ((prot & maxprot) != prot) {
1153 UVMHIST_LOG(maphist, "<- prot. failure: prot=%#jx, max=%#jx",
1154 prot, maxprot,0,0);
1155 return EACCES;
1156 }
1157
1158 /*
1159 * figure out where to put new VM range
1160 */
1161 retry:
1162 if (vm_map_lock_try(map) == false) {
1163 if ((flags & UVM_FLAG_TRYLOCK) != 0) {
1164 return EAGAIN;
1165 }
1166 vm_map_lock(map); /* could sleep here */
1167 }
1168 if (flags & UVM_FLAG_UNMAP) {
1169 KASSERT(flags & UVM_FLAG_FIXED);
1170 KASSERT((flags & UVM_FLAG_NOWAIT) == 0);
1171
1172 /*
1173 * Set prev_entry to what it will need to be after any existing
1174 * entries are removed later in uvm_map_enter().
1175 */
1176
1177 if (uvm_map_lookup_entry(map, start, &prev_entry)) {
1178 if (start == prev_entry->start)
1179 prev_entry = prev_entry->prev;
1180 else
1181 UVM_MAP_CLIP_END(map, prev_entry, start);
1182 SAVE_HINT(map, map->hint, prev_entry);
1183 }
1184 } else {
1185 prev_entry = uvm_map_findspace(map, start, size, &start,
1186 uobj, uoffset, align, flags);
1187 }
1188 if (prev_entry == NULL) {
1189 unsigned int timestamp;
1190
1191 timestamp = map->timestamp;
1192 UVMHIST_LOG(maphist,"waiting va timestamp=%#jx",
1193 timestamp,0,0,0);
1194 map->flags |= VM_MAP_WANTVA;
1195 vm_map_unlock(map);
1196
1197 /*
1198 * try to reclaim kva and wait until someone does unmap.
1199 * fragile locking here, so we awaken every second to
1200 * recheck the condition.
1201 */
1202
1203 mutex_enter(&map->misc_lock);
1204 while ((map->flags & VM_MAP_WANTVA) != 0 &&
1205 map->timestamp == timestamp) {
1206 if ((flags & UVM_FLAG_WAITVA) == 0) {
1207 mutex_exit(&map->misc_lock);
1208 UVMHIST_LOG(maphist,
1209 "<- uvm_map_findspace failed!", 0,0,0,0);
1210 return ENOMEM;
1211 } else {
1212 cv_timedwait(&map->cv, &map->misc_lock, hz);
1213 }
1214 }
1215 mutex_exit(&map->misc_lock);
1216 goto retry;
1217 }
1218
1219 #ifdef PMAP_GROWKERNEL
1220 /*
1221 * If the kernel pmap can't map the requested space,
1222 * then allocate more resources for it.
1223 */
1224 if (map == kernel_map && uvm_maxkaddr < (start + size))
1225 uvm_maxkaddr = pmap_growkernel(start + size);
1226 #endif
1227
1228 UVMMAP_EVCNT_INCR(map_call);
1229
1230 /*
1231 * if uobj is null, then uoffset is either a VAC hint for PMAP_PREFER
1232 * [typically from uvm_map_reserve] or it is UVM_UNKNOWN_OFFSET. in
1233 * either case we want to zero it before storing it in the map entry
1234 * (because it looks strange and confusing when debugging...)
1235 *
1236 * if uobj is not null
1237 * if uoffset is not UVM_UNKNOWN_OFFSET then we have a normal mapping
1238 * and we do not need to change uoffset.
1239 * if uoffset is UVM_UNKNOWN_OFFSET then we need to find the offset
1240 * now (based on the starting address of the map). this case is
1241 * for kernel object mappings where we don't know the offset until
1242 * the virtual address is found (with uvm_map_findspace). the
1243 * offset is the distance we are from the start of the map.
1244 */
1245
1246 if (uobj == NULL) {
1247 uoffset = 0;
1248 } else {
1249 if (uoffset == UVM_UNKNOWN_OFFSET) {
1250 KASSERT(UVM_OBJ_IS_KERN_OBJECT(uobj));
1251 uoffset = start - vm_map_min(kernel_map);
1252 }
1253 }
1254
1255 args->uma_flags = flags;
1256 args->uma_prev = prev_entry;
1257 args->uma_start = start;
1258 args->uma_size = size;
1259 args->uma_uobj = uobj;
1260 args->uma_uoffset = uoffset;
1261
1262 UVMHIST_LOG(maphist, "<- done!", 0,0,0,0);
1263 return 0;
1264 }
1265
1266 /*
1267 * uvm_map_enter:
1268 *
1269 * called with map locked.
1270 * unlock the map before returning.
1271 */
1272
1273 int
1274 uvm_map_enter(struct vm_map *map, const struct uvm_map_args *args,
1275 struct vm_map_entry *new_entry)
1276 {
1277 struct vm_map_entry *prev_entry = args->uma_prev;
1278 struct vm_map_entry *dead = NULL, *dead_entries = NULL;
1279
1280 const uvm_flag_t flags = args->uma_flags;
1281 const vm_prot_t prot = UVM_PROTECTION(flags);
1282 const vm_prot_t maxprot = UVM_MAXPROTECTION(flags);
1283 const vm_inherit_t inherit = UVM_INHERIT(flags);
1284 const int amapwaitflag = (flags & UVM_FLAG_NOWAIT) ?
1285 AMAP_EXTEND_NOWAIT : 0;
1286 const int advice = UVM_ADVICE(flags);
1287
1288 vaddr_t start = args->uma_start;
1289 vsize_t size = args->uma_size;
1290 struct uvm_object *uobj = args->uma_uobj;
1291 voff_t uoffset = args->uma_uoffset;
1292
1293 const int kmap = (vm_map_pmap(map) == pmap_kernel());
1294 int merged = 0;
1295 int error;
1296 int newetype;
1297
1298 UVMHIST_FUNC(__func__);
1299 UVMHIST_CALLARGS(maphist, "(map=%#jx, start=%#jx, size=%ju, flags=%#jx)",
1300 (uintptr_t)map, start, size, flags);
1301 UVMHIST_LOG(maphist, " uobj/offset %#jx/%jd", (uintptr_t)uobj,
1302 uoffset,0,0);
1303
1304 KASSERT(map->hint == prev_entry); /* bimerge case assumes this */
1305 KASSERT(vm_map_locked_p(map));
1306 KASSERT((flags & (UVM_FLAG_NOWAIT | UVM_FLAG_UNMAP)) !=
1307 (UVM_FLAG_NOWAIT | UVM_FLAG_UNMAP));
1308
1309 if (uobj)
1310 newetype = UVM_ET_OBJ;
1311 else
1312 newetype = 0;
1313
1314 if (flags & UVM_FLAG_COPYONW) {
1315 newetype |= UVM_ET_COPYONWRITE;
1316 if ((flags & UVM_FLAG_OVERLAY) == 0)
1317 newetype |= UVM_ET_NEEDSCOPY;
1318 }
1319
1320 /*
1321 * For mappings with unmap, remove any old entries now. Adding the new
1322 * entry cannot fail because that can only happen if UVM_FLAG_NOWAIT
1323 * is set, and we do not support nowait and unmap together.
1324 */
1325
1326 if (flags & UVM_FLAG_UNMAP) {
1327 KASSERT(flags & UVM_FLAG_FIXED);
1328 uvm_unmap_remove(map, start, start + size, &dead_entries, 0);
1329 #ifdef DEBUG
1330 struct vm_map_entry *tmp_entry __diagused;
1331 bool rv __diagused;
1332
1333 rv = uvm_map_lookup_entry(map, start, &tmp_entry);
1334 KASSERT(!rv);
1335 KASSERTMSG(prev_entry == tmp_entry,
1336 "args %p prev_entry %p tmp_entry %p",
1337 args, prev_entry, tmp_entry);
1338 #endif
1339 SAVE_HINT(map, map->hint, prev_entry);
1340 }
1341
1342 /*
1343 * try and insert in map by extending previous entry, if possible.
1344 * XXX: we don't try and pull back the next entry. might be useful
1345 * for a stack, but we are currently allocating our stack in advance.
1346 */
1347
1348 if (flags & UVM_FLAG_NOMERGE)
1349 goto nomerge;
1350
1351 if (prev_entry->end == start &&
1352 prev_entry != &map->header &&
1353 UVM_ET_ISCOMPATIBLE(prev_entry, newetype, uobj, 0,
1354 prot, maxprot, inherit, advice, 0)) {
1355
1356 if (uobj && prev_entry->offset +
1357 (prev_entry->end - prev_entry->start) != uoffset)
1358 goto forwardmerge;
1359
1360 /*
1361 * can't extend a shared amap. note: no need to lock amap to
1362 * look at refs since we don't care about its exact value.
1363 * if it is one (i.e. we have only reference) it will stay there
1364 */
1365
1366 if (prev_entry->aref.ar_amap &&
1367 amap_refs(prev_entry->aref.ar_amap) != 1) {
1368 goto forwardmerge;
1369 }
1370
1371 if (prev_entry->aref.ar_amap) {
1372 error = amap_extend(prev_entry, size,
1373 amapwaitflag | AMAP_EXTEND_FORWARDS);
1374 if (error)
1375 goto nomerge;
1376 }
1377
1378 if (kmap) {
1379 UVMMAP_EVCNT_INCR(kbackmerge);
1380 } else {
1381 UVMMAP_EVCNT_INCR(ubackmerge);
1382 }
1383 UVMHIST_LOG(maphist," starting back merge", 0, 0, 0, 0);
1384
1385 /*
1386 * drop our reference to uobj since we are extending a reference
1387 * that we already have (the ref count can not drop to zero).
1388 */
1389
1390 if (uobj && uobj->pgops->pgo_detach)
1391 uobj->pgops->pgo_detach(uobj);
1392
1393 /*
1394 * Now that we've merged the entries, note that we've grown
1395 * and our gap has shrunk. Then fix the tree.
1396 */
1397 prev_entry->end += size;
1398 prev_entry->gap -= size;
1399 uvm_rb_fixup(map, prev_entry);
1400
1401 uvm_map_check(map, "map backmerged");
1402
1403 UVMHIST_LOG(maphist,"<- done (via backmerge)!", 0, 0, 0, 0);
1404 merged++;
1405 }
1406
1407 forwardmerge:
1408 if (prev_entry->next->start == (start + size) &&
1409 prev_entry->next != &map->header &&
1410 UVM_ET_ISCOMPATIBLE(prev_entry->next, newetype, uobj, 0,
1411 prot, maxprot, inherit, advice, 0)) {
1412
1413 if (uobj && prev_entry->next->offset != uoffset + size)
1414 goto nomerge;
1415
1416 /*
1417 * can't extend a shared amap. note: no need to lock amap to
1418 * look at refs since we don't care about its exact value.
1419 * if it is one (i.e. we have only reference) it will stay there.
1420 *
1421 * note that we also can't merge two amaps, so if we
1422 * merged with the previous entry which has an amap,
1423 * and the next entry also has an amap, we give up.
1424 *
1425 * Interesting cases:
1426 * amap, new, amap -> give up second merge (single fwd extend)
1427 * amap, new, none -> double forward extend (extend again here)
1428 * none, new, amap -> double backward extend (done here)
1429 * uobj, new, amap -> single backward extend (done here)
1430 *
1431 * XXX should we attempt to deal with someone refilling
1432 * the deallocated region between two entries that are
1433 * backed by the same amap (ie, arefs is 2, "prev" and
1434 * "next" refer to it, and adding this allocation will
1435 * close the hole, thus restoring arefs to 1 and
1436 * deallocating the "next" vm_map_entry)? -- @@@
1437 */
1438
1439 if (prev_entry->next->aref.ar_amap &&
1440 (amap_refs(prev_entry->next->aref.ar_amap) != 1 ||
1441 (merged && prev_entry->aref.ar_amap))) {
1442 goto nomerge;
1443 }
1444
1445 if (merged) {
1446 /*
1447 * Try to extend the amap of the previous entry to
1448 * cover the next entry as well. If it doesn't work
1449 * just skip on, don't actually give up, since we've
1450 * already completed the back merge.
1451 */
1452 if (prev_entry->aref.ar_amap) {
1453 if (amap_extend(prev_entry,
1454 prev_entry->next->end -
1455 prev_entry->next->start,
1456 amapwaitflag | AMAP_EXTEND_FORWARDS))
1457 goto nomerge;
1458 }
1459
1460 /*
1461 * Try to extend the amap of the *next* entry
1462 * back to cover the new allocation *and* the
1463 * previous entry as well (the previous merge
1464 * didn't have an amap already otherwise we
1465 * wouldn't be checking here for an amap). If
1466 * it doesn't work just skip on, again, don't
1467 * actually give up, since we've already
1468 * completed the back merge.
1469 */
1470 else if (prev_entry->next->aref.ar_amap) {
1471 if (amap_extend(prev_entry->next,
1472 prev_entry->end -
1473 prev_entry->start,
1474 amapwaitflag | AMAP_EXTEND_BACKWARDS))
1475 goto nomerge;
1476 }
1477 } else {
1478 /*
1479 * Pull the next entry's amap backwards to cover this
1480 * new allocation.
1481 */
1482 if (prev_entry->next->aref.ar_amap) {
1483 error = amap_extend(prev_entry->next, size,
1484 amapwaitflag | AMAP_EXTEND_BACKWARDS);
1485 if (error)
1486 goto nomerge;
1487 }
1488 }
1489
1490 if (merged) {
1491 if (kmap) {
1492 UVMMAP_EVCNT_DECR(kbackmerge);
1493 UVMMAP_EVCNT_INCR(kbimerge);
1494 } else {
1495 UVMMAP_EVCNT_DECR(ubackmerge);
1496 UVMMAP_EVCNT_INCR(ubimerge);
1497 }
1498 } else {
1499 if (kmap) {
1500 UVMMAP_EVCNT_INCR(kforwmerge);
1501 } else {
1502 UVMMAP_EVCNT_INCR(uforwmerge);
1503 }
1504 }
1505 UVMHIST_LOG(maphist," starting forward merge", 0, 0, 0, 0);
1506
1507 /*
1508 * drop our reference to uobj since we are extending a reference
1509 * that we already have (the ref count can not drop to zero).
1510 */
1511 if (uobj && uobj->pgops->pgo_detach)
1512 uobj->pgops->pgo_detach(uobj);
1513
1514 if (merged) {
1515 dead = prev_entry->next;
1516 prev_entry->end = dead->end;
1517 uvm_map_entry_unlink(map, dead);
1518 if (dead->aref.ar_amap != NULL) {
1519 prev_entry->aref = dead->aref;
1520 dead->aref.ar_amap = NULL;
1521 }
1522 } else {
1523 prev_entry->next->start -= size;
1524 if (prev_entry != &map->header) {
1525 prev_entry->gap -= size;
1526 KASSERT(prev_entry->gap == uvm_rb_gap(prev_entry));
1527 uvm_rb_fixup(map, prev_entry);
1528 }
1529 if (uobj)
1530 prev_entry->next->offset = uoffset;
1531 }
1532
1533 uvm_map_check(map, "map forwardmerged");
1534
1535 UVMHIST_LOG(maphist,"<- done forwardmerge", 0, 0, 0, 0);
1536 merged++;
1537 }
1538
1539 nomerge:
1540 if (!merged) {
1541 UVMHIST_LOG(maphist," allocating new map entry", 0, 0, 0, 0);
1542 if (kmap) {
1543 UVMMAP_EVCNT_INCR(knomerge);
1544 } else {
1545 UVMMAP_EVCNT_INCR(unomerge);
1546 }
1547
1548 /*
1549 * allocate new entry and link it in.
1550 */
1551
1552 if (new_entry == NULL) {
1553 new_entry = uvm_mapent_alloc(map,
1554 (flags & UVM_FLAG_NOWAIT));
1555 if (__predict_false(new_entry == NULL)) {
1556 error = ENOMEM;
1557 goto done;
1558 }
1559 }
1560 new_entry->start = start;
1561 new_entry->end = new_entry->start + size;
1562 new_entry->object.uvm_obj = uobj;
1563 new_entry->offset = uoffset;
1564
1565 new_entry->etype = newetype;
1566
1567 if (flags & UVM_FLAG_NOMERGE) {
1568 new_entry->flags |= UVM_MAP_NOMERGE;
1569 }
1570
1571 new_entry->protection = prot;
1572 new_entry->max_protection = maxprot;
1573 new_entry->inheritance = inherit;
1574 new_entry->wired_count = 0;
1575 new_entry->advice = advice;
1576 if (flags & UVM_FLAG_OVERLAY) {
1577
1578 /*
1579 * to_add: for BSS we overallocate a little since we
1580 * are likely to extend
1581 */
1582
1583 vaddr_t to_add = (flags & UVM_FLAG_AMAPPAD) ?
1584 UVM_AMAP_CHUNK << PAGE_SHIFT : 0;
1585 struct vm_amap *amap = amap_alloc(size, to_add,
1586 (flags & UVM_FLAG_NOWAIT));
1587 if (__predict_false(amap == NULL)) {
1588 error = ENOMEM;
1589 goto done;
1590 }
1591 new_entry->aref.ar_pageoff = 0;
1592 new_entry->aref.ar_amap = amap;
1593 } else {
1594 new_entry->aref.ar_pageoff = 0;
1595 new_entry->aref.ar_amap = NULL;
1596 }
1597 uvm_map_entry_link(map, prev_entry, new_entry);
1598
1599 /*
1600 * Update the free space hint
1601 */
1602
1603 if ((map->first_free == prev_entry) &&
1604 (prev_entry->end >= new_entry->start))
1605 map->first_free = new_entry;
1606
1607 new_entry = NULL;
1608 }
1609
1610 map->size += size;
1611
1612 UVMHIST_LOG(maphist,"<- done!", 0, 0, 0, 0);
1613
1614 error = 0;
1615
1616 done:
1617 vm_map_unlock(map);
1618
1619 if (new_entry) {
1620 uvm_mapent_free(new_entry);
1621 }
1622 if (dead) {
1623 KDASSERT(merged);
1624 uvm_mapent_free(dead);
1625 }
1626 if (dead_entries)
1627 uvm_unmap_detach(dead_entries, 0);
1628
1629 return error;
1630 }
1631
1632 /*
1633 * uvm_map_lookup_entry_bytree: lookup an entry in tree
1634 *
1635 * => map must at least be read-locked by caller.
1636 *
1637 * => If address lies in an entry, set *entry to it and return true;
1638 * then (*entry)->start <= address < (*entry)->end.
1639
1640 * => If address is below all entries in map, return false and set
1641 * *entry to &map->header.
1642 *
1643 * => Otherwise, return false and set *entry to the highest entry below
1644 * address, so (*entry)->end <= address, and if (*entry)->next is
1645 * not &map->header, address < (*entry)->next->start.
1646 */
1647
1648 static inline bool
1649 uvm_map_lookup_entry_bytree(struct vm_map *map, vaddr_t address,
1650 struct vm_map_entry **entry /* OUT */)
1651 {
1652 struct vm_map_entry *prev = &map->header;
1653 struct vm_map_entry *cur = ROOT_ENTRY(map);
1654
1655 KASSERT(rw_lock_held(&map->lock));
1656
1657 while (cur) {
1658 KASSERT(prev == &map->header || prev->end <= address);
1659 KASSERT(prev == &map->header || prev->end <= cur->start);
1660 UVMMAP_EVCNT_INCR(mlk_treeloop);
1661 if (address >= cur->start) {
1662 if (address < cur->end) {
1663 *entry = cur;
1664 return true;
1665 }
1666 prev = cur;
1667 KASSERT(prev->end <= address);
1668 cur = RIGHT_ENTRY(cur);
1669 KASSERT(cur == NULL || prev->end <= cur->start);
1670 } else
1671 cur = LEFT_ENTRY(cur);
1672 }
1673 KASSERT(prev == &map->header || prev->end <= address);
1674 KASSERT(prev->next == &map->header || address < prev->next->start);
1675 *entry = prev;
1676 return false;
1677 }
1678
1679 /*
1680 * uvm_map_lookup_entry: find map entry at or before an address
1681 *
1682 * => map must at least be read-locked by caller.
1683 *
1684 * => If address lies in an entry, set *entry to it and return true;
1685 * then (*entry)->start <= address < (*entry)->end.
1686
1687 * => If address is below all entries in map, return false and set
1688 * *entry to &map->header.
1689 *
1690 * => Otherwise, return false and set *entry to the highest entry below
1691 * address, so (*entry)->end <= address, and if (*entry)->next is
1692 * not &map->header, address < (*entry)->next->start.
1693 */
1694
1695 bool
1696 uvm_map_lookup_entry(struct vm_map *map, vaddr_t address,
1697 struct vm_map_entry **entry /* OUT */)
1698 {
1699 struct vm_map_entry *cur;
1700 UVMHIST_FUNC(__func__);
1701 UVMHIST_CALLARGS(maphist,"(map=%#jx,addr=%#jx,ent=%#jx)",
1702 (uintptr_t)map, address, (uintptr_t)entry, 0);
1703
1704 KASSERT(rw_lock_held(&map->lock));
1705
1706 /*
1707 * make a quick check to see if we are already looking at
1708 * the entry we want (which is usually the case). note also
1709 * that we don't need to save the hint here... it is the
1710 * same hint (unless we are at the header, in which case the
1711 * hint didn't buy us anything anyway).
1712 */
1713
1714 cur = map->hint;
1715 UVMMAP_EVCNT_INCR(mlk_call);
1716 if (cur != &map->header &&
1717 address >= cur->start && cur->end > address) {
1718 UVMMAP_EVCNT_INCR(mlk_hint);
1719 *entry = cur;
1720 UVMHIST_LOG(maphist,"<- got it via hint (%#jx)",
1721 (uintptr_t)cur, 0, 0, 0);
1722 uvm_mapent_check(*entry);
1723 return (true);
1724 }
1725 uvm_map_check(map, __func__);
1726
1727 /*
1728 * lookup in the tree.
1729 */
1730
1731 UVMMAP_EVCNT_INCR(mlk_tree);
1732 if (__predict_true(uvm_map_lookup_entry_bytree(map, address, entry))) {
1733 SAVE_HINT(map, map->hint, *entry);
1734 UVMHIST_LOG(maphist,"<- search got it (%#jx)",
1735 (uintptr_t)cur, 0, 0, 0);
1736 KDASSERT((*entry)->start <= address);
1737 KDASSERT(address < (*entry)->end);
1738 uvm_mapent_check(*entry);
1739 return (true);
1740 }
1741
1742 SAVE_HINT(map, map->hint, *entry);
1743 UVMHIST_LOG(maphist,"<- failed!",0,0,0,0);
1744 KDASSERT((*entry) == &map->header || (*entry)->end <= address);
1745 KDASSERT((*entry)->next == &map->header ||
1746 address < (*entry)->next->start);
1747 return (false);
1748 }
1749
1750 /*
1751 * See if the range between start and start + length fits in the gap
1752 * entry->next->start and entry->end. Returns 1 if fits, 0 if doesn't
1753 * fit, and -1 address wraps around.
1754 */
1755 static int
1756 uvm_map_space_avail(vaddr_t *start, vsize_t length, voff_t uoffset,
1757 vsize_t align, int flags, int topdown, struct vm_map_entry *entry)
1758 {
1759 vaddr_t orig_start = *start;
1760 vaddr_t end;
1761
1762 #define INVARIANTS() \
1763 KASSERTMSG((topdown \
1764 ? *start <= orig_start \
1765 : *start >= orig_start), \
1766 "[%s] *start=%"PRIxVADDR" orig_start=%"PRIxVADDR \
1767 " length=%"PRIxVSIZE" uoffset=%#llx align=%"PRIxVSIZE \
1768 " flags=%x entry@%p=[%"PRIxVADDR",%"PRIxVADDR")" \
1769 " ncolors=%d colormask=%x", \
1770 topdown ? "topdown" : "bottomup", *start, orig_start, \
1771 length, (unsigned long long)uoffset, align, \
1772 flags, entry, entry->start, entry->end, \
1773 uvmexp.ncolors, uvmexp.colormask)
1774
1775 INVARIANTS();
1776
1777 #ifdef PMAP_PREFER
1778 /*
1779 * push start address forward as needed to avoid VAC alias problems.
1780 * we only do this if a valid offset is specified.
1781 */
1782
1783 if (uoffset != UVM_UNKNOWN_OFFSET) {
1784 PMAP_PREFER(uoffset, start, length, topdown);
1785 INVARIANTS();
1786 }
1787 #endif
1788 if ((flags & UVM_FLAG_COLORMATCH) != 0) {
1789 KASSERT(align < uvmexp.ncolors);
1790 if (uvmexp.ncolors > 1) {
1791 const u_int colormask = uvmexp.colormask;
1792 const u_int colorsize = colormask + 1;
1793 vaddr_t hint = atop(*start);
1794 const u_int color = hint & colormask;
1795 if (color != align) {
1796 hint -= color; /* adjust to color boundary */
1797 KASSERT((hint & colormask) == 0);
1798 if (topdown) {
1799 if (align > color)
1800 hint -= colorsize;
1801 } else {
1802 if (align < color)
1803 hint += colorsize;
1804 }
1805 *start = ptoa(hint + align); /* adjust to color */
1806 INVARIANTS();
1807 }
1808 }
1809 } else {
1810 KASSERT(powerof2(align));
1811 uvm_map_align_va(start, align, topdown);
1812 INVARIANTS();
1813 /*
1814 * XXX Should we PMAP_PREFER() here again?
1815 * eh...i think we're okay
1816 */
1817 }
1818
1819 /*
1820 * Find the end of the proposed new region. Be sure we didn't
1821 * wrap around the address; if so, we lose. Otherwise, if the
1822 * proposed new region fits before the next entry, we win.
1823 *
1824 * XXX Should this use vm_map_max(map) as the max?
1825 */
1826
1827 if (length > __type_max(vaddr_t) - *start)
1828 return (-1);
1829 end = *start + length;
1830
1831 if (entry->next->start >= end && *start >= entry->end)
1832 return (1);
1833
1834 return (0);
1835
1836 #undef INVARIANTS
1837 }
1838
1839 static void
1840 uvm_findspace_invariants(struct vm_map *map, vaddr_t orig_hint, vaddr_t length,
1841 struct uvm_object *uobj, voff_t uoffset, vsize_t align, int flags,
1842 vaddr_t hint, struct vm_map_entry *entry, int line)
1843 {
1844 const int topdown = map->flags & VM_MAP_TOPDOWN;
1845 const int hint_location_ok =
1846 topdown ? hint <= orig_hint
1847 : hint >= orig_hint;
1848
1849 #if !(defined(__sh3__) && defined(DIAGNOSTIC)) /* XXXRO: kern/51254 */
1850 #define UVM_FINDSPACE_KASSERTMSG KASSERTMSG
1851
1852 #else /* sh3 && DIAGNOSTIC */
1853 /* like KASSERTMSG but make it not fatal */
1854 #define UVM_FINDSPACE_KASSERTMSG(e, msg, ...) \
1855 (__predict_true((e)) ? (void)0 : \
1856 printf(__KASSERTSTR msg "\n", \
1857 "weak diagnostic ", #e, \
1858 __FILE__, __LINE__, ## __VA_ARGS__))
1859 #endif
1860
1861 UVM_FINDSPACE_KASSERTMSG(hint_location_ok,
1862 "%s map=%p hint=%#" PRIxVADDR " %s orig_hint=%#" PRIxVADDR
1863 " length=%#" PRIxVSIZE " uobj=%p uoffset=%#llx align=%" PRIxVSIZE
1864 " flags=%#x entry@%p=[%" PRIxVADDR ",%" PRIxVADDR ")"
1865 " (uvm_map_findspace line %d)",
1866 topdown ? "topdown" : "bottomup",
1867 map, hint, topdown ? ">" : "<", orig_hint,
1868 length, uobj, (unsigned long long)uoffset, align,
1869 flags, entry, entry ? entry->start : 0, entry ? entry->end : 0,
1870 line);
1871 }
1872
1873 /*
1874 * uvm_map_findspace: find "length" sized space in "map".
1875 *
1876 * => "hint" is a hint about where we want it, unless UVM_FLAG_FIXED is
1877 * set in "flags" (in which case we insist on using "hint").
1878 * => "result" is VA returned
1879 * => uobj/uoffset are to be used to handle VAC alignment, if required
1880 * => if "align" is non-zero, we attempt to align to that value.
1881 * => caller must at least have read-locked map
1882 * => returns NULL on failure, or pointer to prev. map entry if success
1883 * => note this is a cross between the old vm_map_findspace and vm_map_find
1884 */
1885
1886 struct vm_map_entry *
1887 uvm_map_findspace(struct vm_map *map, vaddr_t hint, vsize_t length,
1888 vaddr_t *result /* OUT */, struct uvm_object *uobj, voff_t uoffset,
1889 vsize_t align, int flags)
1890 {
1891 #define INVARIANTS() \
1892 uvm_findspace_invariants(map, orig_hint, length, uobj, uoffset, align,\
1893 flags, hint, entry, __LINE__)
1894 struct vm_map_entry *entry = NULL;
1895 struct vm_map_entry *child, *prev, *tmp;
1896 vaddr_t orig_hint __diagused;
1897 const int topdown = map->flags & VM_MAP_TOPDOWN;
1898 int avail;
1899 UVMHIST_FUNC(__func__);
1900 UVMHIST_CALLARGS(maphist, "(map=%#jx, hint=%#jx, len=%ju, flags=%#jx...",
1901 (uintptr_t)map, hint, length, flags);
1902 UVMHIST_LOG(maphist, " uobj=%#jx, uoffset=%#jx, align=%#jx)",
1903 (uintptr_t)uobj, uoffset, align, 0);
1904
1905 KASSERT((flags & UVM_FLAG_COLORMATCH) != 0 || powerof2(align));
1906 KASSERT((flags & UVM_FLAG_COLORMATCH) == 0 || align < uvmexp.ncolors);
1907 KASSERT((flags & UVM_FLAG_FIXED) == 0 || align == 0);
1908
1909 uvm_map_check(map, "map_findspace entry");
1910
1911 /*
1912 * Clamp the hint to the VM map's min/max address, and remmeber
1913 * the clamped original hint. Remember the original hint,
1914 * clamped to the min/max address. If we are aligning, then we
1915 * may have to try again with no alignment constraint if we
1916 * fail the first time.
1917 *
1918 * We use the original hint to verify later that the search has
1919 * been monotonic -- that is, nonincreasing or nondecreasing,
1920 * according to topdown or !topdown respectively. But the
1921 * clamping is not monotonic.
1922 */
1923 if (hint < vm_map_min(map)) { /* check ranges ... */
1924 if (flags & UVM_FLAG_FIXED) {
1925 UVMHIST_LOG(maphist,"<- VA below map range",0,0,0,0);
1926 return (NULL);
1927 }
1928 hint = vm_map_min(map);
1929 }
1930 if (hint > vm_map_max(map)) {
1931 UVMHIST_LOG(maphist,"<- VA %#jx > range [%#jx->%#jx]",
1932 hint, vm_map_min(map), vm_map_max(map), 0);
1933 return (NULL);
1934 }
1935 orig_hint = hint;
1936 INVARIANTS();
1937
1938 UVMHIST_LOG(maphist,"<- VA %#jx vs range [%#jx->%#jx]",
1939 hint, vm_map_min(map), vm_map_max(map), 0);
1940
1941 /*
1942 * hint may not be aligned properly; we need round up or down it
1943 * before proceeding further.
1944 */
1945 if ((flags & UVM_FLAG_COLORMATCH) == 0) {
1946 uvm_map_align_va(&hint, align, topdown);
1947 INVARIANTS();
1948 }
1949
1950 UVMHIST_LOG(maphist,"<- VA %#jx vs range [%#jx->%#jx]",
1951 hint, vm_map_min(map), vm_map_max(map), 0);
1952 /*
1953 * Look for the first possible address; if there's already
1954 * something at this address, we have to start after it.
1955 */
1956
1957 /*
1958 * @@@: there are four, no, eight cases to consider.
1959 *
1960 * 0: found, fixed, bottom up -> fail
1961 * 1: found, fixed, top down -> fail
1962 * 2: found, not fixed, bottom up -> start after entry->end,
1963 * loop up
1964 * 3: found, not fixed, top down -> start before entry->start,
1965 * loop down
1966 * 4: not found, fixed, bottom up -> check entry->next->start, fail
1967 * 5: not found, fixed, top down -> check entry->next->start, fail
1968 * 6: not found, not fixed, bottom up -> check entry->next->start,
1969 * loop up
1970 * 7: not found, not fixed, top down -> check entry->next->start,
1971 * loop down
1972 *
1973 * as you can see, it reduces to roughly five cases, and that
1974 * adding top down mapping only adds one unique case (without
1975 * it, there would be four cases).
1976 */
1977
1978 if ((flags & UVM_FLAG_FIXED) == 0 &&
1979 hint == (topdown ? vm_map_max(map) : vm_map_min(map))) {
1980 /*
1981 * The uvm_map_findspace algorithm is monotonic -- for
1982 * topdown VM it starts with a high hint and returns a
1983 * lower free address; for !topdown VM it starts with a
1984 * low hint and returns a higher free address. As an
1985 * optimization, start with the first (highest for
1986 * topdown, lowest for !topdown) free address.
1987 *
1988 * XXX This `optimization' probably doesn't actually do
1989 * much in practice unless userland explicitly passes
1990 * the VM map's minimum or maximum address, which
1991 * varies from machine to machine (VM_MAX/MIN_ADDRESS,
1992 * e.g. 0x7fbfdfeff000 on amd64 but 0xfffffffff000 on
1993 * aarch64) and may vary according to other factors
1994 * like sysctl vm.user_va0_disable. In particular, if
1995 * the user specifies 0 as a hint to mmap, then mmap
1996 * will choose a default address which is usually _not_
1997 * VM_MAX/MIN_ADDRESS but something else instead like
1998 * VM_MAX_ADDRESS - stack size - guard page overhead,
1999 * in which case this branch is never hit.
2000 *
2001 * In fact, this branch appears to have been broken for
2002 * two decades between when topdown was introduced in
2003 * ~2003 and when it was adapted to handle the topdown
2004 * case without violating the monotonicity assertion in
2005 * 2022. Maybe Someone^TM should either ditch the
2006 * optimization or find a better way to do it.
2007 */
2008 entry = map->first_free;
2009 } else if (uvm_map_lookup_entry(map, hint, &entry)) {
2010 KASSERT(entry->start <= hint);
2011 KASSERT(hint < entry->end);
2012 /* "hint" address already in use ... */
2013 if (flags & UVM_FLAG_FIXED) {
2014 UVMHIST_LOG(maphist, "<- fixed & VA in use",
2015 0, 0, 0, 0);
2016 return (NULL);
2017 }
2018 if (topdown)
2019 /* Start from lower gap. */
2020 entry = entry->prev;
2021 } else {
2022 KASSERT(entry == &map->header || entry->end <= hint);
2023 KASSERT(entry->next == &map->header ||
2024 hint < entry->next->start);
2025 if (flags & UVM_FLAG_FIXED) {
2026 if (entry->next->start >= hint &&
2027 length <= entry->next->start - hint)
2028 goto found;
2029
2030 /* "hint" address is gap but too small */
2031 UVMHIST_LOG(maphist, "<- fixed mapping failed",
2032 0, 0, 0, 0);
2033 return (NULL); /* only one shot at it ... */
2034 } else {
2035 /*
2036 * See if given hint fits in this gap.
2037 */
2038 avail = uvm_map_space_avail(&hint, length,
2039 uoffset, align, flags, topdown, entry);
2040 INVARIANTS();
2041 switch (avail) {
2042 case 1:
2043 goto found;
2044 case -1:
2045 goto wraparound;
2046 }
2047
2048 if (topdown) {
2049 /*
2050 * Still there is a chance to fit
2051 * if hint > entry->end.
2052 */
2053 } else {
2054 /* Start from higher gap. */
2055 entry = entry->next;
2056 if (entry == &map->header)
2057 goto notfound;
2058 goto nextgap;
2059 }
2060 }
2061 }
2062
2063 /*
2064 * Note that all UVM_FLAGS_FIXED case is already handled.
2065 */
2066 KDASSERT((flags & UVM_FLAG_FIXED) == 0);
2067
2068 /* Try to find the space in the red-black tree */
2069
2070 /* Check slot before any entry */
2071 if (topdown) {
2072 KASSERTMSG(entry->next->start >= vm_map_min(map),
2073 "map=%p entry=%p entry->next=%p"
2074 " entry->next->start=0x%"PRIxVADDR" min=0x%"PRIxVADDR,
2075 map, entry, entry->next,
2076 entry->next->start, vm_map_min(map));
2077 if (length > entry->next->start - vm_map_min(map))
2078 hint = vm_map_min(map); /* XXX goto wraparound? */
2079 else
2080 hint = entry->next->start - length;
2081 KASSERT(hint >= vm_map_min(map));
2082 } else {
2083 hint = entry->end;
2084 }
2085 INVARIANTS();
2086 avail = uvm_map_space_avail(&hint, length, uoffset, align, flags,
2087 topdown, entry);
2088 INVARIANTS();
2089 switch (avail) {
2090 case 1:
2091 goto found;
2092 case -1:
2093 goto wraparound;
2094 }
2095
2096 nextgap:
2097 KDASSERT((flags & UVM_FLAG_FIXED) == 0);
2098 /* If there is not enough space in the whole tree, we fail */
2099 tmp = ROOT_ENTRY(map);
2100 if (tmp == NULL || tmp->maxgap < length)
2101 goto notfound;
2102
2103 prev = NULL; /* previous candidate */
2104
2105 /* Find an entry close to hint that has enough space */
2106 for (; tmp;) {
2107 KASSERT(tmp->next->start == tmp->end + tmp->gap);
2108 if (topdown) {
2109 if (tmp->next->start < hint + length &&
2110 (prev == NULL || tmp->end > prev->end)) {
2111 if (tmp->gap >= length)
2112 prev = tmp;
2113 else if ((child = LEFT_ENTRY(tmp)) != NULL
2114 && child->maxgap >= length)
2115 prev = tmp;
2116 }
2117 } else {
2118 if (tmp->end >= hint &&
2119 (prev == NULL || tmp->end < prev->end)) {
2120 if (tmp->gap >= length)
2121 prev = tmp;
2122 else if ((child = RIGHT_ENTRY(tmp)) != NULL
2123 && child->maxgap >= length)
2124 prev = tmp;
2125 }
2126 }
2127 if (tmp->next->start < hint + length)
2128 child = RIGHT_ENTRY(tmp);
2129 else if (tmp->end > hint)
2130 child = LEFT_ENTRY(tmp);
2131 else {
2132 if (tmp->gap >= length)
2133 break;
2134 if (topdown)
2135 child = LEFT_ENTRY(tmp);
2136 else
2137 child = RIGHT_ENTRY(tmp);
2138 }
2139 if (child == NULL || child->maxgap < length)
2140 break;
2141 tmp = child;
2142 }
2143
2144 if (tmp != NULL && tmp->start < hint && hint < tmp->next->start) {
2145 /*
2146 * Check if the entry that we found satifies the
2147 * space requirement
2148 */
2149 if (topdown) {
2150 if (hint > tmp->next->start - length)
2151 hint = tmp->next->start - length;
2152 } else {
2153 if (hint < tmp->end)
2154 hint = tmp->end;
2155 }
2156 INVARIANTS();
2157 avail = uvm_map_space_avail(&hint, length, uoffset, align,
2158 flags, topdown, tmp);
2159 INVARIANTS();
2160 switch (avail) {
2161 case 1:
2162 entry = tmp;
2163 goto found;
2164 case -1:
2165 goto wraparound;
2166 }
2167 if (tmp->gap >= length)
2168 goto listsearch;
2169 }
2170 if (prev == NULL)
2171 goto notfound;
2172
2173 if (topdown) {
2174 KASSERT(orig_hint >= prev->next->start - length ||
2175 prev->next->start - length > prev->next->start);
2176 hint = prev->next->start - length;
2177 } else {
2178 KASSERT(orig_hint <= prev->end);
2179 hint = prev->end;
2180 }
2181 INVARIANTS();
2182 avail = uvm_map_space_avail(&hint, length, uoffset, align,
2183 flags, topdown, prev);
2184 INVARIANTS();
2185 switch (avail) {
2186 case 1:
2187 entry = prev;
2188 goto found;
2189 case -1:
2190 goto wraparound;
2191 }
2192 if (prev->gap >= length)
2193 goto listsearch;
2194
2195 if (topdown)
2196 tmp = LEFT_ENTRY(prev);
2197 else
2198 tmp = RIGHT_ENTRY(prev);
2199 for (;;) {
2200 KASSERT(tmp);
2201 KASSERTMSG(tmp->maxgap >= length,
2202 "tmp->maxgap=0x%"PRIxVSIZE" length=0x%"PRIxVSIZE,
2203 tmp->maxgap, length);
2204 if (topdown)
2205 child = RIGHT_ENTRY(tmp);
2206 else
2207 child = LEFT_ENTRY(tmp);
2208 if (child && child->maxgap >= length) {
2209 tmp = child;
2210 continue;
2211 }
2212 if (tmp->gap >= length)
2213 break;
2214 if (topdown)
2215 tmp = LEFT_ENTRY(tmp);
2216 else
2217 tmp = RIGHT_ENTRY(tmp);
2218 }
2219
2220 if (topdown) {
2221 KASSERT(orig_hint >= tmp->next->start - length ||
2222 tmp->next->start - length > tmp->next->start);
2223 hint = tmp->next->start - length;
2224 } else {
2225 KASSERT(orig_hint <= tmp->end);
2226 hint = tmp->end;
2227 }
2228 INVARIANTS();
2229 avail = uvm_map_space_avail(&hint, length, uoffset, align,
2230 flags, topdown, tmp);
2231 INVARIANTS();
2232 switch (avail) {
2233 case 1:
2234 entry = tmp;
2235 goto found;
2236 case -1:
2237 goto wraparound;
2238 }
2239
2240 /*
2241 * The tree fails to find an entry because of offset or alignment
2242 * restrictions. Search the list instead.
2243 */
2244 listsearch:
2245 /*
2246 * Look through the rest of the map, trying to fit a new region in
2247 * the gap between existing regions, or after the very last region.
2248 * note: entry->end = base VA of current gap,
2249 * entry->next->start = VA of end of current gap
2250 */
2251
2252 INVARIANTS();
2253 for (;;) {
2254 /* Update hint for current gap. */
2255 hint = topdown ? entry->next->start - length : entry->end;
2256 INVARIANTS();
2257
2258 /* See if it fits. */
2259 avail = uvm_map_space_avail(&hint, length, uoffset, align,
2260 flags, topdown, entry);
2261 INVARIANTS();
2262 switch (avail) {
2263 case 1:
2264 goto found;
2265 case -1:
2266 goto wraparound;
2267 }
2268
2269 /* Advance to next/previous gap */
2270 if (topdown) {
2271 if (entry == &map->header) {
2272 UVMHIST_LOG(maphist, "<- failed (off start)",
2273 0,0,0,0);
2274 goto notfound;
2275 }
2276 entry = entry->prev;
2277 } else {
2278 entry = entry->next;
2279 if (entry == &map->header) {
2280 UVMHIST_LOG(maphist, "<- failed (off end)",
2281 0,0,0,0);
2282 goto notfound;
2283 }
2284 }
2285 }
2286
2287 found:
2288 SAVE_HINT(map, map->hint, entry);
2289 *result = hint;
2290 UVMHIST_LOG(maphist,"<- got it! (result=%#jx)", hint, 0,0,0);
2291 INVARIANTS();
2292 KASSERT(entry->end <= hint);
2293 KASSERT(hint <= entry->next->start);
2294 KASSERT(length <= entry->next->start - hint);
2295 return (entry);
2296
2297 wraparound:
2298 UVMHIST_LOG(maphist, "<- failed (wrap around)", 0,0,0,0);
2299
2300 return (NULL);
2301
2302 notfound:
2303 UVMHIST_LOG(maphist, "<- failed (notfound)", 0,0,0,0);
2304
2305 return (NULL);
2306 #undef INVARIANTS
2307 }
2308
2309 /*
2310 * U N M A P - m a i n h e l p e r f u n c t i o n s
2311 */
2312
2313 /*
2314 * uvm_unmap_remove: remove mappings from a vm_map (from "start" up to "stop")
2315 *
2316 * => caller must check alignment and size
2317 * => map must be locked by caller
2318 * => we return a list of map entries that we've remove from the map
2319 * in "entry_list"
2320 */
2321
2322 void
2323 uvm_unmap_remove(struct vm_map *map, vaddr_t start, vaddr_t end,
2324 struct vm_map_entry **entry_list /* OUT */, int flags)
2325 {
2326 struct vm_map_entry *entry, *first_entry, *next;
2327 vaddr_t len;
2328 UVMHIST_FUNC(__func__);
2329 UVMHIST_CALLARGS(maphist,"(map=%#jx, start=%#jx, end=%#jx)",
2330 (uintptr_t)map, start, end, 0);
2331 VM_MAP_RANGE_CHECK(map, start, end);
2332
2333 KASSERT(vm_map_locked_p(map));
2334
2335 uvm_map_check(map, "unmap_remove entry");
2336
2337 /*
2338 * find first entry
2339 */
2340
2341 if (uvm_map_lookup_entry(map, start, &first_entry) == true) {
2342 /* clip and go... */
2343 entry = first_entry;
2344 UVM_MAP_CLIP_START(map, entry, start);
2345 /* critical! prevents stale hint */
2346 SAVE_HINT(map, entry, entry->prev);
2347 } else {
2348 entry = first_entry->next;
2349 }
2350
2351 /*
2352 * save the free space hint
2353 */
2354
2355 if (map->first_free != &map->header && map->first_free->start >= start)
2356 map->first_free = entry->prev;
2357
2358 /*
2359 * note: we now re-use first_entry for a different task. we remove
2360 * a number of map entries from the map and save them in a linked
2361 * list headed by "first_entry". once we remove them from the map
2362 * the caller should unlock the map and drop the references to the
2363 * backing objects [c.f. uvm_unmap_detach]. the object is to
2364 * separate unmapping from reference dropping. why?
2365 * [1] the map has to be locked for unmapping
2366 * [2] the map need not be locked for reference dropping
2367 * [3] dropping references may trigger pager I/O, and if we hit
2368 * a pager that does synchronous I/O we may have to wait for it.
2369 * [4] we would like all waiting for I/O to occur with maps unlocked
2370 * so that we don't block other threads.
2371 */
2372
2373 first_entry = NULL;
2374 *entry_list = NULL;
2375
2376 /*
2377 * break up the area into map entry sized regions and unmap. note
2378 * that all mappings have to be removed before we can even consider
2379 * dropping references to amaps or VM objects (otherwise we could end
2380 * up with a mapping to a page on the free list which would be very bad)
2381 */
2382
2383 while ((entry != &map->header) && (entry->start < end)) {
2384 KASSERT((entry->flags & UVM_MAP_STATIC) == 0);
2385
2386 UVM_MAP_CLIP_END(map, entry, end);
2387 next = entry->next;
2388 len = entry->end - entry->start;
2389
2390 /*
2391 * unwire before removing addresses from the pmap; otherwise
2392 * unwiring will put the entries back into the pmap (XXX).
2393 */
2394
2395 if (VM_MAPENT_ISWIRED(entry)) {
2396 uvm_map_entry_unwire(map, entry);
2397 }
2398 if (flags & UVM_FLAG_VAONLY) {
2399
2400 /* nothing */
2401
2402 } else if ((map->flags & VM_MAP_PAGEABLE) == 0) {
2403
2404 /*
2405 * if the map is non-pageable, any pages mapped there
2406 * must be wired and entered with pmap_kenter_pa(),
2407 * and we should free any such pages immediately.
2408 * this is mostly used for kmem_map.
2409 */
2410 KASSERT(vm_map_pmap(map) == pmap_kernel());
2411
2412 uvm_km_pgremove_intrsafe(map, entry->start, entry->end);
2413 } else if (UVM_ET_ISOBJ(entry) &&
2414 UVM_OBJ_IS_KERN_OBJECT(entry->object.uvm_obj)) {
2415 panic("%s: kernel object %p %p\n",
2416 __func__, map, entry);
2417 } else if (UVM_ET_ISOBJ(entry) || entry->aref.ar_amap) {
2418 /*
2419 * remove mappings the standard way. lock object
2420 * and/or amap to ensure vm_page state does not
2421 * change while in pmap_remove().
2422 */
2423
2424 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
2425 uvm_map_lock_entry(entry, RW_WRITER);
2426 #else
2427 uvm_map_lock_entry(entry, RW_READER);
2428 #endif
2429 pmap_remove(map->pmap, entry->start, entry->end);
2430
2431 /*
2432 * note: if map is dying, leave pmap_update() for
2433 * later. if the map is to be reused (exec) then
2434 * pmap_update() will be called. if the map is
2435 * being disposed of (exit) then pmap_destroy()
2436 * will be called.
2437 */
2438
2439 if ((map->flags & VM_MAP_DYING) == 0) {
2440 pmap_update(vm_map_pmap(map));
2441 } else {
2442 KASSERT(vm_map_pmap(map) != pmap_kernel());
2443 }
2444
2445 uvm_map_unlock_entry(entry);
2446 }
2447
2448 #if defined(UVMDEBUG)
2449 /*
2450 * check if there's remaining mapping,
2451 * which is a bug in caller.
2452 */
2453
2454 vaddr_t va;
2455 for (va = entry->start; va < entry->end;
2456 va += PAGE_SIZE) {
2457 if (pmap_extract(vm_map_pmap(map), va, NULL)) {
2458 panic("%s: %#"PRIxVADDR" has mapping",
2459 __func__, va);
2460 }
2461 }
2462
2463 if (VM_MAP_IS_KERNEL(map) && (flags & UVM_FLAG_NOWAIT) == 0) {
2464 uvm_km_check_empty(map, entry->start, entry->end);
2465 }
2466 #endif /* defined(UVMDEBUG) */
2467
2468 /*
2469 * remove entry from map and put it on our list of entries
2470 * that we've nuked. then go to next entry.
2471 */
2472
2473 UVMHIST_LOG(maphist, " removed map entry %#jx",
2474 (uintptr_t)entry, 0, 0, 0);
2475
2476 /* critical! prevents stale hint */
2477 SAVE_HINT(map, entry, entry->prev);
2478
2479 uvm_map_entry_unlink(map, entry);
2480 KASSERT(map->size >= len);
2481 map->size -= len;
2482 entry->prev = NULL;
2483 entry->next = first_entry;
2484 first_entry = entry;
2485 entry = next;
2486 }
2487
2488 uvm_map_check(map, "unmap_remove leave");
2489
2490 /*
2491 * now we've cleaned up the map and are ready for the caller to drop
2492 * references to the mapped objects.
2493 */
2494
2495 *entry_list = first_entry;
2496 UVMHIST_LOG(maphist,"<- done!", 0, 0, 0, 0);
2497
2498 if (map->flags & VM_MAP_WANTVA) {
2499 mutex_enter(&map->misc_lock);
2500 map->flags &= ~VM_MAP_WANTVA;
2501 cv_broadcast(&map->cv);
2502 mutex_exit(&map->misc_lock);
2503 }
2504 }
2505
2506 /*
2507 * uvm_unmap_detach: drop references in a chain of map entries
2508 *
2509 * => we will free the map entries as we traverse the list.
2510 */
2511
2512 void
2513 uvm_unmap_detach(struct vm_map_entry *first_entry, int flags)
2514 {
2515 struct vm_map_entry *next_entry;
2516 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2517
2518 while (first_entry) {
2519 KASSERT(!VM_MAPENT_ISWIRED(first_entry));
2520 UVMHIST_LOG(maphist,
2521 " detach %#jx: amap=%#jx, obj=%#jx, submap?=%jd",
2522 (uintptr_t)first_entry,
2523 (uintptr_t)first_entry->aref.ar_amap,
2524 (uintptr_t)first_entry->object.uvm_obj,
2525 UVM_ET_ISSUBMAP(first_entry));
2526
2527 /*
2528 * drop reference to amap, if we've got one
2529 */
2530
2531 if (first_entry->aref.ar_amap)
2532 uvm_map_unreference_amap(first_entry, flags);
2533
2534 /*
2535 * drop reference to our backing object, if we've got one
2536 */
2537
2538 KASSERT(!UVM_ET_ISSUBMAP(first_entry));
2539 if (UVM_ET_ISOBJ(first_entry) &&
2540 first_entry->object.uvm_obj->pgops->pgo_detach) {
2541 (*first_entry->object.uvm_obj->pgops->pgo_detach)
2542 (first_entry->object.uvm_obj);
2543 }
2544 next_entry = first_entry->next;
2545 uvm_mapent_free(first_entry);
2546 first_entry = next_entry;
2547 }
2548 UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
2549 }
2550
2551 /*
2552 * E X T R A C T I O N F U N C T I O N S
2553 */
2554
2555 /*
2556 * uvm_map_reserve: reserve space in a vm_map for future use.
2557 *
2558 * => we reserve space in a map by putting a dummy map entry in the
2559 * map (dummy means obj=NULL, amap=NULL, prot=VM_PROT_NONE)
2560 * => map should be unlocked (we will write lock it)
2561 * => we return true if we were able to reserve space
2562 * => XXXCDC: should be inline?
2563 */
2564
2565 int
2566 uvm_map_reserve(struct vm_map *map, vsize_t size,
2567 vaddr_t offset /* hint for pmap_prefer */,
2568 vsize_t align /* alignment */,
2569 vaddr_t *raddr /* IN:hint, OUT: reserved VA */,
2570 uvm_flag_t flags /* UVM_FLAG_FIXED or UVM_FLAG_COLORMATCH or 0 */)
2571 {
2572 UVMHIST_FUNC(__func__);
2573 UVMHIST_CALLARGS(maphist, "(map=%#jx, size=%#jx, offset=%#jx, addr=%#jx)",
2574 (uintptr_t)map, size, offset, (uintptr_t)raddr);
2575
2576 size = round_page(size);
2577
2578 /*
2579 * reserve some virtual space.
2580 */
2581
2582 if (uvm_map(map, raddr, size, NULL, offset, align,
2583 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
2584 UVM_ADV_RANDOM, UVM_FLAG_NOMERGE|flags)) != 0) {
2585 UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
2586 return (false);
2587 }
2588
2589 UVMHIST_LOG(maphist, "<- done (*raddr=%#jx)", *raddr,0,0,0);
2590 return (true);
2591 }
2592
2593 /*
2594 * uvm_map_replace: replace a reserved (blank) area of memory with
2595 * real mappings.
2596 *
2597 * => caller must WRITE-LOCK the map
2598 * => we return true if replacement was a success
2599 * => we expect the newents chain to have nnewents entrys on it and
2600 * we expect newents->prev to point to the last entry on the list
2601 * => note newents is allowed to be NULL
2602 */
2603
2604 static int
2605 uvm_map_replace(struct vm_map *map, vaddr_t start, vaddr_t end,
2606 struct vm_map_entry *newents, int nnewents, vsize_t nsize,
2607 struct vm_map_entry **oldentryp)
2608 {
2609 struct vm_map_entry *oldent, *last;
2610
2611 uvm_map_check(map, "map_replace entry");
2612
2613 /*
2614 * first find the blank map entry at the specified address
2615 */
2616
2617 if (!uvm_map_lookup_entry(map, start, &oldent)) {
2618 return (false);
2619 }
2620
2621 /*
2622 * check to make sure we have a proper blank entry
2623 */
2624
2625 if (end < oldent->end) {
2626 UVM_MAP_CLIP_END(map, oldent, end);
2627 }
2628 if (oldent->start != start || oldent->end != end ||
2629 oldent->object.uvm_obj != NULL || oldent->aref.ar_amap != NULL) {
2630 return (false);
2631 }
2632
2633 #ifdef DIAGNOSTIC
2634
2635 /*
2636 * sanity check the newents chain
2637 */
2638
2639 {
2640 struct vm_map_entry *tmpent = newents;
2641 int nent = 0;
2642 vsize_t sz = 0;
2643 vaddr_t cur = start;
2644
2645 while (tmpent) {
2646 nent++;
2647 sz += tmpent->end - tmpent->start;
2648 if (tmpent->start < cur)
2649 panic("uvm_map_replace1");
2650 if (tmpent->start >= tmpent->end || tmpent->end > end) {
2651 panic("uvm_map_replace2: "
2652 "tmpent->start=%#"PRIxVADDR
2653 ", tmpent->end=%#"PRIxVADDR
2654 ", end=%#"PRIxVADDR,
2655 tmpent->start, tmpent->end, end);
2656 }
2657 cur = tmpent->end;
2658 if (tmpent->next) {
2659 if (tmpent->next->prev != tmpent)
2660 panic("uvm_map_replace3");
2661 } else {
2662 if (newents->prev != tmpent)
2663 panic("uvm_map_replace4");
2664 }
2665 tmpent = tmpent->next;
2666 }
2667 if (nent != nnewents)
2668 panic("uvm_map_replace5");
2669 if (sz != nsize)
2670 panic("uvm_map_replace6");
2671 }
2672 #endif
2673
2674 /*
2675 * map entry is a valid blank! replace it. (this does all the
2676 * work of map entry link/unlink...).
2677 */
2678
2679 if (newents) {
2680 last = newents->prev;
2681
2682 /* critical: flush stale hints out of map */
2683 SAVE_HINT(map, map->hint, newents);
2684 if (map->first_free == oldent)
2685 map->first_free = last;
2686
2687 last->next = oldent->next;
2688 last->next->prev = last;
2689
2690 /* Fix RB tree */
2691 uvm_rb_remove(map, oldent);
2692
2693 newents->prev = oldent->prev;
2694 newents->prev->next = newents;
2695 map->nentries = map->nentries + (nnewents - 1);
2696
2697 /* Fixup the RB tree */
2698 {
2699 int i;
2700 struct vm_map_entry *tmp;
2701
2702 tmp = newents;
2703 for (i = 0; i < nnewents && tmp; i++) {
2704 uvm_rb_insert(map, tmp);
2705 tmp = tmp->next;
2706 }
2707 }
2708 } else {
2709 /* NULL list of new entries: just remove the old one */
2710 clear_hints(map, oldent);
2711 uvm_map_entry_unlink(map, oldent);
2712 }
2713 map->size -= end - start - nsize;
2714
2715 uvm_map_check(map, "map_replace leave");
2716
2717 /*
2718 * now we can free the old blank entry and return.
2719 */
2720
2721 *oldentryp = oldent;
2722 return (true);
2723 }
2724
2725 /*
2726 * uvm_map_extract: extract a mapping from a map and put it somewhere
2727 * (maybe removing the old mapping)
2728 *
2729 * => maps should be unlocked (we will write lock them)
2730 * => returns 0 on success, error code otherwise
2731 * => start must be page aligned
2732 * => len must be page sized
2733 * => flags:
2734 * UVM_EXTRACT_REMOVE: remove mappings from srcmap
2735 * UVM_EXTRACT_CONTIG: abort if unmapped area (advisory only)
2736 * UVM_EXTRACT_QREF: for a temporary extraction do quick obj refs
2737 * UVM_EXTRACT_FIXPROT: set prot to maxprot as we go
2738 * UVM_EXTRACT_PROT_ALL: set prot to UVM_PROT_ALL as we go
2739 * >>>NOTE: if you set REMOVE, you are not allowed to use CONTIG or QREF!<<<
2740 * >>>NOTE: QREF's must be unmapped via the QREF path, thus should only
2741 * be used from within the kernel in a kernel level map <<<
2742 */
2743
2744 int
2745 uvm_map_extract(struct vm_map *srcmap, vaddr_t start, vsize_t len,
2746 struct vm_map *dstmap, vaddr_t *dstaddrp, int flags)
2747 {
2748 vaddr_t dstaddr, end, newend, oldoffset, fudge, orig_fudge;
2749 struct vm_map_entry *chain, *endchain, *entry, *orig_entry, *newentry,
2750 *deadentry, *oldentry;
2751 struct vm_map_entry *resentry = NULL; /* a dummy reservation entry */
2752 vsize_t elen __unused;
2753 int nchain, error, copy_ok;
2754 vsize_t nsize;
2755 UVMHIST_FUNC(__func__);
2756 UVMHIST_CALLARGS(maphist,"(srcmap=%#jx,start=%#jx, len=%#jx",
2757 (uintptr_t)srcmap, start, len, 0);
2758 UVMHIST_LOG(maphist," ...,dstmap=%#jx, flags=%#jx)",
2759 (uintptr_t)dstmap, flags, 0, 0);
2760
2761 /*
2762 * step 0: sanity check: start must be on a page boundary, length
2763 * must be page sized. can't ask for CONTIG/QREF if you asked for
2764 * REMOVE.
2765 */
2766
2767 KASSERTMSG((start & PAGE_MASK) == 0, "start=0x%"PRIxVADDR, start);
2768 KASSERTMSG((len & PAGE_MASK) == 0, "len=0x%"PRIxVADDR, len);
2769 KASSERT((flags & UVM_EXTRACT_REMOVE) == 0 ||
2770 (flags & (UVM_EXTRACT_CONTIG|UVM_EXTRACT_QREF)) == 0);
2771
2772 /*
2773 * step 1: reserve space in the target map for the extracted area
2774 */
2775
2776 if ((flags & UVM_EXTRACT_RESERVED) == 0) {
2777 dstaddr = vm_map_min(dstmap);
2778 if (!uvm_map_reserve(dstmap, len, start,
2779 atop(start) & uvmexp.colormask, &dstaddr,
2780 UVM_FLAG_COLORMATCH))
2781 return (ENOMEM);
2782 KASSERT((atop(start ^ dstaddr) & uvmexp.colormask) == 0);
2783 *dstaddrp = dstaddr; /* pass address back to caller */
2784 UVMHIST_LOG(maphist, " dstaddr=%#jx", dstaddr,0,0,0);
2785 } else {
2786 dstaddr = *dstaddrp;
2787 }
2788
2789 /*
2790 * step 2: setup for the extraction process loop by init'ing the
2791 * map entry chain, locking src map, and looking up the first useful
2792 * entry in the map.
2793 */
2794
2795 end = start + len;
2796 newend = dstaddr + len;
2797 chain = endchain = NULL;
2798 nchain = 0;
2799 nsize = 0;
2800 vm_map_lock(srcmap);
2801
2802 if (uvm_map_lookup_entry(srcmap, start, &entry)) {
2803
2804 /* "start" is within an entry */
2805 if (flags & UVM_EXTRACT_QREF) {
2806
2807 /*
2808 * for quick references we don't clip the entry, so
2809 * the entry may map space "before" the starting
2810 * virtual address... this is the "fudge" factor
2811 * (which can be non-zero only the first time
2812 * through the "while" loop in step 3).
2813 */
2814
2815 fudge = start - entry->start;
2816 } else {
2817
2818 /*
2819 * normal reference: we clip the map to fit (thus
2820 * fudge is zero)
2821 */
2822
2823 UVM_MAP_CLIP_START(srcmap, entry, start);
2824 SAVE_HINT(srcmap, srcmap->hint, entry->prev);
2825 fudge = 0;
2826 }
2827 } else {
2828
2829 /* "start" is not within an entry ... skip to next entry */
2830 if (flags & UVM_EXTRACT_CONTIG) {
2831 error = EINVAL;
2832 goto bad; /* definite hole here ... */
2833 }
2834
2835 entry = entry->next;
2836 fudge = 0;
2837 }
2838
2839 /* save values from srcmap for step 6 */
2840 orig_entry = entry;
2841 orig_fudge = fudge;
2842
2843 /*
2844 * step 3: now start looping through the map entries, extracting
2845 * as we go.
2846 */
2847
2848 while (entry->start < end && entry != &srcmap->header) {
2849
2850 /* if we are not doing a quick reference, clip it */
2851 if ((flags & UVM_EXTRACT_QREF) == 0)
2852 UVM_MAP_CLIP_END(srcmap, entry, end);
2853
2854 /* clear needs_copy (allow chunking) */
2855 if (UVM_ET_ISNEEDSCOPY(entry)) {
2856 amap_copy(srcmap, entry,
2857 AMAP_COPY_NOWAIT|AMAP_COPY_NOMERGE, start, end);
2858 if (UVM_ET_ISNEEDSCOPY(entry)) { /* failed? */
2859 error = ENOMEM;
2860 goto bad;
2861 }
2862
2863 /* amap_copy could clip (during chunk)! update fudge */
2864 if (fudge) {
2865 fudge = start - entry->start;
2866 orig_fudge = fudge;
2867 }
2868 }
2869
2870 /* calculate the offset of this from "start" */
2871 oldoffset = (entry->start + fudge) - start;
2872
2873 /* allocate a new map entry */
2874 newentry = uvm_mapent_alloc(dstmap, 0);
2875 if (newentry == NULL) {
2876 error = ENOMEM;
2877 goto bad;
2878 }
2879
2880 /* set up new map entry */
2881 newentry->next = NULL;
2882 newentry->prev = endchain;
2883 newentry->start = dstaddr + oldoffset;
2884 newentry->end =
2885 newentry->start + (entry->end - (entry->start + fudge));
2886 if (newentry->end > newend || newentry->end < newentry->start)
2887 newentry->end = newend;
2888 newentry->object.uvm_obj = entry->object.uvm_obj;
2889 if (newentry->object.uvm_obj) {
2890 if (newentry->object.uvm_obj->pgops->pgo_reference)
2891 newentry->object.uvm_obj->pgops->
2892 pgo_reference(newentry->object.uvm_obj);
2893 newentry->offset = entry->offset + fudge;
2894 } else {
2895 newentry->offset = 0;
2896 }
2897 newentry->etype = entry->etype;
2898 if (flags & UVM_EXTRACT_PROT_ALL) {
2899 newentry->protection = newentry->max_protection =
2900 UVM_PROT_ALL;
2901 } else {
2902 newentry->protection = (flags & UVM_EXTRACT_FIXPROT) ?
2903 entry->max_protection : entry->protection;
2904 newentry->max_protection = entry->max_protection;
2905 }
2906 newentry->inheritance = entry->inheritance;
2907 newentry->wired_count = 0;
2908 newentry->aref.ar_amap = entry->aref.ar_amap;
2909 if (newentry->aref.ar_amap) {
2910 newentry->aref.ar_pageoff =
2911 entry->aref.ar_pageoff + (fudge >> PAGE_SHIFT);
2912 uvm_map_reference_amap(newentry, AMAP_SHARED |
2913 ((flags & UVM_EXTRACT_QREF) ? AMAP_REFALL : 0));
2914 } else {
2915 newentry->aref.ar_pageoff = 0;
2916 }
2917 newentry->advice = entry->advice;
2918 if ((flags & UVM_EXTRACT_QREF) != 0) {
2919 newentry->flags |= UVM_MAP_NOMERGE;
2920 }
2921
2922 /* now link it on the chain */
2923 nchain++;
2924 nsize += newentry->end - newentry->start;
2925 if (endchain == NULL) {
2926 chain = endchain = newentry;
2927 } else {
2928 endchain->next = newentry;
2929 endchain = newentry;
2930 }
2931
2932 /* end of 'while' loop! */
2933 if ((flags & UVM_EXTRACT_CONTIG) && entry->end < end &&
2934 (entry->next == &srcmap->header ||
2935 entry->next->start != entry->end)) {
2936 error = EINVAL;
2937 goto bad;
2938 }
2939 entry = entry->next;
2940 fudge = 0;
2941 }
2942
2943 /*
2944 * step 4: close off chain (in format expected by uvm_map_replace)
2945 */
2946
2947 if (chain)
2948 chain->prev = endchain;
2949
2950 /*
2951 * step 5: attempt to lock the dest map so we can pmap_copy.
2952 * note usage of copy_ok:
2953 * 1 => dstmap locked, pmap_copy ok, and we "replace" here (step 5)
2954 * 0 => dstmap unlocked, NO pmap_copy, and we will "replace" in step 7
2955 */
2956
2957 if (srcmap == dstmap || vm_map_lock_try(dstmap) == true) {
2958 copy_ok = 1;
2959 if (!uvm_map_replace(dstmap, dstaddr, dstaddr+len, chain,
2960 nchain, nsize, &resentry)) {
2961 if (srcmap != dstmap)
2962 vm_map_unlock(dstmap);
2963 error = EIO;
2964 goto bad;
2965 }
2966 } else {
2967 copy_ok = 0;
2968 /* replace deferred until step 7 */
2969 }
2970
2971 /*
2972 * step 6: traverse the srcmap a second time to do the following:
2973 * - if we got a lock on the dstmap do pmap_copy
2974 * - if UVM_EXTRACT_REMOVE remove the entries
2975 * we make use of orig_entry and orig_fudge (saved in step 2)
2976 */
2977
2978 if (copy_ok || (flags & UVM_EXTRACT_REMOVE)) {
2979
2980 /* purge possible stale hints from srcmap */
2981 if (flags & UVM_EXTRACT_REMOVE) {
2982 SAVE_HINT(srcmap, srcmap->hint, orig_entry->prev);
2983 if (srcmap->first_free != &srcmap->header &&
2984 srcmap->first_free->start >= start)
2985 srcmap->first_free = orig_entry->prev;
2986 }
2987
2988 entry = orig_entry;
2989 fudge = orig_fudge;
2990 deadentry = NULL; /* for UVM_EXTRACT_REMOVE */
2991
2992 while (entry->start < end && entry != &srcmap->header) {
2993 if (copy_ok) {
2994 oldoffset = (entry->start + fudge) - start;
2995 elen = MIN(end, entry->end) -
2996 (entry->start + fudge);
2997 pmap_copy(dstmap->pmap, srcmap->pmap,
2998 dstaddr + oldoffset, elen,
2999 entry->start + fudge);
3000 }
3001
3002 /* we advance "entry" in the following if statement */
3003 if (flags & UVM_EXTRACT_REMOVE) {
3004 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
3005 uvm_map_lock_entry(entry, RW_WRITER);
3006 #else
3007 uvm_map_lock_entry(entry, RW_READER);
3008 #endif
3009 pmap_remove(srcmap->pmap, entry->start,
3010 entry->end);
3011 uvm_map_unlock_entry(entry);
3012 oldentry = entry; /* save entry */
3013 entry = entry->next; /* advance */
3014 uvm_map_entry_unlink(srcmap, oldentry);
3015 /* add to dead list */
3016 oldentry->next = deadentry;
3017 deadentry = oldentry;
3018 } else {
3019 entry = entry->next; /* advance */
3020 }
3021
3022 /* end of 'while' loop */
3023 fudge = 0;
3024 }
3025 pmap_update(srcmap->pmap);
3026
3027 /*
3028 * unlock dstmap. we will dispose of deadentry in
3029 * step 7 if needed
3030 */
3031
3032 if (copy_ok && srcmap != dstmap)
3033 vm_map_unlock(dstmap);
3034
3035 } else {
3036 deadentry = NULL;
3037 }
3038
3039 /*
3040 * step 7: we are done with the source map, unlock. if copy_ok
3041 * is 0 then we have not replaced the dummy mapping in dstmap yet
3042 * and we need to do so now.
3043 */
3044
3045 vm_map_unlock(srcmap);
3046 if ((flags & UVM_EXTRACT_REMOVE) && deadentry)
3047 uvm_unmap_detach(deadentry, 0); /* dispose of old entries */
3048
3049 /* now do the replacement if we didn't do it in step 5 */
3050 if (copy_ok == 0) {
3051 vm_map_lock(dstmap);
3052 error = uvm_map_replace(dstmap, dstaddr, dstaddr+len, chain,
3053 nchain, nsize, &resentry);
3054 vm_map_unlock(dstmap);
3055
3056 if (error == false) {
3057 error = EIO;
3058 goto bad2;
3059 }
3060 }
3061
3062 if (resentry != NULL)
3063 uvm_mapent_free(resentry);
3064
3065 return (0);
3066
3067 /*
3068 * bad: failure recovery
3069 */
3070 bad:
3071 vm_map_unlock(srcmap);
3072 bad2: /* src already unlocked */
3073 if (chain)
3074 uvm_unmap_detach(chain,
3075 (flags & UVM_EXTRACT_QREF) ? AMAP_REFALL : 0);
3076
3077 if (resentry != NULL)
3078 uvm_mapent_free(resentry);
3079
3080 if ((flags & UVM_EXTRACT_RESERVED) == 0) {
3081 uvm_unmap(dstmap, dstaddr, dstaddr+len); /* ??? */
3082 }
3083 return (error);
3084 }
3085
3086 /* end of extraction functions */
3087
3088 /*
3089 * uvm_map_submap: punch down part of a map into a submap
3090 *
3091 * => only the kernel_map is allowed to be submapped
3092 * => the purpose of submapping is to break up the locking granularity
3093 * of a larger map
3094 * => the range specified must have been mapped previously with a uvm_map()
3095 * call [with uobj==NULL] to create a blank map entry in the main map.
3096 * [And it had better still be blank!]
3097 * => maps which contain submaps should never be copied or forked.
3098 * => to remove a submap, use uvm_unmap() on the main map
3099 * and then uvm_map_deallocate() the submap.
3100 * => main map must be unlocked.
3101 * => submap must have been init'd and have a zero reference count.
3102 * [need not be locked as we don't actually reference it]
3103 */
3104
3105 int
3106 uvm_map_submap(struct vm_map *map, vaddr_t start, vaddr_t end,
3107 struct vm_map *submap)
3108 {
3109 struct vm_map_entry *entry;
3110 int error;
3111
3112 vm_map_lock(map);
3113 VM_MAP_RANGE_CHECK(map, start, end);
3114
3115 if (uvm_map_lookup_entry(map, start, &entry)) {
3116 UVM_MAP_CLIP_START(map, entry, start);
3117 UVM_MAP_CLIP_END(map, entry, end); /* to be safe */
3118 } else {
3119 entry = NULL;
3120 }
3121
3122 if (entry != NULL &&
3123 entry->start == start && entry->end == end &&
3124 entry->object.uvm_obj == NULL && entry->aref.ar_amap == NULL &&
3125 !UVM_ET_ISCOPYONWRITE(entry) && !UVM_ET_ISNEEDSCOPY(entry)) {
3126 entry->etype |= UVM_ET_SUBMAP;
3127 entry->object.sub_map = submap;
3128 entry->offset = 0;
3129 uvm_map_reference(submap);
3130 error = 0;
3131 } else {
3132 error = EINVAL;
3133 }
3134 vm_map_unlock(map);
3135
3136 return error;
3137 }
3138
3139 /*
3140 * uvm_map_protect_user: change map protection on behalf of the user.
3141 * Enforces PAX settings as necessary.
3142 */
3143 int
3144 uvm_map_protect_user(struct lwp *l, vaddr_t start, vaddr_t end,
3145 vm_prot_t new_prot)
3146 {
3147 int error;
3148
3149 if ((error = PAX_MPROTECT_VALIDATE(l, new_prot)))
3150 return error;
3151
3152 return uvm_map_protect(&l->l_proc->p_vmspace->vm_map, start, end,
3153 new_prot, false);
3154 }
3155
3156
3157 /*
3158 * uvm_map_protect: change map protection
3159 *
3160 * => set_max means set max_protection.
3161 * => map must be unlocked.
3162 */
3163
3164 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
3165 ~VM_PROT_WRITE : VM_PROT_ALL)
3166
3167 int
3168 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
3169 vm_prot_t new_prot, bool set_max)
3170 {
3171 struct vm_map_entry *current, *entry;
3172 int error = 0;
3173 UVMHIST_FUNC(__func__);
3174 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,new_prot=%#jx)",
3175 (uintptr_t)map, start, end, new_prot);
3176
3177 vm_map_lock(map);
3178 VM_MAP_RANGE_CHECK(map, start, end);
3179 if (uvm_map_lookup_entry(map, start, &entry)) {
3180 UVM_MAP_CLIP_START(map, entry, start);
3181 } else {
3182 entry = entry->next;
3183 }
3184
3185 /*
3186 * make a first pass to check for protection violations.
3187 */
3188
3189 current = entry;
3190 while ((current != &map->header) && (current->start < end)) {
3191 if (UVM_ET_ISSUBMAP(current)) {
3192 error = EINVAL;
3193 goto out;
3194 }
3195 if ((new_prot & current->max_protection) != new_prot) {
3196 error = EACCES;
3197 goto out;
3198 }
3199 /*
3200 * Don't allow VM_PROT_EXECUTE to be set on entries that
3201 * point to vnodes that are associated with a NOEXEC file
3202 * system.
3203 */
3204 if (UVM_ET_ISOBJ(current) &&
3205 UVM_OBJ_IS_VNODE(current->object.uvm_obj)) {
3206 struct vnode *vp =
3207 (struct vnode *) current->object.uvm_obj;
3208
3209 if ((new_prot & VM_PROT_EXECUTE) != 0 &&
3210 (vp->v_mount->mnt_flag & MNT_NOEXEC) != 0) {
3211 error = EACCES;
3212 goto out;
3213 }
3214 }
3215
3216 current = current->next;
3217 }
3218
3219 /* go back and fix up protections (no need to clip this time). */
3220
3221 current = entry;
3222 while ((current != &map->header) && (current->start < end)) {
3223 vm_prot_t old_prot;
3224
3225 UVM_MAP_CLIP_END(map, current, end);
3226 old_prot = current->protection;
3227 if (set_max)
3228 current->protection =
3229 (current->max_protection = new_prot) & old_prot;
3230 else
3231 current->protection = new_prot;
3232
3233 /*
3234 * update physical map if necessary. worry about copy-on-write
3235 * here -- CHECK THIS XXX
3236 */
3237
3238 if (current->protection != old_prot) {
3239 /* update pmap! */
3240 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
3241 uvm_map_lock_entry(current, RW_WRITER);
3242 #else
3243 uvm_map_lock_entry(current, RW_READER);
3244 #endif
3245 pmap_protect(map->pmap, current->start, current->end,
3246 current->protection & MASK(current));
3247 uvm_map_unlock_entry(current);
3248
3249 /*
3250 * If this entry points at a vnode, and the
3251 * protection includes VM_PROT_EXECUTE, mark
3252 * the vnode as VEXECMAP.
3253 */
3254 if (UVM_ET_ISOBJ(current)) {
3255 struct uvm_object *uobj =
3256 current->object.uvm_obj;
3257
3258 if (UVM_OBJ_IS_VNODE(uobj) &&
3259 (current->protection & VM_PROT_EXECUTE)) {
3260 vn_markexec((struct vnode *) uobj);
3261 }
3262 }
3263 }
3264
3265 /*
3266 * If the map is configured to lock any future mappings,
3267 * wire this entry now if the old protection was VM_PROT_NONE
3268 * and the new protection is not VM_PROT_NONE.
3269 */
3270
3271 if ((map->flags & VM_MAP_WIREFUTURE) != 0 &&
3272 VM_MAPENT_ISWIRED(current) == 0 &&
3273 old_prot == VM_PROT_NONE &&
3274 new_prot != VM_PROT_NONE) {
3275
3276 /*
3277 * We must call pmap_update() here because the
3278 * pmap_protect() call above might have removed some
3279 * pmap entries and uvm_map_pageable() might create
3280 * some new pmap entries that rely on the prior
3281 * removals being completely finished.
3282 */
3283
3284 pmap_update(map->pmap);
3285
3286 if (uvm_map_pageable(map, current->start,
3287 current->end, false,
3288 UVM_LK_ENTER|UVM_LK_EXIT) != 0) {
3289
3290 /*
3291 * If locking the entry fails, remember the
3292 * error if it's the first one. Note we
3293 * still continue setting the protection in
3294 * the map, but will return the error
3295 * condition regardless.
3296 *
3297 * XXX Ignore what the actual error is,
3298 * XXX just call it a resource shortage
3299 * XXX so that it doesn't get confused
3300 * XXX what uvm_map_protect() itself would
3301 * XXX normally return.
3302 */
3303
3304 error = ENOMEM;
3305 }
3306 }
3307 current = current->next;
3308 }
3309 pmap_update(map->pmap);
3310
3311 out:
3312 vm_map_unlock(map);
3313
3314 UVMHIST_LOG(maphist, "<- done, error=%jd",error,0,0,0);
3315 return error;
3316 }
3317
3318 #undef MASK
3319
3320 /*
3321 * uvm_map_inherit: set inheritance code for range of addrs in map.
3322 *
3323 * => map must be unlocked
3324 * => note that the inherit code is used during a "fork". see fork
3325 * code for details.
3326 */
3327
3328 int
3329 uvm_map_inherit(struct vm_map *map, vaddr_t start, vaddr_t end,
3330 vm_inherit_t new_inheritance)
3331 {
3332 struct vm_map_entry *entry, *temp_entry;
3333 UVMHIST_FUNC(__func__);
3334 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,new_inh=%#jx)",
3335 (uintptr_t)map, start, end, new_inheritance);
3336
3337 switch (new_inheritance) {
3338 case MAP_INHERIT_NONE:
3339 case MAP_INHERIT_COPY:
3340 case MAP_INHERIT_SHARE:
3341 case MAP_INHERIT_ZERO:
3342 break;
3343 default:
3344 UVMHIST_LOG(maphist,"<- done (INVALID ARG)",0,0,0,0);
3345 return EINVAL;
3346 }
3347
3348 vm_map_lock(map);
3349 VM_MAP_RANGE_CHECK(map, start, end);
3350 if (uvm_map_lookup_entry(map, start, &temp_entry)) {
3351 entry = temp_entry;
3352 UVM_MAP_CLIP_START(map, entry, start);
3353 } else {
3354 entry = temp_entry->next;
3355 }
3356 while ((entry != &map->header) && (entry->start < end)) {
3357 UVM_MAP_CLIP_END(map, entry, end);
3358 entry->inheritance = new_inheritance;
3359 entry = entry->next;
3360 }
3361 vm_map_unlock(map);
3362 UVMHIST_LOG(maphist,"<- done (OK)",0,0,0,0);
3363 return 0;
3364 }
3365
3366 /*
3367 * uvm_map_advice: set advice code for range of addrs in map.
3368 *
3369 * => map must be unlocked
3370 */
3371
3372 int
3373 uvm_map_advice(struct vm_map *map, vaddr_t start, vaddr_t end, int new_advice)
3374 {
3375 struct vm_map_entry *entry, *temp_entry;
3376 UVMHIST_FUNC(__func__);
3377 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,new_adv=%#jx)",
3378 (uintptr_t)map, start, end, new_advice);
3379
3380 vm_map_lock(map);
3381 VM_MAP_RANGE_CHECK(map, start, end);
3382 if (uvm_map_lookup_entry(map, start, &temp_entry)) {
3383 entry = temp_entry;
3384 UVM_MAP_CLIP_START(map, entry, start);
3385 } else {
3386 entry = temp_entry->next;
3387 }
3388
3389 /*
3390 * XXXJRT: disallow holes?
3391 */
3392
3393 while ((entry != &map->header) && (entry->start < end)) {
3394 UVM_MAP_CLIP_END(map, entry, end);
3395
3396 switch (new_advice) {
3397 case MADV_NORMAL:
3398 case MADV_RANDOM:
3399 case MADV_SEQUENTIAL:
3400 /* nothing special here */
3401 break;
3402
3403 default:
3404 vm_map_unlock(map);
3405 UVMHIST_LOG(maphist,"<- done (INVALID ARG)",0,0,0,0);
3406 return EINVAL;
3407 }
3408 entry->advice = new_advice;
3409 entry = entry->next;
3410 }
3411
3412 vm_map_unlock(map);
3413 UVMHIST_LOG(maphist,"<- done (OK)",0,0,0,0);
3414 return 0;
3415 }
3416
3417 /*
3418 * uvm_map_willneed: apply MADV_WILLNEED
3419 */
3420
3421 int
3422 uvm_map_willneed(struct vm_map *map, vaddr_t start, vaddr_t end)
3423 {
3424 struct vm_map_entry *entry;
3425 UVMHIST_FUNC(__func__);
3426 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx)",
3427 (uintptr_t)map, start, end, 0);
3428
3429 vm_map_lock_read(map);
3430 VM_MAP_RANGE_CHECK(map, start, end);
3431 if (!uvm_map_lookup_entry(map, start, &entry)) {
3432 entry = entry->next;
3433 }
3434 while (entry->start < end) {
3435 struct vm_amap * const amap = entry->aref.ar_amap;
3436 struct uvm_object * const uobj = entry->object.uvm_obj;
3437
3438 KASSERT(entry != &map->header);
3439 KASSERT(start < entry->end);
3440 /*
3441 * For now, we handle only the easy but commonly-requested case.
3442 * ie. start prefetching of backing uobj pages.
3443 *
3444 * XXX It might be useful to pmap_enter() the already-in-core
3445 * pages by inventing a "weak" mode for uvm_fault() which would
3446 * only do the PGO_LOCKED pgo_get().
3447 */
3448 if (UVM_ET_ISOBJ(entry) && amap == NULL && uobj != NULL) {
3449 off_t offset;
3450 off_t size;
3451
3452 offset = entry->offset;
3453 if (start < entry->start) {
3454 offset += entry->start - start;
3455 }
3456 size = entry->offset + (entry->end - entry->start);
3457 if (entry->end < end) {
3458 size -= end - entry->end;
3459 }
3460 uvm_readahead(uobj, offset, size);
3461 }
3462 entry = entry->next;
3463 }
3464 vm_map_unlock_read(map);
3465 UVMHIST_LOG(maphist,"<- done (OK)",0,0,0,0);
3466 return 0;
3467 }
3468
3469 /*
3470 * uvm_map_pageable: sets the pageability of a range in a map.
3471 *
3472 * => wires map entries. should not be used for transient page locking.
3473 * for that, use uvm_fault_wire()/uvm_fault_unwire() (see uvm_vslock()).
3474 * => regions specified as not pageable require lock-down (wired) memory
3475 * and page tables.
3476 * => map must never be read-locked
3477 * => if islocked is true, map is already write-locked
3478 * => we always unlock the map, since we must downgrade to a read-lock
3479 * to call uvm_fault_wire()
3480 * => XXXCDC: check this and try and clean it up.
3481 */
3482
3483 int
3484 uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end,
3485 bool new_pageable, int lockflags)
3486 {
3487 struct vm_map_entry *entry, *start_entry, *failed_entry;
3488 int rv;
3489 #ifdef DIAGNOSTIC
3490 u_int timestamp_save;
3491 #endif
3492 UVMHIST_FUNC(__func__);
3493 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,new_pageable=%ju)",
3494 (uintptr_t)map, start, end, new_pageable);
3495 KASSERT(map->flags & VM_MAP_PAGEABLE);
3496
3497 if ((lockflags & UVM_LK_ENTER) == 0)
3498 vm_map_lock(map);
3499 VM_MAP_RANGE_CHECK(map, start, end);
3500
3501 /*
3502 * only one pageability change may take place at one time, since
3503 * uvm_fault_wire assumes it will be called only once for each
3504 * wiring/unwiring. therefore, we have to make sure we're actually
3505 * changing the pageability for the entire region. we do so before
3506 * making any changes.
3507 */
3508
3509 if (uvm_map_lookup_entry(map, start, &start_entry) == false) {
3510 if ((lockflags & UVM_LK_EXIT) == 0)
3511 vm_map_unlock(map);
3512
3513 UVMHIST_LOG(maphist,"<- done (fault)",0,0,0,0);
3514 return EFAULT;
3515 }
3516 entry = start_entry;
3517
3518 if (start == end) { /* nothing required */
3519 if ((lockflags & UVM_LK_EXIT) == 0)
3520 vm_map_unlock(map);
3521
3522 UVMHIST_LOG(maphist,"<- done (nothing)",0,0,0,0);
3523 return 0;
3524 }
3525
3526 /*
3527 * handle wiring and unwiring separately.
3528 */
3529
3530 if (new_pageable) { /* unwire */
3531 UVM_MAP_CLIP_START(map, entry, start);
3532
3533 /*
3534 * unwiring. first ensure that the range to be unwired is
3535 * really wired down and that there are no holes.
3536 */
3537
3538 while ((entry != &map->header) && (entry->start < end)) {
3539 if (entry->wired_count == 0 ||
3540 (entry->end < end &&
3541 (entry->next == &map->header ||
3542 entry->next->start > entry->end))) {
3543 if ((lockflags & UVM_LK_EXIT) == 0)
3544 vm_map_unlock(map);
3545 UVMHIST_LOG(maphist, "<- done (INVAL)",0,0,0,0);
3546 return EINVAL;
3547 }
3548 entry = entry->next;
3549 }
3550
3551 /*
3552 * POSIX 1003.1b - a single munlock call unlocks a region,
3553 * regardless of the number of mlock calls made on that
3554 * region.
3555 */
3556
3557 entry = start_entry;
3558 while ((entry != &map->header) && (entry->start < end)) {
3559 UVM_MAP_CLIP_END(map, entry, end);
3560 if (VM_MAPENT_ISWIRED(entry))
3561 uvm_map_entry_unwire(map, entry);
3562 entry = entry->next;
3563 }
3564 if ((lockflags & UVM_LK_EXIT) == 0)
3565 vm_map_unlock(map);
3566 UVMHIST_LOG(maphist,"<- done (OK UNWIRE)",0,0,0,0);
3567 return 0;
3568 }
3569
3570 /*
3571 * wire case: in two passes [XXXCDC: ugly block of code here]
3572 *
3573 * 1: holding the write lock, we create any anonymous maps that need
3574 * to be created. then we clip each map entry to the region to
3575 * be wired and increment its wiring count.
3576 *
3577 * 2: we downgrade to a read lock, and call uvm_fault_wire to fault
3578 * in the pages for any newly wired area (wired_count == 1).
3579 *
3580 * downgrading to a read lock for uvm_fault_wire avoids a possible
3581 * deadlock with another thread that may have faulted on one of
3582 * the pages to be wired (it would mark the page busy, blocking
3583 * us, then in turn block on the map lock that we hold). because
3584 * of problems in the recursive lock package, we cannot upgrade
3585 * to a write lock in vm_map_lookup. thus, any actions that
3586 * require the write lock must be done beforehand. because we
3587 * keep the read lock on the map, the copy-on-write status of the
3588 * entries we modify here cannot change.
3589 */
3590
3591 while ((entry != &map->header) && (entry->start < end)) {
3592 if (VM_MAPENT_ISWIRED(entry) == 0) { /* not already wired? */
3593
3594 /*
3595 * perform actions of vm_map_lookup that need the
3596 * write lock on the map: create an anonymous map
3597 * for a copy-on-write region, or an anonymous map
3598 * for a zero-fill region. (XXXCDC: submap case
3599 * ok?)
3600 */
3601
3602 if (!UVM_ET_ISSUBMAP(entry)) { /* not submap */
3603 if (UVM_ET_ISNEEDSCOPY(entry) &&
3604 ((entry->max_protection & VM_PROT_WRITE) ||
3605 (entry->object.uvm_obj == NULL))) {
3606 amap_copy(map, entry, 0, start, end);
3607 /* XXXCDC: wait OK? */
3608 }
3609 }
3610 }
3611 UVM_MAP_CLIP_START(map, entry, start);
3612 UVM_MAP_CLIP_END(map, entry, end);
3613 entry->wired_count++;
3614
3615 /*
3616 * Check for holes
3617 */
3618
3619 if (entry->protection == VM_PROT_NONE ||
3620 (entry->end < end &&
3621 (entry->next == &map->header ||
3622 entry->next->start > entry->end))) {
3623
3624 /*
3625 * found one. amap creation actions do not need to
3626 * be undone, but the wired counts need to be restored.
3627 */
3628
3629 while (entry != &map->header && entry->end > start) {
3630 entry->wired_count--;
3631 entry = entry->prev;
3632 }
3633 if ((lockflags & UVM_LK_EXIT) == 0)
3634 vm_map_unlock(map);
3635 UVMHIST_LOG(maphist,"<- done (INVALID WIRE)",0,0,0,0);
3636 return EINVAL;
3637 }
3638 entry = entry->next;
3639 }
3640
3641 /*
3642 * Pass 2.
3643 */
3644
3645 #ifdef DIAGNOSTIC
3646 timestamp_save = map->timestamp;
3647 #endif
3648 vm_map_busy(map);
3649 vm_map_unlock(map);
3650
3651 rv = 0;
3652 entry = start_entry;
3653 while (entry != &map->header && entry->start < end) {
3654 if (entry->wired_count == 1) {
3655 rv = uvm_fault_wire(map, entry->start, entry->end,
3656 entry->max_protection, 1);
3657 if (rv) {
3658
3659 /*
3660 * wiring failed. break out of the loop.
3661 * we'll clean up the map below, once we
3662 * have a write lock again.
3663 */
3664
3665 break;
3666 }
3667 }
3668 entry = entry->next;
3669 }
3670
3671 if (rv) { /* failed? */
3672
3673 /*
3674 * Get back to an exclusive (write) lock.
3675 */
3676
3677 vm_map_lock(map);
3678 vm_map_unbusy(map);
3679
3680 #ifdef DIAGNOSTIC
3681 if (timestamp_save + 1 != map->timestamp)
3682 panic("uvm_map_pageable: stale map");
3683 #endif
3684
3685 /*
3686 * first drop the wiring count on all the entries
3687 * which haven't actually been wired yet.
3688 */
3689
3690 failed_entry = entry;
3691 while (entry != &map->header && entry->start < end) {
3692 entry->wired_count--;
3693 entry = entry->next;
3694 }
3695
3696 /*
3697 * now, unwire all the entries that were successfully
3698 * wired above.
3699 */
3700
3701 entry = start_entry;
3702 while (entry != failed_entry) {
3703 entry->wired_count--;
3704 if (VM_MAPENT_ISWIRED(entry) == 0)
3705 uvm_map_entry_unwire(map, entry);
3706 entry = entry->next;
3707 }
3708 if ((lockflags & UVM_LK_EXIT) == 0)
3709 vm_map_unlock(map);
3710 UVMHIST_LOG(maphist, "<- done (RV=%jd)", rv,0,0,0);
3711 return (rv);
3712 }
3713
3714 if ((lockflags & UVM_LK_EXIT) == 0) {
3715 vm_map_unbusy(map);
3716 } else {
3717
3718 /*
3719 * Get back to an exclusive (write) lock.
3720 */
3721
3722 vm_map_lock(map);
3723 vm_map_unbusy(map);
3724 }
3725
3726 UVMHIST_LOG(maphist,"<- done (OK WIRE)",0,0,0,0);
3727 return 0;
3728 }
3729
3730 /*
3731 * uvm_map_pageable_all: special case of uvm_map_pageable - affects
3732 * all mapped regions.
3733 *
3734 * => map must not be locked.
3735 * => if no flags are specified, all regions are unwired.
3736 * => XXXJRT: has some of the same problems as uvm_map_pageable() above.
3737 */
3738
3739 int
3740 uvm_map_pageable_all(struct vm_map *map, int flags, vsize_t limit)
3741 {
3742 struct vm_map_entry *entry, *failed_entry;
3743 vsize_t size;
3744 int rv;
3745 #ifdef DIAGNOSTIC
3746 u_int timestamp_save;
3747 #endif
3748 UVMHIST_FUNC(__func__);
3749 UVMHIST_CALLARGS(maphist,"(map=%#jx,flags=%#jx)", (uintptr_t)map, flags,
3750 0, 0);
3751
3752 KASSERT(map->flags & VM_MAP_PAGEABLE);
3753
3754 vm_map_lock(map);
3755
3756 /*
3757 * handle wiring and unwiring separately.
3758 */
3759
3760 if (flags == 0) { /* unwire */
3761
3762 /*
3763 * POSIX 1003.1b -- munlockall unlocks all regions,
3764 * regardless of how many times mlockall has been called.
3765 */
3766
3767 for (entry = map->header.next; entry != &map->header;
3768 entry = entry->next) {
3769 if (VM_MAPENT_ISWIRED(entry))
3770 uvm_map_entry_unwire(map, entry);
3771 }
3772 map->flags &= ~VM_MAP_WIREFUTURE;
3773 vm_map_unlock(map);
3774 UVMHIST_LOG(maphist,"<- done (OK UNWIRE)",0,0,0,0);
3775 return 0;
3776 }
3777
3778 if (flags & MCL_FUTURE) {
3779
3780 /*
3781 * must wire all future mappings; remember this.
3782 */
3783
3784 map->flags |= VM_MAP_WIREFUTURE;
3785 }
3786
3787 if ((flags & MCL_CURRENT) == 0) {
3788
3789 /*
3790 * no more work to do!
3791 */
3792
3793 UVMHIST_LOG(maphist,"<- done (OK no wire)",0,0,0,0);
3794 vm_map_unlock(map);
3795 return 0;
3796 }
3797
3798 /*
3799 * wire case: in three passes [XXXCDC: ugly block of code here]
3800 *
3801 * 1: holding the write lock, count all pages mapped by non-wired
3802 * entries. if this would cause us to go over our limit, we fail.
3803 *
3804 * 2: still holding the write lock, we create any anonymous maps that
3805 * need to be created. then we increment its wiring count.
3806 *
3807 * 3: we downgrade to a read lock, and call uvm_fault_wire to fault
3808 * in the pages for any newly wired area (wired_count == 1).
3809 *
3810 * downgrading to a read lock for uvm_fault_wire avoids a possible
3811 * deadlock with another thread that may have faulted on one of
3812 * the pages to be wired (it would mark the page busy, blocking
3813 * us, then in turn block on the map lock that we hold). because
3814 * of problems in the recursive lock package, we cannot upgrade
3815 * to a write lock in vm_map_lookup. thus, any actions that
3816 * require the write lock must be done beforehand. because we
3817 * keep the read lock on the map, the copy-on-write status of the
3818 * entries we modify here cannot change.
3819 */
3820
3821 for (size = 0, entry = map->header.next; entry != &map->header;
3822 entry = entry->next) {
3823 if (entry->protection != VM_PROT_NONE &&
3824 VM_MAPENT_ISWIRED(entry) == 0) { /* not already wired? */
3825 size += entry->end - entry->start;
3826 }
3827 }
3828
3829 if (atop(size) + uvmexp.wired > uvmexp.wiredmax) {
3830 vm_map_unlock(map);
3831 return ENOMEM;
3832 }
3833
3834 if (limit != 0 &&
3835 (size + ptoa(pmap_wired_count(vm_map_pmap(map))) > limit)) {
3836 vm_map_unlock(map);
3837 return ENOMEM;
3838 }
3839
3840 /*
3841 * Pass 2.
3842 */
3843
3844 for (entry = map->header.next; entry != &map->header;
3845 entry = entry->next) {
3846 if (entry->protection == VM_PROT_NONE)
3847 continue;
3848 if (VM_MAPENT_ISWIRED(entry) == 0) { /* not already wired? */
3849
3850 /*
3851 * perform actions of vm_map_lookup that need the
3852 * write lock on the map: create an anonymous map
3853 * for a copy-on-write region, or an anonymous map
3854 * for a zero-fill region. (XXXCDC: submap case
3855 * ok?)
3856 */
3857
3858 if (!UVM_ET_ISSUBMAP(entry)) { /* not submap */
3859 if (UVM_ET_ISNEEDSCOPY(entry) &&
3860 ((entry->max_protection & VM_PROT_WRITE) ||
3861 (entry->object.uvm_obj == NULL))) {
3862 amap_copy(map, entry, 0, entry->start,
3863 entry->end);
3864 /* XXXCDC: wait OK? */
3865 }
3866 }
3867 }
3868 entry->wired_count++;
3869 }
3870
3871 /*
3872 * Pass 3.
3873 */
3874
3875 #ifdef DIAGNOSTIC
3876 timestamp_save = map->timestamp;
3877 #endif
3878 vm_map_busy(map);
3879 vm_map_unlock(map);
3880
3881 rv = 0;
3882 for (entry = map->header.next; entry != &map->header;
3883 entry = entry->next) {
3884 if (entry->wired_count == 1) {
3885 rv = uvm_fault_wire(map, entry->start, entry->end,
3886 entry->max_protection, 1);
3887 if (rv) {
3888
3889 /*
3890 * wiring failed. break out of the loop.
3891 * we'll clean up the map below, once we
3892 * have a write lock again.
3893 */
3894
3895 break;
3896 }
3897 }
3898 }
3899
3900 if (rv) {
3901
3902 /*
3903 * Get back an exclusive (write) lock.
3904 */
3905
3906 vm_map_lock(map);
3907 vm_map_unbusy(map);
3908
3909 #ifdef DIAGNOSTIC
3910 if (timestamp_save + 1 != map->timestamp)
3911 panic("uvm_map_pageable_all: stale map");
3912 #endif
3913
3914 /*
3915 * first drop the wiring count on all the entries
3916 * which haven't actually been wired yet.
3917 *
3918 * Skip VM_PROT_NONE entries like we did above.
3919 */
3920
3921 failed_entry = entry;
3922 for (/* nothing */; entry != &map->header;
3923 entry = entry->next) {
3924 if (entry->protection == VM_PROT_NONE)
3925 continue;
3926 entry->wired_count--;
3927 }
3928
3929 /*
3930 * now, unwire all the entries that were successfully
3931 * wired above.
3932 *
3933 * Skip VM_PROT_NONE entries like we did above.
3934 */
3935
3936 for (entry = map->header.next; entry != failed_entry;
3937 entry = entry->next) {
3938 if (entry->protection == VM_PROT_NONE)
3939 continue;
3940 entry->wired_count--;
3941 if (VM_MAPENT_ISWIRED(entry))
3942 uvm_map_entry_unwire(map, entry);
3943 }
3944 vm_map_unlock(map);
3945 UVMHIST_LOG(maphist,"<- done (RV=%jd)", rv,0,0,0);
3946 return (rv);
3947 }
3948
3949 vm_map_unbusy(map);
3950
3951 UVMHIST_LOG(maphist,"<- done (OK WIRE)",0,0,0,0);
3952 return 0;
3953 }
3954
3955 /*
3956 * uvm_map_clean: clean out a map range
3957 *
3958 * => valid flags:
3959 * if (flags & PGO_CLEANIT): dirty pages are cleaned first
3960 * if (flags & PGO_SYNCIO): dirty pages are written synchronously
3961 * if (flags & PGO_DEACTIVATE): any cached pages are deactivated after clean
3962 * if (flags & PGO_FREE): any cached pages are freed after clean
3963 * => returns an error if any part of the specified range isn't mapped
3964 * => never a need to flush amap layer since the anonymous memory has
3965 * no permanent home, but may deactivate pages there
3966 * => called from sys_msync() and sys_madvise()
3967 * => caller must not have map locked
3968 */
3969
3970 int
3971 uvm_map_clean(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
3972 {
3973 struct vm_map_entry *current, *entry;
3974 struct uvm_object *uobj;
3975 struct vm_amap *amap;
3976 struct vm_anon *anon;
3977 struct vm_page *pg;
3978 vaddr_t offset;
3979 vsize_t size;
3980 voff_t uoff;
3981 int error, refs;
3982 UVMHIST_FUNC(__func__);
3983 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,flags=%#jx)",
3984 (uintptr_t)map, start, end, flags);
3985
3986 KASSERT((flags & (PGO_FREE|PGO_DEACTIVATE)) !=
3987 (PGO_FREE|PGO_DEACTIVATE));
3988
3989 vm_map_lock(map);
3990 VM_MAP_RANGE_CHECK(map, start, end);
3991 if (!uvm_map_lookup_entry(map, start, &entry)) {
3992 vm_map_unlock(map);
3993 return EFAULT;
3994 }
3995
3996 /*
3997 * Make a first pass to check for holes and wiring problems.
3998 */
3999
4000 for (current = entry; current->start < end; current = current->next) {
4001 if (UVM_ET_ISSUBMAP(current)) {
4002 vm_map_unlock(map);
4003 return EINVAL;
4004 }
4005 if ((flags & PGO_FREE) != 0 && VM_MAPENT_ISWIRED(entry)) {
4006 vm_map_unlock(map);
4007 return EBUSY;
4008 }
4009 if (end <= current->end) {
4010 break;
4011 }
4012 if (current->end != current->next->start) {
4013 vm_map_unlock(map);
4014 return EFAULT;
4015 }
4016 }
4017
4018 vm_map_busy(map);
4019 vm_map_unlock(map);
4020 error = 0;
4021 for (current = entry; start < end; current = current->next) {
4022 amap = current->aref.ar_amap; /* upper layer */
4023 uobj = current->object.uvm_obj; /* lower layer */
4024 KASSERT(start >= current->start);
4025
4026 /*
4027 * No amap cleaning necessary if:
4028 *
4029 * (1) There's no amap.
4030 *
4031 * (2) We're not deactivating or freeing pages.
4032 */
4033
4034 if (amap == NULL || (flags & (PGO_DEACTIVATE|PGO_FREE)) == 0)
4035 goto flush_object;
4036
4037 offset = start - current->start;
4038 size = MIN(end, current->end) - start;
4039
4040 amap_lock(amap, RW_WRITER);
4041 for ( ; size != 0; size -= PAGE_SIZE, offset += PAGE_SIZE) {
4042 anon = amap_lookup(¤t->aref, offset);
4043 if (anon == NULL)
4044 continue;
4045
4046 KASSERT(anon->an_lock == amap->am_lock);
4047 pg = anon->an_page;
4048 if (pg == NULL) {
4049 continue;
4050 }
4051 if (pg->flags & PG_BUSY) {
4052 continue;
4053 }
4054
4055 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
4056
4057 /*
4058 * In these first 3 cases, we just deactivate the page.
4059 */
4060
4061 case PGO_CLEANIT|PGO_FREE:
4062 case PGO_CLEANIT|PGO_DEACTIVATE:
4063 case PGO_DEACTIVATE:
4064 deactivate_it:
4065 /*
4066 * skip the page if it's loaned or wired,
4067 * since it shouldn't be on a paging queue
4068 * at all in these cases.
4069 */
4070
4071 if (pg->loan_count != 0 ||
4072 pg->wire_count != 0) {
4073 continue;
4074 }
4075 KASSERT(pg->uanon == anon);
4076 uvm_pagelock(pg);
4077 uvm_pagedeactivate(pg);
4078 uvm_pageunlock(pg);
4079 continue;
4080
4081 case PGO_FREE:
4082
4083 /*
4084 * If there are multiple references to
4085 * the amap, just deactivate the page.
4086 */
4087
4088 if (amap_refs(amap) > 1)
4089 goto deactivate_it;
4090
4091 /* skip the page if it's wired */
4092 if (pg->wire_count != 0) {
4093 continue;
4094 }
4095 amap_unadd(¤t->aref, offset);
4096 refs = --anon->an_ref;
4097 if (refs == 0) {
4098 uvm_anfree(anon);
4099 }
4100 continue;
4101 }
4102 }
4103 amap_unlock(amap);
4104
4105 flush_object:
4106 /*
4107 * flush pages if we've got a valid backing object.
4108 * note that we must always clean object pages before
4109 * freeing them since otherwise we could reveal stale
4110 * data from files.
4111 */
4112
4113 uoff = current->offset + (start - current->start);
4114 size = MIN(end, current->end) - start;
4115 if (uobj != NULL) {
4116 rw_enter(uobj->vmobjlock, RW_WRITER);
4117 if (uobj->pgops->pgo_put != NULL)
4118 error = (uobj->pgops->pgo_put)(uobj, uoff,
4119 uoff + size, flags | PGO_CLEANIT);
4120 else
4121 error = 0;
4122 }
4123 start += size;
4124 }
4125 vm_map_unbusy(map);
4126 return error;
4127 }
4128
4129
4130 /*
4131 * uvm_map_checkprot: check protection in map
4132 *
4133 * => must allow specified protection in a fully allocated region.
4134 * => map must be read or write locked by caller.
4135 */
4136
4137 bool
4138 uvm_map_checkprot(struct vm_map *map, vaddr_t start, vaddr_t end,
4139 vm_prot_t protection)
4140 {
4141 struct vm_map_entry *entry;
4142 struct vm_map_entry *tmp_entry;
4143
4144 if (!uvm_map_lookup_entry(map, start, &tmp_entry)) {
4145 return (false);
4146 }
4147 entry = tmp_entry;
4148 while (start < end) {
4149 if (entry == &map->header) {
4150 return (false);
4151 }
4152
4153 /*
4154 * no holes allowed
4155 */
4156
4157 if (start < entry->start) {
4158 return (false);
4159 }
4160
4161 /*
4162 * check protection associated with entry
4163 */
4164
4165 if ((entry->protection & protection) != protection) {
4166 return (false);
4167 }
4168 start = entry->end;
4169 entry = entry->next;
4170 }
4171 return (true);
4172 }
4173
4174 /*
4175 * uvmspace_alloc: allocate a vmspace structure.
4176 *
4177 * - structure includes vm_map and pmap
4178 * - XXX: no locking on this structure
4179 * - refcnt set to 1, rest must be init'd by caller
4180 */
4181 struct vmspace *
4182 uvmspace_alloc(vaddr_t vmin, vaddr_t vmax, bool topdown)
4183 {
4184 struct vmspace *vm;
4185 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4186
4187 vm = kmem_alloc(sizeof(*vm), KM_SLEEP);
4188 uvmspace_init(vm, NULL, vmin, vmax, topdown);
4189 UVMHIST_LOG(maphist,"<- done (vm=%#jx)", (uintptr_t)vm, 0, 0, 0);
4190 return (vm);
4191 }
4192
4193 /*
4194 * uvmspace_init: initialize a vmspace structure.
4195 *
4196 * - XXX: no locking on this structure
4197 * - refcnt set to 1, rest must be init'd by caller
4198 */
4199 void
4200 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin,
4201 vaddr_t vmax, bool topdown)
4202 {
4203 UVMHIST_FUNC(__func__);
4204 UVMHIST_CALLARGS(maphist, "(vm=%#jx, pmap=%#jx, vmin=%#jx, vmax=%#jx",
4205 (uintptr_t)vm, (uintptr_t)pmap, vmin, vmax);
4206 UVMHIST_LOG(maphist, " topdown=%ju)", topdown, 0, 0, 0);
4207
4208 memset(vm, 0, sizeof(*vm));
4209 uvm_map_setup(&vm->vm_map, vmin, vmax, VM_MAP_PAGEABLE
4210 | (topdown ? VM_MAP_TOPDOWN : 0)
4211 );
4212 if (pmap)
4213 pmap_reference(pmap);
4214 else
4215 pmap = pmap_create();
4216 vm->vm_map.pmap = pmap;
4217 vm->vm_refcnt = 1;
4218 UVMHIST_LOG(maphist,"<- done",0,0,0,0);
4219 }
4220
4221 /*
4222 * uvmspace_share: share a vmspace between two processes
4223 *
4224 * - used for vfork, threads(?)
4225 */
4226
4227 void
4228 uvmspace_share(struct proc *p1, struct proc *p2)
4229 {
4230
4231 uvmspace_addref(p1->p_vmspace);
4232 p2->p_vmspace = p1->p_vmspace;
4233 }
4234
4235 #if 0
4236
4237 /*
4238 * uvmspace_unshare: ensure that process "p" has its own, unshared, vmspace
4239 *
4240 * - XXX: no locking on vmspace
4241 */
4242
4243 void
4244 uvmspace_unshare(struct lwp *l)
4245 {
4246 struct proc *p = l->l_proc;
4247 struct vmspace *nvm, *ovm = p->p_vmspace;
4248
4249 if (ovm->vm_refcnt == 1)
4250 /* nothing to do: vmspace isn't shared in the first place */
4251 return;
4252
4253 /* make a new vmspace, still holding old one */
4254 nvm = uvmspace_fork(ovm);
4255
4256 kpreempt_disable();
4257 pmap_deactivate(l); /* unbind old vmspace */
4258 p->p_vmspace = nvm;
4259 pmap_activate(l); /* switch to new vmspace */
4260 kpreempt_enable();
4261
4262 uvmspace_free(ovm); /* drop reference to old vmspace */
4263 }
4264
4265 #endif
4266
4267
4268 /*
4269 * uvmspace_spawn: a new process has been spawned and needs a vmspace
4270 */
4271
4272 void
4273 uvmspace_spawn(struct lwp *l, vaddr_t start, vaddr_t end, bool topdown)
4274 {
4275 struct proc *p = l->l_proc;
4276 struct vmspace *nvm;
4277
4278 #ifdef __HAVE_CPU_VMSPACE_EXEC
4279 cpu_vmspace_exec(l, start, end);
4280 #endif
4281
4282 nvm = uvmspace_alloc(start, end, topdown);
4283 kpreempt_disable();
4284 p->p_vmspace = nvm;
4285 pmap_activate(l);
4286 kpreempt_enable();
4287 }
4288
4289 /*
4290 * uvmspace_exec: the process wants to exec a new program
4291 */
4292
4293 void
4294 uvmspace_exec(struct lwp *l, vaddr_t start, vaddr_t end, bool topdown)
4295 {
4296 struct proc *p = l->l_proc;
4297 struct vmspace *nvm, *ovm = p->p_vmspace;
4298 struct vm_map *map;
4299 int flags;
4300
4301 KASSERT(ovm != NULL);
4302 #ifdef __HAVE_CPU_VMSPACE_EXEC
4303 cpu_vmspace_exec(l, start, end);
4304 #endif
4305
4306 map = &ovm->vm_map;
4307 /*
4308 * see if more than one process is using this vmspace...
4309 */
4310
4311 if (ovm->vm_refcnt == 1
4312 && topdown == ((ovm->vm_map.flags & VM_MAP_TOPDOWN) != 0)) {
4313
4314 /*
4315 * if p is the only process using its vmspace then we can safely
4316 * recycle that vmspace for the program that is being exec'd.
4317 * But only if TOPDOWN matches the requested value for the new
4318 * vm space!
4319 */
4320
4321 /*
4322 * SYSV SHM semantics require us to kill all segments on an exec
4323 */
4324 if (uvm_shmexit && ovm->vm_shm)
4325 (*uvm_shmexit)(ovm);
4326
4327 /*
4328 * POSIX 1003.1b -- "lock future mappings" is revoked
4329 * when a process execs another program image.
4330 */
4331
4332 map->flags &= ~VM_MAP_WIREFUTURE;
4333
4334 /*
4335 * now unmap the old program.
4336 *
4337 * XXX set VM_MAP_DYING for the duration, so pmap_update()
4338 * is not called until the pmap has been totally cleared out
4339 * after pmap_remove_all(), or it can confuse some pmap
4340 * implementations. it would be nice to handle this by
4341 * deferring the pmap_update() while it is known the address
4342 * space is not visible to any user LWP other than curlwp,
4343 * but there isn't an elegant way of inferring that right
4344 * now.
4345 */
4346
4347 flags = pmap_remove_all(map->pmap) ? UVM_FLAG_VAONLY : 0;
4348 map->flags |= VM_MAP_DYING;
4349 uvm_unmap1(map, vm_map_min(map), vm_map_max(map), flags);
4350 map->flags &= ~VM_MAP_DYING;
4351 pmap_update(map->pmap);
4352 KASSERT(map->header.prev == &map->header);
4353 KASSERT(map->nentries == 0);
4354
4355 /*
4356 * resize the map
4357 */
4358
4359 vm_map_setmin(map, start);
4360 vm_map_setmax(map, end);
4361 } else {
4362
4363 /*
4364 * p's vmspace is being shared, so we can't reuse it for p since
4365 * it is still being used for others. allocate a new vmspace
4366 * for p
4367 */
4368
4369 nvm = uvmspace_alloc(start, end, topdown);
4370
4371 /*
4372 * install new vmspace and drop our ref to the old one.
4373 */
4374
4375 kpreempt_disable();
4376 pmap_deactivate(l);
4377 p->p_vmspace = nvm;
4378 pmap_activate(l);
4379 kpreempt_enable();
4380
4381 uvmspace_free(ovm);
4382 }
4383 }
4384
4385 /*
4386 * uvmspace_addref: add a reference to a vmspace.
4387 */
4388
4389 void
4390 uvmspace_addref(struct vmspace *vm)
4391 {
4392
4393 KASSERT((vm->vm_map.flags & VM_MAP_DYING) == 0);
4394 KASSERT(vm->vm_refcnt > 0);
4395 atomic_inc_uint(&vm->vm_refcnt);
4396 }
4397
4398 /*
4399 * uvmspace_free: free a vmspace data structure
4400 */
4401
4402 void
4403 uvmspace_free(struct vmspace *vm)
4404 {
4405 struct vm_map_entry *dead_entries;
4406 struct vm_map *map = &vm->vm_map;
4407 int flags;
4408
4409 UVMHIST_FUNC(__func__);
4410 UVMHIST_CALLARGS(maphist,"(vm=%#jx) ref=%jd", (uintptr_t)vm,
4411 vm->vm_refcnt, 0, 0);
4412
4413 membar_release();
4414 if (atomic_dec_uint_nv(&vm->vm_refcnt) > 0)
4415 return;
4416 membar_acquire();
4417
4418 /*
4419 * at this point, there should be no other references to the map.
4420 * delete all of the mappings, then destroy the pmap.
4421 */
4422
4423 map->flags |= VM_MAP_DYING;
4424 flags = pmap_remove_all(map->pmap) ? UVM_FLAG_VAONLY : 0;
4425
4426 /* Get rid of any SYSV shared memory segments. */
4427 if (uvm_shmexit && vm->vm_shm != NULL)
4428 (*uvm_shmexit)(vm);
4429
4430 if (map->nentries) {
4431 vm_map_lock(map);
4432 uvm_unmap_remove(map, vm_map_min(map), vm_map_max(map),
4433 &dead_entries, flags);
4434 vm_map_unlock(map);
4435 if (dead_entries != NULL)
4436 uvm_unmap_detach(dead_entries, 0);
4437 }
4438 KASSERT(map->nentries == 0);
4439 KASSERT(map->size == 0);
4440
4441 mutex_destroy(&map->misc_lock);
4442 rw_destroy(&map->lock);
4443 cv_destroy(&map->cv);
4444 pmap_destroy(map->pmap);
4445 kmem_free(vm, sizeof(*vm));
4446 }
4447
4448 static struct vm_map_entry *
4449 uvm_mapent_clone(struct vm_map *new_map, struct vm_map_entry *old_entry,
4450 int flags)
4451 {
4452 struct vm_map_entry *new_entry;
4453
4454 new_entry = uvm_mapent_alloc(new_map, 0);
4455 /* old_entry -> new_entry */
4456 uvm_mapent_copy(old_entry, new_entry);
4457
4458 /* new pmap has nothing wired in it */
4459 new_entry->wired_count = 0;
4460
4461 /*
4462 * gain reference to object backing the map (can't
4463 * be a submap, already checked this case).
4464 */
4465
4466 if (new_entry->aref.ar_amap)
4467 uvm_map_reference_amap(new_entry, flags);
4468
4469 if (new_entry->object.uvm_obj &&
4470 new_entry->object.uvm_obj->pgops->pgo_reference)
4471 new_entry->object.uvm_obj->pgops->pgo_reference(
4472 new_entry->object.uvm_obj);
4473
4474 /* insert entry at end of new_map's entry list */
4475 uvm_map_entry_link(new_map, new_map->header.prev,
4476 new_entry);
4477
4478 return new_entry;
4479 }
4480
4481 /*
4482 * share the mapping: this means we want the old and
4483 * new entries to share amaps and backing objects.
4484 */
4485 static void
4486 uvm_mapent_forkshared(struct vm_map *new_map, struct vm_map *old_map,
4487 struct vm_map_entry *old_entry)
4488 {
4489 /*
4490 * if the old_entry needs a new amap (due to prev fork)
4491 * then we need to allocate it now so that we have
4492 * something we own to share with the new_entry. [in
4493 * other words, we need to clear needs_copy]
4494 */
4495
4496 if (UVM_ET_ISNEEDSCOPY(old_entry)) {
4497 /* get our own amap, clears needs_copy */
4498 amap_copy(old_map, old_entry, AMAP_COPY_NOCHUNK,
4499 0, 0);
4500 /* XXXCDC: WAITOK??? */
4501 }
4502
4503 uvm_mapent_clone(new_map, old_entry, AMAP_SHARED);
4504 }
4505
4506
4507 static void
4508 uvm_mapent_forkcopy(struct vm_map *new_map, struct vm_map *old_map,
4509 struct vm_map_entry *old_entry)
4510 {
4511 struct vm_map_entry *new_entry;
4512
4513 /*
4514 * copy-on-write the mapping (using mmap's
4515 * MAP_PRIVATE semantics)
4516 *
4517 * allocate new_entry, adjust reference counts.
4518 * (note that new references are read-only).
4519 */
4520
4521 new_entry = uvm_mapent_clone(new_map, old_entry, 0);
4522
4523 new_entry->etype |=
4524 (UVM_ET_COPYONWRITE|UVM_ET_NEEDSCOPY);
4525
4526 /*
4527 * the new entry will need an amap. it will either
4528 * need to be copied from the old entry or created
4529 * from scratch (if the old entry does not have an
4530 * amap). can we defer this process until later
4531 * (by setting "needs_copy") or do we need to copy
4532 * the amap now?
4533 *
4534 * we must copy the amap now if any of the following
4535 * conditions hold:
4536 * 1. the old entry has an amap and that amap is
4537 * being shared. this means that the old (parent)
4538 * process is sharing the amap with another
4539 * process. if we do not clear needs_copy here
4540 * we will end up in a situation where both the
4541 * parent and child process are referring to the
4542 * same amap with "needs_copy" set. if the
4543 * parent write-faults, the fault routine will
4544 * clear "needs_copy" in the parent by allocating
4545 * a new amap. this is wrong because the
4546 * parent is supposed to be sharing the old amap
4547 * and the new amap will break that.
4548 *
4549 * 2. if the old entry has an amap and a non-zero
4550 * wire count then we are going to have to call
4551 * amap_cow_now to avoid page faults in the
4552 * parent process. since amap_cow_now requires
4553 * "needs_copy" to be clear we might as well
4554 * clear it here as well.
4555 *
4556 */
4557
4558 if (old_entry->aref.ar_amap != NULL) {
4559 if ((amap_flags(old_entry->aref.ar_amap) & AMAP_SHARED) != 0 ||
4560 VM_MAPENT_ISWIRED(old_entry)) {
4561
4562 amap_copy(new_map, new_entry,
4563 AMAP_COPY_NOCHUNK, 0, 0);
4564 /* XXXCDC: M_WAITOK ... ok? */
4565 }
4566 }
4567
4568 /*
4569 * if the parent's entry is wired down, then the
4570 * parent process does not want page faults on
4571 * access to that memory. this means that we
4572 * cannot do copy-on-write because we can't write
4573 * protect the old entry. in this case we
4574 * resolve all copy-on-write faults now, using
4575 * amap_cow_now. note that we have already
4576 * allocated any needed amap (above).
4577 */
4578
4579 if (VM_MAPENT_ISWIRED(old_entry)) {
4580
4581 /*
4582 * resolve all copy-on-write faults now
4583 * (note that there is nothing to do if
4584 * the old mapping does not have an amap).
4585 */
4586 if (old_entry->aref.ar_amap)
4587 amap_cow_now(new_map, new_entry);
4588
4589 } else {
4590 /*
4591 * setup mappings to trigger copy-on-write faults
4592 * we must write-protect the parent if it has
4593 * an amap and it is not already "needs_copy"...
4594 * if it is already "needs_copy" then the parent
4595 * has already been write-protected by a previous
4596 * fork operation.
4597 */
4598 if (old_entry->aref.ar_amap &&
4599 !UVM_ET_ISNEEDSCOPY(old_entry)) {
4600 if (old_entry->max_protection & VM_PROT_WRITE) {
4601 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
4602 uvm_map_lock_entry(old_entry, RW_WRITER);
4603 #else
4604 uvm_map_lock_entry(old_entry, RW_READER);
4605 #endif
4606 pmap_protect(old_map->pmap,
4607 old_entry->start, old_entry->end,
4608 old_entry->protection & ~VM_PROT_WRITE);
4609 uvm_map_unlock_entry(old_entry);
4610 }
4611 old_entry->etype |= UVM_ET_NEEDSCOPY;
4612 }
4613 }
4614 }
4615
4616 /*
4617 * zero the mapping: the new entry will be zero initialized
4618 */
4619 static void
4620 uvm_mapent_forkzero(struct vm_map *new_map, struct vm_map *old_map,
4621 struct vm_map_entry *old_entry)
4622 {
4623 struct vm_map_entry *new_entry;
4624
4625 new_entry = uvm_mapent_clone(new_map, old_entry, 0);
4626
4627 new_entry->etype |=
4628 (UVM_ET_COPYONWRITE|UVM_ET_NEEDSCOPY);
4629
4630 if (new_entry->aref.ar_amap) {
4631 uvm_map_unreference_amap(new_entry, 0);
4632 new_entry->aref.ar_pageoff = 0;
4633 new_entry->aref.ar_amap = NULL;
4634 }
4635
4636 if (UVM_ET_ISOBJ(new_entry)) {
4637 if (new_entry->object.uvm_obj->pgops->pgo_detach)
4638 new_entry->object.uvm_obj->pgops->pgo_detach(
4639 new_entry->object.uvm_obj);
4640 new_entry->object.uvm_obj = NULL;
4641 new_entry->offset = 0;
4642 new_entry->etype &= ~UVM_ET_OBJ;
4643 }
4644 }
4645
4646 /*
4647 * F O R K - m a i n e n t r y p o i n t
4648 */
4649 /*
4650 * uvmspace_fork: fork a process' main map
4651 *
4652 * => create a new vmspace for child process from parent.
4653 * => parent's map must not be locked.
4654 */
4655
4656 struct vmspace *
4657 uvmspace_fork(struct vmspace *vm1)
4658 {
4659 struct vmspace *vm2;
4660 struct vm_map *old_map = &vm1->vm_map;
4661 struct vm_map *new_map;
4662 struct vm_map_entry *old_entry;
4663 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4664
4665 vm_map_lock(old_map);
4666
4667 vm2 = uvmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4668 vm1->vm_map.flags & VM_MAP_TOPDOWN);
4669 memcpy(&vm2->vm_startcopy, &vm1->vm_startcopy,
4670 (char *) (vm1 + 1) - (char *) &vm1->vm_startcopy);
4671 new_map = &vm2->vm_map; /* XXX */
4672
4673 old_entry = old_map->header.next;
4674 new_map->size = old_map->size;
4675
4676 /*
4677 * go entry-by-entry
4678 */
4679
4680 while (old_entry != &old_map->header) {
4681
4682 /*
4683 * first, some sanity checks on the old entry
4684 */
4685
4686 KASSERT(!UVM_ET_ISSUBMAP(old_entry));
4687 KASSERT(UVM_ET_ISCOPYONWRITE(old_entry) ||
4688 !UVM_ET_ISNEEDSCOPY(old_entry));
4689
4690 switch (old_entry->inheritance) {
4691 case MAP_INHERIT_NONE:
4692 /*
4693 * drop the mapping, modify size
4694 */
4695 new_map->size -= old_entry->end - old_entry->start;
4696 break;
4697
4698 case MAP_INHERIT_SHARE:
4699 uvm_mapent_forkshared(new_map, old_map, old_entry);
4700 break;
4701
4702 case MAP_INHERIT_COPY:
4703 uvm_mapent_forkcopy(new_map, old_map, old_entry);
4704 break;
4705
4706 case MAP_INHERIT_ZERO:
4707 uvm_mapent_forkzero(new_map, old_map, old_entry);
4708 break;
4709 default:
4710 KASSERT(0);
4711 break;
4712 }
4713 old_entry = old_entry->next;
4714 }
4715
4716 pmap_update(old_map->pmap);
4717 vm_map_unlock(old_map);
4718
4719 if (uvm_shmfork && vm1->vm_shm)
4720 (*uvm_shmfork)(vm1, vm2);
4721
4722 #ifdef PMAP_FORK
4723 pmap_fork(vm1->vm_map.pmap, vm2->vm_map.pmap);
4724 #endif
4725
4726 UVMHIST_LOG(maphist,"<- done",0,0,0,0);
4727 return (vm2);
4728 }
4729
4730
4731 /*
4732 * uvm_mapent_trymerge: try to merge an entry with its neighbors.
4733 *
4734 * => called with map locked.
4735 * => return non zero if successfully merged.
4736 */
4737
4738 int
4739 uvm_mapent_trymerge(struct vm_map *map, struct vm_map_entry *entry, int flags)
4740 {
4741 struct uvm_object *uobj;
4742 struct vm_map_entry *next;
4743 struct vm_map_entry *prev;
4744 vsize_t size;
4745 int merged = 0;
4746 bool copying;
4747 int newetype;
4748
4749 if (entry->aref.ar_amap != NULL) {
4750 return 0;
4751 }
4752 if ((entry->flags & UVM_MAP_NOMERGE) != 0) {
4753 return 0;
4754 }
4755
4756 uobj = entry->object.uvm_obj;
4757 size = entry->end - entry->start;
4758 copying = (flags & UVM_MERGE_COPYING) != 0;
4759 newetype = copying ? (entry->etype & ~UVM_ET_NEEDSCOPY) : entry->etype;
4760
4761 next = entry->next;
4762 if (next != &map->header &&
4763 next->start == entry->end &&
4764 ((copying && next->aref.ar_amap != NULL &&
4765 amap_refs(next->aref.ar_amap) == 1) ||
4766 (!copying && next->aref.ar_amap == NULL)) &&
4767 UVM_ET_ISCOMPATIBLE(next, newetype,
4768 uobj, entry->flags, entry->protection,
4769 entry->max_protection, entry->inheritance, entry->advice,
4770 entry->wired_count) &&
4771 (uobj == NULL || entry->offset + size == next->offset)) {
4772 int error;
4773
4774 if (copying) {
4775 error = amap_extend(next, size,
4776 AMAP_EXTEND_NOWAIT|AMAP_EXTEND_BACKWARDS);
4777 } else {
4778 error = 0;
4779 }
4780 if (error == 0) {
4781 if (uobj) {
4782 if (uobj->pgops->pgo_detach) {
4783 uobj->pgops->pgo_detach(uobj);
4784 }
4785 }
4786
4787 entry->end = next->end;
4788 clear_hints(map, next);
4789 uvm_map_entry_unlink(map, next);
4790 if (copying) {
4791 entry->aref = next->aref;
4792 entry->etype &= ~UVM_ET_NEEDSCOPY;
4793 }
4794 uvm_map_check(map, "trymerge forwardmerge");
4795 uvm_mapent_free(next);
4796 merged++;
4797 }
4798 }
4799
4800 prev = entry->prev;
4801 if (prev != &map->header &&
4802 prev->end == entry->start &&
4803 ((copying && !merged && prev->aref.ar_amap != NULL &&
4804 amap_refs(prev->aref.ar_amap) == 1) ||
4805 (!copying && prev->aref.ar_amap == NULL)) &&
4806 UVM_ET_ISCOMPATIBLE(prev, newetype,
4807 uobj, entry->flags, entry->protection,
4808 entry->max_protection, entry->inheritance, entry->advice,
4809 entry->wired_count) &&
4810 (uobj == NULL ||
4811 prev->offset + prev->end - prev->start == entry->offset)) {
4812 int error;
4813
4814 if (copying) {
4815 error = amap_extend(prev, size,
4816 AMAP_EXTEND_NOWAIT|AMAP_EXTEND_FORWARDS);
4817 } else {
4818 error = 0;
4819 }
4820 if (error == 0) {
4821 if (uobj) {
4822 if (uobj->pgops->pgo_detach) {
4823 uobj->pgops->pgo_detach(uobj);
4824 }
4825 entry->offset = prev->offset;
4826 }
4827
4828 entry->start = prev->start;
4829 clear_hints(map, prev);
4830 uvm_map_entry_unlink(map, prev);
4831 if (copying) {
4832 entry->aref = prev->aref;
4833 entry->etype &= ~UVM_ET_NEEDSCOPY;
4834 }
4835 uvm_map_check(map, "trymerge backmerge");
4836 uvm_mapent_free(prev);
4837 merged++;
4838 }
4839 }
4840
4841 return merged;
4842 }
4843
4844 /*
4845 * uvm_map_setup: init map
4846 *
4847 * => map must not be in service yet.
4848 */
4849
4850 void
4851 uvm_map_setup(struct vm_map *map, vaddr_t vmin, vaddr_t vmax, int flags)
4852 {
4853
4854 rb_tree_init(&map->rb_tree, &uvm_map_tree_ops);
4855 map->header.next = map->header.prev = &map->header;
4856 map->nentries = 0;
4857 map->size = 0;
4858 map->ref_count = 1;
4859 vm_map_setmin(map, vmin);
4860 vm_map_setmax(map, vmax);
4861 map->flags = flags;
4862 map->first_free = &map->header;
4863 map->hint = &map->header;
4864 map->timestamp = 0;
4865 map->busy = NULL;
4866
4867 rw_init(&map->lock);
4868 cv_init(&map->cv, "vm_map");
4869 mutex_init(&map->misc_lock, MUTEX_DRIVER, IPL_NONE);
4870 }
4871
4872 /*
4873 * U N M A P - m a i n e n t r y p o i n t
4874 */
4875
4876 /*
4877 * uvm_unmap1: remove mappings from a vm_map (from "start" up to "stop")
4878 *
4879 * => caller must check alignment and size
4880 * => map must be unlocked (we will lock it)
4881 * => flags is UVM_FLAG_QUANTUM or 0.
4882 */
4883
4884 void
4885 uvm_unmap1(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
4886 {
4887 struct vm_map_entry *dead_entries;
4888 UVMHIST_FUNC(__func__);
4889 UVMHIST_CALLARGS(maphist, " (map=%#jx, start=%#jx, end=%#jx)",
4890 (uintptr_t)map, start, end, 0);
4891
4892 KASSERTMSG(start < end,
4893 "%s: map %p: start %#jx < end %#jx", __func__, map,
4894 (uintmax_t)start, (uintmax_t)end);
4895 if (map == kernel_map) {
4896 LOCKDEBUG_MEM_CHECK((void *)start, end - start);
4897 }
4898
4899 /*
4900 * work now done by helper functions. wipe the pmap's and then
4901 * detach from the dead entries...
4902 */
4903 vm_map_lock(map);
4904 uvm_unmap_remove(map, start, end, &dead_entries, flags);
4905 vm_map_unlock(map);
4906
4907 if (dead_entries != NULL)
4908 uvm_unmap_detach(dead_entries, 0);
4909
4910 UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
4911 }
4912
4913
4914 /*
4915 * uvm_map_reference: add reference to a map
4916 *
4917 * => map need not be locked
4918 */
4919
4920 void
4921 uvm_map_reference(struct vm_map *map)
4922 {
4923
4924 atomic_inc_uint(&map->ref_count);
4925 }
4926
4927 void
4928 uvm_map_lock_entry(struct vm_map_entry *entry, krw_t op)
4929 {
4930
4931 if (entry->aref.ar_amap != NULL) {
4932 amap_lock(entry->aref.ar_amap, op);
4933 }
4934 if (UVM_ET_ISOBJ(entry)) {
4935 rw_enter(entry->object.uvm_obj->vmobjlock, op);
4936 }
4937 }
4938
4939 void
4940 uvm_map_unlock_entry(struct vm_map_entry *entry)
4941 {
4942
4943 if (UVM_ET_ISOBJ(entry)) {
4944 rw_exit(entry->object.uvm_obj->vmobjlock);
4945 }
4946 if (entry->aref.ar_amap != NULL) {
4947 amap_unlock(entry->aref.ar_amap);
4948 }
4949 }
4950
4951 #define UVM_VOADDR_TYPE_MASK 0x3UL
4952 #define UVM_VOADDR_TYPE_UOBJ 0x1UL
4953 #define UVM_VOADDR_TYPE_ANON 0x2UL
4954 #define UVM_VOADDR_OBJECT_MASK ~UVM_VOADDR_TYPE_MASK
4955
4956 #define UVM_VOADDR_GET_TYPE(voa) \
4957 ((voa)->object & UVM_VOADDR_TYPE_MASK)
4958 #define UVM_VOADDR_GET_OBJECT(voa) \
4959 ((voa)->object & UVM_VOADDR_OBJECT_MASK)
4960 #define UVM_VOADDR_SET_OBJECT(voa, obj, type) \
4961 do { \
4962 KASSERT(((uintptr_t)(obj) & UVM_VOADDR_TYPE_MASK) == 0); \
4963 (voa)->object = ((uintptr_t)(obj)) | (type); \
4964 } while (/*CONSTCOND*/0)
4965
4966 #define UVM_VOADDR_GET_UOBJ(voa) \
4967 ((struct uvm_object *)UVM_VOADDR_GET_OBJECT(voa))
4968 #define UVM_VOADDR_SET_UOBJ(voa, uobj) \
4969 UVM_VOADDR_SET_OBJECT(voa, uobj, UVM_VOADDR_TYPE_UOBJ)
4970
4971 #define UVM_VOADDR_GET_ANON(voa) \
4972 ((struct vm_anon *)UVM_VOADDR_GET_OBJECT(voa))
4973 #define UVM_VOADDR_SET_ANON(voa, anon) \
4974 UVM_VOADDR_SET_OBJECT(voa, anon, UVM_VOADDR_TYPE_ANON)
4975
4976 /*
4977 * uvm_voaddr_acquire: returns the virtual object address corresponding
4978 * to the specified virtual address.
4979 *
4980 * => resolves COW so the true page identity is tracked.
4981 *
4982 * => acquires a reference on the page's owner (uvm_object or vm_anon)
4983 */
4984 bool
4985 uvm_voaddr_acquire(struct vm_map * const map, vaddr_t const va,
4986 struct uvm_voaddr * const voaddr)
4987 {
4988 struct vm_map_entry *entry;
4989 struct vm_anon *anon = NULL;
4990 bool result = false;
4991 bool exclusive = false;
4992 void (*unlock_fn)(struct vm_map *);
4993
4994 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4995 UVMHIST_LOG(maphist,"(map=%#jx,va=%#jx)", (uintptr_t)map, va, 0, 0);
4996
4997 const vaddr_t start = trunc_page(va);
4998 const vaddr_t end = round_page(va+1);
4999
5000 lookup_again:
5001 if (__predict_false(exclusive)) {
5002 vm_map_lock(map);
5003 unlock_fn = vm_map_unlock;
5004 } else {
5005 vm_map_lock_read(map);
5006 unlock_fn = vm_map_unlock_read;
5007 }
5008
5009 if (__predict_false(!uvm_map_lookup_entry(map, start, &entry))) {
5010 unlock_fn(map);
5011 UVMHIST_LOG(maphist,"<- done (no entry)",0,0,0,0);
5012 return false;
5013 }
5014
5015 if (__predict_false(entry->protection == VM_PROT_NONE)) {
5016 unlock_fn(map);
5017 UVMHIST_LOG(maphist,"<- done (PROT_NONE)",0,0,0,0);
5018 return false;
5019 }
5020
5021 /*
5022 * We have a fast path for the common case of "no COW resolution
5023 * needed" whereby we have taken a read lock on the map and if
5024 * we don't encounter any need to create a vm_anon then great!
5025 * But if we do, we loop around again, instead taking an exclusive
5026 * lock so that we can perform the fault.
5027 *
5028 * In the event that we have to resolve the fault, we do nearly the
5029 * same work as uvm_map_pageable() does:
5030 *
5031 * 1: holding the write lock, we create any anonymous maps that need
5032 * to be created. however, we do NOT need to clip the map entries
5033 * in this case.
5034 *
5035 * 2: we downgrade to a read lock, and call uvm_fault_wire to fault
5036 * in the page (assuming the entry is not already wired). this
5037 * is done because we need the vm_anon to be present.
5038 */
5039 if (__predict_true(!VM_MAPENT_ISWIRED(entry))) {
5040
5041 bool need_fault = false;
5042
5043 /*
5044 * perform the action of vm_map_lookup that need the
5045 * write lock on the map: create an anonymous map for
5046 * a copy-on-write region, or an anonymous map for
5047 * a zero-fill region.
5048 */
5049 if (__predict_false(UVM_ET_ISSUBMAP(entry))) {
5050 unlock_fn(map);
5051 UVMHIST_LOG(maphist,"<- done (submap)",0,0,0,0);
5052 return false;
5053 }
5054 if (__predict_false(UVM_ET_ISNEEDSCOPY(entry) &&
5055 ((entry->max_protection & VM_PROT_WRITE) ||
5056 (entry->object.uvm_obj == NULL)))) {
5057 if (!exclusive) {
5058 /* need to take the slow path */
5059 KASSERT(unlock_fn == vm_map_unlock_read);
5060 vm_map_unlock_read(map);
5061 exclusive = true;
5062 goto lookup_again;
5063 }
5064 need_fault = true;
5065 amap_copy(map, entry, 0, start, end);
5066 /* XXXCDC: wait OK? */
5067 }
5068
5069 /*
5070 * do a quick check to see if the fault has already
5071 * been resolved to the upper layer.
5072 */
5073 if (__predict_true(entry->aref.ar_amap != NULL &&
5074 need_fault == false)) {
5075 amap_lock(entry->aref.ar_amap, RW_WRITER);
5076 anon = amap_lookup(&entry->aref, start - entry->start);
5077 if (__predict_true(anon != NULL)) {
5078 /* amap unlocked below */
5079 goto found_anon;
5080 }
5081 amap_unlock(entry->aref.ar_amap);
5082 need_fault = true;
5083 }
5084
5085 /*
5086 * we predict this test as false because if we reach
5087 * this point, then we are likely dealing with a
5088 * shared memory region backed by a uvm_object, in
5089 * which case a fault to create the vm_anon is not
5090 * necessary.
5091 */
5092 if (__predict_false(need_fault)) {
5093 if (exclusive) {
5094 vm_map_busy(map);
5095 vm_map_unlock(map);
5096 unlock_fn = vm_map_unbusy;
5097 }
5098
5099 if (uvm_fault_wire(map, start, end,
5100 entry->max_protection, 1)) {
5101 /* wiring failed */
5102 unlock_fn(map);
5103 UVMHIST_LOG(maphist,"<- done (wire failed)",
5104 0,0,0,0);
5105 return false;
5106 }
5107
5108 /*
5109 * now that we have resolved the fault, we can unwire
5110 * the page.
5111 */
5112 if (exclusive) {
5113 vm_map_lock(map);
5114 vm_map_unbusy(map);
5115 unlock_fn = vm_map_unlock;
5116 }
5117
5118 uvm_fault_unwire_locked(map, start, end);
5119 }
5120 }
5121
5122 /* check the upper layer */
5123 if (entry->aref.ar_amap) {
5124 amap_lock(entry->aref.ar_amap, RW_WRITER);
5125 anon = amap_lookup(&entry->aref, start - entry->start);
5126 if (anon) {
5127 found_anon: KASSERT(anon->an_lock == entry->aref.ar_amap->am_lock);
5128 anon->an_ref++;
5129 rw_obj_hold(anon->an_lock);
5130 KASSERT(anon->an_ref != 0);
5131 UVM_VOADDR_SET_ANON(voaddr, anon);
5132 voaddr->offset = va & PAGE_MASK;
5133 result = true;
5134 }
5135 amap_unlock(entry->aref.ar_amap);
5136 }
5137
5138 /* check the lower layer */
5139 if (!result && UVM_ET_ISOBJ(entry)) {
5140 struct uvm_object *uobj = entry->object.uvm_obj;
5141
5142 KASSERT(uobj != NULL);
5143 (*uobj->pgops->pgo_reference)(uobj);
5144 UVM_VOADDR_SET_UOBJ(voaddr, uobj);
5145 voaddr->offset = entry->offset + (va - entry->start);
5146 result = true;
5147 }
5148
5149 unlock_fn(map);
5150
5151 if (result) {
5152 UVMHIST_LOG(maphist,
5153 "<- done OK (type=%jd,owner=%#jx,offset=%#jx)",
5154 UVM_VOADDR_GET_TYPE(voaddr),
5155 UVM_VOADDR_GET_OBJECT(voaddr),
5156 voaddr->offset, 0);
5157 } else {
5158 UVMHIST_LOG(maphist,"<- done (failed)",0,0,0,0);
5159 }
5160
5161 return result;
5162 }
5163
5164 /*
5165 * uvm_voaddr_release: release the references held by the
5166 * vitual object address.
5167 */
5168 void
5169 uvm_voaddr_release(struct uvm_voaddr * const voaddr)
5170 {
5171
5172 switch (UVM_VOADDR_GET_TYPE(voaddr)) {
5173 case UVM_VOADDR_TYPE_UOBJ: {
5174 struct uvm_object * const uobj = UVM_VOADDR_GET_UOBJ(voaddr);
5175
5176 KASSERT(uobj != NULL);
5177 KASSERT(uobj->pgops->pgo_detach != NULL);
5178 (*uobj->pgops->pgo_detach)(uobj);
5179 break;
5180 }
5181 case UVM_VOADDR_TYPE_ANON: {
5182 struct vm_anon * const anon = UVM_VOADDR_GET_ANON(voaddr);
5183 krwlock_t *lock;
5184
5185 KASSERT(anon != NULL);
5186 rw_enter((lock = anon->an_lock), RW_WRITER);
5187 KASSERT(anon->an_ref > 0);
5188 if (--anon->an_ref == 0) {
5189 uvm_anfree(anon);
5190 }
5191 rw_exit(lock);
5192 rw_obj_free(lock);
5193 break;
5194 }
5195 default:
5196 panic("uvm_voaddr_release: bad type");
5197 }
5198 memset(voaddr, 0, sizeof(*voaddr));
5199 }
5200
5201 /*
5202 * uvm_voaddr_compare: compare two uvm_voaddr objects.
5203 *
5204 * => memcmp() semantics
5205 */
5206 int
5207 uvm_voaddr_compare(const struct uvm_voaddr * const voaddr1,
5208 const struct uvm_voaddr * const voaddr2)
5209 {
5210 const uintptr_t type1 = UVM_VOADDR_GET_TYPE(voaddr1);
5211 const uintptr_t type2 = UVM_VOADDR_GET_TYPE(voaddr2);
5212
5213 KASSERT(type1 == UVM_VOADDR_TYPE_UOBJ ||
5214 type1 == UVM_VOADDR_TYPE_ANON);
5215
5216 KASSERT(type2 == UVM_VOADDR_TYPE_UOBJ ||
5217 type2 == UVM_VOADDR_TYPE_ANON);
5218
5219 if (type1 < type2)
5220 return -1;
5221 if (type1 > type2)
5222 return 1;
5223
5224 const uintptr_t addr1 = UVM_VOADDR_GET_OBJECT(voaddr1);
5225 const uintptr_t addr2 = UVM_VOADDR_GET_OBJECT(voaddr2);
5226
5227 if (addr1 < addr2)
5228 return -1;
5229 if (addr1 > addr2)
5230 return 1;
5231
5232 if (voaddr1->offset < voaddr2->offset)
5233 return -1;
5234 if (voaddr1->offset > voaddr2->offset)
5235 return 1;
5236
5237 return 0;
5238 }
5239
5240 #if defined(DDB) || defined(DEBUGPRINT)
5241
5242 /*
5243 * uvm_map_printit: actually prints the map
5244 */
5245
5246 void
5247 uvm_map_printit(struct vm_map *map, bool full,
5248 void (*pr)(const char *, ...))
5249 {
5250 struct vm_map_entry *entry;
5251
5252 (*pr)("MAP %p: [%#lx->%#lx]\n", map, vm_map_min(map),
5253 vm_map_max(map));
5254 (*pr)("\t#ent=%d, sz=%d, ref=%d, version=%d, flags=%#x\n",
5255 map->nentries, map->size, map->ref_count, map->timestamp,
5256 map->flags);
5257 (*pr)("\tpmap=%p(resident=%ld, wired=%ld)\n", map->pmap,
5258 pmap_resident_count(map->pmap), pmap_wired_count(map->pmap));
5259 if (!full)
5260 return;
5261 for (entry = map->header.next; entry != &map->header;
5262 entry = entry->next) {
5263 (*pr)(" - %p: %#lx->%#lx: obj=%p/%#llx, amap=%p/%d\n",
5264 entry, entry->start, entry->end, entry->object.uvm_obj,
5265 (long long)entry->offset, entry->aref.ar_amap,
5266 entry->aref.ar_pageoff);
5267 (*pr)(
5268 "\tsubmap=%c, cow=%c, nc=%c, prot(max)=%d/%d, inh=%d, "
5269 "wc=%d, adv=%d%s\n",
5270 (entry->etype & UVM_ET_SUBMAP) ? 'T' : 'F',
5271 (entry->etype & UVM_ET_COPYONWRITE) ? 'T' : 'F',
5272 (entry->etype & UVM_ET_NEEDSCOPY) ? 'T' : 'F',
5273 entry->protection, entry->max_protection,
5274 entry->inheritance, entry->wired_count, entry->advice,
5275 entry == map->first_free ? " (first_free)" : "");
5276 }
5277 }
5278
5279 void
5280 uvm_whatis(uintptr_t addr, void (*pr)(const char *, ...))
5281 {
5282 struct vm_map *map;
5283
5284 for (map = kernel_map;;) {
5285 struct vm_map_entry *entry;
5286
5287 if (!uvm_map_lookup_entry_bytree(map, (vaddr_t)addr, &entry)) {
5288 break;
5289 }
5290 (*pr)("%p is %p+%zu from VMMAP %p\n",
5291 (void *)addr, (void *)entry->start,
5292 (size_t)(addr - (uintptr_t)entry->start), map);
5293 if (!UVM_ET_ISSUBMAP(entry)) {
5294 break;
5295 }
5296 map = entry->object.sub_map;
5297 }
5298 }
5299
5300 #endif /* DDB || DEBUGPRINT */
5301
5302 #ifndef __USER_VA0_IS_SAFE
5303 static int
5304 sysctl_user_va0_disable(SYSCTLFN_ARGS)
5305 {
5306 struct sysctlnode node;
5307 int t, error;
5308
5309 node = *rnode;
5310 node.sysctl_data = &t;
5311 t = user_va0_disable;
5312 error = sysctl_lookup(SYSCTLFN_CALL(&node));
5313 if (error || newp == NULL)
5314 return (error);
5315
5316 if (!t && user_va0_disable &&
5317 kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_MAP_VA_ZERO, 0,
5318 NULL, NULL, NULL))
5319 return EPERM;
5320
5321 user_va0_disable = !!t;
5322 return 0;
5323 }
5324 #endif
5325
5326 static int
5327 fill_vmentry(struct lwp *l, struct proc *p, struct kinfo_vmentry *kve,
5328 struct vm_map *m, struct vm_map_entry *e)
5329 {
5330 #ifndef _RUMPKERNEL
5331 int error;
5332
5333 memset(kve, 0, sizeof(*kve));
5334 KASSERT(e != NULL);
5335 if (UVM_ET_ISOBJ(e)) {
5336 struct uvm_object *uobj = e->object.uvm_obj;
5337 KASSERT(uobj != NULL);
5338 kve->kve_ref_count = uobj->uo_refs;
5339 kve->kve_count = uobj->uo_npages;
5340 if (UVM_OBJ_IS_VNODE(uobj)) {
5341 struct vattr va;
5342 struct vnode *vp = (struct vnode *)uobj;
5343 vn_lock(vp, LK_SHARED | LK_RETRY);
5344 error = VOP_GETATTR(vp, &va, l->l_cred);
5345 VOP_UNLOCK(vp);
5346 kve->kve_type = KVME_TYPE_VNODE;
5347 if (error == 0) {
5348 kve->kve_vn_size = vp->v_size;
5349 kve->kve_vn_type = (int)vp->v_type;
5350 kve->kve_vn_mode = va.va_mode;
5351 kve->kve_vn_rdev = va.va_rdev;
5352 kve->kve_vn_fileid = va.va_fileid;
5353 kve->kve_vn_fsid = va.va_fsid;
5354 error = vnode_to_path(kve->kve_path,
5355 sizeof(kve->kve_path) / 2, vp, l, p);
5356 }
5357 } else if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
5358 kve->kve_type = KVME_TYPE_KERN;
5359 } else if (UVM_OBJ_IS_DEVICE(uobj)) {
5360 kve->kve_type = KVME_TYPE_DEVICE;
5361 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
5362 kve->kve_type = KVME_TYPE_ANON;
5363 } else {
5364 kve->kve_type = KVME_TYPE_OBJECT;
5365 }
5366 } else if (UVM_ET_ISSUBMAP(e)) {
5367 struct vm_map *map = e->object.sub_map;
5368 KASSERT(map != NULL);
5369 kve->kve_ref_count = map->ref_count;
5370 kve->kve_count = map->nentries;
5371 kve->kve_type = KVME_TYPE_SUBMAP;
5372 } else
5373 kve->kve_type = KVME_TYPE_UNKNOWN;
5374
5375 kve->kve_start = e->start;
5376 kve->kve_end = e->end;
5377 kve->kve_offset = e->offset;
5378 kve->kve_wired_count = e->wired_count;
5379 kve->kve_inheritance = e->inheritance;
5380 kve->kve_attributes = 0; /* unused */
5381 kve->kve_advice = e->advice;
5382 #define PROT(p) (((p) & VM_PROT_READ) ? KVME_PROT_READ : 0) | \
5383 (((p) & VM_PROT_WRITE) ? KVME_PROT_WRITE : 0) | \
5384 (((p) & VM_PROT_EXECUTE) ? KVME_PROT_EXEC : 0)
5385 kve->kve_protection = PROT(e->protection);
5386 kve->kve_max_protection = PROT(e->max_protection);
5387 kve->kve_flags |= (e->etype & UVM_ET_COPYONWRITE)
5388 ? KVME_FLAG_COW : 0;
5389 kve->kve_flags |= (e->etype & UVM_ET_NEEDSCOPY)
5390 ? KVME_FLAG_NEEDS_COPY : 0;
5391 kve->kve_flags |= (m->flags & VM_MAP_TOPDOWN)
5392 ? KVME_FLAG_GROWS_DOWN : KVME_FLAG_GROWS_UP;
5393 kve->kve_flags |= (m->flags & VM_MAP_PAGEABLE)
5394 ? KVME_FLAG_PAGEABLE : 0;
5395 #endif
5396 return 0;
5397 }
5398
5399 static int
5400 fill_vmentries(struct lwp *l, pid_t pid, u_int elem_size, void *oldp,
5401 size_t *oldlenp)
5402 {
5403 int error;
5404 struct proc *p;
5405 struct kinfo_vmentry *vme;
5406 struct vmspace *vm;
5407 struct vm_map *map;
5408 struct vm_map_entry *entry;
5409 char *dp;
5410 size_t count, vmesize;
5411
5412 if (elem_size == 0 || elem_size > 2 * sizeof(*vme))
5413 return EINVAL;
5414
5415 if (oldp) {
5416 if (*oldlenp > 10UL * 1024UL * 1024UL)
5417 return E2BIG;
5418 count = *oldlenp / elem_size;
5419 if (count == 0)
5420 return ENOMEM;
5421 vmesize = count * sizeof(*vme);
5422 } else
5423 vmesize = 0;
5424
5425 if ((error = proc_find_locked(l, &p, pid)) != 0)
5426 return error;
5427
5428 vme = NULL;
5429 count = 0;
5430
5431 if ((error = proc_vmspace_getref(p, &vm)) != 0)
5432 goto out;
5433
5434 map = &vm->vm_map;
5435 vm_map_lock_read(map);
5436
5437 dp = oldp;
5438 if (oldp)
5439 vme = kmem_alloc(vmesize, KM_SLEEP);
5440 for (entry = map->header.next; entry != &map->header;
5441 entry = entry->next) {
5442 if (oldp && (dp - (char *)oldp) < vmesize) {
5443 error = fill_vmentry(l, p, &vme[count], map, entry);
5444 if (error)
5445 goto out;
5446 dp += elem_size;
5447 }
5448 count++;
5449 }
5450 vm_map_unlock_read(map);
5451 uvmspace_free(vm);
5452
5453 out:
5454 if (pid != -1)
5455 mutex_exit(p->p_lock);
5456 if (error == 0) {
5457 const u_int esize = uimin(sizeof(*vme), elem_size);
5458 dp = oldp;
5459 for (size_t i = 0; i < count; i++) {
5460 if (oldp && (dp - (char *)oldp) < vmesize) {
5461 error = sysctl_copyout(l, &vme[i], dp, esize);
5462 if (error)
5463 break;
5464 dp += elem_size;
5465 } else
5466 break;
5467 }
5468 count *= elem_size;
5469 if (oldp != NULL && *oldlenp < count)
5470 error = ENOSPC;
5471 *oldlenp = count;
5472 }
5473 if (vme)
5474 kmem_free(vme, vmesize);
5475 return error;
5476 }
5477
5478 static int
5479 sysctl_vmproc(SYSCTLFN_ARGS)
5480 {
5481 int error;
5482
5483 if (namelen == 1 && name[0] == CTL_QUERY)
5484 return (sysctl_query(SYSCTLFN_CALL(rnode)));
5485
5486 if (namelen == 0)
5487 return EINVAL;
5488
5489 switch (name[0]) {
5490 case VM_PROC_MAP:
5491 if (namelen != 3)
5492 return EINVAL;
5493 sysctl_unlock();
5494 error = fill_vmentries(l, name[1], name[2], oldp, oldlenp);
5495 sysctl_relock();
5496 return error;
5497 default:
5498 return EINVAL;
5499 }
5500 }
5501
5502 SYSCTL_SETUP(sysctl_uvmmap_setup, "sysctl uvmmap setup")
5503 {
5504
5505 sysctl_createv(clog, 0, NULL, NULL,
5506 CTLFLAG_PERMANENT,
5507 CTLTYPE_STRUCT, "proc",
5508 SYSCTL_DESCR("Process vm information"),
5509 sysctl_vmproc, 0, NULL, 0,
5510 CTL_VM, VM_PROC, CTL_EOL);
5511 #ifndef __USER_VA0_IS_SAFE
5512 sysctl_createv(clog, 0, NULL, NULL,
5513 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5514 CTLTYPE_INT, "user_va0_disable",
5515 SYSCTL_DESCR("Disable VA 0"),
5516 sysctl_user_va0_disable, 0, &user_va0_disable, 0,
5517 CTL_VM, CTL_CREATE, CTL_EOL);
5518 #endif
5519 }
5520