uvm_map.c revision 1.425 1 /* $NetBSD: uvm_map.c,v 1.425 2024/08/15 11:33:21 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vm_map.c 8.3 (Berkeley) 1/12/94
37 * from: Id: uvm_map.c,v 1.1.2.27 1998/02/07 01:16:54 chs Exp
38 *
39 *
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
48 *
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 *
53 * Carnegie Mellon requests users of this software to return to
54 *
55 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 * School of Computer Science
57 * Carnegie Mellon University
58 * Pittsburgh PA 15213-3890
59 *
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
62 */
63
64 /*
65 * uvm_map.c: uvm map operations
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: uvm_map.c,v 1.425 2024/08/15 11:33:21 riastradh Exp $");
70
71 #include "opt_ddb.h"
72 #include "opt_pax.h"
73 #include "opt_uvmhist.h"
74 #include "opt_uvm.h"
75 #include "opt_sysv.h"
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/mman.h>
80 #include <sys/proc.h>
81 #include <sys/pool.h>
82 #include <sys/kernel.h>
83 #include <sys/mount.h>
84 #include <sys/pax.h>
85 #include <sys/vnode.h>
86 #include <sys/filedesc.h>
87 #include <sys/lockdebug.h>
88 #include <sys/atomic.h>
89 #include <sys/sysctl.h>
90 #ifndef __USER_VA0_IS_SAFE
91 #include <sys/kauth.h>
92 #include "opt_user_va0_disable_default.h"
93 #endif
94
95 #include <sys/shm.h>
96
97 #include <uvm/uvm.h>
98 #include <uvm/uvm_readahead.h>
99
100 #if defined(DDB) || defined(DEBUGPRINT)
101 #include <uvm/uvm_ddb.h>
102 #endif
103
104 #ifdef UVMHIST
105 #ifndef UVMHIST_MAPHIST_SIZE
106 #define UVMHIST_MAPHIST_SIZE 100
107 #endif
108 static struct kern_history_ent maphistbuf[UVMHIST_MAPHIST_SIZE];
109 UVMHIST_DEFINE(maphist) = UVMHIST_INITIALIZER(maphist, maphistbuf);
110 #endif
111
112 #if !defined(UVMMAP_COUNTERS)
113
114 #define UVMMAP_EVCNT_DEFINE(name) /* nothing */
115 #define UVMMAP_EVCNT_INCR(ev) /* nothing */
116 #define UVMMAP_EVCNT_DECR(ev) /* nothing */
117
118 #else /* defined(UVMMAP_NOCOUNTERS) */
119
120 #include <sys/evcnt.h>
121 #define UVMMAP_EVCNT_DEFINE(name) \
122 struct evcnt uvmmap_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
123 "uvmmap", #name); \
124 EVCNT_ATTACH_STATIC(uvmmap_evcnt_##name);
125 #define UVMMAP_EVCNT_INCR(ev) uvmmap_evcnt_##ev.ev_count++
126 #define UVMMAP_EVCNT_DECR(ev) uvmmap_evcnt_##ev.ev_count--
127
128 #endif /* defined(UVMMAP_NOCOUNTERS) */
129
130 UVMMAP_EVCNT_DEFINE(ubackmerge)
131 UVMMAP_EVCNT_DEFINE(uforwmerge)
132 UVMMAP_EVCNT_DEFINE(ubimerge)
133 UVMMAP_EVCNT_DEFINE(unomerge)
134 UVMMAP_EVCNT_DEFINE(kbackmerge)
135 UVMMAP_EVCNT_DEFINE(kforwmerge)
136 UVMMAP_EVCNT_DEFINE(kbimerge)
137 UVMMAP_EVCNT_DEFINE(knomerge)
138 UVMMAP_EVCNT_DEFINE(map_call)
139 UVMMAP_EVCNT_DEFINE(mlk_call)
140 UVMMAP_EVCNT_DEFINE(mlk_hint)
141 UVMMAP_EVCNT_DEFINE(mlk_tree)
142 UVMMAP_EVCNT_DEFINE(mlk_treeloop)
143
144 const char vmmapbsy[] = "vmmapbsy";
145
146 /*
147 * cache for dynamically-allocated map entries.
148 */
149
150 static struct pool_cache uvm_map_entry_cache;
151
152 #ifdef PMAP_GROWKERNEL
153 /*
154 * This global represents the end of the kernel virtual address
155 * space. If we want to exceed this, we must grow the kernel
156 * virtual address space dynamically.
157 *
158 * Note, this variable is locked by kernel_map's lock.
159 */
160 vaddr_t uvm_maxkaddr;
161 #endif
162
163 #ifndef __USER_VA0_IS_SAFE
164 #ifndef __USER_VA0_DISABLE_DEFAULT
165 #define __USER_VA0_DISABLE_DEFAULT 1
166 #endif
167 #ifdef USER_VA0_DISABLE_DEFAULT /* kernel config option overrides */
168 #undef __USER_VA0_DISABLE_DEFAULT
169 #define __USER_VA0_DISABLE_DEFAULT USER_VA0_DISABLE_DEFAULT
170 #endif
171 int user_va0_disable = __USER_VA0_DISABLE_DEFAULT;
172 #endif
173
174 /*
175 * macros
176 */
177
178 /*
179 * uvm_map_align_va: round down or up virtual address
180 */
181 static __inline void
182 uvm_map_align_va(vaddr_t *vap, vsize_t align, int topdown)
183 {
184
185 KASSERT(powerof2(align));
186
187 if (align != 0 && (*vap & (align - 1)) != 0) {
188 if (topdown)
189 *vap = rounddown2(*vap, align);
190 else
191 *vap = roundup2(*vap, align);
192 }
193 }
194
195 /*
196 * UVM_ET_ISCOMPATIBLE: check some requirements for map entry merging
197 */
198 extern struct vm_map *pager_map;
199
200 #define UVM_ET_ISCOMPATIBLE(ent, type, uobj, meflags, \
201 prot, maxprot, inh, adv, wire) \
202 ((ent)->etype == (type) && \
203 (((ent)->flags ^ (meflags)) & (UVM_MAP_NOMERGE)) == 0 && \
204 (ent)->object.uvm_obj == (uobj) && \
205 (ent)->protection == (prot) && \
206 (ent)->max_protection == (maxprot) && \
207 (ent)->inheritance == (inh) && \
208 (ent)->advice == (adv) && \
209 (ent)->wired_count == (wire))
210
211 /*
212 * uvm_map_entry_link: insert entry into a map
213 *
214 * => map must be locked
215 */
216 #define uvm_map_entry_link(map, after_where, entry) do { \
217 uvm_mapent_check(entry); \
218 (map)->nentries++; \
219 (entry)->prev = (after_where); \
220 (entry)->next = (after_where)->next; \
221 (entry)->prev->next = (entry); \
222 (entry)->next->prev = (entry); \
223 uvm_rb_insert((map), (entry)); \
224 } while (/*CONSTCOND*/ 0)
225
226 /*
227 * uvm_map_entry_unlink: remove entry from a map
228 *
229 * => map must be locked
230 */
231 #define uvm_map_entry_unlink(map, entry) do { \
232 KASSERT((entry) != (map)->first_free); \
233 KASSERT((entry) != (map)->hint); \
234 uvm_mapent_check(entry); \
235 (map)->nentries--; \
236 (entry)->next->prev = (entry)->prev; \
237 (entry)->prev->next = (entry)->next; \
238 uvm_rb_remove((map), (entry)); \
239 } while (/*CONSTCOND*/ 0)
240
241 /*
242 * SAVE_HINT: saves the specified entry as the hint for future lookups.
243 *
244 * => map need not be locked.
245 */
246 #define SAVE_HINT(map, check, value) do { \
247 if ((map)->hint == (check)) \
248 (map)->hint = (value); \
249 } while (/*CONSTCOND*/ 0)
250
251 /*
252 * clear_hints: ensure that hints don't point to the entry.
253 *
254 * => map must be write-locked.
255 */
256 static void
257 clear_hints(struct vm_map *map, struct vm_map_entry *ent)
258 {
259
260 SAVE_HINT(map, ent, ent->prev);
261 if (map->first_free == ent) {
262 map->first_free = ent->prev;
263 }
264 }
265
266 /*
267 * VM_MAP_RANGE_CHECK: check and correct range
268 *
269 * => map must at least be read locked
270 */
271
272 #define VM_MAP_RANGE_CHECK(map, start, end) do { \
273 if (start < vm_map_min(map)) \
274 start = vm_map_min(map); \
275 if (end > vm_map_max(map)) \
276 end = vm_map_max(map); \
277 if (start > end) \
278 start = end; \
279 } while (/*CONSTCOND*/ 0)
280
281 /*
282 * local prototypes
283 */
284
285 static struct vm_map_entry *
286 uvm_mapent_alloc(struct vm_map *, int);
287 static void uvm_mapent_copy(struct vm_map_entry *, struct vm_map_entry *);
288 static void uvm_mapent_free(struct vm_map_entry *);
289 #if defined(DEBUG)
290 static void _uvm_mapent_check(const struct vm_map_entry *, int);
291 #define uvm_mapent_check(map) _uvm_mapent_check(map, __LINE__)
292 #else /* defined(DEBUG) */
293 #define uvm_mapent_check(e) /* nothing */
294 #endif /* defined(DEBUG) */
295
296 static void uvm_map_entry_unwire(struct vm_map *, struct vm_map_entry *);
297 static void uvm_map_reference_amap(struct vm_map_entry *, int);
298 static int uvm_map_space_avail(vaddr_t *, vsize_t, voff_t, vsize_t, int,
299 int, struct vm_map_entry *);
300 static void uvm_map_unreference_amap(struct vm_map_entry *, int);
301
302 int _uvm_map_sanity(struct vm_map *);
303 int _uvm_tree_sanity(struct vm_map *);
304 static vsize_t uvm_rb_maxgap(const struct vm_map_entry *);
305
306 /*
307 * Tree iteration. We violate the rbtree(9) abstraction for various
308 * things here. Entries are ascending left to right, so, provided the
309 * child entry in question exists:
310 *
311 * LEFT_ENTRY(entry)->end <= entry->start
312 * entry->end <= RIGHT_ENTRY(entry)->start
313 */
314 __CTASSERT(offsetof(struct vm_map_entry, rb_node) == 0);
315 #define ROOT_ENTRY(map) \
316 ((struct vm_map_entry *)(map)->rb_tree.rbt_root)
317 #define LEFT_ENTRY(entry) \
318 ((struct vm_map_entry *)(entry)->rb_node.rb_left)
319 #define RIGHT_ENTRY(entry) \
320 ((struct vm_map_entry *)(entry)->rb_node.rb_right)
321 #define PARENT_ENTRY(map, entry) \
322 (ROOT_ENTRY(map) == (entry) \
323 ? NULL : (struct vm_map_entry *)RB_FATHER(&(entry)->rb_node))
324
325 /*
326 * These get filled in if/when SYSVSHM shared memory code is loaded
327 *
328 * We do this with function pointers rather the #ifdef SYSVSHM so the
329 * SYSVSHM code can be loaded and unloaded
330 */
331 void (*uvm_shmexit)(struct vmspace *) = NULL;
332 void (*uvm_shmfork)(struct vmspace *, struct vmspace *) = NULL;
333
334 static int
335 uvm_map_compare_nodes(void *ctx, const void *nparent, const void *nkey)
336 {
337 const struct vm_map_entry *eparent = nparent;
338 const struct vm_map_entry *ekey = nkey;
339
340 KASSERT(eparent->start < ekey->start || eparent->start >= ekey->end);
341 KASSERT(ekey->start < eparent->start || ekey->start >= eparent->end);
342
343 if (eparent->start < ekey->start)
344 return -1;
345 if (eparent->end >= ekey->start)
346 return 1;
347 return 0;
348 }
349
350 static int
351 uvm_map_compare_key(void *ctx, const void *nparent, const void *vkey)
352 {
353 const struct vm_map_entry *eparent = nparent;
354 const vaddr_t va = *(const vaddr_t *) vkey;
355
356 if (eparent->start < va)
357 return -1;
358 if (eparent->end >= va)
359 return 1;
360 return 0;
361 }
362
363 static const rb_tree_ops_t uvm_map_tree_ops = {
364 .rbto_compare_nodes = uvm_map_compare_nodes,
365 .rbto_compare_key = uvm_map_compare_key,
366 .rbto_node_offset = offsetof(struct vm_map_entry, rb_node),
367 .rbto_context = NULL
368 };
369
370 /*
371 * uvm_rb_gap: return the gap size between our entry and next entry.
372 */
373 static inline vsize_t
374 uvm_rb_gap(const struct vm_map_entry *entry)
375 {
376
377 KASSERT(entry->next != NULL);
378 return entry->next->start - entry->end;
379 }
380
381 static vsize_t
382 uvm_rb_maxgap(const struct vm_map_entry *entry)
383 {
384 struct vm_map_entry *child;
385 vsize_t maxgap = entry->gap;
386
387 /*
388 * We need maxgap to be the largest gap of us or any of our
389 * descendents. Since each of our children's maxgap is the
390 * cached value of their largest gap of themselves or their
391 * descendents, we can just use that value and avoid recursing
392 * down the tree to calculate it.
393 */
394 if ((child = LEFT_ENTRY(entry)) != NULL && maxgap < child->maxgap)
395 maxgap = child->maxgap;
396
397 if ((child = RIGHT_ENTRY(entry)) != NULL && maxgap < child->maxgap)
398 maxgap = child->maxgap;
399
400 return maxgap;
401 }
402
403 static void
404 uvm_rb_fixup(struct vm_map *map, struct vm_map_entry *entry)
405 {
406 struct vm_map_entry *parent;
407
408 KASSERT(entry->gap == uvm_rb_gap(entry));
409 entry->maxgap = uvm_rb_maxgap(entry);
410
411 while ((parent = PARENT_ENTRY(map, entry)) != NULL) {
412 struct vm_map_entry *brother;
413 vsize_t maxgap = parent->gap;
414 unsigned int which;
415
416 KDASSERT(parent->gap == uvm_rb_gap(parent));
417 if (maxgap < entry->maxgap)
418 maxgap = entry->maxgap;
419 /*
420 * Since we work towards the root, we know entry's maxgap
421 * value is OK, but its brothers may now be out-of-date due
422 * to rebalancing. So refresh it.
423 */
424 which = RB_POSITION(&entry->rb_node) ^ RB_DIR_OTHER;
425 brother = (struct vm_map_entry *)parent->rb_node.rb_nodes[which];
426 if (brother != NULL) {
427 KDASSERT(brother->gap == uvm_rb_gap(brother));
428 brother->maxgap = uvm_rb_maxgap(brother);
429 if (maxgap < brother->maxgap)
430 maxgap = brother->maxgap;
431 }
432
433 parent->maxgap = maxgap;
434 entry = parent;
435 }
436 }
437
438 static void
439 uvm_rb_insert(struct vm_map *map, struct vm_map_entry *entry)
440 {
441 struct vm_map_entry *ret __diagused;
442
443 entry->gap = entry->maxgap = uvm_rb_gap(entry);
444 if (entry->prev != &map->header)
445 entry->prev->gap = uvm_rb_gap(entry->prev);
446
447 ret = rb_tree_insert_node(&map->rb_tree, entry);
448 KASSERTMSG(ret == entry,
449 "uvm_rb_insert: map %p: duplicate entry %p", map, ret);
450
451 /*
452 * If the previous entry is not our immediate left child, then it's an
453 * ancestor and will be fixed up on the way to the root. We don't
454 * have to check entry->prev against &map->header since &map->header
455 * will never be in the tree.
456 */
457 uvm_rb_fixup(map,
458 LEFT_ENTRY(entry) == entry->prev ? entry->prev : entry);
459 }
460
461 static void
462 uvm_rb_remove(struct vm_map *map, struct vm_map_entry *entry)
463 {
464 struct vm_map_entry *prev_parent = NULL, *next_parent = NULL;
465
466 /*
467 * If we are removing an interior node, then an adjacent node will
468 * be used to replace its position in the tree. Therefore we will
469 * need to fixup the tree starting at the parent of the replacement
470 * node. So record their parents for later use.
471 */
472 if (entry->prev != &map->header)
473 prev_parent = PARENT_ENTRY(map, entry->prev);
474 if (entry->next != &map->header)
475 next_parent = PARENT_ENTRY(map, entry->next);
476
477 rb_tree_remove_node(&map->rb_tree, entry);
478
479 /*
480 * If the previous node has a new parent, fixup the tree starting
481 * at the previous node's old parent.
482 */
483 if (entry->prev != &map->header) {
484 /*
485 * Update the previous entry's gap due to our absence.
486 */
487 entry->prev->gap = uvm_rb_gap(entry->prev);
488 uvm_rb_fixup(map, entry->prev);
489 if (prev_parent != NULL
490 && prev_parent != entry
491 && prev_parent != PARENT_ENTRY(map, entry->prev))
492 uvm_rb_fixup(map, prev_parent);
493 }
494
495 /*
496 * If the next node has a new parent, fixup the tree starting
497 * at the next node's old parent.
498 */
499 if (entry->next != &map->header) {
500 uvm_rb_fixup(map, entry->next);
501 if (next_parent != NULL
502 && next_parent != entry
503 && next_parent != PARENT_ENTRY(map, entry->next))
504 uvm_rb_fixup(map, next_parent);
505 }
506 }
507
508 #if defined(DEBUG)
509 int uvm_debug_check_map = 0;
510 int uvm_debug_check_rbtree = 0;
511 #define uvm_map_check(map, name) \
512 _uvm_map_check((map), (name), __FILE__, __LINE__)
513 static void
514 _uvm_map_check(struct vm_map *map, const char *name,
515 const char *file, int line)
516 {
517
518 if ((uvm_debug_check_map && _uvm_map_sanity(map)) ||
519 (uvm_debug_check_rbtree && _uvm_tree_sanity(map))) {
520 panic("uvm_map_check failed: \"%s\" map=%p (%s:%d)",
521 name, map, file, line);
522 }
523 }
524 #else /* defined(DEBUG) */
525 #define uvm_map_check(map, name) /* nothing */
526 #endif /* defined(DEBUG) */
527
528 #if defined(DEBUG) || defined(DDB)
529 int
530 _uvm_map_sanity(struct vm_map *map)
531 {
532 bool first_free_found = false;
533 bool hint_found = false;
534 const struct vm_map_entry *e;
535 struct vm_map_entry *hint = map->hint;
536
537 e = &map->header;
538 for (;;) {
539 if (map->first_free == e) {
540 first_free_found = true;
541 } else if (!first_free_found && e->next->start > e->end) {
542 printf("first_free %p should be %p\n",
543 map->first_free, e);
544 return -1;
545 }
546 if (hint == e) {
547 hint_found = true;
548 }
549
550 e = e->next;
551 if (e == &map->header) {
552 break;
553 }
554 }
555 if (!first_free_found) {
556 printf("stale first_free\n");
557 return -1;
558 }
559 if (!hint_found) {
560 printf("stale hint\n");
561 return -1;
562 }
563 return 0;
564 }
565
566 int
567 _uvm_tree_sanity(struct vm_map *map)
568 {
569 struct vm_map_entry *tmp, *trtmp;
570 int n = 0, i = 1;
571
572 for (tmp = map->header.next; tmp != &map->header; tmp = tmp->next) {
573 if (tmp->gap != uvm_rb_gap(tmp)) {
574 printf("%d/%d gap %#lx != %#lx %s\n",
575 n + 1, map->nentries,
576 (ulong)tmp->gap, (ulong)uvm_rb_gap(tmp),
577 tmp->next == &map->header ? "(last)" : "");
578 goto error;
579 }
580 /*
581 * If any entries are out of order, tmp->gap will be unsigned
582 * and will likely exceed the size of the map.
583 */
584 if (tmp->gap >= vm_map_max(map) - vm_map_min(map)) {
585 printf("too large gap %zu\n", (size_t)tmp->gap);
586 goto error;
587 }
588 n++;
589 }
590
591 if (n != map->nentries) {
592 printf("nentries: %d vs %d\n", n, map->nentries);
593 goto error;
594 }
595
596 trtmp = NULL;
597 for (tmp = map->header.next; tmp != &map->header; tmp = tmp->next) {
598 if (tmp->maxgap != uvm_rb_maxgap(tmp)) {
599 printf("maxgap %#lx != %#lx\n",
600 (ulong)tmp->maxgap,
601 (ulong)uvm_rb_maxgap(tmp));
602 goto error;
603 }
604 if (trtmp != NULL && trtmp->start >= tmp->start) {
605 printf("corrupt: 0x%"PRIxVADDR"x >= 0x%"PRIxVADDR"x\n",
606 trtmp->start, tmp->start);
607 goto error;
608 }
609
610 trtmp = tmp;
611 }
612
613 for (tmp = map->header.next; tmp != &map->header;
614 tmp = tmp->next, i++) {
615 trtmp = rb_tree_iterate(&map->rb_tree, tmp, RB_DIR_LEFT);
616 if (trtmp == NULL)
617 trtmp = &map->header;
618 if (tmp->prev != trtmp) {
619 printf("lookup: %d: %p->prev=%p: %p\n",
620 i, tmp, tmp->prev, trtmp);
621 goto error;
622 }
623 trtmp = rb_tree_iterate(&map->rb_tree, tmp, RB_DIR_RIGHT);
624 if (trtmp == NULL)
625 trtmp = &map->header;
626 if (tmp->next != trtmp) {
627 printf("lookup: %d: %p->next=%p: %p\n",
628 i, tmp, tmp->next, trtmp);
629 goto error;
630 }
631 trtmp = rb_tree_find_node(&map->rb_tree, &tmp->start);
632 if (trtmp != tmp) {
633 printf("lookup: %d: %p - %p: %p\n", i, tmp, trtmp,
634 PARENT_ENTRY(map, tmp));
635 goto error;
636 }
637 }
638
639 return (0);
640 error:
641 return (-1);
642 }
643 #endif /* defined(DEBUG) || defined(DDB) */
644
645 /*
646 * vm_map_lock: acquire an exclusive (write) lock on a map.
647 *
648 * => The locking protocol provides for guaranteed upgrade from shared ->
649 * exclusive by whichever thread currently has the map marked busy.
650 * See "LOCKING PROTOCOL NOTES" in uvm_map.h. This is horrible; among
651 * other problems, it defeats any fairness guarantees provided by RW
652 * locks.
653 */
654
655 void
656 vm_map_lock(struct vm_map *map)
657 {
658
659 for (;;) {
660 rw_enter(&map->lock, RW_WRITER);
661 if (map->busy == NULL || map->busy == curlwp) {
662 break;
663 }
664 mutex_enter(&map->misc_lock);
665 rw_exit(&map->lock);
666 if (map->busy != NULL) {
667 cv_wait(&map->cv, &map->misc_lock);
668 }
669 mutex_exit(&map->misc_lock);
670 }
671 map->timestamp++;
672 }
673
674 /*
675 * vm_map_lock_try: try to lock a map, failing if it is already locked.
676 */
677
678 bool
679 vm_map_lock_try(struct vm_map *map)
680 {
681
682 if (!rw_tryenter(&map->lock, RW_WRITER)) {
683 return false;
684 }
685 if (map->busy != NULL) {
686 rw_exit(&map->lock);
687 return false;
688 }
689 map->timestamp++;
690 return true;
691 }
692
693 /*
694 * vm_map_unlock: release an exclusive lock on a map.
695 */
696
697 void
698 vm_map_unlock(struct vm_map *map)
699 {
700
701 KASSERT(rw_write_held(&map->lock));
702 KASSERT(map->busy == NULL || map->busy == curlwp);
703 rw_exit(&map->lock);
704 }
705
706 /*
707 * vm_map_unbusy: mark the map as unbusy, and wake any waiters that
708 * want an exclusive lock.
709 */
710
711 void
712 vm_map_unbusy(struct vm_map *map)
713 {
714
715 KASSERT(map->busy == curlwp);
716
717 /*
718 * Safe to clear 'busy' and 'waiters' with only a read lock held:
719 *
720 * o they can only be set with a write lock held
721 * o writers are blocked out with a read or write hold
722 * o at any time, only one thread owns the set of values
723 */
724 mutex_enter(&map->misc_lock);
725 map->busy = NULL;
726 cv_broadcast(&map->cv);
727 mutex_exit(&map->misc_lock);
728 }
729
730 /*
731 * vm_map_lock_read: acquire a shared (read) lock on a map.
732 */
733
734 void
735 vm_map_lock_read(struct vm_map *map)
736 {
737
738 rw_enter(&map->lock, RW_READER);
739 }
740
741 /*
742 * vm_map_unlock_read: release a shared lock on a map.
743 */
744
745 void
746 vm_map_unlock_read(struct vm_map *map)
747 {
748
749 rw_exit(&map->lock);
750 }
751
752 /*
753 * vm_map_busy: mark a map as busy.
754 *
755 * => the caller must hold the map write locked
756 */
757
758 void
759 vm_map_busy(struct vm_map *map)
760 {
761
762 KASSERT(rw_write_held(&map->lock));
763 KASSERT(map->busy == NULL);
764
765 map->busy = curlwp;
766 }
767
768 /*
769 * vm_map_locked_p: return true if the map is write locked.
770 *
771 * => only for debug purposes like KASSERTs.
772 * => should not be used to verify that a map is not locked.
773 */
774
775 bool
776 vm_map_locked_p(struct vm_map *map)
777 {
778
779 return rw_write_held(&map->lock);
780 }
781
782 /*
783 * uvm_mapent_alloc: allocate a map entry
784 */
785
786 static struct vm_map_entry *
787 uvm_mapent_alloc(struct vm_map *map, int flags)
788 {
789 struct vm_map_entry *me;
790 int pflags = (flags & UVM_FLAG_NOWAIT) ? PR_NOWAIT : PR_WAITOK;
791 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
792
793 me = pool_cache_get(&uvm_map_entry_cache, pflags);
794 if (__predict_false(me == NULL)) {
795 return NULL;
796 }
797 me->flags = 0;
798
799 UVMHIST_LOG(maphist, "<- new entry=%#jx [kentry=%jd]", (uintptr_t)me,
800 (map == kernel_map), 0, 0);
801 return me;
802 }
803
804 /*
805 * uvm_mapent_free: free map entry
806 */
807
808 static void
809 uvm_mapent_free(struct vm_map_entry *me)
810 {
811 UVMHIST_FUNC(__func__);
812 UVMHIST_CALLARGS(maphist,"<- freeing map entry=%#jx [flags=%#jx]",
813 (uintptr_t)me, me->flags, 0, 0);
814 pool_cache_put(&uvm_map_entry_cache, me);
815 }
816
817 /*
818 * uvm_mapent_copy: copy a map entry, preserving flags
819 */
820
821 static inline void
822 uvm_mapent_copy(struct vm_map_entry *src, struct vm_map_entry *dst)
823 {
824
825 memcpy(dst, src, sizeof(*dst));
826 dst->flags = 0;
827 }
828
829 #if defined(DEBUG)
830 static void
831 _uvm_mapent_check(const struct vm_map_entry *entry, int line)
832 {
833
834 if (entry->start >= entry->end) {
835 goto bad;
836 }
837 if (UVM_ET_ISOBJ(entry)) {
838 if (entry->object.uvm_obj == NULL) {
839 goto bad;
840 }
841 } else if (UVM_ET_ISSUBMAP(entry)) {
842 if (entry->object.sub_map == NULL) {
843 goto bad;
844 }
845 } else {
846 if (entry->object.uvm_obj != NULL ||
847 entry->object.sub_map != NULL) {
848 goto bad;
849 }
850 }
851 if (!UVM_ET_ISOBJ(entry)) {
852 if (entry->offset != 0) {
853 goto bad;
854 }
855 }
856
857 return;
858
859 bad:
860 panic("%s: bad entry %p, line %d", __func__, entry, line);
861 }
862 #endif /* defined(DEBUG) */
863
864 /*
865 * uvm_map_entry_unwire: unwire a map entry
866 *
867 * => map should be locked by caller
868 */
869
870 static inline void
871 uvm_map_entry_unwire(struct vm_map *map, struct vm_map_entry *entry)
872 {
873
874 entry->wired_count = 0;
875 uvm_fault_unwire_locked(map, entry->start, entry->end);
876 }
877
878
879 /*
880 * wrapper for calling amap_ref()
881 */
882 static inline void
883 uvm_map_reference_amap(struct vm_map_entry *entry, int flags)
884 {
885
886 amap_ref(entry->aref.ar_amap, entry->aref.ar_pageoff,
887 (entry->end - entry->start) >> PAGE_SHIFT, flags);
888 }
889
890
891 /*
892 * wrapper for calling amap_unref()
893 */
894 static inline void
895 uvm_map_unreference_amap(struct vm_map_entry *entry, int flags)
896 {
897
898 amap_unref(entry->aref.ar_amap, entry->aref.ar_pageoff,
899 (entry->end - entry->start) >> PAGE_SHIFT, flags);
900 }
901
902
903 /*
904 * uvm_map_init: init mapping system at boot time.
905 */
906
907 void
908 uvm_map_init(void)
909 {
910 /*
911 * first, init logging system.
912 */
913
914 UVMHIST_FUNC(__func__);
915 UVMHIST_LINK_STATIC(maphist);
916 UVMHIST_LINK_STATIC(pdhist);
917 UVMHIST_CALLED(maphist);
918 UVMHIST_LOG(maphist,"<starting uvm map system>", 0, 0, 0, 0);
919
920 /*
921 * initialize the global lock for kernel map entry.
922 */
923
924 mutex_init(&uvm_kentry_lock, MUTEX_DRIVER, IPL_VM);
925 }
926
927 /*
928 * uvm_map_init_caches: init mapping system caches.
929 */
930 void
931 uvm_map_init_caches(void)
932 {
933 /*
934 * initialize caches.
935 */
936
937 pool_cache_bootstrap(&uvm_map_entry_cache, sizeof(struct vm_map_entry),
938 coherency_unit, 0, PR_LARGECACHE, "vmmpepl", NULL, IPL_NONE, NULL,
939 NULL, NULL);
940 }
941
942 /*
943 * clippers
944 */
945
946 /*
947 * uvm_mapent_splitadj: adjust map entries for splitting, after uvm_mapent_copy.
948 */
949
950 static void
951 uvm_mapent_splitadj(struct vm_map_entry *entry1, struct vm_map_entry *entry2,
952 vaddr_t splitat)
953 {
954 vaddr_t adj;
955
956 KASSERT(entry1->start < splitat);
957 KASSERT(splitat < entry1->end);
958
959 adj = splitat - entry1->start;
960 entry1->end = entry2->start = splitat;
961
962 if (entry1->aref.ar_amap) {
963 amap_splitref(&entry1->aref, &entry2->aref, adj);
964 }
965 if (UVM_ET_ISSUBMAP(entry1)) {
966 /* ... unlikely to happen, but play it safe */
967 uvm_map_reference(entry1->object.sub_map);
968 } else if (UVM_ET_ISOBJ(entry1)) {
969 KASSERT(entry1->object.uvm_obj != NULL); /* suppress coverity */
970 entry2->offset += adj;
971 if (entry1->object.uvm_obj->pgops &&
972 entry1->object.uvm_obj->pgops->pgo_reference)
973 entry1->object.uvm_obj->pgops->pgo_reference(
974 entry1->object.uvm_obj);
975 }
976 }
977
978 /*
979 * uvm_map_clip_start: ensure that the entry begins at or after
980 * the starting address, if it doesn't we split the entry.
981 *
982 * => caller should use UVM_MAP_CLIP_START macro rather than calling
983 * this directly
984 * => map must be locked by caller
985 */
986
987 void
988 uvm_map_clip_start(struct vm_map *map, struct vm_map_entry *entry,
989 vaddr_t start)
990 {
991 struct vm_map_entry *new_entry;
992
993 /* uvm_map_simplify_entry(map, entry); */ /* XXX */
994
995 uvm_map_check(map, "clip_start entry");
996 uvm_mapent_check(entry);
997
998 /*
999 * Split off the front portion. note that we must insert the new
1000 * entry BEFORE this one, so that this entry has the specified
1001 * starting address.
1002 */
1003 new_entry = uvm_mapent_alloc(map, 0);
1004 uvm_mapent_copy(entry, new_entry); /* entry -> new_entry */
1005 uvm_mapent_splitadj(new_entry, entry, start);
1006 uvm_map_entry_link(map, entry->prev, new_entry);
1007
1008 uvm_map_check(map, "clip_start leave");
1009 }
1010
1011 /*
1012 * uvm_map_clip_end: ensure that the entry ends at or before
1013 * the ending address, if it does't we split the reference
1014 *
1015 * => caller should use UVM_MAP_CLIP_END macro rather than calling
1016 * this directly
1017 * => map must be locked by caller
1018 */
1019
1020 void
1021 uvm_map_clip_end(struct vm_map *map, struct vm_map_entry *entry, vaddr_t end)
1022 {
1023 struct vm_map_entry *new_entry;
1024
1025 uvm_map_check(map, "clip_end entry");
1026 uvm_mapent_check(entry);
1027
1028 /*
1029 * Create a new entry and insert it
1030 * AFTER the specified entry
1031 */
1032 new_entry = uvm_mapent_alloc(map, 0);
1033 uvm_mapent_copy(entry, new_entry); /* entry -> new_entry */
1034 uvm_mapent_splitadj(entry, new_entry, end);
1035 uvm_map_entry_link(map, entry, new_entry);
1036
1037 uvm_map_check(map, "clip_end leave");
1038 }
1039
1040 /*
1041 * M A P - m a i n e n t r y p o i n t
1042 */
1043 /*
1044 * uvm_map: establish a valid mapping in a map
1045 *
1046 * => assume startp is page aligned.
1047 * => assume size is a multiple of PAGE_SIZE.
1048 * => assume sys_mmap provides enough of a "hint" to have us skip
1049 * over text/data/bss area.
1050 * => map must be unlocked (we will lock it)
1051 * => <uobj,uoffset> value meanings (4 cases):
1052 * [1] <NULL,uoffset> == uoffset is a hint for PMAP_PREFER
1053 * [2] <NULL,UVM_UNKNOWN_OFFSET> == don't PMAP_PREFER
1054 * [3] <uobj,uoffset> == normal mapping
1055 * [4] <uobj,UVM_UNKNOWN_OFFSET> == uvm_map finds offset based on VA
1056 *
1057 * case [4] is for kernel mappings where we don't know the offset until
1058 * we've found a virtual address. note that kernel object offsets are
1059 * always relative to vm_map_min(kernel_map).
1060 *
1061 * => if `align' is non-zero, we align the virtual address to the specified
1062 * alignment.
1063 * this is provided as a mechanism for large pages.
1064 *
1065 * => XXXCDC: need way to map in external amap?
1066 */
1067
1068 int
1069 uvm_map(struct vm_map *map, vaddr_t *startp /* IN/OUT */, vsize_t size,
1070 struct uvm_object *uobj, voff_t uoffset, vsize_t align, uvm_flag_t flags)
1071 {
1072 struct uvm_map_args args;
1073 struct vm_map_entry *new_entry;
1074 int error;
1075
1076 KASSERT((size & PAGE_MASK) == 0);
1077 KASSERT((flags & UVM_FLAG_FIXED) == 0 || align == 0);
1078
1079 /*
1080 * for pager_map, allocate the new entry first to avoid sleeping
1081 * for memory while we have the map locked.
1082 */
1083
1084 new_entry = NULL;
1085 if (map == pager_map) {
1086 new_entry = uvm_mapent_alloc(map, (flags & UVM_FLAG_NOWAIT));
1087 if (__predict_false(new_entry == NULL))
1088 return ENOMEM;
1089 }
1090 if (map == pager_map)
1091 flags |= UVM_FLAG_NOMERGE;
1092
1093 error = uvm_map_prepare(map, *startp, size, uobj, uoffset, align,
1094 flags, &args);
1095 if (!error) {
1096 error = uvm_map_enter(map, &args, new_entry);
1097 *startp = args.uma_start;
1098 } else if (new_entry) {
1099 uvm_mapent_free(new_entry);
1100 }
1101
1102 #if defined(DEBUG)
1103 if (!error && VM_MAP_IS_KERNEL(map) && (flags & UVM_FLAG_NOWAIT) == 0) {
1104 uvm_km_check_empty(map, *startp, *startp + size);
1105 }
1106 #endif /* defined(DEBUG) */
1107
1108 return error;
1109 }
1110
1111 /*
1112 * uvm_map_prepare:
1113 *
1114 * called with map unlocked.
1115 * on success, returns the map locked.
1116 */
1117
1118 int
1119 uvm_map_prepare(struct vm_map *map, vaddr_t start, vsize_t size,
1120 struct uvm_object *uobj, voff_t uoffset, vsize_t align, uvm_flag_t flags,
1121 struct uvm_map_args *args)
1122 {
1123 struct vm_map_entry *prev_entry;
1124 vm_prot_t prot = UVM_PROTECTION(flags);
1125 vm_prot_t maxprot = UVM_MAXPROTECTION(flags);
1126
1127 UVMHIST_FUNC(__func__);
1128 UVMHIST_CALLARGS(maphist, "(map=%#jx, start=%#jx, size=%jx, flags=%#jx)",
1129 (uintptr_t)map, start, size, flags);
1130 UVMHIST_LOG(maphist, " uobj/offset %#jx/%jd", (uintptr_t)uobj,
1131 uoffset,0,0);
1132
1133 /*
1134 * detect a popular device driver bug.
1135 */
1136
1137 KASSERT(doing_shutdown || curlwp != NULL);
1138
1139 /*
1140 * zero-sized mapping doesn't make any sense.
1141 */
1142 KASSERT(size > 0);
1143
1144 KASSERT((~flags & (UVM_FLAG_NOWAIT | UVM_FLAG_WAITVA)) != 0);
1145
1146 uvm_map_check(map, "map entry");
1147
1148 /*
1149 * check sanity of protection code
1150 */
1151
1152 if ((prot & maxprot) != prot) {
1153 UVMHIST_LOG(maphist, "<- prot. failure: prot=%#jx, max=%#jx",
1154 prot, maxprot,0,0);
1155 return EACCES;
1156 }
1157
1158 /*
1159 * figure out where to put new VM range
1160 */
1161 retry:
1162 if (vm_map_lock_try(map) == false) {
1163 if ((flags & UVM_FLAG_TRYLOCK) != 0) {
1164 return EAGAIN;
1165 }
1166 vm_map_lock(map); /* could sleep here */
1167 }
1168 if (flags & UVM_FLAG_UNMAP) {
1169 KASSERT(flags & UVM_FLAG_FIXED);
1170 KASSERT((flags & UVM_FLAG_NOWAIT) == 0);
1171
1172 /*
1173 * Set prev_entry to what it will need to be after any existing
1174 * entries are removed later in uvm_map_enter().
1175 */
1176
1177 if (uvm_map_lookup_entry(map, start, &prev_entry)) {
1178 if (start == prev_entry->start)
1179 prev_entry = prev_entry->prev;
1180 else
1181 UVM_MAP_CLIP_END(map, prev_entry, start);
1182 SAVE_HINT(map, map->hint, prev_entry);
1183 }
1184 } else {
1185 prev_entry = uvm_map_findspace(map, start, size, &start,
1186 uobj, uoffset, align, flags);
1187 }
1188 if (prev_entry == NULL) {
1189 unsigned int timestamp;
1190
1191 timestamp = map->timestamp;
1192 UVMHIST_LOG(maphist,"waiting va timestamp=%#jx",
1193 timestamp,0,0,0);
1194 map->flags |= VM_MAP_WANTVA;
1195 vm_map_unlock(map);
1196
1197 /*
1198 * try to reclaim kva and wait until someone does unmap.
1199 * fragile locking here, so we awaken every second to
1200 * recheck the condition.
1201 */
1202
1203 mutex_enter(&map->misc_lock);
1204 while ((map->flags & VM_MAP_WANTVA) != 0 &&
1205 map->timestamp == timestamp) {
1206 if ((flags & UVM_FLAG_WAITVA) == 0) {
1207 mutex_exit(&map->misc_lock);
1208 UVMHIST_LOG(maphist,
1209 "<- uvm_map_findspace failed!", 0,0,0,0);
1210 return ENOMEM;
1211 } else {
1212 cv_timedwait(&map->cv, &map->misc_lock, hz);
1213 }
1214 }
1215 mutex_exit(&map->misc_lock);
1216 goto retry;
1217 }
1218
1219 #ifdef PMAP_GROWKERNEL
1220 /*
1221 * If the kernel pmap can't map the requested space,
1222 * then allocate more resources for it.
1223 */
1224 if (map == kernel_map && uvm_maxkaddr < (start + size))
1225 uvm_maxkaddr = pmap_growkernel(start + size);
1226 #endif
1227
1228 UVMMAP_EVCNT_INCR(map_call);
1229
1230 /*
1231 * if uobj is null, then uoffset is either a VAC hint for PMAP_PREFER
1232 * [typically from uvm_map_reserve] or it is UVM_UNKNOWN_OFFSET. in
1233 * either case we want to zero it before storing it in the map entry
1234 * (because it looks strange and confusing when debugging...)
1235 *
1236 * if uobj is not null
1237 * if uoffset is not UVM_UNKNOWN_OFFSET then we have a normal mapping
1238 * and we do not need to change uoffset.
1239 * if uoffset is UVM_UNKNOWN_OFFSET then we need to find the offset
1240 * now (based on the starting address of the map). this case is
1241 * for kernel object mappings where we don't know the offset until
1242 * the virtual address is found (with uvm_map_findspace). the
1243 * offset is the distance we are from the start of the map.
1244 */
1245
1246 if (uobj == NULL) {
1247 uoffset = 0;
1248 } else {
1249 if (uoffset == UVM_UNKNOWN_OFFSET) {
1250 KASSERT(UVM_OBJ_IS_KERN_OBJECT(uobj));
1251 uoffset = start - vm_map_min(kernel_map);
1252 }
1253 }
1254
1255 args->uma_flags = flags;
1256 args->uma_prev = prev_entry;
1257 args->uma_start = start;
1258 args->uma_size = size;
1259 args->uma_uobj = uobj;
1260 args->uma_uoffset = uoffset;
1261
1262 UVMHIST_LOG(maphist, "<- done!", 0,0,0,0);
1263 return 0;
1264 }
1265
1266 /*
1267 * uvm_map_enter:
1268 *
1269 * called with map locked.
1270 * unlock the map before returning.
1271 */
1272
1273 int
1274 uvm_map_enter(struct vm_map *map, const struct uvm_map_args *args,
1275 struct vm_map_entry *new_entry)
1276 {
1277 struct vm_map_entry *prev_entry = args->uma_prev;
1278 struct vm_map_entry *dead = NULL, *dead_entries = NULL;
1279
1280 const uvm_flag_t flags = args->uma_flags;
1281 const vm_prot_t prot = UVM_PROTECTION(flags);
1282 const vm_prot_t maxprot = UVM_MAXPROTECTION(flags);
1283 const vm_inherit_t inherit = UVM_INHERIT(flags);
1284 const int amapwaitflag = (flags & UVM_FLAG_NOWAIT) ?
1285 AMAP_EXTEND_NOWAIT : 0;
1286 const int advice = UVM_ADVICE(flags);
1287
1288 vaddr_t start = args->uma_start;
1289 vsize_t size = args->uma_size;
1290 struct uvm_object *uobj = args->uma_uobj;
1291 voff_t uoffset = args->uma_uoffset;
1292
1293 const int kmap = (vm_map_pmap(map) == pmap_kernel());
1294 int merged = 0;
1295 int error;
1296 int newetype;
1297
1298 UVMHIST_FUNC(__func__);
1299 UVMHIST_CALLARGS(maphist, "(map=%#jx, start=%#jx, size=%ju, flags=%#jx)",
1300 (uintptr_t)map, start, size, flags);
1301 UVMHIST_LOG(maphist, " uobj/offset %#jx/%jd", (uintptr_t)uobj,
1302 uoffset,0,0);
1303
1304 KASSERT(map->hint == prev_entry); /* bimerge case assumes this */
1305 KASSERT(vm_map_locked_p(map));
1306 KASSERT((flags & (UVM_FLAG_NOWAIT | UVM_FLAG_UNMAP)) !=
1307 (UVM_FLAG_NOWAIT | UVM_FLAG_UNMAP));
1308
1309 if (uobj)
1310 newetype = UVM_ET_OBJ;
1311 else
1312 newetype = 0;
1313
1314 if (flags & UVM_FLAG_COPYONW) {
1315 newetype |= UVM_ET_COPYONWRITE;
1316 if ((flags & UVM_FLAG_OVERLAY) == 0)
1317 newetype |= UVM_ET_NEEDSCOPY;
1318 }
1319
1320 /*
1321 * For mappings with unmap, remove any old entries now. Adding the new
1322 * entry cannot fail because that can only happen if UVM_FLAG_NOWAIT
1323 * is set, and we do not support nowait and unmap together.
1324 */
1325
1326 if (flags & UVM_FLAG_UNMAP) {
1327 KASSERT(flags & UVM_FLAG_FIXED);
1328 uvm_unmap_remove(map, start, start + size, &dead_entries, 0);
1329 #ifdef DEBUG
1330 struct vm_map_entry *tmp_entry __diagused;
1331 bool rv __diagused;
1332
1333 rv = uvm_map_lookup_entry(map, start, &tmp_entry);
1334 KASSERT(!rv);
1335 KASSERTMSG(prev_entry == tmp_entry,
1336 "args %p prev_entry %p tmp_entry %p",
1337 args, prev_entry, tmp_entry);
1338 #endif
1339 SAVE_HINT(map, map->hint, prev_entry);
1340 }
1341
1342 /*
1343 * try and insert in map by extending previous entry, if possible.
1344 * XXX: we don't try and pull back the next entry. might be useful
1345 * for a stack, but we are currently allocating our stack in advance.
1346 */
1347
1348 if (flags & UVM_FLAG_NOMERGE)
1349 goto nomerge;
1350
1351 if (prev_entry->end == start &&
1352 prev_entry != &map->header &&
1353 UVM_ET_ISCOMPATIBLE(prev_entry, newetype, uobj, 0,
1354 prot, maxprot, inherit, advice, 0)) {
1355
1356 if (uobj && prev_entry->offset +
1357 (prev_entry->end - prev_entry->start) != uoffset)
1358 goto forwardmerge;
1359
1360 /*
1361 * can't extend a shared amap. note: no need to lock amap to
1362 * look at refs since we don't care about its exact value.
1363 * if it is one (i.e. we have only reference) it will stay there
1364 */
1365
1366 if (prev_entry->aref.ar_amap &&
1367 amap_refs(prev_entry->aref.ar_amap) != 1) {
1368 goto forwardmerge;
1369 }
1370
1371 if (prev_entry->aref.ar_amap) {
1372 error = amap_extend(prev_entry, size,
1373 amapwaitflag | AMAP_EXTEND_FORWARDS);
1374 if (error)
1375 goto nomerge;
1376 }
1377
1378 if (kmap) {
1379 UVMMAP_EVCNT_INCR(kbackmerge);
1380 } else {
1381 UVMMAP_EVCNT_INCR(ubackmerge);
1382 }
1383 UVMHIST_LOG(maphist," starting back merge", 0, 0, 0, 0);
1384
1385 /*
1386 * drop our reference to uobj since we are extending a reference
1387 * that we already have (the ref count can not drop to zero).
1388 */
1389
1390 if (uobj && uobj->pgops->pgo_detach)
1391 uobj->pgops->pgo_detach(uobj);
1392
1393 /*
1394 * Now that we've merged the entries, note that we've grown
1395 * and our gap has shrunk. Then fix the tree.
1396 */
1397 prev_entry->end += size;
1398 prev_entry->gap -= size;
1399 uvm_rb_fixup(map, prev_entry);
1400
1401 uvm_map_check(map, "map backmerged");
1402
1403 UVMHIST_LOG(maphist,"<- done (via backmerge)!", 0, 0, 0, 0);
1404 merged++;
1405 }
1406
1407 forwardmerge:
1408 if (prev_entry->next->start == (start + size) &&
1409 prev_entry->next != &map->header &&
1410 UVM_ET_ISCOMPATIBLE(prev_entry->next, newetype, uobj, 0,
1411 prot, maxprot, inherit, advice, 0)) {
1412
1413 if (uobj && prev_entry->next->offset != uoffset + size)
1414 goto nomerge;
1415
1416 /*
1417 * can't extend a shared amap. note: no need to lock amap to
1418 * look at refs since we don't care about its exact value.
1419 * if it is one (i.e. we have only reference) it will stay there.
1420 *
1421 * note that we also can't merge two amaps, so if we
1422 * merged with the previous entry which has an amap,
1423 * and the next entry also has an amap, we give up.
1424 *
1425 * Interesting cases:
1426 * amap, new, amap -> give up second merge (single fwd extend)
1427 * amap, new, none -> double forward extend (extend again here)
1428 * none, new, amap -> double backward extend (done here)
1429 * uobj, new, amap -> single backward extend (done here)
1430 *
1431 * XXX should we attempt to deal with someone refilling
1432 * the deallocated region between two entries that are
1433 * backed by the same amap (ie, arefs is 2, "prev" and
1434 * "next" refer to it, and adding this allocation will
1435 * close the hole, thus restoring arefs to 1 and
1436 * deallocating the "next" vm_map_entry)? -- @@@
1437 */
1438
1439 if (prev_entry->next->aref.ar_amap &&
1440 (amap_refs(prev_entry->next->aref.ar_amap) != 1 ||
1441 (merged && prev_entry->aref.ar_amap))) {
1442 goto nomerge;
1443 }
1444
1445 if (merged) {
1446 /*
1447 * Try to extend the amap of the previous entry to
1448 * cover the next entry as well. If it doesn't work
1449 * just skip on, don't actually give up, since we've
1450 * already completed the back merge.
1451 */
1452 if (prev_entry->aref.ar_amap) {
1453 if (amap_extend(prev_entry,
1454 prev_entry->next->end -
1455 prev_entry->next->start,
1456 amapwaitflag | AMAP_EXTEND_FORWARDS))
1457 goto nomerge;
1458 }
1459
1460 /*
1461 * Try to extend the amap of the *next* entry
1462 * back to cover the new allocation *and* the
1463 * previous entry as well (the previous merge
1464 * didn't have an amap already otherwise we
1465 * wouldn't be checking here for an amap). If
1466 * it doesn't work just skip on, again, don't
1467 * actually give up, since we've already
1468 * completed the back merge.
1469 */
1470 else if (prev_entry->next->aref.ar_amap) {
1471 if (amap_extend(prev_entry->next,
1472 prev_entry->end -
1473 prev_entry->start,
1474 amapwaitflag | AMAP_EXTEND_BACKWARDS))
1475 goto nomerge;
1476 }
1477 } else {
1478 /*
1479 * Pull the next entry's amap backwards to cover this
1480 * new allocation.
1481 */
1482 if (prev_entry->next->aref.ar_amap) {
1483 error = amap_extend(prev_entry->next, size,
1484 amapwaitflag | AMAP_EXTEND_BACKWARDS);
1485 if (error)
1486 goto nomerge;
1487 }
1488 }
1489
1490 if (merged) {
1491 if (kmap) {
1492 UVMMAP_EVCNT_DECR(kbackmerge);
1493 UVMMAP_EVCNT_INCR(kbimerge);
1494 } else {
1495 UVMMAP_EVCNT_DECR(ubackmerge);
1496 UVMMAP_EVCNT_INCR(ubimerge);
1497 }
1498 } else {
1499 if (kmap) {
1500 UVMMAP_EVCNT_INCR(kforwmerge);
1501 } else {
1502 UVMMAP_EVCNT_INCR(uforwmerge);
1503 }
1504 }
1505 UVMHIST_LOG(maphist," starting forward merge", 0, 0, 0, 0);
1506
1507 /*
1508 * drop our reference to uobj since we are extending a reference
1509 * that we already have (the ref count can not drop to zero).
1510 */
1511 if (uobj && uobj->pgops->pgo_detach)
1512 uobj->pgops->pgo_detach(uobj);
1513
1514 if (merged) {
1515 dead = prev_entry->next;
1516 prev_entry->end = dead->end;
1517 uvm_map_entry_unlink(map, dead);
1518 if (dead->aref.ar_amap != NULL) {
1519 prev_entry->aref = dead->aref;
1520 dead->aref.ar_amap = NULL;
1521 }
1522 } else {
1523 prev_entry->next->start -= size;
1524 if (prev_entry != &map->header) {
1525 prev_entry->gap -= size;
1526 KASSERT(prev_entry->gap == uvm_rb_gap(prev_entry));
1527 uvm_rb_fixup(map, prev_entry);
1528 }
1529 if (uobj)
1530 prev_entry->next->offset = uoffset;
1531 }
1532
1533 uvm_map_check(map, "map forwardmerged");
1534
1535 UVMHIST_LOG(maphist,"<- done forwardmerge", 0, 0, 0, 0);
1536 merged++;
1537 }
1538
1539 nomerge:
1540 if (!merged) {
1541 UVMHIST_LOG(maphist," allocating new map entry", 0, 0, 0, 0);
1542 if (kmap) {
1543 UVMMAP_EVCNT_INCR(knomerge);
1544 } else {
1545 UVMMAP_EVCNT_INCR(unomerge);
1546 }
1547
1548 /*
1549 * allocate new entry and link it in.
1550 */
1551
1552 if (new_entry == NULL) {
1553 new_entry = uvm_mapent_alloc(map,
1554 (flags & UVM_FLAG_NOWAIT));
1555 if (__predict_false(new_entry == NULL)) {
1556 error = ENOMEM;
1557 goto done;
1558 }
1559 }
1560 new_entry->start = start;
1561 new_entry->end = new_entry->start + size;
1562 new_entry->object.uvm_obj = uobj;
1563 new_entry->offset = uoffset;
1564
1565 new_entry->etype = newetype;
1566
1567 if (flags & UVM_FLAG_NOMERGE) {
1568 new_entry->flags |= UVM_MAP_NOMERGE;
1569 }
1570
1571 new_entry->protection = prot;
1572 new_entry->max_protection = maxprot;
1573 new_entry->inheritance = inherit;
1574 new_entry->wired_count = 0;
1575 new_entry->advice = advice;
1576 if (flags & UVM_FLAG_OVERLAY) {
1577
1578 /*
1579 * to_add: for BSS we overallocate a little since we
1580 * are likely to extend
1581 */
1582
1583 vaddr_t to_add = (flags & UVM_FLAG_AMAPPAD) ?
1584 UVM_AMAP_CHUNK << PAGE_SHIFT : 0;
1585 struct vm_amap *amap = amap_alloc(size, to_add,
1586 (flags & UVM_FLAG_NOWAIT));
1587 if (__predict_false(amap == NULL)) {
1588 error = ENOMEM;
1589 goto done;
1590 }
1591 new_entry->aref.ar_pageoff = 0;
1592 new_entry->aref.ar_amap = amap;
1593 } else {
1594 new_entry->aref.ar_pageoff = 0;
1595 new_entry->aref.ar_amap = NULL;
1596 }
1597 uvm_map_entry_link(map, prev_entry, new_entry);
1598
1599 /*
1600 * Update the free space hint
1601 */
1602
1603 if ((map->first_free == prev_entry) &&
1604 (prev_entry->end >= new_entry->start))
1605 map->first_free = new_entry;
1606
1607 new_entry = NULL;
1608 }
1609
1610 map->size += size;
1611
1612 UVMHIST_LOG(maphist,"<- done!", 0, 0, 0, 0);
1613
1614 error = 0;
1615
1616 done:
1617 vm_map_unlock(map);
1618
1619 if (new_entry) {
1620 uvm_mapent_free(new_entry);
1621 }
1622 if (dead) {
1623 KDASSERT(merged);
1624 uvm_mapent_free(dead);
1625 }
1626 if (dead_entries)
1627 uvm_unmap_detach(dead_entries, 0);
1628
1629 return error;
1630 }
1631
1632 /*
1633 * uvm_map_lookup_entry_bytree: lookup an entry in tree
1634 *
1635 * => map must at least be read-locked by caller.
1636 *
1637 * => If address lies in an entry, set *entry to it and return true;
1638 * then (*entry)->start <= address < (*entry)->end.
1639
1640 * => If address is below all entries in map, return false and set
1641 * *entry to &map->header.
1642 *
1643 * => Otherwise, return false and set *entry to the highest entry below
1644 * address, so (*entry)->end <= address, and if (*entry)->next is
1645 * not &map->header, address < (*entry)->next->start.
1646 */
1647
1648 static inline bool
1649 uvm_map_lookup_entry_bytree(struct vm_map *map, vaddr_t address,
1650 struct vm_map_entry **entry /* OUT */)
1651 {
1652 struct vm_map_entry *prev = &map->header;
1653 struct vm_map_entry *cur = ROOT_ENTRY(map);
1654
1655 KASSERT(rw_lock_held(&map->lock));
1656
1657 while (cur) {
1658 KASSERT(prev == &map->header || prev->end <= address);
1659 KASSERT(prev == &map->header || prev->end <= cur->start);
1660 UVMMAP_EVCNT_INCR(mlk_treeloop);
1661 if (address >= cur->start) {
1662 if (address < cur->end) {
1663 *entry = cur;
1664 return true;
1665 }
1666 prev = cur;
1667 KASSERT(prev->end <= address);
1668 cur = RIGHT_ENTRY(cur);
1669 KASSERT(cur == NULL || prev->end <= cur->start);
1670 } else
1671 cur = LEFT_ENTRY(cur);
1672 }
1673 KASSERT(prev == &map->header || prev->end <= address);
1674 KASSERT(prev->next == &map->header || address < prev->next->start);
1675 *entry = prev;
1676 return false;
1677 }
1678
1679 /*
1680 * uvm_map_lookup_entry: find map entry at or before an address
1681 *
1682 * => map must at least be read-locked by caller.
1683 *
1684 * => If address lies in an entry, set *entry to it and return true;
1685 * then (*entry)->start <= address < (*entry)->end.
1686
1687 * => If address is below all entries in map, return false and set
1688 * *entry to &map->header.
1689 *
1690 * => Otherwise, return false and set *entry to the highest entry below
1691 * address, so (*entry)->end <= address, and if (*entry)->next is
1692 * not &map->header, address < (*entry)->next->start.
1693 */
1694
1695 bool
1696 uvm_map_lookup_entry(struct vm_map *map, vaddr_t address,
1697 struct vm_map_entry **entry /* OUT */)
1698 {
1699 struct vm_map_entry *cur;
1700 UVMHIST_FUNC(__func__);
1701 UVMHIST_CALLARGS(maphist,"(map=%#jx,addr=%#jx,ent=%#jx)",
1702 (uintptr_t)map, address, (uintptr_t)entry, 0);
1703
1704 KASSERT(rw_lock_held(&map->lock));
1705
1706 /*
1707 * make a quick check to see if we are already looking at
1708 * the entry we want (which is usually the case). note also
1709 * that we don't need to save the hint here... it is the
1710 * same hint (unless we are at the header, in which case the
1711 * hint didn't buy us anything anyway).
1712 */
1713
1714 cur = map->hint;
1715 UVMMAP_EVCNT_INCR(mlk_call);
1716 if (cur != &map->header &&
1717 address >= cur->start && cur->end > address) {
1718 UVMMAP_EVCNT_INCR(mlk_hint);
1719 *entry = cur;
1720 UVMHIST_LOG(maphist,"<- got it via hint (%#jx)",
1721 (uintptr_t)cur, 0, 0, 0);
1722 uvm_mapent_check(*entry);
1723 return (true);
1724 }
1725 uvm_map_check(map, __func__);
1726
1727 /*
1728 * lookup in the tree.
1729 */
1730
1731 UVMMAP_EVCNT_INCR(mlk_tree);
1732 if (__predict_true(uvm_map_lookup_entry_bytree(map, address, entry))) {
1733 SAVE_HINT(map, map->hint, *entry);
1734 UVMHIST_LOG(maphist,"<- search got it (%#jx)",
1735 (uintptr_t)cur, 0, 0, 0);
1736 KDASSERT((*entry)->start <= address);
1737 KDASSERT(address < (*entry)->end);
1738 uvm_mapent_check(*entry);
1739 return (true);
1740 }
1741
1742 SAVE_HINT(map, map->hint, *entry);
1743 UVMHIST_LOG(maphist,"<- failed!",0,0,0,0);
1744 KDASSERT((*entry) == &map->header || (*entry)->end <= address);
1745 KDASSERT((*entry)->next == &map->header ||
1746 address < (*entry)->next->start);
1747 return (false);
1748 }
1749
1750 /*
1751 * See if the range between start and start + length fits in the gap
1752 * entry->next->start and entry->end. Returns 1 if fits, 0 if doesn't
1753 * fit, and -1 address wraps around.
1754 */
1755 static int
1756 uvm_map_space_avail(vaddr_t *start, vsize_t length, voff_t uoffset,
1757 vsize_t align, int flags, int topdown, struct vm_map_entry *entry)
1758 {
1759 vaddr_t orig_start = *start;
1760 vaddr_t end;
1761
1762 #define INVARIANTS() \
1763 KASSERTMSG((topdown \
1764 ? *start <= orig_start \
1765 : *start >= orig_start), \
1766 "[%s] *start=%"PRIxVADDR" orig_start=%"PRIxVADDR \
1767 " length=%"PRIxVSIZE" uoffset=%#llx align=%"PRIxVSIZE \
1768 " flags=%x entry@%p=[%"PRIxVADDR",%"PRIxVADDR")" \
1769 " ncolors=%d colormask=%x", \
1770 topdown ? "topdown" : "bottomup", *start, orig_start, \
1771 length, (unsigned long long)uoffset, align, \
1772 flags, entry, entry->start, entry->end, \
1773 uvmexp.ncolors, uvmexp.colormask)
1774
1775 INVARIANTS();
1776
1777 #ifdef PMAP_PREFER
1778 /*
1779 * push start address forward as needed to avoid VAC alias problems.
1780 * we only do this if a valid offset is specified.
1781 */
1782
1783 if (uoffset != UVM_UNKNOWN_OFFSET) {
1784 PMAP_PREFER(uoffset, start, length, topdown);
1785 INVARIANTS();
1786 }
1787 #endif
1788 if ((flags & UVM_FLAG_COLORMATCH) != 0) {
1789 KASSERT(align < uvmexp.ncolors);
1790 if (uvmexp.ncolors > 1) {
1791 const u_int colormask = uvmexp.colormask;
1792 const u_int colorsize = colormask + 1;
1793 vaddr_t hint = atop(*start);
1794 const u_int color = hint & colormask;
1795 if (color != align) {
1796 hint -= color; /* adjust to color boundary */
1797 KASSERT((hint & colormask) == 0);
1798 if (topdown) {
1799 if (align > color)
1800 hint -= colorsize;
1801 } else {
1802 if (align < color)
1803 hint += colorsize;
1804 }
1805 *start = ptoa(hint + align); /* adjust to color */
1806 INVARIANTS();
1807 }
1808 }
1809 } else {
1810 KASSERT(powerof2(align));
1811 uvm_map_align_va(start, align, topdown);
1812 INVARIANTS();
1813 /*
1814 * XXX Should we PMAP_PREFER() here again?
1815 * eh...i think we're okay
1816 */
1817 }
1818
1819 /*
1820 * Find the end of the proposed new region. Be sure we didn't
1821 * wrap around the address; if so, we lose. Otherwise, if the
1822 * proposed new region fits before the next entry, we win.
1823 *
1824 * XXX Should this use vm_map_max(map) as the max?
1825 */
1826
1827 if (length > __type_max(vaddr_t) - *start)
1828 return (-1);
1829 end = *start + length;
1830
1831 if (entry->next->start >= end && *start >= entry->end)
1832 return (1);
1833
1834 return (0);
1835
1836 #undef INVARIANTS
1837 }
1838
1839 static void
1840 uvm_findspace_invariants(struct vm_map *map, vaddr_t orig_hint, vaddr_t length,
1841 struct uvm_object *uobj, voff_t uoffset, vsize_t align, int flags,
1842 vaddr_t hint, struct vm_map_entry *entry, int line)
1843 {
1844 const int topdown = map->flags & VM_MAP_TOPDOWN;
1845 const int hint_location_ok =
1846 topdown ? hint <= orig_hint
1847 : hint >= orig_hint;
1848
1849 #if !(defined(__sh3__) && defined(DIAGNOSTIC)) /* XXXRO: kern/51254 */
1850 #define UVM_FINDSPACE_KASSERTMSG KASSERTMSG
1851
1852 #else /* sh3 && DIAGNOSTIC */
1853 /* like KASSERTMSG but make it not fatal */
1854 #define UVM_FINDSPACE_KASSERTMSG(e, msg, ...) \
1855 (__predict_true((e)) ? (void)0 : \
1856 printf(__KASSERTSTR msg "\n", \
1857 "weak diagnostic ", #e, \
1858 __FILE__, __LINE__, ## __VA_ARGS__))
1859 #endif
1860
1861 UVM_FINDSPACE_KASSERTMSG(hint_location_ok,
1862 "%s map=%p hint=%#" PRIxVADDR " %s orig_hint=%#" PRIxVADDR
1863 " length=%#" PRIxVSIZE " uobj=%p uoffset=%#llx align=%" PRIxVSIZE
1864 " flags=%#x entry@%p=[%" PRIxVADDR ",%" PRIxVADDR ")"
1865 " entry->next@%p=[%" PRIxVADDR ",%" PRIxVADDR ")"
1866 " (uvm_map_findspace line %d)",
1867 topdown ? "topdown" : "bottomup",
1868 map, hint, topdown ? ">" : "<", orig_hint,
1869 length, uobj, (unsigned long long)uoffset, align,
1870 flags, entry, entry ? entry->start : 0, entry ? entry->end : 0,
1871 entry ? entry->next : NULL,
1872 entry && entry->next ? entry->next->start : 0,
1873 entry && entry->next ? entry->next->end : 0,
1874 line);
1875 }
1876
1877 /*
1878 * uvm_map_findspace: find "length" sized space in "map".
1879 *
1880 * => "hint" is a hint about where we want it, unless UVM_FLAG_FIXED is
1881 * set in "flags" (in which case we insist on using "hint").
1882 * => "result" is VA returned
1883 * => uobj/uoffset are to be used to handle VAC alignment, if required
1884 * => if "align" is non-zero, we attempt to align to that value.
1885 * => caller must at least have read-locked map
1886 * => returns NULL on failure, or pointer to prev. map entry if success
1887 * => note this is a cross between the old vm_map_findspace and vm_map_find
1888 */
1889
1890 struct vm_map_entry *
1891 uvm_map_findspace(struct vm_map *map, vaddr_t hint, vsize_t length,
1892 vaddr_t *result /* OUT */, struct uvm_object *uobj, voff_t uoffset,
1893 vsize_t align, int flags)
1894 {
1895 #define INVARIANTS() \
1896 uvm_findspace_invariants(map, orig_hint, length, uobj, uoffset, align,\
1897 flags, hint, entry, __LINE__)
1898 struct vm_map_entry *entry = NULL;
1899 struct vm_map_entry *child, *prev, *tmp;
1900 vaddr_t orig_hint __diagused;
1901 const int topdown = map->flags & VM_MAP_TOPDOWN;
1902 int avail;
1903 UVMHIST_FUNC(__func__);
1904 UVMHIST_CALLARGS(maphist, "(map=%#jx, hint=%#jx, len=%ju, flags=%#jx...",
1905 (uintptr_t)map, hint, length, flags);
1906 UVMHIST_LOG(maphist, " uobj=%#jx, uoffset=%#jx, align=%#jx)",
1907 (uintptr_t)uobj, uoffset, align, 0);
1908
1909 KASSERT((flags & UVM_FLAG_COLORMATCH) != 0 || powerof2(align));
1910 KASSERT((flags & UVM_FLAG_COLORMATCH) == 0 || align < uvmexp.ncolors);
1911 KASSERT((flags & UVM_FLAG_FIXED) == 0 || align == 0);
1912
1913 uvm_map_check(map, "map_findspace entry");
1914
1915 /*
1916 * Clamp the hint to the VM map's min/max address, and remmeber
1917 * the clamped original hint. Remember the original hint,
1918 * clamped to the min/max address. If we are aligning, then we
1919 * may have to try again with no alignment constraint if we
1920 * fail the first time.
1921 *
1922 * We use the original hint to verify later that the search has
1923 * been monotonic -- that is, nonincreasing or nondecreasing,
1924 * according to topdown or !topdown respectively. But the
1925 * clamping is not monotonic.
1926 */
1927 if (hint < vm_map_min(map)) { /* check ranges ... */
1928 if (flags & UVM_FLAG_FIXED) {
1929 UVMHIST_LOG(maphist,"<- VA below map range",0,0,0,0);
1930 return (NULL);
1931 }
1932 hint = vm_map_min(map);
1933 }
1934 if (hint > vm_map_max(map)) {
1935 UVMHIST_LOG(maphist,"<- VA %#jx > range [%#jx->%#jx]",
1936 hint, vm_map_min(map), vm_map_max(map), 0);
1937 return (NULL);
1938 }
1939 orig_hint = hint;
1940 INVARIANTS();
1941
1942 UVMHIST_LOG(maphist,"<- VA %#jx vs range [%#jx->%#jx]",
1943 hint, vm_map_min(map), vm_map_max(map), 0);
1944
1945 /*
1946 * hint may not be aligned properly; we need round up or down it
1947 * before proceeding further.
1948 */
1949 if ((flags & UVM_FLAG_COLORMATCH) == 0) {
1950 uvm_map_align_va(&hint, align, topdown);
1951 INVARIANTS();
1952 }
1953
1954 UVMHIST_LOG(maphist,"<- VA %#jx vs range [%#jx->%#jx]",
1955 hint, vm_map_min(map), vm_map_max(map), 0);
1956 /*
1957 * Look for the first possible address; if there's already
1958 * something at this address, we have to start after it.
1959 */
1960
1961 /*
1962 * @@@: there are four, no, eight cases to consider.
1963 *
1964 * 0: found, fixed, bottom up -> fail
1965 * 1: found, fixed, top down -> fail
1966 * 2: found, not fixed, bottom up -> start after entry->end,
1967 * loop up
1968 * 3: found, not fixed, top down -> start before entry->start,
1969 * loop down
1970 * 4: not found, fixed, bottom up -> check entry->next->start, fail
1971 * 5: not found, fixed, top down -> check entry->next->start, fail
1972 * 6: not found, not fixed, bottom up -> check entry->next->start,
1973 * loop up
1974 * 7: not found, not fixed, top down -> check entry->next->start,
1975 * loop down
1976 *
1977 * as you can see, it reduces to roughly five cases, and that
1978 * adding top down mapping only adds one unique case (without
1979 * it, there would be four cases).
1980 */
1981
1982 if ((flags & UVM_FLAG_FIXED) == 0 &&
1983 hint == (topdown ? vm_map_max(map) : vm_map_min(map))) {
1984 /*
1985 * The uvm_map_findspace algorithm is monotonic -- for
1986 * topdown VM it starts with a high hint and returns a
1987 * lower free address; for !topdown VM it starts with a
1988 * low hint and returns a higher free address. As an
1989 * optimization, start with the first (highest for
1990 * topdown, lowest for !topdown) free address.
1991 *
1992 * XXX This `optimization' probably doesn't actually do
1993 * much in practice unless userland explicitly passes
1994 * the VM map's minimum or maximum address, which
1995 * varies from machine to machine (VM_MAX/MIN_ADDRESS,
1996 * e.g. 0x7fbfdfeff000 on amd64 but 0xfffffffff000 on
1997 * aarch64) and may vary according to other factors
1998 * like sysctl vm.user_va0_disable. In particular, if
1999 * the user specifies 0 as a hint to mmap, then mmap
2000 * will choose a default address which is usually _not_
2001 * VM_MAX/MIN_ADDRESS but something else instead like
2002 * VM_MAX_ADDRESS - stack size - guard page overhead,
2003 * in which case this branch is never hit.
2004 *
2005 * In fact, this branch appears to have been broken for
2006 * two decades between when topdown was introduced in
2007 * ~2003 and when it was adapted to handle the topdown
2008 * case without violating the monotonicity assertion in
2009 * 2022. Maybe Someone^TM should either ditch the
2010 * optimization or find a better way to do it.
2011 */
2012 entry = map->first_free;
2013 } else if (uvm_map_lookup_entry(map, hint, &entry)) {
2014 KASSERT(entry->start <= hint);
2015 KASSERT(hint < entry->end);
2016 /* "hint" address already in use ... */
2017 if (flags & UVM_FLAG_FIXED) {
2018 UVMHIST_LOG(maphist, "<- fixed & VA in use",
2019 0, 0, 0, 0);
2020 return (NULL);
2021 }
2022 if (topdown)
2023 /* Start from lower gap. */
2024 entry = entry->prev;
2025 } else {
2026 KASSERT(entry == &map->header || entry->end <= hint);
2027 KASSERT(entry->next == &map->header ||
2028 hint < entry->next->start);
2029 if (flags & UVM_FLAG_FIXED) {
2030 if (entry->next->start >= hint &&
2031 length <= entry->next->start - hint)
2032 goto found;
2033
2034 /* "hint" address is gap but too small */
2035 UVMHIST_LOG(maphist, "<- fixed mapping failed",
2036 0, 0, 0, 0);
2037 return (NULL); /* only one shot at it ... */
2038 } else {
2039 /*
2040 * See if given hint fits in this gap.
2041 */
2042 avail = uvm_map_space_avail(&hint, length,
2043 uoffset, align, flags, topdown, entry);
2044 INVARIANTS();
2045 switch (avail) {
2046 case 1:
2047 goto found;
2048 case -1:
2049 goto wraparound;
2050 }
2051
2052 if (topdown) {
2053 /*
2054 * Still there is a chance to fit
2055 * if hint > entry->end.
2056 */
2057 } else {
2058 /* Start from higher gap. */
2059 entry = entry->next;
2060 if (entry == &map->header)
2061 goto notfound;
2062 goto nextgap;
2063 }
2064 }
2065 }
2066
2067 /*
2068 * Note that all UVM_FLAGS_FIXED case is already handled.
2069 */
2070 KDASSERT((flags & UVM_FLAG_FIXED) == 0);
2071
2072 /* Try to find the space in the red-black tree */
2073
2074 /* Check slot before any entry */
2075 if (topdown) {
2076 KASSERTMSG(entry->next->start >= vm_map_min(map),
2077 "map=%p entry=%p entry->next=%p"
2078 " entry->next->start=0x%"PRIxVADDR" min=0x%"PRIxVADDR,
2079 map, entry, entry->next,
2080 entry->next->start, vm_map_min(map));
2081 if (length > entry->next->start - vm_map_min(map))
2082 hint = vm_map_min(map); /* XXX goto wraparound? */
2083 else
2084 hint = MIN(orig_hint, entry->next->start - length);
2085 KASSERT(hint >= vm_map_min(map));
2086 } else {
2087 hint = entry->end;
2088 }
2089 INVARIANTS();
2090 avail = uvm_map_space_avail(&hint, length, uoffset, align, flags,
2091 topdown, entry);
2092 INVARIANTS();
2093 switch (avail) {
2094 case 1:
2095 goto found;
2096 case -1:
2097 goto wraparound;
2098 }
2099
2100 nextgap:
2101 KDASSERT((flags & UVM_FLAG_FIXED) == 0);
2102 /* If there is not enough space in the whole tree, we fail */
2103 tmp = ROOT_ENTRY(map);
2104 if (tmp == NULL || tmp->maxgap < length)
2105 goto notfound;
2106
2107 prev = NULL; /* previous candidate */
2108
2109 /* Find an entry close to hint that has enough space */
2110 for (; tmp;) {
2111 KASSERT(tmp->next->start == tmp->end + tmp->gap);
2112 if (topdown) {
2113 if (tmp->next->start < hint + length &&
2114 (prev == NULL || tmp->end > prev->end)) {
2115 if (tmp->gap >= length)
2116 prev = tmp;
2117 else if ((child = LEFT_ENTRY(tmp)) != NULL
2118 && child->maxgap >= length)
2119 prev = tmp;
2120 }
2121 } else {
2122 if (tmp->end >= hint &&
2123 (prev == NULL || tmp->end < prev->end)) {
2124 if (tmp->gap >= length)
2125 prev = tmp;
2126 else if ((child = RIGHT_ENTRY(tmp)) != NULL
2127 && child->maxgap >= length)
2128 prev = tmp;
2129 }
2130 }
2131 if (tmp->next->start < hint + length)
2132 child = RIGHT_ENTRY(tmp);
2133 else if (tmp->end > hint)
2134 child = LEFT_ENTRY(tmp);
2135 else {
2136 if (tmp->gap >= length)
2137 break;
2138 if (topdown)
2139 child = LEFT_ENTRY(tmp);
2140 else
2141 child = RIGHT_ENTRY(tmp);
2142 }
2143 if (child == NULL || child->maxgap < length)
2144 break;
2145 tmp = child;
2146 }
2147
2148 if (tmp != NULL && tmp->start < hint && hint < tmp->next->start) {
2149 /*
2150 * Check if the entry that we found satifies the
2151 * space requirement
2152 */
2153 if (topdown) {
2154 if (hint > tmp->next->start - length)
2155 hint = tmp->next->start - length;
2156 } else {
2157 if (hint < tmp->end)
2158 hint = tmp->end;
2159 }
2160 INVARIANTS();
2161 avail = uvm_map_space_avail(&hint, length, uoffset, align,
2162 flags, topdown, tmp);
2163 INVARIANTS();
2164 switch (avail) {
2165 case 1:
2166 entry = tmp;
2167 goto found;
2168 case -1:
2169 goto wraparound;
2170 }
2171 if (tmp->gap >= length)
2172 goto listsearch;
2173 }
2174 if (prev == NULL)
2175 goto notfound;
2176
2177 if (topdown) {
2178 KASSERT(orig_hint >= prev->next->start - length ||
2179 prev->next->start - length > prev->next->start);
2180 hint = prev->next->start - length;
2181 } else {
2182 KASSERT(orig_hint <= prev->end);
2183 hint = prev->end;
2184 }
2185 INVARIANTS();
2186 avail = uvm_map_space_avail(&hint, length, uoffset, align,
2187 flags, topdown, prev);
2188 INVARIANTS();
2189 switch (avail) {
2190 case 1:
2191 entry = prev;
2192 goto found;
2193 case -1:
2194 goto wraparound;
2195 }
2196 if (prev->gap >= length)
2197 goto listsearch;
2198
2199 if (topdown)
2200 tmp = LEFT_ENTRY(prev);
2201 else
2202 tmp = RIGHT_ENTRY(prev);
2203 for (;;) {
2204 KASSERT(tmp);
2205 KASSERTMSG(tmp->maxgap >= length,
2206 "tmp->maxgap=0x%"PRIxVSIZE" length=0x%"PRIxVSIZE,
2207 tmp->maxgap, length);
2208 if (topdown)
2209 child = RIGHT_ENTRY(tmp);
2210 else
2211 child = LEFT_ENTRY(tmp);
2212 if (child && child->maxgap >= length) {
2213 tmp = child;
2214 continue;
2215 }
2216 if (tmp->gap >= length)
2217 break;
2218 if (topdown)
2219 tmp = LEFT_ENTRY(tmp);
2220 else
2221 tmp = RIGHT_ENTRY(tmp);
2222 }
2223
2224 if (topdown) {
2225 KASSERT(orig_hint >= tmp->next->start - length ||
2226 tmp->next->start - length > tmp->next->start);
2227 hint = tmp->next->start - length;
2228 } else {
2229 KASSERT(orig_hint <= tmp->end);
2230 hint = tmp->end;
2231 }
2232 INVARIANTS();
2233 avail = uvm_map_space_avail(&hint, length, uoffset, align,
2234 flags, topdown, tmp);
2235 INVARIANTS();
2236 switch (avail) {
2237 case 1:
2238 entry = tmp;
2239 goto found;
2240 case -1:
2241 goto wraparound;
2242 }
2243
2244 /*
2245 * The tree fails to find an entry because of offset or alignment
2246 * restrictions. Search the list instead.
2247 */
2248 listsearch:
2249 /*
2250 * Look through the rest of the map, trying to fit a new region in
2251 * the gap between existing regions, or after the very last region.
2252 * note: entry->end = base VA of current gap,
2253 * entry->next->start = VA of end of current gap
2254 */
2255
2256 INVARIANTS();
2257 for (;;) {
2258 /* Update hint for current gap. */
2259 hint = topdown ? MIN(orig_hint, entry->next->start - length)
2260 : entry->end;
2261 INVARIANTS();
2262
2263 /* See if it fits. */
2264 avail = uvm_map_space_avail(&hint, length, uoffset, align,
2265 flags, topdown, entry);
2266 INVARIANTS();
2267 switch (avail) {
2268 case 1:
2269 goto found;
2270 case -1:
2271 goto wraparound;
2272 }
2273
2274 /* Advance to next/previous gap */
2275 if (topdown) {
2276 if (entry == &map->header) {
2277 UVMHIST_LOG(maphist, "<- failed (off start)",
2278 0,0,0,0);
2279 goto notfound;
2280 }
2281 entry = entry->prev;
2282 } else {
2283 entry = entry->next;
2284 if (entry == &map->header) {
2285 UVMHIST_LOG(maphist, "<- failed (off end)",
2286 0,0,0,0);
2287 goto notfound;
2288 }
2289 }
2290 }
2291
2292 found:
2293 SAVE_HINT(map, map->hint, entry);
2294 *result = hint;
2295 UVMHIST_LOG(maphist,"<- got it! (result=%#jx)", hint, 0,0,0);
2296 INVARIANTS();
2297 KASSERT(entry->end <= hint);
2298 KASSERT(hint <= entry->next->start);
2299 KASSERT(length <= entry->next->start - hint);
2300 return (entry);
2301
2302 wraparound:
2303 UVMHIST_LOG(maphist, "<- failed (wrap around)", 0,0,0,0);
2304
2305 return (NULL);
2306
2307 notfound:
2308 UVMHIST_LOG(maphist, "<- failed (notfound)", 0,0,0,0);
2309
2310 return (NULL);
2311 #undef INVARIANTS
2312 }
2313
2314 /*
2315 * U N M A P - m a i n h e l p e r f u n c t i o n s
2316 */
2317
2318 /*
2319 * uvm_unmap_remove: remove mappings from a vm_map (from "start" up to "stop")
2320 *
2321 * => caller must check alignment and size
2322 * => map must be locked by caller
2323 * => we return a list of map entries that we've remove from the map
2324 * in "entry_list"
2325 */
2326
2327 void
2328 uvm_unmap_remove(struct vm_map *map, vaddr_t start, vaddr_t end,
2329 struct vm_map_entry **entry_list /* OUT */, int flags)
2330 {
2331 struct vm_map_entry *entry, *first_entry, *next;
2332 vaddr_t len;
2333 UVMHIST_FUNC(__func__);
2334 UVMHIST_CALLARGS(maphist,"(map=%#jx, start=%#jx, end=%#jx)",
2335 (uintptr_t)map, start, end, 0);
2336 VM_MAP_RANGE_CHECK(map, start, end);
2337
2338 KASSERT(vm_map_locked_p(map));
2339
2340 uvm_map_check(map, "unmap_remove entry");
2341
2342 /*
2343 * find first entry
2344 */
2345
2346 if (uvm_map_lookup_entry(map, start, &first_entry) == true) {
2347 /* clip and go... */
2348 entry = first_entry;
2349 UVM_MAP_CLIP_START(map, entry, start);
2350 /* critical! prevents stale hint */
2351 SAVE_HINT(map, entry, entry->prev);
2352 } else {
2353 entry = first_entry->next;
2354 }
2355
2356 /*
2357 * save the free space hint
2358 */
2359
2360 if (map->first_free != &map->header && map->first_free->start >= start)
2361 map->first_free = entry->prev;
2362
2363 /*
2364 * note: we now re-use first_entry for a different task. we remove
2365 * a number of map entries from the map and save them in a linked
2366 * list headed by "first_entry". once we remove them from the map
2367 * the caller should unlock the map and drop the references to the
2368 * backing objects [c.f. uvm_unmap_detach]. the object is to
2369 * separate unmapping from reference dropping. why?
2370 * [1] the map has to be locked for unmapping
2371 * [2] the map need not be locked for reference dropping
2372 * [3] dropping references may trigger pager I/O, and if we hit
2373 * a pager that does synchronous I/O we may have to wait for it.
2374 * [4] we would like all waiting for I/O to occur with maps unlocked
2375 * so that we don't block other threads.
2376 */
2377
2378 first_entry = NULL;
2379 *entry_list = NULL;
2380
2381 /*
2382 * break up the area into map entry sized regions and unmap. note
2383 * that all mappings have to be removed before we can even consider
2384 * dropping references to amaps or VM objects (otherwise we could end
2385 * up with a mapping to a page on the free list which would be very bad)
2386 */
2387
2388 while ((entry != &map->header) && (entry->start < end)) {
2389 KASSERT((entry->flags & UVM_MAP_STATIC) == 0);
2390
2391 UVM_MAP_CLIP_END(map, entry, end);
2392 next = entry->next;
2393 len = entry->end - entry->start;
2394
2395 /*
2396 * unwire before removing addresses from the pmap; otherwise
2397 * unwiring will put the entries back into the pmap (XXX).
2398 */
2399
2400 if (VM_MAPENT_ISWIRED(entry)) {
2401 uvm_map_entry_unwire(map, entry);
2402 }
2403 if (flags & UVM_FLAG_VAONLY) {
2404
2405 /* nothing */
2406
2407 } else if ((map->flags & VM_MAP_PAGEABLE) == 0) {
2408
2409 /*
2410 * if the map is non-pageable, any pages mapped there
2411 * must be wired and entered with pmap_kenter_pa(),
2412 * and we should free any such pages immediately.
2413 * this is mostly used for kmem_map.
2414 */
2415 KASSERT(vm_map_pmap(map) == pmap_kernel());
2416
2417 uvm_km_pgremove_intrsafe(map, entry->start, entry->end);
2418 } else if (UVM_ET_ISOBJ(entry) &&
2419 UVM_OBJ_IS_KERN_OBJECT(entry->object.uvm_obj)) {
2420 panic("%s: kernel object %p %p\n",
2421 __func__, map, entry);
2422 } else if (UVM_ET_ISOBJ(entry) || entry->aref.ar_amap) {
2423 /*
2424 * remove mappings the standard way. lock object
2425 * and/or amap to ensure vm_page state does not
2426 * change while in pmap_remove().
2427 */
2428
2429 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
2430 uvm_map_lock_entry(entry, RW_WRITER);
2431 #else
2432 uvm_map_lock_entry(entry, RW_READER);
2433 #endif
2434 pmap_remove(map->pmap, entry->start, entry->end);
2435
2436 /*
2437 * note: if map is dying, leave pmap_update() for
2438 * later. if the map is to be reused (exec) then
2439 * pmap_update() will be called. if the map is
2440 * being disposed of (exit) then pmap_destroy()
2441 * will be called.
2442 */
2443
2444 if ((map->flags & VM_MAP_DYING) == 0) {
2445 pmap_update(vm_map_pmap(map));
2446 } else {
2447 KASSERT(vm_map_pmap(map) != pmap_kernel());
2448 }
2449
2450 uvm_map_unlock_entry(entry);
2451 }
2452
2453 #if defined(UVMDEBUG)
2454 /*
2455 * check if there's remaining mapping,
2456 * which is a bug in caller.
2457 */
2458
2459 vaddr_t va;
2460 for (va = entry->start; va < entry->end;
2461 va += PAGE_SIZE) {
2462 if (pmap_extract(vm_map_pmap(map), va, NULL)) {
2463 panic("%s: %#"PRIxVADDR" has mapping",
2464 __func__, va);
2465 }
2466 }
2467
2468 if (VM_MAP_IS_KERNEL(map) && (flags & UVM_FLAG_NOWAIT) == 0) {
2469 uvm_km_check_empty(map, entry->start, entry->end);
2470 }
2471 #endif /* defined(UVMDEBUG) */
2472
2473 /*
2474 * remove entry from map and put it on our list of entries
2475 * that we've nuked. then go to next entry.
2476 */
2477
2478 UVMHIST_LOG(maphist, " removed map entry %#jx",
2479 (uintptr_t)entry, 0, 0, 0);
2480
2481 /* critical! prevents stale hint */
2482 SAVE_HINT(map, entry, entry->prev);
2483
2484 uvm_map_entry_unlink(map, entry);
2485 KASSERT(map->size >= len);
2486 map->size -= len;
2487 entry->prev = NULL;
2488 entry->next = first_entry;
2489 first_entry = entry;
2490 entry = next;
2491 }
2492
2493 uvm_map_check(map, "unmap_remove leave");
2494
2495 /*
2496 * now we've cleaned up the map and are ready for the caller to drop
2497 * references to the mapped objects.
2498 */
2499
2500 *entry_list = first_entry;
2501 UVMHIST_LOG(maphist,"<- done!", 0, 0, 0, 0);
2502
2503 if (map->flags & VM_MAP_WANTVA) {
2504 mutex_enter(&map->misc_lock);
2505 map->flags &= ~VM_MAP_WANTVA;
2506 cv_broadcast(&map->cv);
2507 mutex_exit(&map->misc_lock);
2508 }
2509 }
2510
2511 /*
2512 * uvm_unmap_detach: drop references in a chain of map entries
2513 *
2514 * => we will free the map entries as we traverse the list.
2515 */
2516
2517 void
2518 uvm_unmap_detach(struct vm_map_entry *first_entry, int flags)
2519 {
2520 struct vm_map_entry *next_entry;
2521 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2522
2523 while (first_entry) {
2524 KASSERT(!VM_MAPENT_ISWIRED(first_entry));
2525 UVMHIST_LOG(maphist,
2526 " detach %#jx: amap=%#jx, obj=%#jx, submap?=%jd",
2527 (uintptr_t)first_entry,
2528 (uintptr_t)first_entry->aref.ar_amap,
2529 (uintptr_t)first_entry->object.uvm_obj,
2530 UVM_ET_ISSUBMAP(first_entry));
2531
2532 /*
2533 * drop reference to amap, if we've got one
2534 */
2535
2536 if (first_entry->aref.ar_amap)
2537 uvm_map_unreference_amap(first_entry, flags);
2538
2539 /*
2540 * drop reference to our backing object, if we've got one
2541 */
2542
2543 KASSERT(!UVM_ET_ISSUBMAP(first_entry));
2544 if (UVM_ET_ISOBJ(first_entry) &&
2545 first_entry->object.uvm_obj->pgops->pgo_detach) {
2546 (*first_entry->object.uvm_obj->pgops->pgo_detach)
2547 (first_entry->object.uvm_obj);
2548 }
2549 next_entry = first_entry->next;
2550 uvm_mapent_free(first_entry);
2551 first_entry = next_entry;
2552 }
2553 UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
2554 }
2555
2556 /*
2557 * E X T R A C T I O N F U N C T I O N S
2558 */
2559
2560 /*
2561 * uvm_map_reserve: reserve space in a vm_map for future use.
2562 *
2563 * => we reserve space in a map by putting a dummy map entry in the
2564 * map (dummy means obj=NULL, amap=NULL, prot=VM_PROT_NONE)
2565 * => map should be unlocked (we will write lock it)
2566 * => we return true if we were able to reserve space
2567 * => XXXCDC: should be inline?
2568 */
2569
2570 int
2571 uvm_map_reserve(struct vm_map *map, vsize_t size,
2572 vaddr_t offset /* hint for pmap_prefer */,
2573 vsize_t align /* alignment */,
2574 vaddr_t *raddr /* IN:hint, OUT: reserved VA */,
2575 uvm_flag_t flags /* UVM_FLAG_FIXED or UVM_FLAG_COLORMATCH or 0 */)
2576 {
2577 UVMHIST_FUNC(__func__);
2578 UVMHIST_CALLARGS(maphist, "(map=%#jx, size=%#jx, offset=%#jx, addr=%#jx)",
2579 (uintptr_t)map, size, offset, (uintptr_t)raddr);
2580
2581 size = round_page(size);
2582
2583 /*
2584 * reserve some virtual space.
2585 */
2586
2587 if (uvm_map(map, raddr, size, NULL, offset, align,
2588 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
2589 UVM_ADV_RANDOM, UVM_FLAG_NOMERGE|flags)) != 0) {
2590 UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
2591 return (false);
2592 }
2593
2594 UVMHIST_LOG(maphist, "<- done (*raddr=%#jx)", *raddr,0,0,0);
2595 return (true);
2596 }
2597
2598 /*
2599 * uvm_map_replace: replace a reserved (blank) area of memory with
2600 * real mappings.
2601 *
2602 * => caller must WRITE-LOCK the map
2603 * => we return true if replacement was a success
2604 * => we expect the newents chain to have nnewents entrys on it and
2605 * we expect newents->prev to point to the last entry on the list
2606 * => note newents is allowed to be NULL
2607 */
2608
2609 static int
2610 uvm_map_replace(struct vm_map *map, vaddr_t start, vaddr_t end,
2611 struct vm_map_entry *newents, int nnewents, vsize_t nsize,
2612 struct vm_map_entry **oldentryp)
2613 {
2614 struct vm_map_entry *oldent, *last;
2615
2616 uvm_map_check(map, "map_replace entry");
2617
2618 /*
2619 * first find the blank map entry at the specified address
2620 */
2621
2622 if (!uvm_map_lookup_entry(map, start, &oldent)) {
2623 return (false);
2624 }
2625
2626 /*
2627 * check to make sure we have a proper blank entry
2628 */
2629
2630 if (end < oldent->end) {
2631 UVM_MAP_CLIP_END(map, oldent, end);
2632 }
2633 if (oldent->start != start || oldent->end != end ||
2634 oldent->object.uvm_obj != NULL || oldent->aref.ar_amap != NULL) {
2635 return (false);
2636 }
2637
2638 #ifdef DIAGNOSTIC
2639
2640 /*
2641 * sanity check the newents chain
2642 */
2643
2644 {
2645 struct vm_map_entry *tmpent = newents;
2646 int nent = 0;
2647 vsize_t sz = 0;
2648 vaddr_t cur = start;
2649
2650 while (tmpent) {
2651 nent++;
2652 sz += tmpent->end - tmpent->start;
2653 if (tmpent->start < cur)
2654 panic("uvm_map_replace1");
2655 if (tmpent->start >= tmpent->end || tmpent->end > end) {
2656 panic("uvm_map_replace2: "
2657 "tmpent->start=%#"PRIxVADDR
2658 ", tmpent->end=%#"PRIxVADDR
2659 ", end=%#"PRIxVADDR,
2660 tmpent->start, tmpent->end, end);
2661 }
2662 cur = tmpent->end;
2663 if (tmpent->next) {
2664 if (tmpent->next->prev != tmpent)
2665 panic("uvm_map_replace3");
2666 } else {
2667 if (newents->prev != tmpent)
2668 panic("uvm_map_replace4");
2669 }
2670 tmpent = tmpent->next;
2671 }
2672 if (nent != nnewents)
2673 panic("uvm_map_replace5");
2674 if (sz != nsize)
2675 panic("uvm_map_replace6");
2676 }
2677 #endif
2678
2679 /*
2680 * map entry is a valid blank! replace it. (this does all the
2681 * work of map entry link/unlink...).
2682 */
2683
2684 if (newents) {
2685 last = newents->prev;
2686
2687 /* critical: flush stale hints out of map */
2688 SAVE_HINT(map, map->hint, newents);
2689 if (map->first_free == oldent)
2690 map->first_free = last;
2691
2692 last->next = oldent->next;
2693 last->next->prev = last;
2694
2695 /* Fix RB tree */
2696 uvm_rb_remove(map, oldent);
2697
2698 newents->prev = oldent->prev;
2699 newents->prev->next = newents;
2700 map->nentries = map->nentries + (nnewents - 1);
2701
2702 /* Fixup the RB tree */
2703 {
2704 int i;
2705 struct vm_map_entry *tmp;
2706
2707 tmp = newents;
2708 for (i = 0; i < nnewents && tmp; i++) {
2709 uvm_rb_insert(map, tmp);
2710 tmp = tmp->next;
2711 }
2712 }
2713 } else {
2714 /* NULL list of new entries: just remove the old one */
2715 clear_hints(map, oldent);
2716 uvm_map_entry_unlink(map, oldent);
2717 }
2718 map->size -= end - start - nsize;
2719
2720 uvm_map_check(map, "map_replace leave");
2721
2722 /*
2723 * now we can free the old blank entry and return.
2724 */
2725
2726 *oldentryp = oldent;
2727 return (true);
2728 }
2729
2730 /*
2731 * uvm_map_extract: extract a mapping from a map and put it somewhere
2732 * (maybe removing the old mapping)
2733 *
2734 * => maps should be unlocked (we will write lock them)
2735 * => returns 0 on success, error code otherwise
2736 * => start must be page aligned
2737 * => len must be page sized
2738 * => flags:
2739 * UVM_EXTRACT_REMOVE: remove mappings from srcmap
2740 * UVM_EXTRACT_CONTIG: abort if unmapped area (advisory only)
2741 * UVM_EXTRACT_QREF: for a temporary extraction do quick obj refs
2742 * UVM_EXTRACT_FIXPROT: set prot to maxprot as we go
2743 * UVM_EXTRACT_PROT_ALL: set prot to UVM_PROT_ALL as we go
2744 * >>>NOTE: if you set REMOVE, you are not allowed to use CONTIG or QREF!<<<
2745 * >>>NOTE: QREF's must be unmapped via the QREF path, thus should only
2746 * be used from within the kernel in a kernel level map <<<
2747 */
2748
2749 int
2750 uvm_map_extract(struct vm_map *srcmap, vaddr_t start, vsize_t len,
2751 struct vm_map *dstmap, vaddr_t *dstaddrp, int flags)
2752 {
2753 vaddr_t dstaddr, end, newend, oldoffset, fudge, orig_fudge;
2754 struct vm_map_entry *chain, *endchain, *entry, *orig_entry, *newentry,
2755 *deadentry, *oldentry;
2756 struct vm_map_entry *resentry = NULL; /* a dummy reservation entry */
2757 vsize_t elen __unused;
2758 int nchain, error, copy_ok;
2759 vsize_t nsize;
2760 UVMHIST_FUNC(__func__);
2761 UVMHIST_CALLARGS(maphist,"(srcmap=%#jx,start=%#jx, len=%#jx",
2762 (uintptr_t)srcmap, start, len, 0);
2763 UVMHIST_LOG(maphist," ...,dstmap=%#jx, flags=%#jx)",
2764 (uintptr_t)dstmap, flags, 0, 0);
2765
2766 /*
2767 * step 0: sanity check: start must be on a page boundary, length
2768 * must be page sized. can't ask for CONTIG/QREF if you asked for
2769 * REMOVE.
2770 */
2771
2772 KASSERTMSG((start & PAGE_MASK) == 0, "start=0x%"PRIxVADDR, start);
2773 KASSERTMSG((len & PAGE_MASK) == 0, "len=0x%"PRIxVADDR, len);
2774 KASSERT((flags & UVM_EXTRACT_REMOVE) == 0 ||
2775 (flags & (UVM_EXTRACT_CONTIG|UVM_EXTRACT_QREF)) == 0);
2776
2777 /*
2778 * step 1: reserve space in the target map for the extracted area
2779 */
2780
2781 if ((flags & UVM_EXTRACT_RESERVED) == 0) {
2782 dstaddr = vm_map_min(dstmap);
2783 if (!uvm_map_reserve(dstmap, len, start,
2784 atop(start) & uvmexp.colormask, &dstaddr,
2785 UVM_FLAG_COLORMATCH))
2786 return (ENOMEM);
2787 KASSERT((atop(start ^ dstaddr) & uvmexp.colormask) == 0);
2788 *dstaddrp = dstaddr; /* pass address back to caller */
2789 UVMHIST_LOG(maphist, " dstaddr=%#jx", dstaddr,0,0,0);
2790 } else {
2791 dstaddr = *dstaddrp;
2792 }
2793
2794 /*
2795 * step 2: setup for the extraction process loop by init'ing the
2796 * map entry chain, locking src map, and looking up the first useful
2797 * entry in the map.
2798 */
2799
2800 end = start + len;
2801 newend = dstaddr + len;
2802 chain = endchain = NULL;
2803 nchain = 0;
2804 nsize = 0;
2805 vm_map_lock(srcmap);
2806
2807 if (uvm_map_lookup_entry(srcmap, start, &entry)) {
2808
2809 /* "start" is within an entry */
2810 if (flags & UVM_EXTRACT_QREF) {
2811
2812 /*
2813 * for quick references we don't clip the entry, so
2814 * the entry may map space "before" the starting
2815 * virtual address... this is the "fudge" factor
2816 * (which can be non-zero only the first time
2817 * through the "while" loop in step 3).
2818 */
2819
2820 fudge = start - entry->start;
2821 } else {
2822
2823 /*
2824 * normal reference: we clip the map to fit (thus
2825 * fudge is zero)
2826 */
2827
2828 UVM_MAP_CLIP_START(srcmap, entry, start);
2829 SAVE_HINT(srcmap, srcmap->hint, entry->prev);
2830 fudge = 0;
2831 }
2832 } else {
2833
2834 /* "start" is not within an entry ... skip to next entry */
2835 if (flags & UVM_EXTRACT_CONTIG) {
2836 error = EINVAL;
2837 goto bad; /* definite hole here ... */
2838 }
2839
2840 entry = entry->next;
2841 fudge = 0;
2842 }
2843
2844 /* save values from srcmap for step 6 */
2845 orig_entry = entry;
2846 orig_fudge = fudge;
2847
2848 /*
2849 * step 3: now start looping through the map entries, extracting
2850 * as we go.
2851 */
2852
2853 while (entry->start < end && entry != &srcmap->header) {
2854
2855 /* if we are not doing a quick reference, clip it */
2856 if ((flags & UVM_EXTRACT_QREF) == 0)
2857 UVM_MAP_CLIP_END(srcmap, entry, end);
2858
2859 /* clear needs_copy (allow chunking) */
2860 if (UVM_ET_ISNEEDSCOPY(entry)) {
2861 amap_copy(srcmap, entry,
2862 AMAP_COPY_NOWAIT|AMAP_COPY_NOMERGE, start, end);
2863 if (UVM_ET_ISNEEDSCOPY(entry)) { /* failed? */
2864 error = ENOMEM;
2865 goto bad;
2866 }
2867
2868 /* amap_copy could clip (during chunk)! update fudge */
2869 if (fudge) {
2870 fudge = start - entry->start;
2871 orig_fudge = fudge;
2872 }
2873 }
2874
2875 /* calculate the offset of this from "start" */
2876 oldoffset = (entry->start + fudge) - start;
2877
2878 /* allocate a new map entry */
2879 newentry = uvm_mapent_alloc(dstmap, 0);
2880 if (newentry == NULL) {
2881 error = ENOMEM;
2882 goto bad;
2883 }
2884
2885 /* set up new map entry */
2886 newentry->next = NULL;
2887 newentry->prev = endchain;
2888 newentry->start = dstaddr + oldoffset;
2889 newentry->end =
2890 newentry->start + (entry->end - (entry->start + fudge));
2891 if (newentry->end > newend || newentry->end < newentry->start)
2892 newentry->end = newend;
2893 newentry->object.uvm_obj = entry->object.uvm_obj;
2894 if (newentry->object.uvm_obj) {
2895 if (newentry->object.uvm_obj->pgops->pgo_reference)
2896 newentry->object.uvm_obj->pgops->
2897 pgo_reference(newentry->object.uvm_obj);
2898 newentry->offset = entry->offset + fudge;
2899 } else {
2900 newentry->offset = 0;
2901 }
2902 newentry->etype = entry->etype;
2903 if (flags & UVM_EXTRACT_PROT_ALL) {
2904 newentry->protection = newentry->max_protection =
2905 UVM_PROT_ALL;
2906 } else {
2907 newentry->protection = (flags & UVM_EXTRACT_FIXPROT) ?
2908 entry->max_protection : entry->protection;
2909 newentry->max_protection = entry->max_protection;
2910 }
2911 newentry->inheritance = entry->inheritance;
2912 newentry->wired_count = 0;
2913 newentry->aref.ar_amap = entry->aref.ar_amap;
2914 if (newentry->aref.ar_amap) {
2915 newentry->aref.ar_pageoff =
2916 entry->aref.ar_pageoff + (fudge >> PAGE_SHIFT);
2917 uvm_map_reference_amap(newentry, AMAP_SHARED |
2918 ((flags & UVM_EXTRACT_QREF) ? AMAP_REFALL : 0));
2919 } else {
2920 newentry->aref.ar_pageoff = 0;
2921 }
2922 newentry->advice = entry->advice;
2923 if ((flags & UVM_EXTRACT_QREF) != 0) {
2924 newentry->flags |= UVM_MAP_NOMERGE;
2925 }
2926
2927 /* now link it on the chain */
2928 nchain++;
2929 nsize += newentry->end - newentry->start;
2930 if (endchain == NULL) {
2931 chain = endchain = newentry;
2932 } else {
2933 endchain->next = newentry;
2934 endchain = newentry;
2935 }
2936
2937 /* end of 'while' loop! */
2938 if ((flags & UVM_EXTRACT_CONTIG) && entry->end < end &&
2939 (entry->next == &srcmap->header ||
2940 entry->next->start != entry->end)) {
2941 error = EINVAL;
2942 goto bad;
2943 }
2944 entry = entry->next;
2945 fudge = 0;
2946 }
2947
2948 /*
2949 * step 4: close off chain (in format expected by uvm_map_replace)
2950 */
2951
2952 if (chain)
2953 chain->prev = endchain;
2954
2955 /*
2956 * step 5: attempt to lock the dest map so we can pmap_copy.
2957 * note usage of copy_ok:
2958 * 1 => dstmap locked, pmap_copy ok, and we "replace" here (step 5)
2959 * 0 => dstmap unlocked, NO pmap_copy, and we will "replace" in step 7
2960 */
2961
2962 if (srcmap == dstmap || vm_map_lock_try(dstmap) == true) {
2963 copy_ok = 1;
2964 if (!uvm_map_replace(dstmap, dstaddr, dstaddr+len, chain,
2965 nchain, nsize, &resentry)) {
2966 if (srcmap != dstmap)
2967 vm_map_unlock(dstmap);
2968 error = EIO;
2969 goto bad;
2970 }
2971 } else {
2972 copy_ok = 0;
2973 /* replace deferred until step 7 */
2974 }
2975
2976 /*
2977 * step 6: traverse the srcmap a second time to do the following:
2978 * - if we got a lock on the dstmap do pmap_copy
2979 * - if UVM_EXTRACT_REMOVE remove the entries
2980 * we make use of orig_entry and orig_fudge (saved in step 2)
2981 */
2982
2983 if (copy_ok || (flags & UVM_EXTRACT_REMOVE)) {
2984
2985 /* purge possible stale hints from srcmap */
2986 if (flags & UVM_EXTRACT_REMOVE) {
2987 SAVE_HINT(srcmap, srcmap->hint, orig_entry->prev);
2988 if (srcmap->first_free != &srcmap->header &&
2989 srcmap->first_free->start >= start)
2990 srcmap->first_free = orig_entry->prev;
2991 }
2992
2993 entry = orig_entry;
2994 fudge = orig_fudge;
2995 deadentry = NULL; /* for UVM_EXTRACT_REMOVE */
2996
2997 while (entry->start < end && entry != &srcmap->header) {
2998 if (copy_ok) {
2999 oldoffset = (entry->start + fudge) - start;
3000 elen = MIN(end, entry->end) -
3001 (entry->start + fudge);
3002 pmap_copy(dstmap->pmap, srcmap->pmap,
3003 dstaddr + oldoffset, elen,
3004 entry->start + fudge);
3005 }
3006
3007 /* we advance "entry" in the following if statement */
3008 if (flags & UVM_EXTRACT_REMOVE) {
3009 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
3010 uvm_map_lock_entry(entry, RW_WRITER);
3011 #else
3012 uvm_map_lock_entry(entry, RW_READER);
3013 #endif
3014 pmap_remove(srcmap->pmap, entry->start,
3015 entry->end);
3016 uvm_map_unlock_entry(entry);
3017 oldentry = entry; /* save entry */
3018 entry = entry->next; /* advance */
3019 uvm_map_entry_unlink(srcmap, oldentry);
3020 /* add to dead list */
3021 oldentry->next = deadentry;
3022 deadentry = oldentry;
3023 } else {
3024 entry = entry->next; /* advance */
3025 }
3026
3027 /* end of 'while' loop */
3028 fudge = 0;
3029 }
3030 pmap_update(srcmap->pmap);
3031
3032 /*
3033 * unlock dstmap. we will dispose of deadentry in
3034 * step 7 if needed
3035 */
3036
3037 if (copy_ok && srcmap != dstmap)
3038 vm_map_unlock(dstmap);
3039
3040 } else {
3041 deadentry = NULL;
3042 }
3043
3044 /*
3045 * step 7: we are done with the source map, unlock. if copy_ok
3046 * is 0 then we have not replaced the dummy mapping in dstmap yet
3047 * and we need to do so now.
3048 */
3049
3050 vm_map_unlock(srcmap);
3051 if ((flags & UVM_EXTRACT_REMOVE) && deadentry)
3052 uvm_unmap_detach(deadentry, 0); /* dispose of old entries */
3053
3054 /* now do the replacement if we didn't do it in step 5 */
3055 if (copy_ok == 0) {
3056 vm_map_lock(dstmap);
3057 error = uvm_map_replace(dstmap, dstaddr, dstaddr+len, chain,
3058 nchain, nsize, &resentry);
3059 vm_map_unlock(dstmap);
3060
3061 if (error == false) {
3062 error = EIO;
3063 goto bad2;
3064 }
3065 }
3066
3067 if (resentry != NULL)
3068 uvm_mapent_free(resentry);
3069
3070 return (0);
3071
3072 /*
3073 * bad: failure recovery
3074 */
3075 bad:
3076 vm_map_unlock(srcmap);
3077 bad2: /* src already unlocked */
3078 if (chain)
3079 uvm_unmap_detach(chain,
3080 (flags & UVM_EXTRACT_QREF) ? AMAP_REFALL : 0);
3081
3082 if (resentry != NULL)
3083 uvm_mapent_free(resentry);
3084
3085 if ((flags & UVM_EXTRACT_RESERVED) == 0) {
3086 uvm_unmap(dstmap, dstaddr, dstaddr+len); /* ??? */
3087 }
3088 return (error);
3089 }
3090
3091 /* end of extraction functions */
3092
3093 /*
3094 * uvm_map_submap: punch down part of a map into a submap
3095 *
3096 * => only the kernel_map is allowed to be submapped
3097 * => the purpose of submapping is to break up the locking granularity
3098 * of a larger map
3099 * => the range specified must have been mapped previously with a uvm_map()
3100 * call [with uobj==NULL] to create a blank map entry in the main map.
3101 * [And it had better still be blank!]
3102 * => maps which contain submaps should never be copied or forked.
3103 * => to remove a submap, use uvm_unmap() on the main map
3104 * and then uvm_map_deallocate() the submap.
3105 * => main map must be unlocked.
3106 * => submap must have been init'd and have a zero reference count.
3107 * [need not be locked as we don't actually reference it]
3108 */
3109
3110 int
3111 uvm_map_submap(struct vm_map *map, vaddr_t start, vaddr_t end,
3112 struct vm_map *submap)
3113 {
3114 struct vm_map_entry *entry;
3115 int error;
3116
3117 vm_map_lock(map);
3118 VM_MAP_RANGE_CHECK(map, start, end);
3119
3120 if (uvm_map_lookup_entry(map, start, &entry)) {
3121 UVM_MAP_CLIP_START(map, entry, start);
3122 UVM_MAP_CLIP_END(map, entry, end); /* to be safe */
3123 } else {
3124 entry = NULL;
3125 }
3126
3127 if (entry != NULL &&
3128 entry->start == start && entry->end == end &&
3129 entry->object.uvm_obj == NULL && entry->aref.ar_amap == NULL &&
3130 !UVM_ET_ISCOPYONWRITE(entry) && !UVM_ET_ISNEEDSCOPY(entry)) {
3131 entry->etype |= UVM_ET_SUBMAP;
3132 entry->object.sub_map = submap;
3133 entry->offset = 0;
3134 uvm_map_reference(submap);
3135 error = 0;
3136 } else {
3137 error = EINVAL;
3138 }
3139 vm_map_unlock(map);
3140
3141 return error;
3142 }
3143
3144 /*
3145 * uvm_map_protect_user: change map protection on behalf of the user.
3146 * Enforces PAX settings as necessary.
3147 */
3148 int
3149 uvm_map_protect_user(struct lwp *l, vaddr_t start, vaddr_t end,
3150 vm_prot_t new_prot)
3151 {
3152 int error;
3153
3154 if ((error = PAX_MPROTECT_VALIDATE(l, new_prot)))
3155 return error;
3156
3157 return uvm_map_protect(&l->l_proc->p_vmspace->vm_map, start, end,
3158 new_prot, false);
3159 }
3160
3161
3162 /*
3163 * uvm_map_protect: change map protection
3164 *
3165 * => set_max means set max_protection.
3166 * => map must be unlocked.
3167 */
3168
3169 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
3170 ~VM_PROT_WRITE : VM_PROT_ALL)
3171
3172 int
3173 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
3174 vm_prot_t new_prot, bool set_max)
3175 {
3176 struct vm_map_entry *current, *entry;
3177 int error = 0;
3178 UVMHIST_FUNC(__func__);
3179 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,new_prot=%#jx)",
3180 (uintptr_t)map, start, end, new_prot);
3181
3182 vm_map_lock(map);
3183 VM_MAP_RANGE_CHECK(map, start, end);
3184 if (uvm_map_lookup_entry(map, start, &entry)) {
3185 UVM_MAP_CLIP_START(map, entry, start);
3186 } else {
3187 entry = entry->next;
3188 }
3189
3190 /*
3191 * make a first pass to check for protection violations.
3192 */
3193
3194 current = entry;
3195 while ((current != &map->header) && (current->start < end)) {
3196 if (UVM_ET_ISSUBMAP(current)) {
3197 error = EINVAL;
3198 goto out;
3199 }
3200 if ((new_prot & current->max_protection) != new_prot) {
3201 error = EACCES;
3202 goto out;
3203 }
3204 /*
3205 * Don't allow VM_PROT_EXECUTE to be set on entries that
3206 * point to vnodes that are associated with a NOEXEC file
3207 * system.
3208 */
3209 if (UVM_ET_ISOBJ(current) &&
3210 UVM_OBJ_IS_VNODE(current->object.uvm_obj)) {
3211 struct vnode *vp =
3212 (struct vnode *) current->object.uvm_obj;
3213
3214 if ((new_prot & VM_PROT_EXECUTE) != 0 &&
3215 (vp->v_mount->mnt_flag & MNT_NOEXEC) != 0) {
3216 error = EACCES;
3217 goto out;
3218 }
3219 }
3220
3221 current = current->next;
3222 }
3223
3224 /* go back and fix up protections (no need to clip this time). */
3225
3226 current = entry;
3227 while ((current != &map->header) && (current->start < end)) {
3228 vm_prot_t old_prot;
3229
3230 UVM_MAP_CLIP_END(map, current, end);
3231 old_prot = current->protection;
3232 if (set_max)
3233 current->protection =
3234 (current->max_protection = new_prot) & old_prot;
3235 else
3236 current->protection = new_prot;
3237
3238 /*
3239 * update physical map if necessary. worry about copy-on-write
3240 * here -- CHECK THIS XXX
3241 */
3242
3243 if (current->protection != old_prot) {
3244 /* update pmap! */
3245 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
3246 uvm_map_lock_entry(current, RW_WRITER);
3247 #else
3248 uvm_map_lock_entry(current, RW_READER);
3249 #endif
3250 pmap_protect(map->pmap, current->start, current->end,
3251 current->protection & MASK(current));
3252 uvm_map_unlock_entry(current);
3253
3254 /*
3255 * If this entry points at a vnode, and the
3256 * protection includes VM_PROT_EXECUTE, mark
3257 * the vnode as VEXECMAP.
3258 */
3259 if (UVM_ET_ISOBJ(current)) {
3260 struct uvm_object *uobj =
3261 current->object.uvm_obj;
3262
3263 if (UVM_OBJ_IS_VNODE(uobj) &&
3264 (current->protection & VM_PROT_EXECUTE)) {
3265 vn_markexec((struct vnode *) uobj);
3266 }
3267 }
3268 }
3269
3270 /*
3271 * If the map is configured to lock any future mappings,
3272 * wire this entry now if the old protection was VM_PROT_NONE
3273 * and the new protection is not VM_PROT_NONE.
3274 */
3275
3276 if ((map->flags & VM_MAP_WIREFUTURE) != 0 &&
3277 VM_MAPENT_ISWIRED(current) == 0 &&
3278 old_prot == VM_PROT_NONE &&
3279 new_prot != VM_PROT_NONE) {
3280
3281 /*
3282 * We must call pmap_update() here because the
3283 * pmap_protect() call above might have removed some
3284 * pmap entries and uvm_map_pageable() might create
3285 * some new pmap entries that rely on the prior
3286 * removals being completely finished.
3287 */
3288
3289 pmap_update(map->pmap);
3290
3291 if (uvm_map_pageable(map, current->start,
3292 current->end, false,
3293 UVM_LK_ENTER|UVM_LK_EXIT) != 0) {
3294
3295 /*
3296 * If locking the entry fails, remember the
3297 * error if it's the first one. Note we
3298 * still continue setting the protection in
3299 * the map, but will return the error
3300 * condition regardless.
3301 *
3302 * XXX Ignore what the actual error is,
3303 * XXX just call it a resource shortage
3304 * XXX so that it doesn't get confused
3305 * XXX what uvm_map_protect() itself would
3306 * XXX normally return.
3307 */
3308
3309 error = ENOMEM;
3310 }
3311 }
3312 current = current->next;
3313 }
3314 pmap_update(map->pmap);
3315
3316 out:
3317 vm_map_unlock(map);
3318
3319 UVMHIST_LOG(maphist, "<- done, error=%jd",error,0,0,0);
3320 return error;
3321 }
3322
3323 #undef MASK
3324
3325 /*
3326 * uvm_map_inherit: set inheritance code for range of addrs in map.
3327 *
3328 * => map must be unlocked
3329 * => note that the inherit code is used during a "fork". see fork
3330 * code for details.
3331 */
3332
3333 int
3334 uvm_map_inherit(struct vm_map *map, vaddr_t start, vaddr_t end,
3335 vm_inherit_t new_inheritance)
3336 {
3337 struct vm_map_entry *entry, *temp_entry;
3338 UVMHIST_FUNC(__func__);
3339 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,new_inh=%#jx)",
3340 (uintptr_t)map, start, end, new_inheritance);
3341
3342 switch (new_inheritance) {
3343 case MAP_INHERIT_NONE:
3344 case MAP_INHERIT_COPY:
3345 case MAP_INHERIT_SHARE:
3346 case MAP_INHERIT_ZERO:
3347 break;
3348 default:
3349 UVMHIST_LOG(maphist,"<- done (INVALID ARG)",0,0,0,0);
3350 return EINVAL;
3351 }
3352
3353 vm_map_lock(map);
3354 VM_MAP_RANGE_CHECK(map, start, end);
3355 if (uvm_map_lookup_entry(map, start, &temp_entry)) {
3356 entry = temp_entry;
3357 UVM_MAP_CLIP_START(map, entry, start);
3358 } else {
3359 entry = temp_entry->next;
3360 }
3361 while ((entry != &map->header) && (entry->start < end)) {
3362 UVM_MAP_CLIP_END(map, entry, end);
3363 entry->inheritance = new_inheritance;
3364 entry = entry->next;
3365 }
3366 vm_map_unlock(map);
3367 UVMHIST_LOG(maphist,"<- done (OK)",0,0,0,0);
3368 return 0;
3369 }
3370
3371 /*
3372 * uvm_map_advice: set advice code for range of addrs in map.
3373 *
3374 * => map must be unlocked
3375 */
3376
3377 int
3378 uvm_map_advice(struct vm_map *map, vaddr_t start, vaddr_t end, int new_advice)
3379 {
3380 struct vm_map_entry *entry, *temp_entry;
3381 UVMHIST_FUNC(__func__);
3382 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,new_adv=%#jx)",
3383 (uintptr_t)map, start, end, new_advice);
3384
3385 vm_map_lock(map);
3386 VM_MAP_RANGE_CHECK(map, start, end);
3387 if (uvm_map_lookup_entry(map, start, &temp_entry)) {
3388 entry = temp_entry;
3389 UVM_MAP_CLIP_START(map, entry, start);
3390 } else {
3391 entry = temp_entry->next;
3392 }
3393
3394 /*
3395 * XXXJRT: disallow holes?
3396 */
3397
3398 while ((entry != &map->header) && (entry->start < end)) {
3399 UVM_MAP_CLIP_END(map, entry, end);
3400
3401 switch (new_advice) {
3402 case MADV_NORMAL:
3403 case MADV_RANDOM:
3404 case MADV_SEQUENTIAL:
3405 /* nothing special here */
3406 break;
3407
3408 default:
3409 vm_map_unlock(map);
3410 UVMHIST_LOG(maphist,"<- done (INVALID ARG)",0,0,0,0);
3411 return EINVAL;
3412 }
3413 entry->advice = new_advice;
3414 entry = entry->next;
3415 }
3416
3417 vm_map_unlock(map);
3418 UVMHIST_LOG(maphist,"<- done (OK)",0,0,0,0);
3419 return 0;
3420 }
3421
3422 /*
3423 * uvm_map_willneed: apply MADV_WILLNEED
3424 */
3425
3426 int
3427 uvm_map_willneed(struct vm_map *map, vaddr_t start, vaddr_t end)
3428 {
3429 struct vm_map_entry *entry;
3430 UVMHIST_FUNC(__func__);
3431 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx)",
3432 (uintptr_t)map, start, end, 0);
3433
3434 vm_map_lock_read(map);
3435 VM_MAP_RANGE_CHECK(map, start, end);
3436 if (!uvm_map_lookup_entry(map, start, &entry)) {
3437 entry = entry->next;
3438 }
3439 while (entry->start < end) {
3440 struct vm_amap * const amap = entry->aref.ar_amap;
3441 struct uvm_object * const uobj = entry->object.uvm_obj;
3442
3443 KASSERT(entry != &map->header);
3444 KASSERT(start < entry->end);
3445 /*
3446 * For now, we handle only the easy but commonly-requested case.
3447 * ie. start prefetching of backing uobj pages.
3448 *
3449 * XXX It might be useful to pmap_enter() the already-in-core
3450 * pages by inventing a "weak" mode for uvm_fault() which would
3451 * only do the PGO_LOCKED pgo_get().
3452 */
3453 if (UVM_ET_ISOBJ(entry) && amap == NULL && uobj != NULL) {
3454 off_t offset;
3455 off_t size;
3456
3457 offset = entry->offset;
3458 if (start < entry->start) {
3459 offset += entry->start - start;
3460 }
3461 size = entry->offset + (entry->end - entry->start);
3462 if (entry->end < end) {
3463 size -= end - entry->end;
3464 }
3465 uvm_readahead(uobj, offset, size);
3466 }
3467 entry = entry->next;
3468 }
3469 vm_map_unlock_read(map);
3470 UVMHIST_LOG(maphist,"<- done (OK)",0,0,0,0);
3471 return 0;
3472 }
3473
3474 /*
3475 * uvm_map_pageable: sets the pageability of a range in a map.
3476 *
3477 * => wires map entries. should not be used for transient page locking.
3478 * for that, use uvm_fault_wire()/uvm_fault_unwire() (see uvm_vslock()).
3479 * => regions specified as not pageable require lock-down (wired) memory
3480 * and page tables.
3481 * => map must never be read-locked
3482 * => if islocked is true, map is already write-locked
3483 * => we always unlock the map, since we must downgrade to a read-lock
3484 * to call uvm_fault_wire()
3485 * => XXXCDC: check this and try and clean it up.
3486 */
3487
3488 int
3489 uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end,
3490 bool new_pageable, int lockflags)
3491 {
3492 struct vm_map_entry *entry, *start_entry, *failed_entry;
3493 int rv;
3494 #ifdef DIAGNOSTIC
3495 u_int timestamp_save;
3496 #endif
3497 UVMHIST_FUNC(__func__);
3498 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,new_pageable=%ju)",
3499 (uintptr_t)map, start, end, new_pageable);
3500 KASSERT(map->flags & VM_MAP_PAGEABLE);
3501
3502 if ((lockflags & UVM_LK_ENTER) == 0)
3503 vm_map_lock(map);
3504 VM_MAP_RANGE_CHECK(map, start, end);
3505
3506 /*
3507 * only one pageability change may take place at one time, since
3508 * uvm_fault_wire assumes it will be called only once for each
3509 * wiring/unwiring. therefore, we have to make sure we're actually
3510 * changing the pageability for the entire region. we do so before
3511 * making any changes.
3512 */
3513
3514 if (uvm_map_lookup_entry(map, start, &start_entry) == false) {
3515 if ((lockflags & UVM_LK_EXIT) == 0)
3516 vm_map_unlock(map);
3517
3518 UVMHIST_LOG(maphist,"<- done (fault)",0,0,0,0);
3519 return EFAULT;
3520 }
3521 entry = start_entry;
3522
3523 if (start == end) { /* nothing required */
3524 if ((lockflags & UVM_LK_EXIT) == 0)
3525 vm_map_unlock(map);
3526
3527 UVMHIST_LOG(maphist,"<- done (nothing)",0,0,0,0);
3528 return 0;
3529 }
3530
3531 /*
3532 * handle wiring and unwiring separately.
3533 */
3534
3535 if (new_pageable) { /* unwire */
3536 UVM_MAP_CLIP_START(map, entry, start);
3537
3538 /*
3539 * unwiring. first ensure that the range to be unwired is
3540 * really wired down and that there are no holes.
3541 */
3542
3543 while ((entry != &map->header) && (entry->start < end)) {
3544 if (entry->wired_count == 0 ||
3545 (entry->end < end &&
3546 (entry->next == &map->header ||
3547 entry->next->start > entry->end))) {
3548 if ((lockflags & UVM_LK_EXIT) == 0)
3549 vm_map_unlock(map);
3550 UVMHIST_LOG(maphist, "<- done (INVAL)",0,0,0,0);
3551 return EINVAL;
3552 }
3553 entry = entry->next;
3554 }
3555
3556 /*
3557 * POSIX 1003.1b - a single munlock call unlocks a region,
3558 * regardless of the number of mlock calls made on that
3559 * region.
3560 */
3561
3562 entry = start_entry;
3563 while ((entry != &map->header) && (entry->start < end)) {
3564 UVM_MAP_CLIP_END(map, entry, end);
3565 if (VM_MAPENT_ISWIRED(entry))
3566 uvm_map_entry_unwire(map, entry);
3567 entry = entry->next;
3568 }
3569 if ((lockflags & UVM_LK_EXIT) == 0)
3570 vm_map_unlock(map);
3571 UVMHIST_LOG(maphist,"<- done (OK UNWIRE)",0,0,0,0);
3572 return 0;
3573 }
3574
3575 /*
3576 * wire case: in two passes [XXXCDC: ugly block of code here]
3577 *
3578 * 1: holding the write lock, we create any anonymous maps that need
3579 * to be created. then we clip each map entry to the region to
3580 * be wired and increment its wiring count.
3581 *
3582 * 2: we downgrade to a read lock, and call uvm_fault_wire to fault
3583 * in the pages for any newly wired area (wired_count == 1).
3584 *
3585 * downgrading to a read lock for uvm_fault_wire avoids a possible
3586 * deadlock with another thread that may have faulted on one of
3587 * the pages to be wired (it would mark the page busy, blocking
3588 * us, then in turn block on the map lock that we hold). because
3589 * of problems in the recursive lock package, we cannot upgrade
3590 * to a write lock in vm_map_lookup. thus, any actions that
3591 * require the write lock must be done beforehand. because we
3592 * keep the read lock on the map, the copy-on-write status of the
3593 * entries we modify here cannot change.
3594 */
3595
3596 while ((entry != &map->header) && (entry->start < end)) {
3597 if (VM_MAPENT_ISWIRED(entry) == 0) { /* not already wired? */
3598
3599 /*
3600 * perform actions of vm_map_lookup that need the
3601 * write lock on the map: create an anonymous map
3602 * for a copy-on-write region, or an anonymous map
3603 * for a zero-fill region. (XXXCDC: submap case
3604 * ok?)
3605 */
3606
3607 if (!UVM_ET_ISSUBMAP(entry)) { /* not submap */
3608 if (UVM_ET_ISNEEDSCOPY(entry) &&
3609 ((entry->max_protection & VM_PROT_WRITE) ||
3610 (entry->object.uvm_obj == NULL))) {
3611 amap_copy(map, entry, 0, start, end);
3612 /* XXXCDC: wait OK? */
3613 }
3614 }
3615 }
3616 UVM_MAP_CLIP_START(map, entry, start);
3617 UVM_MAP_CLIP_END(map, entry, end);
3618 entry->wired_count++;
3619
3620 /*
3621 * Check for holes
3622 */
3623
3624 if (entry->protection == VM_PROT_NONE ||
3625 (entry->end < end &&
3626 (entry->next == &map->header ||
3627 entry->next->start > entry->end))) {
3628
3629 /*
3630 * found one. amap creation actions do not need to
3631 * be undone, but the wired counts need to be restored.
3632 */
3633
3634 while (entry != &map->header && entry->end > start) {
3635 entry->wired_count--;
3636 entry = entry->prev;
3637 }
3638 if ((lockflags & UVM_LK_EXIT) == 0)
3639 vm_map_unlock(map);
3640 UVMHIST_LOG(maphist,"<- done (INVALID WIRE)",0,0,0,0);
3641 return EINVAL;
3642 }
3643 entry = entry->next;
3644 }
3645
3646 /*
3647 * Pass 2.
3648 */
3649
3650 #ifdef DIAGNOSTIC
3651 timestamp_save = map->timestamp;
3652 #endif
3653 vm_map_busy(map);
3654 vm_map_unlock(map);
3655
3656 rv = 0;
3657 entry = start_entry;
3658 while (entry != &map->header && entry->start < end) {
3659 if (entry->wired_count == 1) {
3660 rv = uvm_fault_wire(map, entry->start, entry->end,
3661 entry->max_protection, 1);
3662 if (rv) {
3663
3664 /*
3665 * wiring failed. break out of the loop.
3666 * we'll clean up the map below, once we
3667 * have a write lock again.
3668 */
3669
3670 break;
3671 }
3672 }
3673 entry = entry->next;
3674 }
3675
3676 if (rv) { /* failed? */
3677
3678 /*
3679 * Get back to an exclusive (write) lock.
3680 */
3681
3682 vm_map_lock(map);
3683 vm_map_unbusy(map);
3684
3685 #ifdef DIAGNOSTIC
3686 if (timestamp_save + 1 != map->timestamp)
3687 panic("uvm_map_pageable: stale map");
3688 #endif
3689
3690 /*
3691 * first drop the wiring count on all the entries
3692 * which haven't actually been wired yet.
3693 */
3694
3695 failed_entry = entry;
3696 while (entry != &map->header && entry->start < end) {
3697 entry->wired_count--;
3698 entry = entry->next;
3699 }
3700
3701 /*
3702 * now, unwire all the entries that were successfully
3703 * wired above.
3704 */
3705
3706 entry = start_entry;
3707 while (entry != failed_entry) {
3708 entry->wired_count--;
3709 if (VM_MAPENT_ISWIRED(entry) == 0)
3710 uvm_map_entry_unwire(map, entry);
3711 entry = entry->next;
3712 }
3713 if ((lockflags & UVM_LK_EXIT) == 0)
3714 vm_map_unlock(map);
3715 UVMHIST_LOG(maphist, "<- done (RV=%jd)", rv,0,0,0);
3716 return (rv);
3717 }
3718
3719 if ((lockflags & UVM_LK_EXIT) == 0) {
3720 vm_map_unbusy(map);
3721 } else {
3722
3723 /*
3724 * Get back to an exclusive (write) lock.
3725 */
3726
3727 vm_map_lock(map);
3728 vm_map_unbusy(map);
3729 }
3730
3731 UVMHIST_LOG(maphist,"<- done (OK WIRE)",0,0,0,0);
3732 return 0;
3733 }
3734
3735 /*
3736 * uvm_map_pageable_all: special case of uvm_map_pageable - affects
3737 * all mapped regions.
3738 *
3739 * => map must not be locked.
3740 * => if no flags are specified, all regions are unwired.
3741 * => XXXJRT: has some of the same problems as uvm_map_pageable() above.
3742 */
3743
3744 int
3745 uvm_map_pageable_all(struct vm_map *map, int flags, vsize_t limit)
3746 {
3747 struct vm_map_entry *entry, *failed_entry;
3748 vsize_t size;
3749 int rv;
3750 #ifdef DIAGNOSTIC
3751 u_int timestamp_save;
3752 #endif
3753 UVMHIST_FUNC(__func__);
3754 UVMHIST_CALLARGS(maphist,"(map=%#jx,flags=%#jx)", (uintptr_t)map, flags,
3755 0, 0);
3756
3757 KASSERT(map->flags & VM_MAP_PAGEABLE);
3758
3759 vm_map_lock(map);
3760
3761 /*
3762 * handle wiring and unwiring separately.
3763 */
3764
3765 if (flags == 0) { /* unwire */
3766
3767 /*
3768 * POSIX 1003.1b -- munlockall unlocks all regions,
3769 * regardless of how many times mlockall has been called.
3770 */
3771
3772 for (entry = map->header.next; entry != &map->header;
3773 entry = entry->next) {
3774 if (VM_MAPENT_ISWIRED(entry))
3775 uvm_map_entry_unwire(map, entry);
3776 }
3777 map->flags &= ~VM_MAP_WIREFUTURE;
3778 vm_map_unlock(map);
3779 UVMHIST_LOG(maphist,"<- done (OK UNWIRE)",0,0,0,0);
3780 return 0;
3781 }
3782
3783 if (flags & MCL_FUTURE) {
3784
3785 /*
3786 * must wire all future mappings; remember this.
3787 */
3788
3789 map->flags |= VM_MAP_WIREFUTURE;
3790 }
3791
3792 if ((flags & MCL_CURRENT) == 0) {
3793
3794 /*
3795 * no more work to do!
3796 */
3797
3798 UVMHIST_LOG(maphist,"<- done (OK no wire)",0,0,0,0);
3799 vm_map_unlock(map);
3800 return 0;
3801 }
3802
3803 /*
3804 * wire case: in three passes [XXXCDC: ugly block of code here]
3805 *
3806 * 1: holding the write lock, count all pages mapped by non-wired
3807 * entries. if this would cause us to go over our limit, we fail.
3808 *
3809 * 2: still holding the write lock, we create any anonymous maps that
3810 * need to be created. then we increment its wiring count.
3811 *
3812 * 3: we downgrade to a read lock, and call uvm_fault_wire to fault
3813 * in the pages for any newly wired area (wired_count == 1).
3814 *
3815 * downgrading to a read lock for uvm_fault_wire avoids a possible
3816 * deadlock with another thread that may have faulted on one of
3817 * the pages to be wired (it would mark the page busy, blocking
3818 * us, then in turn block on the map lock that we hold). because
3819 * of problems in the recursive lock package, we cannot upgrade
3820 * to a write lock in vm_map_lookup. thus, any actions that
3821 * require the write lock must be done beforehand. because we
3822 * keep the read lock on the map, the copy-on-write status of the
3823 * entries we modify here cannot change.
3824 */
3825
3826 for (size = 0, entry = map->header.next; entry != &map->header;
3827 entry = entry->next) {
3828 if (entry->protection != VM_PROT_NONE &&
3829 VM_MAPENT_ISWIRED(entry) == 0) { /* not already wired? */
3830 size += entry->end - entry->start;
3831 }
3832 }
3833
3834 if (atop(size) + uvmexp.wired > uvmexp.wiredmax) {
3835 vm_map_unlock(map);
3836 return ENOMEM;
3837 }
3838
3839 if (limit != 0 &&
3840 (size + ptoa(pmap_wired_count(vm_map_pmap(map))) > limit)) {
3841 vm_map_unlock(map);
3842 return ENOMEM;
3843 }
3844
3845 /*
3846 * Pass 2.
3847 */
3848
3849 for (entry = map->header.next; entry != &map->header;
3850 entry = entry->next) {
3851 if (entry->protection == VM_PROT_NONE)
3852 continue;
3853 if (VM_MAPENT_ISWIRED(entry) == 0) { /* not already wired? */
3854
3855 /*
3856 * perform actions of vm_map_lookup that need the
3857 * write lock on the map: create an anonymous map
3858 * for a copy-on-write region, or an anonymous map
3859 * for a zero-fill region. (XXXCDC: submap case
3860 * ok?)
3861 */
3862
3863 if (!UVM_ET_ISSUBMAP(entry)) { /* not submap */
3864 if (UVM_ET_ISNEEDSCOPY(entry) &&
3865 ((entry->max_protection & VM_PROT_WRITE) ||
3866 (entry->object.uvm_obj == NULL))) {
3867 amap_copy(map, entry, 0, entry->start,
3868 entry->end);
3869 /* XXXCDC: wait OK? */
3870 }
3871 }
3872 }
3873 entry->wired_count++;
3874 }
3875
3876 /*
3877 * Pass 3.
3878 */
3879
3880 #ifdef DIAGNOSTIC
3881 timestamp_save = map->timestamp;
3882 #endif
3883 vm_map_busy(map);
3884 vm_map_unlock(map);
3885
3886 rv = 0;
3887 for (entry = map->header.next; entry != &map->header;
3888 entry = entry->next) {
3889 if (entry->wired_count == 1) {
3890 rv = uvm_fault_wire(map, entry->start, entry->end,
3891 entry->max_protection, 1);
3892 if (rv) {
3893
3894 /*
3895 * wiring failed. break out of the loop.
3896 * we'll clean up the map below, once we
3897 * have a write lock again.
3898 */
3899
3900 break;
3901 }
3902 }
3903 }
3904
3905 if (rv) {
3906
3907 /*
3908 * Get back an exclusive (write) lock.
3909 */
3910
3911 vm_map_lock(map);
3912 vm_map_unbusy(map);
3913
3914 #ifdef DIAGNOSTIC
3915 if (timestamp_save + 1 != map->timestamp)
3916 panic("uvm_map_pageable_all: stale map");
3917 #endif
3918
3919 /*
3920 * first drop the wiring count on all the entries
3921 * which haven't actually been wired yet.
3922 *
3923 * Skip VM_PROT_NONE entries like we did above.
3924 */
3925
3926 failed_entry = entry;
3927 for (/* nothing */; entry != &map->header;
3928 entry = entry->next) {
3929 if (entry->protection == VM_PROT_NONE)
3930 continue;
3931 entry->wired_count--;
3932 }
3933
3934 /*
3935 * now, unwire all the entries that were successfully
3936 * wired above.
3937 *
3938 * Skip VM_PROT_NONE entries like we did above.
3939 */
3940
3941 for (entry = map->header.next; entry != failed_entry;
3942 entry = entry->next) {
3943 if (entry->protection == VM_PROT_NONE)
3944 continue;
3945 entry->wired_count--;
3946 if (VM_MAPENT_ISWIRED(entry))
3947 uvm_map_entry_unwire(map, entry);
3948 }
3949 vm_map_unlock(map);
3950 UVMHIST_LOG(maphist,"<- done (RV=%jd)", rv,0,0,0);
3951 return (rv);
3952 }
3953
3954 vm_map_unbusy(map);
3955
3956 UVMHIST_LOG(maphist,"<- done (OK WIRE)",0,0,0,0);
3957 return 0;
3958 }
3959
3960 /*
3961 * uvm_map_clean: clean out a map range
3962 *
3963 * => valid flags:
3964 * if (flags & PGO_CLEANIT): dirty pages are cleaned first
3965 * if (flags & PGO_SYNCIO): dirty pages are written synchronously
3966 * if (flags & PGO_DEACTIVATE): any cached pages are deactivated after clean
3967 * if (flags & PGO_FREE): any cached pages are freed after clean
3968 * => returns an error if any part of the specified range isn't mapped
3969 * => never a need to flush amap layer since the anonymous memory has
3970 * no permanent home, but may deactivate pages there
3971 * => called from sys_msync() and sys_madvise()
3972 * => caller must not have map locked
3973 */
3974
3975 int
3976 uvm_map_clean(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
3977 {
3978 struct vm_map_entry *current, *entry;
3979 struct uvm_object *uobj;
3980 struct vm_amap *amap;
3981 struct vm_anon *anon;
3982 struct vm_page *pg;
3983 vaddr_t offset;
3984 vsize_t size;
3985 voff_t uoff;
3986 int error, refs;
3987 UVMHIST_FUNC(__func__);
3988 UVMHIST_CALLARGS(maphist,"(map=%#jx,start=%#jx,end=%#jx,flags=%#jx)",
3989 (uintptr_t)map, start, end, flags);
3990
3991 KASSERT((flags & (PGO_FREE|PGO_DEACTIVATE)) !=
3992 (PGO_FREE|PGO_DEACTIVATE));
3993
3994 vm_map_lock(map);
3995 VM_MAP_RANGE_CHECK(map, start, end);
3996 if (!uvm_map_lookup_entry(map, start, &entry)) {
3997 vm_map_unlock(map);
3998 return EFAULT;
3999 }
4000
4001 /*
4002 * Make a first pass to check for holes and wiring problems.
4003 */
4004
4005 for (current = entry; current->start < end; current = current->next) {
4006 if (UVM_ET_ISSUBMAP(current)) {
4007 vm_map_unlock(map);
4008 return EINVAL;
4009 }
4010 if ((flags & PGO_FREE) != 0 && VM_MAPENT_ISWIRED(entry)) {
4011 vm_map_unlock(map);
4012 return EBUSY;
4013 }
4014 if (end <= current->end) {
4015 break;
4016 }
4017 if (current->end != current->next->start) {
4018 vm_map_unlock(map);
4019 return EFAULT;
4020 }
4021 }
4022
4023 vm_map_busy(map);
4024 vm_map_unlock(map);
4025 error = 0;
4026 for (current = entry; start < end; current = current->next) {
4027 amap = current->aref.ar_amap; /* upper layer */
4028 uobj = current->object.uvm_obj; /* lower layer */
4029 KASSERT(start >= current->start);
4030
4031 /*
4032 * No amap cleaning necessary if:
4033 *
4034 * (1) There's no amap.
4035 *
4036 * (2) We're not deactivating or freeing pages.
4037 */
4038
4039 if (amap == NULL || (flags & (PGO_DEACTIVATE|PGO_FREE)) == 0)
4040 goto flush_object;
4041
4042 offset = start - current->start;
4043 size = MIN(end, current->end) - start;
4044
4045 amap_lock(amap, RW_WRITER);
4046 for ( ; size != 0; size -= PAGE_SIZE, offset += PAGE_SIZE) {
4047 anon = amap_lookup(¤t->aref, offset);
4048 if (anon == NULL)
4049 continue;
4050
4051 KASSERT(anon->an_lock == amap->am_lock);
4052 pg = anon->an_page;
4053 if (pg == NULL) {
4054 continue;
4055 }
4056 if (pg->flags & PG_BUSY) {
4057 continue;
4058 }
4059
4060 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
4061
4062 /*
4063 * In these first 3 cases, we just deactivate the page.
4064 */
4065
4066 case PGO_CLEANIT|PGO_FREE:
4067 case PGO_CLEANIT|PGO_DEACTIVATE:
4068 case PGO_DEACTIVATE:
4069 deactivate_it:
4070 /*
4071 * skip the page if it's loaned or wired,
4072 * since it shouldn't be on a paging queue
4073 * at all in these cases.
4074 */
4075
4076 if (pg->loan_count != 0 ||
4077 pg->wire_count != 0) {
4078 continue;
4079 }
4080 KASSERT(pg->uanon == anon);
4081 uvm_pagelock(pg);
4082 uvm_pagedeactivate(pg);
4083 uvm_pageunlock(pg);
4084 continue;
4085
4086 case PGO_FREE:
4087
4088 /*
4089 * If there are multiple references to
4090 * the amap, just deactivate the page.
4091 */
4092
4093 if (amap_refs(amap) > 1)
4094 goto deactivate_it;
4095
4096 /* skip the page if it's wired */
4097 if (pg->wire_count != 0) {
4098 continue;
4099 }
4100 amap_unadd(¤t->aref, offset);
4101 refs = --anon->an_ref;
4102 if (refs == 0) {
4103 uvm_anfree(anon);
4104 }
4105 continue;
4106 }
4107 }
4108 amap_unlock(amap);
4109
4110 flush_object:
4111 /*
4112 * flush pages if we've got a valid backing object.
4113 * note that we must always clean object pages before
4114 * freeing them since otherwise we could reveal stale
4115 * data from files.
4116 */
4117
4118 uoff = current->offset + (start - current->start);
4119 size = MIN(end, current->end) - start;
4120 if (uobj != NULL) {
4121 rw_enter(uobj->vmobjlock, RW_WRITER);
4122 if (uobj->pgops->pgo_put != NULL)
4123 error = (uobj->pgops->pgo_put)(uobj, uoff,
4124 uoff + size, flags | PGO_CLEANIT);
4125 else
4126 error = 0;
4127 }
4128 start += size;
4129 }
4130 vm_map_unbusy(map);
4131 return error;
4132 }
4133
4134
4135 /*
4136 * uvm_map_checkprot: check protection in map
4137 *
4138 * => must allow specified protection in a fully allocated region.
4139 * => map must be read or write locked by caller.
4140 */
4141
4142 bool
4143 uvm_map_checkprot(struct vm_map *map, vaddr_t start, vaddr_t end,
4144 vm_prot_t protection)
4145 {
4146 struct vm_map_entry *entry;
4147 struct vm_map_entry *tmp_entry;
4148
4149 if (!uvm_map_lookup_entry(map, start, &tmp_entry)) {
4150 return (false);
4151 }
4152 entry = tmp_entry;
4153 while (start < end) {
4154 if (entry == &map->header) {
4155 return (false);
4156 }
4157
4158 /*
4159 * no holes allowed
4160 */
4161
4162 if (start < entry->start) {
4163 return (false);
4164 }
4165
4166 /*
4167 * check protection associated with entry
4168 */
4169
4170 if ((entry->protection & protection) != protection) {
4171 return (false);
4172 }
4173 start = entry->end;
4174 entry = entry->next;
4175 }
4176 return (true);
4177 }
4178
4179 /*
4180 * uvmspace_alloc: allocate a vmspace structure.
4181 *
4182 * - structure includes vm_map and pmap
4183 * - XXX: no locking on this structure
4184 * - refcnt set to 1, rest must be init'd by caller
4185 */
4186 struct vmspace *
4187 uvmspace_alloc(vaddr_t vmin, vaddr_t vmax, bool topdown)
4188 {
4189 struct vmspace *vm;
4190 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4191
4192 vm = kmem_alloc(sizeof(*vm), KM_SLEEP);
4193 uvmspace_init(vm, NULL, vmin, vmax, topdown);
4194 UVMHIST_LOG(maphist,"<- done (vm=%#jx)", (uintptr_t)vm, 0, 0, 0);
4195 return (vm);
4196 }
4197
4198 /*
4199 * uvmspace_init: initialize a vmspace structure.
4200 *
4201 * - XXX: no locking on this structure
4202 * - refcnt set to 1, rest must be init'd by caller
4203 */
4204 void
4205 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin,
4206 vaddr_t vmax, bool topdown)
4207 {
4208 UVMHIST_FUNC(__func__);
4209 UVMHIST_CALLARGS(maphist, "(vm=%#jx, pmap=%#jx, vmin=%#jx, vmax=%#jx",
4210 (uintptr_t)vm, (uintptr_t)pmap, vmin, vmax);
4211 UVMHIST_LOG(maphist, " topdown=%ju)", topdown, 0, 0, 0);
4212
4213 memset(vm, 0, sizeof(*vm));
4214 uvm_map_setup(&vm->vm_map, vmin, vmax, VM_MAP_PAGEABLE
4215 | (topdown ? VM_MAP_TOPDOWN : 0)
4216 );
4217 if (pmap)
4218 pmap_reference(pmap);
4219 else
4220 pmap = pmap_create();
4221 vm->vm_map.pmap = pmap;
4222 vm->vm_refcnt = 1;
4223 UVMHIST_LOG(maphist,"<- done",0,0,0,0);
4224 }
4225
4226 /*
4227 * uvmspace_share: share a vmspace between two processes
4228 *
4229 * - used for vfork, threads(?)
4230 */
4231
4232 void
4233 uvmspace_share(struct proc *p1, struct proc *p2)
4234 {
4235
4236 uvmspace_addref(p1->p_vmspace);
4237 p2->p_vmspace = p1->p_vmspace;
4238 }
4239
4240 #if 0
4241
4242 /*
4243 * uvmspace_unshare: ensure that process "p" has its own, unshared, vmspace
4244 *
4245 * - XXX: no locking on vmspace
4246 */
4247
4248 void
4249 uvmspace_unshare(struct lwp *l)
4250 {
4251 struct proc *p = l->l_proc;
4252 struct vmspace *nvm, *ovm = p->p_vmspace;
4253
4254 if (ovm->vm_refcnt == 1)
4255 /* nothing to do: vmspace isn't shared in the first place */
4256 return;
4257
4258 /* make a new vmspace, still holding old one */
4259 nvm = uvmspace_fork(ovm);
4260
4261 kpreempt_disable();
4262 pmap_deactivate(l); /* unbind old vmspace */
4263 p->p_vmspace = nvm;
4264 pmap_activate(l); /* switch to new vmspace */
4265 kpreempt_enable();
4266
4267 uvmspace_free(ovm); /* drop reference to old vmspace */
4268 }
4269
4270 #endif
4271
4272
4273 /*
4274 * uvmspace_spawn: a new process has been spawned and needs a vmspace
4275 */
4276
4277 void
4278 uvmspace_spawn(struct lwp *l, vaddr_t start, vaddr_t end, bool topdown)
4279 {
4280 struct proc *p = l->l_proc;
4281 struct vmspace *nvm;
4282
4283 #ifdef __HAVE_CPU_VMSPACE_EXEC
4284 cpu_vmspace_exec(l, start, end);
4285 #endif
4286
4287 nvm = uvmspace_alloc(start, end, topdown);
4288 kpreempt_disable();
4289 p->p_vmspace = nvm;
4290 pmap_activate(l);
4291 kpreempt_enable();
4292 }
4293
4294 /*
4295 * uvmspace_exec: the process wants to exec a new program
4296 */
4297
4298 void
4299 uvmspace_exec(struct lwp *l, vaddr_t start, vaddr_t end, bool topdown)
4300 {
4301 struct proc *p = l->l_proc;
4302 struct vmspace *nvm, *ovm = p->p_vmspace;
4303 struct vm_map *map;
4304 int flags;
4305
4306 KASSERT(ovm != NULL);
4307 #ifdef __HAVE_CPU_VMSPACE_EXEC
4308 cpu_vmspace_exec(l, start, end);
4309 #endif
4310
4311 map = &ovm->vm_map;
4312 /*
4313 * see if more than one process is using this vmspace...
4314 */
4315
4316 if (ovm->vm_refcnt == 1
4317 && topdown == ((ovm->vm_map.flags & VM_MAP_TOPDOWN) != 0)) {
4318
4319 /*
4320 * if p is the only process using its vmspace then we can safely
4321 * recycle that vmspace for the program that is being exec'd.
4322 * But only if TOPDOWN matches the requested value for the new
4323 * vm space!
4324 */
4325
4326 /*
4327 * SYSV SHM semantics require us to kill all segments on an exec
4328 */
4329 if (uvm_shmexit && ovm->vm_shm)
4330 (*uvm_shmexit)(ovm);
4331
4332 /*
4333 * POSIX 1003.1b -- "lock future mappings" is revoked
4334 * when a process execs another program image.
4335 */
4336
4337 map->flags &= ~VM_MAP_WIREFUTURE;
4338
4339 /*
4340 * now unmap the old program.
4341 *
4342 * XXX set VM_MAP_DYING for the duration, so pmap_update()
4343 * is not called until the pmap has been totally cleared out
4344 * after pmap_remove_all(), or it can confuse some pmap
4345 * implementations. it would be nice to handle this by
4346 * deferring the pmap_update() while it is known the address
4347 * space is not visible to any user LWP other than curlwp,
4348 * but there isn't an elegant way of inferring that right
4349 * now.
4350 */
4351
4352 flags = pmap_remove_all(map->pmap) ? UVM_FLAG_VAONLY : 0;
4353 map->flags |= VM_MAP_DYING;
4354 uvm_unmap1(map, vm_map_min(map), vm_map_max(map), flags);
4355 map->flags &= ~VM_MAP_DYING;
4356 pmap_update(map->pmap);
4357 KASSERT(map->header.prev == &map->header);
4358 KASSERT(map->nentries == 0);
4359
4360 /*
4361 * resize the map
4362 */
4363
4364 vm_map_setmin(map, start);
4365 vm_map_setmax(map, end);
4366 } else {
4367
4368 /*
4369 * p's vmspace is being shared, so we can't reuse it for p since
4370 * it is still being used for others. allocate a new vmspace
4371 * for p
4372 */
4373
4374 nvm = uvmspace_alloc(start, end, topdown);
4375
4376 /*
4377 * install new vmspace and drop our ref to the old one.
4378 */
4379
4380 kpreempt_disable();
4381 pmap_deactivate(l);
4382 p->p_vmspace = nvm;
4383 pmap_activate(l);
4384 kpreempt_enable();
4385
4386 uvmspace_free(ovm);
4387 }
4388 }
4389
4390 /*
4391 * uvmspace_addref: add a reference to a vmspace.
4392 */
4393
4394 void
4395 uvmspace_addref(struct vmspace *vm)
4396 {
4397
4398 KASSERT((vm->vm_map.flags & VM_MAP_DYING) == 0);
4399 KASSERT(vm->vm_refcnt > 0);
4400 atomic_inc_uint(&vm->vm_refcnt);
4401 }
4402
4403 /*
4404 * uvmspace_free: free a vmspace data structure
4405 */
4406
4407 void
4408 uvmspace_free(struct vmspace *vm)
4409 {
4410 struct vm_map_entry *dead_entries;
4411 struct vm_map *map = &vm->vm_map;
4412 int flags;
4413
4414 UVMHIST_FUNC(__func__);
4415 UVMHIST_CALLARGS(maphist,"(vm=%#jx) ref=%jd", (uintptr_t)vm,
4416 vm->vm_refcnt, 0, 0);
4417
4418 membar_release();
4419 if (atomic_dec_uint_nv(&vm->vm_refcnt) > 0)
4420 return;
4421 membar_acquire();
4422
4423 /*
4424 * at this point, there should be no other references to the map.
4425 * delete all of the mappings, then destroy the pmap.
4426 */
4427
4428 map->flags |= VM_MAP_DYING;
4429 flags = pmap_remove_all(map->pmap) ? UVM_FLAG_VAONLY : 0;
4430
4431 /* Get rid of any SYSV shared memory segments. */
4432 if (uvm_shmexit && vm->vm_shm != NULL)
4433 (*uvm_shmexit)(vm);
4434
4435 if (map->nentries) {
4436 vm_map_lock(map);
4437 uvm_unmap_remove(map, vm_map_min(map), vm_map_max(map),
4438 &dead_entries, flags);
4439 vm_map_unlock(map);
4440 if (dead_entries != NULL)
4441 uvm_unmap_detach(dead_entries, 0);
4442 }
4443 KASSERT(map->nentries == 0);
4444 KASSERT(map->size == 0);
4445
4446 mutex_destroy(&map->misc_lock);
4447 rw_destroy(&map->lock);
4448 cv_destroy(&map->cv);
4449 pmap_destroy(map->pmap);
4450 kmem_free(vm, sizeof(*vm));
4451 }
4452
4453 static struct vm_map_entry *
4454 uvm_mapent_clone(struct vm_map *new_map, struct vm_map_entry *old_entry,
4455 int flags)
4456 {
4457 struct vm_map_entry *new_entry;
4458
4459 new_entry = uvm_mapent_alloc(new_map, 0);
4460 /* old_entry -> new_entry */
4461 uvm_mapent_copy(old_entry, new_entry);
4462
4463 /* new pmap has nothing wired in it */
4464 new_entry->wired_count = 0;
4465
4466 /*
4467 * gain reference to object backing the map (can't
4468 * be a submap, already checked this case).
4469 */
4470
4471 if (new_entry->aref.ar_amap)
4472 uvm_map_reference_amap(new_entry, flags);
4473
4474 if (new_entry->object.uvm_obj &&
4475 new_entry->object.uvm_obj->pgops->pgo_reference)
4476 new_entry->object.uvm_obj->pgops->pgo_reference(
4477 new_entry->object.uvm_obj);
4478
4479 /* insert entry at end of new_map's entry list */
4480 uvm_map_entry_link(new_map, new_map->header.prev,
4481 new_entry);
4482
4483 return new_entry;
4484 }
4485
4486 /*
4487 * share the mapping: this means we want the old and
4488 * new entries to share amaps and backing objects.
4489 */
4490 static void
4491 uvm_mapent_forkshared(struct vm_map *new_map, struct vm_map *old_map,
4492 struct vm_map_entry *old_entry)
4493 {
4494 /*
4495 * if the old_entry needs a new amap (due to prev fork)
4496 * then we need to allocate it now so that we have
4497 * something we own to share with the new_entry. [in
4498 * other words, we need to clear needs_copy]
4499 */
4500
4501 if (UVM_ET_ISNEEDSCOPY(old_entry)) {
4502 /* get our own amap, clears needs_copy */
4503 amap_copy(old_map, old_entry, AMAP_COPY_NOCHUNK,
4504 0, 0);
4505 /* XXXCDC: WAITOK??? */
4506 }
4507
4508 uvm_mapent_clone(new_map, old_entry, AMAP_SHARED);
4509 }
4510
4511
4512 static void
4513 uvm_mapent_forkcopy(struct vm_map *new_map, struct vm_map *old_map,
4514 struct vm_map_entry *old_entry)
4515 {
4516 struct vm_map_entry *new_entry;
4517
4518 /*
4519 * copy-on-write the mapping (using mmap's
4520 * MAP_PRIVATE semantics)
4521 *
4522 * allocate new_entry, adjust reference counts.
4523 * (note that new references are read-only).
4524 */
4525
4526 new_entry = uvm_mapent_clone(new_map, old_entry, 0);
4527
4528 new_entry->etype |=
4529 (UVM_ET_COPYONWRITE|UVM_ET_NEEDSCOPY);
4530
4531 /*
4532 * the new entry will need an amap. it will either
4533 * need to be copied from the old entry or created
4534 * from scratch (if the old entry does not have an
4535 * amap). can we defer this process until later
4536 * (by setting "needs_copy") or do we need to copy
4537 * the amap now?
4538 *
4539 * we must copy the amap now if any of the following
4540 * conditions hold:
4541 * 1. the old entry has an amap and that amap is
4542 * being shared. this means that the old (parent)
4543 * process is sharing the amap with another
4544 * process. if we do not clear needs_copy here
4545 * we will end up in a situation where both the
4546 * parent and child process are referring to the
4547 * same amap with "needs_copy" set. if the
4548 * parent write-faults, the fault routine will
4549 * clear "needs_copy" in the parent by allocating
4550 * a new amap. this is wrong because the
4551 * parent is supposed to be sharing the old amap
4552 * and the new amap will break that.
4553 *
4554 * 2. if the old entry has an amap and a non-zero
4555 * wire count then we are going to have to call
4556 * amap_cow_now to avoid page faults in the
4557 * parent process. since amap_cow_now requires
4558 * "needs_copy" to be clear we might as well
4559 * clear it here as well.
4560 *
4561 */
4562
4563 if (old_entry->aref.ar_amap != NULL) {
4564 if ((amap_flags(old_entry->aref.ar_amap) & AMAP_SHARED) != 0 ||
4565 VM_MAPENT_ISWIRED(old_entry)) {
4566
4567 amap_copy(new_map, new_entry,
4568 AMAP_COPY_NOCHUNK, 0, 0);
4569 /* XXXCDC: M_WAITOK ... ok? */
4570 }
4571 }
4572
4573 /*
4574 * if the parent's entry is wired down, then the
4575 * parent process does not want page faults on
4576 * access to that memory. this means that we
4577 * cannot do copy-on-write because we can't write
4578 * protect the old entry. in this case we
4579 * resolve all copy-on-write faults now, using
4580 * amap_cow_now. note that we have already
4581 * allocated any needed amap (above).
4582 */
4583
4584 if (VM_MAPENT_ISWIRED(old_entry)) {
4585
4586 /*
4587 * resolve all copy-on-write faults now
4588 * (note that there is nothing to do if
4589 * the old mapping does not have an amap).
4590 */
4591 if (old_entry->aref.ar_amap)
4592 amap_cow_now(new_map, new_entry);
4593
4594 } else {
4595 /*
4596 * setup mappings to trigger copy-on-write faults
4597 * we must write-protect the parent if it has
4598 * an amap and it is not already "needs_copy"...
4599 * if it is already "needs_copy" then the parent
4600 * has already been write-protected by a previous
4601 * fork operation.
4602 */
4603 if (old_entry->aref.ar_amap &&
4604 !UVM_ET_ISNEEDSCOPY(old_entry)) {
4605 if (old_entry->max_protection & VM_PROT_WRITE) {
4606 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
4607 uvm_map_lock_entry(old_entry, RW_WRITER);
4608 #else
4609 uvm_map_lock_entry(old_entry, RW_READER);
4610 #endif
4611 pmap_protect(old_map->pmap,
4612 old_entry->start, old_entry->end,
4613 old_entry->protection & ~VM_PROT_WRITE);
4614 uvm_map_unlock_entry(old_entry);
4615 }
4616 old_entry->etype |= UVM_ET_NEEDSCOPY;
4617 }
4618 }
4619 }
4620
4621 /*
4622 * zero the mapping: the new entry will be zero initialized
4623 */
4624 static void
4625 uvm_mapent_forkzero(struct vm_map *new_map, struct vm_map *old_map,
4626 struct vm_map_entry *old_entry)
4627 {
4628 struct vm_map_entry *new_entry;
4629
4630 new_entry = uvm_mapent_clone(new_map, old_entry, 0);
4631
4632 new_entry->etype |=
4633 (UVM_ET_COPYONWRITE|UVM_ET_NEEDSCOPY);
4634
4635 if (new_entry->aref.ar_amap) {
4636 uvm_map_unreference_amap(new_entry, 0);
4637 new_entry->aref.ar_pageoff = 0;
4638 new_entry->aref.ar_amap = NULL;
4639 }
4640
4641 if (UVM_ET_ISOBJ(new_entry)) {
4642 if (new_entry->object.uvm_obj->pgops->pgo_detach)
4643 new_entry->object.uvm_obj->pgops->pgo_detach(
4644 new_entry->object.uvm_obj);
4645 new_entry->object.uvm_obj = NULL;
4646 new_entry->offset = 0;
4647 new_entry->etype &= ~UVM_ET_OBJ;
4648 }
4649 }
4650
4651 /*
4652 * F O R K - m a i n e n t r y p o i n t
4653 */
4654 /*
4655 * uvmspace_fork: fork a process' main map
4656 *
4657 * => create a new vmspace for child process from parent.
4658 * => parent's map must not be locked.
4659 */
4660
4661 struct vmspace *
4662 uvmspace_fork(struct vmspace *vm1)
4663 {
4664 struct vmspace *vm2;
4665 struct vm_map *old_map = &vm1->vm_map;
4666 struct vm_map *new_map;
4667 struct vm_map_entry *old_entry;
4668 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4669
4670 vm_map_lock(old_map);
4671
4672 vm2 = uvmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4673 vm1->vm_map.flags & VM_MAP_TOPDOWN);
4674 memcpy(&vm2->vm_startcopy, &vm1->vm_startcopy,
4675 (char *) (vm1 + 1) - (char *) &vm1->vm_startcopy);
4676 new_map = &vm2->vm_map; /* XXX */
4677
4678 old_entry = old_map->header.next;
4679 new_map->size = old_map->size;
4680
4681 /*
4682 * go entry-by-entry
4683 */
4684
4685 while (old_entry != &old_map->header) {
4686
4687 /*
4688 * first, some sanity checks on the old entry
4689 */
4690
4691 KASSERT(!UVM_ET_ISSUBMAP(old_entry));
4692 KASSERT(UVM_ET_ISCOPYONWRITE(old_entry) ||
4693 !UVM_ET_ISNEEDSCOPY(old_entry));
4694
4695 switch (old_entry->inheritance) {
4696 case MAP_INHERIT_NONE:
4697 /*
4698 * drop the mapping, modify size
4699 */
4700 new_map->size -= old_entry->end - old_entry->start;
4701 break;
4702
4703 case MAP_INHERIT_SHARE:
4704 uvm_mapent_forkshared(new_map, old_map, old_entry);
4705 break;
4706
4707 case MAP_INHERIT_COPY:
4708 uvm_mapent_forkcopy(new_map, old_map, old_entry);
4709 break;
4710
4711 case MAP_INHERIT_ZERO:
4712 uvm_mapent_forkzero(new_map, old_map, old_entry);
4713 break;
4714 default:
4715 KASSERT(0);
4716 break;
4717 }
4718 old_entry = old_entry->next;
4719 }
4720
4721 pmap_update(old_map->pmap);
4722 vm_map_unlock(old_map);
4723
4724 if (uvm_shmfork && vm1->vm_shm)
4725 (*uvm_shmfork)(vm1, vm2);
4726
4727 #ifdef PMAP_FORK
4728 pmap_fork(vm1->vm_map.pmap, vm2->vm_map.pmap);
4729 #endif
4730
4731 UVMHIST_LOG(maphist,"<- done",0,0,0,0);
4732 return (vm2);
4733 }
4734
4735
4736 /*
4737 * uvm_mapent_trymerge: try to merge an entry with its neighbors.
4738 *
4739 * => called with map locked.
4740 * => return non zero if successfully merged.
4741 */
4742
4743 int
4744 uvm_mapent_trymerge(struct vm_map *map, struct vm_map_entry *entry, int flags)
4745 {
4746 struct uvm_object *uobj;
4747 struct vm_map_entry *next;
4748 struct vm_map_entry *prev;
4749 vsize_t size;
4750 int merged = 0;
4751 bool copying;
4752 int newetype;
4753
4754 if (entry->aref.ar_amap != NULL) {
4755 return 0;
4756 }
4757 if ((entry->flags & UVM_MAP_NOMERGE) != 0) {
4758 return 0;
4759 }
4760
4761 uobj = entry->object.uvm_obj;
4762 size = entry->end - entry->start;
4763 copying = (flags & UVM_MERGE_COPYING) != 0;
4764 newetype = copying ? (entry->etype & ~UVM_ET_NEEDSCOPY) : entry->etype;
4765
4766 next = entry->next;
4767 if (next != &map->header &&
4768 next->start == entry->end &&
4769 ((copying && next->aref.ar_amap != NULL &&
4770 amap_refs(next->aref.ar_amap) == 1) ||
4771 (!copying && next->aref.ar_amap == NULL)) &&
4772 UVM_ET_ISCOMPATIBLE(next, newetype,
4773 uobj, entry->flags, entry->protection,
4774 entry->max_protection, entry->inheritance, entry->advice,
4775 entry->wired_count) &&
4776 (uobj == NULL || entry->offset + size == next->offset)) {
4777 int error;
4778
4779 if (copying) {
4780 error = amap_extend(next, size,
4781 AMAP_EXTEND_NOWAIT|AMAP_EXTEND_BACKWARDS);
4782 } else {
4783 error = 0;
4784 }
4785 if (error == 0) {
4786 if (uobj) {
4787 if (uobj->pgops->pgo_detach) {
4788 uobj->pgops->pgo_detach(uobj);
4789 }
4790 }
4791
4792 entry->end = next->end;
4793 clear_hints(map, next);
4794 uvm_map_entry_unlink(map, next);
4795 if (copying) {
4796 entry->aref = next->aref;
4797 entry->etype &= ~UVM_ET_NEEDSCOPY;
4798 }
4799 uvm_map_check(map, "trymerge forwardmerge");
4800 uvm_mapent_free(next);
4801 merged++;
4802 }
4803 }
4804
4805 prev = entry->prev;
4806 if (prev != &map->header &&
4807 prev->end == entry->start &&
4808 ((copying && !merged && prev->aref.ar_amap != NULL &&
4809 amap_refs(prev->aref.ar_amap) == 1) ||
4810 (!copying && prev->aref.ar_amap == NULL)) &&
4811 UVM_ET_ISCOMPATIBLE(prev, newetype,
4812 uobj, entry->flags, entry->protection,
4813 entry->max_protection, entry->inheritance, entry->advice,
4814 entry->wired_count) &&
4815 (uobj == NULL ||
4816 prev->offset + prev->end - prev->start == entry->offset)) {
4817 int error;
4818
4819 if (copying) {
4820 error = amap_extend(prev, size,
4821 AMAP_EXTEND_NOWAIT|AMAP_EXTEND_FORWARDS);
4822 } else {
4823 error = 0;
4824 }
4825 if (error == 0) {
4826 if (uobj) {
4827 if (uobj->pgops->pgo_detach) {
4828 uobj->pgops->pgo_detach(uobj);
4829 }
4830 entry->offset = prev->offset;
4831 }
4832
4833 entry->start = prev->start;
4834 clear_hints(map, prev);
4835 uvm_map_entry_unlink(map, prev);
4836 if (copying) {
4837 entry->aref = prev->aref;
4838 entry->etype &= ~UVM_ET_NEEDSCOPY;
4839 }
4840 uvm_map_check(map, "trymerge backmerge");
4841 uvm_mapent_free(prev);
4842 merged++;
4843 }
4844 }
4845
4846 return merged;
4847 }
4848
4849 /*
4850 * uvm_map_setup: init map
4851 *
4852 * => map must not be in service yet.
4853 */
4854
4855 void
4856 uvm_map_setup(struct vm_map *map, vaddr_t vmin, vaddr_t vmax, int flags)
4857 {
4858
4859 rb_tree_init(&map->rb_tree, &uvm_map_tree_ops);
4860 map->header.next = map->header.prev = &map->header;
4861 map->nentries = 0;
4862 map->size = 0;
4863 map->ref_count = 1;
4864 vm_map_setmin(map, vmin);
4865 vm_map_setmax(map, vmax);
4866 map->flags = flags;
4867 map->first_free = &map->header;
4868 map->hint = &map->header;
4869 map->timestamp = 0;
4870 map->busy = NULL;
4871
4872 rw_init(&map->lock);
4873 cv_init(&map->cv, "vm_map");
4874 mutex_init(&map->misc_lock, MUTEX_DRIVER, IPL_NONE);
4875 }
4876
4877 /*
4878 * U N M A P - m a i n e n t r y p o i n t
4879 */
4880
4881 /*
4882 * uvm_unmap1: remove mappings from a vm_map (from "start" up to "stop")
4883 *
4884 * => caller must check alignment and size
4885 * => map must be unlocked (we will lock it)
4886 * => flags is UVM_FLAG_QUANTUM or 0.
4887 */
4888
4889 void
4890 uvm_unmap1(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
4891 {
4892 struct vm_map_entry *dead_entries;
4893 UVMHIST_FUNC(__func__);
4894 UVMHIST_CALLARGS(maphist, " (map=%#jx, start=%#jx, end=%#jx)",
4895 (uintptr_t)map, start, end, 0);
4896
4897 KASSERTMSG(start < end,
4898 "%s: map %p: start %#jx < end %#jx", __func__, map,
4899 (uintmax_t)start, (uintmax_t)end);
4900 if (map == kernel_map) {
4901 LOCKDEBUG_MEM_CHECK((void *)start, end - start);
4902 }
4903
4904 /*
4905 * work now done by helper functions. wipe the pmap's and then
4906 * detach from the dead entries...
4907 */
4908 vm_map_lock(map);
4909 uvm_unmap_remove(map, start, end, &dead_entries, flags);
4910 vm_map_unlock(map);
4911
4912 if (dead_entries != NULL)
4913 uvm_unmap_detach(dead_entries, 0);
4914
4915 UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
4916 }
4917
4918
4919 /*
4920 * uvm_map_reference: add reference to a map
4921 *
4922 * => map need not be locked
4923 */
4924
4925 void
4926 uvm_map_reference(struct vm_map *map)
4927 {
4928
4929 atomic_inc_uint(&map->ref_count);
4930 }
4931
4932 void
4933 uvm_map_lock_entry(struct vm_map_entry *entry, krw_t op)
4934 {
4935
4936 if (entry->aref.ar_amap != NULL) {
4937 amap_lock(entry->aref.ar_amap, op);
4938 }
4939 if (UVM_ET_ISOBJ(entry)) {
4940 rw_enter(entry->object.uvm_obj->vmobjlock, op);
4941 }
4942 }
4943
4944 void
4945 uvm_map_unlock_entry(struct vm_map_entry *entry)
4946 {
4947
4948 if (UVM_ET_ISOBJ(entry)) {
4949 rw_exit(entry->object.uvm_obj->vmobjlock);
4950 }
4951 if (entry->aref.ar_amap != NULL) {
4952 amap_unlock(entry->aref.ar_amap);
4953 }
4954 }
4955
4956 #define UVM_VOADDR_TYPE_MASK 0x3UL
4957 #define UVM_VOADDR_TYPE_UOBJ 0x1UL
4958 #define UVM_VOADDR_TYPE_ANON 0x2UL
4959 #define UVM_VOADDR_OBJECT_MASK ~UVM_VOADDR_TYPE_MASK
4960
4961 #define UVM_VOADDR_GET_TYPE(voa) \
4962 ((voa)->object & UVM_VOADDR_TYPE_MASK)
4963 #define UVM_VOADDR_GET_OBJECT(voa) \
4964 ((voa)->object & UVM_VOADDR_OBJECT_MASK)
4965 #define UVM_VOADDR_SET_OBJECT(voa, obj, type) \
4966 do { \
4967 KASSERT(((uintptr_t)(obj) & UVM_VOADDR_TYPE_MASK) == 0); \
4968 (voa)->object = ((uintptr_t)(obj)) | (type); \
4969 } while (/*CONSTCOND*/0)
4970
4971 #define UVM_VOADDR_GET_UOBJ(voa) \
4972 ((struct uvm_object *)UVM_VOADDR_GET_OBJECT(voa))
4973 #define UVM_VOADDR_SET_UOBJ(voa, uobj) \
4974 UVM_VOADDR_SET_OBJECT(voa, uobj, UVM_VOADDR_TYPE_UOBJ)
4975
4976 #define UVM_VOADDR_GET_ANON(voa) \
4977 ((struct vm_anon *)UVM_VOADDR_GET_OBJECT(voa))
4978 #define UVM_VOADDR_SET_ANON(voa, anon) \
4979 UVM_VOADDR_SET_OBJECT(voa, anon, UVM_VOADDR_TYPE_ANON)
4980
4981 /*
4982 * uvm_voaddr_acquire: returns the virtual object address corresponding
4983 * to the specified virtual address.
4984 *
4985 * => resolves COW so the true page identity is tracked.
4986 *
4987 * => acquires a reference on the page's owner (uvm_object or vm_anon)
4988 */
4989 bool
4990 uvm_voaddr_acquire(struct vm_map * const map, vaddr_t const va,
4991 struct uvm_voaddr * const voaddr)
4992 {
4993 struct vm_map_entry *entry;
4994 struct vm_anon *anon = NULL;
4995 bool result = false;
4996 bool exclusive = false;
4997 void (*unlock_fn)(struct vm_map *);
4998
4999 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
5000 UVMHIST_LOG(maphist,"(map=%#jx,va=%#jx)", (uintptr_t)map, va, 0, 0);
5001
5002 const vaddr_t start = trunc_page(va);
5003 const vaddr_t end = round_page(va+1);
5004
5005 lookup_again:
5006 if (__predict_false(exclusive)) {
5007 vm_map_lock(map);
5008 unlock_fn = vm_map_unlock;
5009 } else {
5010 vm_map_lock_read(map);
5011 unlock_fn = vm_map_unlock_read;
5012 }
5013
5014 if (__predict_false(!uvm_map_lookup_entry(map, start, &entry))) {
5015 unlock_fn(map);
5016 UVMHIST_LOG(maphist,"<- done (no entry)",0,0,0,0);
5017 return false;
5018 }
5019
5020 if (__predict_false(entry->protection == VM_PROT_NONE)) {
5021 unlock_fn(map);
5022 UVMHIST_LOG(maphist,"<- done (PROT_NONE)",0,0,0,0);
5023 return false;
5024 }
5025
5026 /*
5027 * We have a fast path for the common case of "no COW resolution
5028 * needed" whereby we have taken a read lock on the map and if
5029 * we don't encounter any need to create a vm_anon then great!
5030 * But if we do, we loop around again, instead taking an exclusive
5031 * lock so that we can perform the fault.
5032 *
5033 * In the event that we have to resolve the fault, we do nearly the
5034 * same work as uvm_map_pageable() does:
5035 *
5036 * 1: holding the write lock, we create any anonymous maps that need
5037 * to be created. however, we do NOT need to clip the map entries
5038 * in this case.
5039 *
5040 * 2: we downgrade to a read lock, and call uvm_fault_wire to fault
5041 * in the page (assuming the entry is not already wired). this
5042 * is done because we need the vm_anon to be present.
5043 */
5044 if (__predict_true(!VM_MAPENT_ISWIRED(entry))) {
5045
5046 bool need_fault = false;
5047
5048 /*
5049 * perform the action of vm_map_lookup that need the
5050 * write lock on the map: create an anonymous map for
5051 * a copy-on-write region, or an anonymous map for
5052 * a zero-fill region.
5053 */
5054 if (__predict_false(UVM_ET_ISSUBMAP(entry))) {
5055 unlock_fn(map);
5056 UVMHIST_LOG(maphist,"<- done (submap)",0,0,0,0);
5057 return false;
5058 }
5059 if (__predict_false(UVM_ET_ISNEEDSCOPY(entry) &&
5060 ((entry->max_protection & VM_PROT_WRITE) ||
5061 (entry->object.uvm_obj == NULL)))) {
5062 if (!exclusive) {
5063 /* need to take the slow path */
5064 KASSERT(unlock_fn == vm_map_unlock_read);
5065 vm_map_unlock_read(map);
5066 exclusive = true;
5067 goto lookup_again;
5068 }
5069 need_fault = true;
5070 amap_copy(map, entry, 0, start, end);
5071 /* XXXCDC: wait OK? */
5072 }
5073
5074 /*
5075 * do a quick check to see if the fault has already
5076 * been resolved to the upper layer.
5077 */
5078 if (__predict_true(entry->aref.ar_amap != NULL &&
5079 need_fault == false)) {
5080 amap_lock(entry->aref.ar_amap, RW_WRITER);
5081 anon = amap_lookup(&entry->aref, start - entry->start);
5082 if (__predict_true(anon != NULL)) {
5083 /* amap unlocked below */
5084 goto found_anon;
5085 }
5086 amap_unlock(entry->aref.ar_amap);
5087 need_fault = true;
5088 }
5089
5090 /*
5091 * we predict this test as false because if we reach
5092 * this point, then we are likely dealing with a
5093 * shared memory region backed by a uvm_object, in
5094 * which case a fault to create the vm_anon is not
5095 * necessary.
5096 */
5097 if (__predict_false(need_fault)) {
5098 if (exclusive) {
5099 vm_map_busy(map);
5100 vm_map_unlock(map);
5101 unlock_fn = vm_map_unbusy;
5102 }
5103
5104 if (uvm_fault_wire(map, start, end,
5105 entry->max_protection, 1)) {
5106 /* wiring failed */
5107 unlock_fn(map);
5108 UVMHIST_LOG(maphist,"<- done (wire failed)",
5109 0,0,0,0);
5110 return false;
5111 }
5112
5113 /*
5114 * now that we have resolved the fault, we can unwire
5115 * the page.
5116 */
5117 if (exclusive) {
5118 vm_map_lock(map);
5119 vm_map_unbusy(map);
5120 unlock_fn = vm_map_unlock;
5121 }
5122
5123 uvm_fault_unwire_locked(map, start, end);
5124 }
5125 }
5126
5127 /* check the upper layer */
5128 if (entry->aref.ar_amap) {
5129 amap_lock(entry->aref.ar_amap, RW_WRITER);
5130 anon = amap_lookup(&entry->aref, start - entry->start);
5131 if (anon) {
5132 found_anon: KASSERT(anon->an_lock == entry->aref.ar_amap->am_lock);
5133 anon->an_ref++;
5134 rw_obj_hold(anon->an_lock);
5135 KASSERT(anon->an_ref != 0);
5136 UVM_VOADDR_SET_ANON(voaddr, anon);
5137 voaddr->offset = va & PAGE_MASK;
5138 result = true;
5139 }
5140 amap_unlock(entry->aref.ar_amap);
5141 }
5142
5143 /* check the lower layer */
5144 if (!result && UVM_ET_ISOBJ(entry)) {
5145 struct uvm_object *uobj = entry->object.uvm_obj;
5146
5147 KASSERT(uobj != NULL);
5148 (*uobj->pgops->pgo_reference)(uobj);
5149 UVM_VOADDR_SET_UOBJ(voaddr, uobj);
5150 voaddr->offset = entry->offset + (va - entry->start);
5151 result = true;
5152 }
5153
5154 unlock_fn(map);
5155
5156 if (result) {
5157 UVMHIST_LOG(maphist,
5158 "<- done OK (type=%jd,owner=%#jx,offset=%#jx)",
5159 UVM_VOADDR_GET_TYPE(voaddr),
5160 UVM_VOADDR_GET_OBJECT(voaddr),
5161 voaddr->offset, 0);
5162 } else {
5163 UVMHIST_LOG(maphist,"<- done (failed)",0,0,0,0);
5164 }
5165
5166 return result;
5167 }
5168
5169 /*
5170 * uvm_voaddr_release: release the references held by the
5171 * vitual object address.
5172 */
5173 void
5174 uvm_voaddr_release(struct uvm_voaddr * const voaddr)
5175 {
5176
5177 switch (UVM_VOADDR_GET_TYPE(voaddr)) {
5178 case UVM_VOADDR_TYPE_UOBJ: {
5179 struct uvm_object * const uobj = UVM_VOADDR_GET_UOBJ(voaddr);
5180
5181 KASSERT(uobj != NULL);
5182 KASSERT(uobj->pgops->pgo_detach != NULL);
5183 (*uobj->pgops->pgo_detach)(uobj);
5184 break;
5185 }
5186 case UVM_VOADDR_TYPE_ANON: {
5187 struct vm_anon * const anon = UVM_VOADDR_GET_ANON(voaddr);
5188 krwlock_t *lock;
5189
5190 KASSERT(anon != NULL);
5191 rw_enter((lock = anon->an_lock), RW_WRITER);
5192 KASSERT(anon->an_ref > 0);
5193 if (--anon->an_ref == 0) {
5194 uvm_anfree(anon);
5195 }
5196 rw_exit(lock);
5197 rw_obj_free(lock);
5198 break;
5199 }
5200 default:
5201 panic("uvm_voaddr_release: bad type");
5202 }
5203 memset(voaddr, 0, sizeof(*voaddr));
5204 }
5205
5206 /*
5207 * uvm_voaddr_compare: compare two uvm_voaddr objects.
5208 *
5209 * => memcmp() semantics
5210 */
5211 int
5212 uvm_voaddr_compare(const struct uvm_voaddr * const voaddr1,
5213 const struct uvm_voaddr * const voaddr2)
5214 {
5215 const uintptr_t type1 = UVM_VOADDR_GET_TYPE(voaddr1);
5216 const uintptr_t type2 = UVM_VOADDR_GET_TYPE(voaddr2);
5217
5218 KASSERT(type1 == UVM_VOADDR_TYPE_UOBJ ||
5219 type1 == UVM_VOADDR_TYPE_ANON);
5220
5221 KASSERT(type2 == UVM_VOADDR_TYPE_UOBJ ||
5222 type2 == UVM_VOADDR_TYPE_ANON);
5223
5224 if (type1 < type2)
5225 return -1;
5226 if (type1 > type2)
5227 return 1;
5228
5229 const uintptr_t addr1 = UVM_VOADDR_GET_OBJECT(voaddr1);
5230 const uintptr_t addr2 = UVM_VOADDR_GET_OBJECT(voaddr2);
5231
5232 if (addr1 < addr2)
5233 return -1;
5234 if (addr1 > addr2)
5235 return 1;
5236
5237 if (voaddr1->offset < voaddr2->offset)
5238 return -1;
5239 if (voaddr1->offset > voaddr2->offset)
5240 return 1;
5241
5242 return 0;
5243 }
5244
5245 #if defined(DDB) || defined(DEBUGPRINT)
5246
5247 /*
5248 * uvm_map_printit: actually prints the map
5249 */
5250
5251 void
5252 uvm_map_printit(struct vm_map *map, bool full,
5253 void (*pr)(const char *, ...))
5254 {
5255 struct vm_map_entry *entry;
5256
5257 (*pr)("MAP %p: [%#lx->%#lx]\n", map, vm_map_min(map),
5258 vm_map_max(map));
5259 (*pr)("\t#ent=%d, sz=%d, ref=%d, version=%d, flags=%#x\n",
5260 map->nentries, map->size, map->ref_count, map->timestamp,
5261 map->flags);
5262 (*pr)("\tpmap=%p(resident=%ld, wired=%ld)\n", map->pmap,
5263 pmap_resident_count(map->pmap), pmap_wired_count(map->pmap));
5264 if (!full)
5265 return;
5266 for (entry = map->header.next; entry != &map->header;
5267 entry = entry->next) {
5268 (*pr)(" - %p: %#lx->%#lx: obj=%p/%#llx, amap=%p/%d\n",
5269 entry, entry->start, entry->end, entry->object.uvm_obj,
5270 (long long)entry->offset, entry->aref.ar_amap,
5271 entry->aref.ar_pageoff);
5272 (*pr)(
5273 "\tsubmap=%c, cow=%c, nc=%c, prot(max)=%d/%d, inh=%d, "
5274 "wc=%d, adv=%d%s\n",
5275 (entry->etype & UVM_ET_SUBMAP) ? 'T' : 'F',
5276 (entry->etype & UVM_ET_COPYONWRITE) ? 'T' : 'F',
5277 (entry->etype & UVM_ET_NEEDSCOPY) ? 'T' : 'F',
5278 entry->protection, entry->max_protection,
5279 entry->inheritance, entry->wired_count, entry->advice,
5280 entry == map->first_free ? " (first_free)" : "");
5281 }
5282 }
5283
5284 void
5285 uvm_whatis(uintptr_t addr, void (*pr)(const char *, ...))
5286 {
5287 struct vm_map *map;
5288
5289 for (map = kernel_map;;) {
5290 struct vm_map_entry *entry;
5291
5292 if (!uvm_map_lookup_entry_bytree(map, (vaddr_t)addr, &entry)) {
5293 break;
5294 }
5295 (*pr)("%p is %p+%zu from VMMAP %p\n",
5296 (void *)addr, (void *)entry->start,
5297 (size_t)(addr - (uintptr_t)entry->start), map);
5298 if (!UVM_ET_ISSUBMAP(entry)) {
5299 break;
5300 }
5301 map = entry->object.sub_map;
5302 }
5303 }
5304
5305 #endif /* DDB || DEBUGPRINT */
5306
5307 #ifndef __USER_VA0_IS_SAFE
5308 static int
5309 sysctl_user_va0_disable(SYSCTLFN_ARGS)
5310 {
5311 struct sysctlnode node;
5312 int t, error;
5313
5314 node = *rnode;
5315 node.sysctl_data = &t;
5316 t = user_va0_disable;
5317 error = sysctl_lookup(SYSCTLFN_CALL(&node));
5318 if (error || newp == NULL)
5319 return (error);
5320
5321 if (!t && user_va0_disable &&
5322 kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_MAP_VA_ZERO, 0,
5323 NULL, NULL, NULL))
5324 return EPERM;
5325
5326 user_va0_disable = !!t;
5327 return 0;
5328 }
5329 #endif
5330
5331 static int
5332 fill_vmentry(struct lwp *l, struct proc *p, struct kinfo_vmentry *kve,
5333 struct vm_map *m, struct vm_map_entry *e)
5334 {
5335 #ifndef _RUMPKERNEL
5336 int error;
5337
5338 memset(kve, 0, sizeof(*kve));
5339 KASSERT(e != NULL);
5340 if (UVM_ET_ISOBJ(e)) {
5341 struct uvm_object *uobj = e->object.uvm_obj;
5342 KASSERT(uobj != NULL);
5343 kve->kve_ref_count = uobj->uo_refs;
5344 kve->kve_count = uobj->uo_npages;
5345 if (UVM_OBJ_IS_VNODE(uobj)) {
5346 struct vattr va;
5347 struct vnode *vp = (struct vnode *)uobj;
5348 vn_lock(vp, LK_SHARED | LK_RETRY);
5349 error = VOP_GETATTR(vp, &va, l->l_cred);
5350 VOP_UNLOCK(vp);
5351 kve->kve_type = KVME_TYPE_VNODE;
5352 if (error == 0) {
5353 kve->kve_vn_size = vp->v_size;
5354 kve->kve_vn_type = (int)vp->v_type;
5355 kve->kve_vn_mode = va.va_mode;
5356 kve->kve_vn_rdev = va.va_rdev;
5357 kve->kve_vn_fileid = va.va_fileid;
5358 kve->kve_vn_fsid = va.va_fsid;
5359 error = vnode_to_path(kve->kve_path,
5360 sizeof(kve->kve_path) / 2, vp, l, p);
5361 }
5362 } else if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
5363 kve->kve_type = KVME_TYPE_KERN;
5364 } else if (UVM_OBJ_IS_DEVICE(uobj)) {
5365 kve->kve_type = KVME_TYPE_DEVICE;
5366 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
5367 kve->kve_type = KVME_TYPE_ANON;
5368 } else {
5369 kve->kve_type = KVME_TYPE_OBJECT;
5370 }
5371 } else if (UVM_ET_ISSUBMAP(e)) {
5372 struct vm_map *map = e->object.sub_map;
5373 KASSERT(map != NULL);
5374 kve->kve_ref_count = map->ref_count;
5375 kve->kve_count = map->nentries;
5376 kve->kve_type = KVME_TYPE_SUBMAP;
5377 } else
5378 kve->kve_type = KVME_TYPE_UNKNOWN;
5379
5380 kve->kve_start = e->start;
5381 kve->kve_end = e->end;
5382 kve->kve_offset = e->offset;
5383 kve->kve_wired_count = e->wired_count;
5384 kve->kve_inheritance = e->inheritance;
5385 kve->kve_attributes = 0; /* unused */
5386 kve->kve_advice = e->advice;
5387 #define PROT(p) (((p) & VM_PROT_READ) ? KVME_PROT_READ : 0) | \
5388 (((p) & VM_PROT_WRITE) ? KVME_PROT_WRITE : 0) | \
5389 (((p) & VM_PROT_EXECUTE) ? KVME_PROT_EXEC : 0)
5390 kve->kve_protection = PROT(e->protection);
5391 kve->kve_max_protection = PROT(e->max_protection);
5392 kve->kve_flags |= (e->etype & UVM_ET_COPYONWRITE)
5393 ? KVME_FLAG_COW : 0;
5394 kve->kve_flags |= (e->etype & UVM_ET_NEEDSCOPY)
5395 ? KVME_FLAG_NEEDS_COPY : 0;
5396 kve->kve_flags |= (m->flags & VM_MAP_TOPDOWN)
5397 ? KVME_FLAG_GROWS_DOWN : KVME_FLAG_GROWS_UP;
5398 kve->kve_flags |= (m->flags & VM_MAP_PAGEABLE)
5399 ? KVME_FLAG_PAGEABLE : 0;
5400 #endif
5401 return 0;
5402 }
5403
5404 static int
5405 fill_vmentries(struct lwp *l, pid_t pid, u_int elem_size, void *oldp,
5406 size_t *oldlenp)
5407 {
5408 int error;
5409 struct proc *p;
5410 struct kinfo_vmentry *vme;
5411 struct vmspace *vm;
5412 struct vm_map *map;
5413 struct vm_map_entry *entry;
5414 char *dp;
5415 size_t count, vmesize;
5416
5417 if (elem_size == 0 || elem_size > 2 * sizeof(*vme))
5418 return EINVAL;
5419
5420 if (oldp) {
5421 if (*oldlenp > 10UL * 1024UL * 1024UL)
5422 return E2BIG;
5423 count = *oldlenp / elem_size;
5424 if (count == 0)
5425 return ENOMEM;
5426 vmesize = count * sizeof(*vme);
5427 } else
5428 vmesize = 0;
5429
5430 if ((error = proc_find_locked(l, &p, pid)) != 0)
5431 return error;
5432
5433 vme = NULL;
5434 count = 0;
5435
5436 if ((error = proc_vmspace_getref(p, &vm)) != 0)
5437 goto out;
5438
5439 map = &vm->vm_map;
5440 vm_map_lock_read(map);
5441
5442 dp = oldp;
5443 if (oldp)
5444 vme = kmem_alloc(vmesize, KM_SLEEP);
5445 for (entry = map->header.next; entry != &map->header;
5446 entry = entry->next) {
5447 if (oldp && (dp - (char *)oldp) < vmesize) {
5448 error = fill_vmentry(l, p, &vme[count], map, entry);
5449 if (error)
5450 goto out;
5451 dp += elem_size;
5452 }
5453 count++;
5454 }
5455 vm_map_unlock_read(map);
5456 uvmspace_free(vm);
5457
5458 out:
5459 if (pid != -1)
5460 mutex_exit(p->p_lock);
5461 if (error == 0) {
5462 const u_int esize = uimin(sizeof(*vme), elem_size);
5463 dp = oldp;
5464 for (size_t i = 0; i < count; i++) {
5465 if (oldp && (dp - (char *)oldp) < vmesize) {
5466 error = sysctl_copyout(l, &vme[i], dp, esize);
5467 if (error)
5468 break;
5469 dp += elem_size;
5470 } else
5471 break;
5472 }
5473 count *= elem_size;
5474 if (oldp != NULL && *oldlenp < count)
5475 error = ENOSPC;
5476 *oldlenp = count;
5477 }
5478 if (vme)
5479 kmem_free(vme, vmesize);
5480 return error;
5481 }
5482
5483 static int
5484 sysctl_vmproc(SYSCTLFN_ARGS)
5485 {
5486 int error;
5487
5488 if (namelen == 1 && name[0] == CTL_QUERY)
5489 return (sysctl_query(SYSCTLFN_CALL(rnode)));
5490
5491 if (namelen == 0)
5492 return EINVAL;
5493
5494 switch (name[0]) {
5495 case VM_PROC_MAP:
5496 if (namelen != 3)
5497 return EINVAL;
5498 sysctl_unlock();
5499 error = fill_vmentries(l, name[1], name[2], oldp, oldlenp);
5500 sysctl_relock();
5501 return error;
5502 default:
5503 return EINVAL;
5504 }
5505 }
5506
5507 SYSCTL_SETUP(sysctl_uvmmap_setup, "sysctl uvmmap setup")
5508 {
5509
5510 sysctl_createv(clog, 0, NULL, NULL,
5511 CTLFLAG_PERMANENT,
5512 CTLTYPE_STRUCT, "proc",
5513 SYSCTL_DESCR("Process vm information"),
5514 sysctl_vmproc, 0, NULL, 0,
5515 CTL_VM, VM_PROC, CTL_EOL);
5516 #ifndef __USER_VA0_IS_SAFE
5517 sysctl_createv(clog, 0, NULL, NULL,
5518 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5519 CTLTYPE_INT, "user_va0_disable",
5520 SYSCTL_DESCR("Disable VA 0"),
5521 sysctl_user_va0_disable, 0, &user_va0_disable, 0,
5522 CTL_VM, CTL_CREATE, CTL_EOL);
5523 #endif
5524 }
5525