Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.1
      1  1.1  mrg /*	$Id: uvm_page.c,v 1.1 1998/02/05 06:25:09 mrg Exp $	*/
      2  1.1  mrg 
      3  1.1  mrg /*
      4  1.1  mrg  * XXXCDC: "ROUGH DRAFT" QUALITY UVM PRE-RELEASE FILE!
      5  1.1  mrg  *         >>>USE AT YOUR OWN RISK, WORK IS NOT FINISHED<<<
      6  1.1  mrg  */
      7  1.1  mrg /*
      8  1.1  mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      9  1.1  mrg  * Copyright (c) 1991, 1993, The Regents of the University of California.
     10  1.1  mrg  *
     11  1.1  mrg  * All rights reserved.
     12  1.1  mrg  *
     13  1.1  mrg  * This code is derived from software contributed to Berkeley by
     14  1.1  mrg  * The Mach Operating System project at Carnegie-Mellon University.
     15  1.1  mrg  *
     16  1.1  mrg  * Redistribution and use in source and binary forms, with or without
     17  1.1  mrg  * modification, are permitted provided that the following conditions
     18  1.1  mrg  * are met:
     19  1.1  mrg  * 1. Redistributions of source code must retain the above copyright
     20  1.1  mrg  *    notice, this list of conditions and the following disclaimer.
     21  1.1  mrg  * 2. Redistributions in binary form must reproduce the above copyright
     22  1.1  mrg  *    notice, this list of conditions and the following disclaimer in the
     23  1.1  mrg  *    documentation and/or other materials provided with the distribution.
     24  1.1  mrg  * 3. All advertising materials mentioning features or use of this software
     25  1.1  mrg  *    must display the following acknowledgement:
     26  1.1  mrg  *	This product includes software developed by Charles D. Cranor,
     27  1.1  mrg  *      Washington University, the University of California, Berkeley and
     28  1.1  mrg  *      its contributors.
     29  1.1  mrg  * 4. Neither the name of the University nor the names of its contributors
     30  1.1  mrg  *    may be used to endorse or promote products derived from this software
     31  1.1  mrg  *    without specific prior written permission.
     32  1.1  mrg  *
     33  1.1  mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     34  1.1  mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     35  1.1  mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     36  1.1  mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     37  1.1  mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     38  1.1  mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     39  1.1  mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     40  1.1  mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     41  1.1  mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     42  1.1  mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     43  1.1  mrg  * SUCH DAMAGE.
     44  1.1  mrg  *
     45  1.1  mrg  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     46  1.1  mrg  *
     47  1.1  mrg  *
     48  1.1  mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     49  1.1  mrg  * All rights reserved.
     50  1.1  mrg  *
     51  1.1  mrg  * Permission to use, copy, modify and distribute this software and
     52  1.1  mrg  * its documentation is hereby granted, provided that both the copyright
     53  1.1  mrg  * notice and this permission notice appear in all copies of the
     54  1.1  mrg  * software, derivative works or modified versions, and any portions
     55  1.1  mrg  * thereof, and that both notices appear in supporting documentation.
     56  1.1  mrg  *
     57  1.1  mrg  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     58  1.1  mrg  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     59  1.1  mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     60  1.1  mrg  *
     61  1.1  mrg  * Carnegie Mellon requests users of this software to return to
     62  1.1  mrg  *
     63  1.1  mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     64  1.1  mrg  *  School of Computer Science
     65  1.1  mrg  *  Carnegie Mellon University
     66  1.1  mrg  *  Pittsburgh PA 15213-3890
     67  1.1  mrg  *
     68  1.1  mrg  * any improvements or extensions that they make and grant Carnegie the
     69  1.1  mrg  * rights to redistribute these changes.
     70  1.1  mrg  */
     71  1.1  mrg 
     72  1.1  mrg /*
     73  1.1  mrg  * uvm_page.c: page ops.
     74  1.1  mrg  */
     75  1.1  mrg 
     76  1.1  mrg #include <sys/param.h>
     77  1.1  mrg #include <sys/systm.h>
     78  1.1  mrg #include <sys/malloc.h>
     79  1.1  mrg #include <sys/mount.h>
     80  1.1  mrg #include <sys/proc.h>
     81  1.1  mrg 
     82  1.1  mrg #include <vm/vm.h>
     83  1.1  mrg #include <vm/vm_page.h>
     84  1.1  mrg #include <vm/vm_kern.h>
     85  1.1  mrg 
     86  1.1  mrg #include <sys/syscallargs.h>
     87  1.1  mrg 
     88  1.1  mrg #define UVM_PAGE                /* pull in uvm_page.h functions */
     89  1.1  mrg #include <uvm/uvm.h>
     90  1.1  mrg 
     91  1.1  mrg /*
     92  1.1  mrg  * global vars... XXXCDC: move to uvm. structure.
     93  1.1  mrg  */
     94  1.1  mrg 
     95  1.1  mrg /*
     96  1.1  mrg  * physical memory config is stored in vm_physmem.
     97  1.1  mrg  */
     98  1.1  mrg 
     99  1.1  mrg struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
    100  1.1  mrg int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
    101  1.1  mrg 
    102  1.1  mrg /*
    103  1.1  mrg  * local variables
    104  1.1  mrg  */
    105  1.1  mrg 
    106  1.1  mrg /*
    107  1.1  mrg  * these variables record the values returned by vm_page_bootstrap,
    108  1.1  mrg  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    109  1.1  mrg  * and pmap_startup here also uses them internally.
    110  1.1  mrg  */
    111  1.1  mrg 
    112  1.1  mrg static vm_offset_t      virtual_space_start;
    113  1.1  mrg static vm_offset_t      virtual_space_end;
    114  1.1  mrg 
    115  1.1  mrg /*
    116  1.1  mrg  * we use a hash table with only one bucket during bootup.  we will
    117  1.1  mrg  * later rehash (resize) the hash table once malloc() is ready.
    118  1.1  mrg  * we static allocate the bootstrap bucket below...
    119  1.1  mrg  */
    120  1.1  mrg 
    121  1.1  mrg static struct pglist uvm_bootbucket;
    122  1.1  mrg 
    123  1.1  mrg /*
    124  1.1  mrg  * local prototypes
    125  1.1  mrg  */
    126  1.1  mrg 
    127  1.1  mrg static void uvm_pageinsert __P((struct vm_page *));
    128  1.1  mrg #if !defined(PMAP_STEAL_MEMORY)
    129  1.1  mrg static boolean_t uvm_page_physget __P((vm_offset_t *));
    130  1.1  mrg #endif
    131  1.1  mrg 
    132  1.1  mrg 
    133  1.1  mrg /*
    134  1.1  mrg  * inline functions
    135  1.1  mrg  */
    136  1.1  mrg 
    137  1.1  mrg /*
    138  1.1  mrg  * uvm_pageinsert: insert a page in the object and the hash table
    139  1.1  mrg  *
    140  1.1  mrg  * => caller must lock object
    141  1.1  mrg  * => caller must lock page queues
    142  1.1  mrg  * => call should have already set pg's object and offset pointers
    143  1.1  mrg  *    and bumped the version counter
    144  1.1  mrg  */
    145  1.1  mrg 
    146  1.1  mrg __inline static void uvm_pageinsert(pg)
    147  1.1  mrg 
    148  1.1  mrg struct vm_page *pg;
    149  1.1  mrg 
    150  1.1  mrg {
    151  1.1  mrg   struct pglist *buck;
    152  1.1  mrg   int s;
    153  1.1  mrg 
    154  1.1  mrg #ifdef DIAGNOSTIC
    155  1.1  mrg   if (pg->flags & PG_TABLED)
    156  1.1  mrg     panic("uvm_pageinsert: already inserted");
    157  1.1  mrg #endif
    158  1.1  mrg 
    159  1.1  mrg   buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
    160  1.1  mrg   s = splimp();
    161  1.1  mrg   simple_lock(&uvm.hashlock);
    162  1.1  mrg   TAILQ_INSERT_TAIL(buck, pg, hashq);	/* put in hash */
    163  1.1  mrg   simple_unlock(&uvm.hashlock);
    164  1.1  mrg   splx(s);
    165  1.1  mrg 
    166  1.1  mrg   TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq);	/* put in object */
    167  1.1  mrg   pg->flags |= PG_TABLED;
    168  1.1  mrg   pg->uobject->uo_npages++;
    169  1.1  mrg 
    170  1.1  mrg }
    171  1.1  mrg 
    172  1.1  mrg /*
    173  1.1  mrg  * uvm_page_remove: remove page from object and hash
    174  1.1  mrg  *
    175  1.1  mrg  * => caller must lock object
    176  1.1  mrg  * => caller must lock page queues
    177  1.1  mrg  */
    178  1.1  mrg 
    179  1.1  mrg void __inline uvm_pageremove(pg)
    180  1.1  mrg 
    181  1.1  mrg struct vm_page *pg;
    182  1.1  mrg 
    183  1.1  mrg {
    184  1.1  mrg   struct pglist *buck;
    185  1.1  mrg   int s;
    186  1.1  mrg 
    187  1.1  mrg #ifdef DIAGNOSTIC
    188  1.1  mrg   if ((pg->flags & (PG_FAULTING)) != 0)
    189  1.1  mrg     panic("uvm_pageremove: page is faulting");
    190  1.1  mrg #endif
    191  1.1  mrg 
    192  1.1  mrg   if ((pg->flags & PG_TABLED) == 0)
    193  1.1  mrg     return;				/* XXX: log */
    194  1.1  mrg 
    195  1.1  mrg   buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
    196  1.1  mrg   s = splimp();
    197  1.1  mrg   simple_lock(&uvm.hashlock);
    198  1.1  mrg   TAILQ_REMOVE(buck, pg, hashq);
    199  1.1  mrg   simple_unlock(&uvm.hashlock);
    200  1.1  mrg   splx(s);
    201  1.1  mrg 
    202  1.1  mrg   TAILQ_REMOVE(&pg->uobject->memq, pg, listq);/* object should be locked */
    203  1.1  mrg 
    204  1.1  mrg   pg->flags &= ~PG_TABLED;
    205  1.1  mrg   pg->uobject->uo_npages--;
    206  1.1  mrg   pg->uobject = NULL;
    207  1.1  mrg   pg->version++;
    208  1.1  mrg 
    209  1.1  mrg }
    210  1.1  mrg 
    211  1.1  mrg /*
    212  1.1  mrg  * uvm_page_init: init the page system.   called from uvm_init().
    213  1.1  mrg  *
    214  1.1  mrg  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    215  1.1  mrg  */
    216  1.1  mrg 
    217  1.1  mrg void uvm_page_init(kvm_startp, kvm_endp)
    218  1.1  mrg 
    219  1.1  mrg vm_offset_t *kvm_startp, *kvm_endp;
    220  1.1  mrg 
    221  1.1  mrg {
    222  1.1  mrg   int freepages, pagecount;
    223  1.1  mrg   vm_page_t pagearray;
    224  1.1  mrg   int lcv, n, i;
    225  1.1  mrg   vm_offset_t paddr;
    226  1.1  mrg 
    227  1.1  mrg 
    228  1.1  mrg   /*
    229  1.1  mrg    * step 1: init the page queues and page queue locks
    230  1.1  mrg    */
    231  1.1  mrg 
    232  1.1  mrg   TAILQ_INIT(&uvm.page_free);
    233  1.1  mrg   TAILQ_INIT(&uvm.page_active);
    234  1.1  mrg   TAILQ_INIT(&uvm.page_inactive_swp);
    235  1.1  mrg   TAILQ_INIT(&uvm.page_inactive_obj);
    236  1.1  mrg   simple_lock_init(&uvm.pageqlock);
    237  1.1  mrg   simple_lock_init(&uvm.fpageqlock);
    238  1.1  mrg 
    239  1.1  mrg   /*
    240  1.1  mrg    * step 2: init the <obj,offset> => <page> hash table. for now
    241  1.1  mrg    * we just have one bucket (the bootstrap bucket).   later on we
    242  1.1  mrg    * will malloc() new buckets as we dynamically resize the hash table.
    243  1.1  mrg    */
    244  1.1  mrg 
    245  1.1  mrg   uvm.page_nhash = 1;			/* 1 bucket */
    246  1.1  mrg   uvm.page_hashmask = 0;		/* mask for hash function */
    247  1.1  mrg   uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
    248  1.1  mrg   TAILQ_INIT(uvm.page_hash);		/* init hash table */
    249  1.1  mrg   simple_lock_init(&uvm.hashlock);	/* init hash table lock */
    250  1.1  mrg 
    251  1.1  mrg   /*
    252  1.1  mrg    * step 3: allocate vm_page structures.
    253  1.1  mrg    */
    254  1.1  mrg 
    255  1.1  mrg   /*
    256  1.1  mrg    * sanity check:
    257  1.1  mrg    * before calling this function the MD code is expected to register
    258  1.1  mrg    * some free RAM with the uvm_page_physload() function.   our job
    259  1.1  mrg    * now is to allocate vm_page structures for this memory.
    260  1.1  mrg    */
    261  1.1  mrg 
    262  1.1  mrg   if (vm_nphysseg == 0)
    263  1.1  mrg     panic("vm_page_bootstrap: no memory pre-allocated");
    264  1.1  mrg 
    265  1.1  mrg   /*
    266  1.1  mrg    * first calculate the number of free pages...
    267  1.1  mrg    *
    268  1.1  mrg    * note that we use start/end rather than avail_start/avail_end.
    269  1.1  mrg    * this allows us to allocate extra vm_page structures in case we
    270  1.1  mrg    * want to return some memory to the pool after booting.
    271  1.1  mrg    */
    272  1.1  mrg 
    273  1.1  mrg   freepages = 0;
    274  1.1  mrg   for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    275  1.1  mrg     freepages = freepages + (vm_physmem[lcv].end - vm_physmem[lcv].start);
    276  1.1  mrg   }
    277  1.1  mrg 
    278  1.1  mrg   /*
    279  1.1  mrg    * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    280  1.1  mrg    * use.   for each page of memory we use we need a vm_page structure.
    281  1.1  mrg    * thus, the total number of pages we can use is the total size of
    282  1.1  mrg    * the memory divided by the PAGE_SIZE plus the size of the vm_page
    283  1.1  mrg    * structure.   we add one to freepages as a fudge factor to avoid
    284  1.1  mrg    * truncation errors (since we can only allocate in terms of whole
    285  1.1  mrg    * pages).
    286  1.1  mrg    */
    287  1.1  mrg 
    288  1.1  mrg   pagecount = (PAGE_SIZE * (freepages + 1)) /
    289  1.1  mrg     (PAGE_SIZE + sizeof(struct vm_page));
    290  1.1  mrg   pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount * sizeof(struct vm_page));
    291  1.1  mrg   bzero(pagearray, pagecount * sizeof(struct vm_page));
    292  1.1  mrg 
    293  1.1  mrg   /*
    294  1.1  mrg    * step 4: init the vm_page structures and put them in the correct
    295  1.1  mrg    * place...
    296  1.1  mrg    */
    297  1.1  mrg 
    298  1.1  mrg   for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    299  1.1  mrg 
    300  1.1  mrg     n = vm_physmem[lcv].end - vm_physmem[lcv].start;
    301  1.1  mrg     if (n > pagecount) {
    302  1.1  mrg       printf("uvm_page_init: lost %d page(s) in init\n", n - pagecount);
    303  1.1  mrg       panic("uvm_page_init");  /* XXXCDC: shouldn't happen? */
    304  1.1  mrg       /* n = pagecount; */
    305  1.1  mrg     }
    306  1.1  mrg     /* set up page array pointers */
    307  1.1  mrg     vm_physmem[lcv].pgs = pagearray;
    308  1.1  mrg     pagearray += n;
    309  1.1  mrg     pagecount -= n;
    310  1.1  mrg     vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
    311  1.1  mrg 
    312  1.1  mrg     /* init and free vm_pages (we've already bzero'd them) */
    313  1.1  mrg     paddr = ptoa(vm_physmem[lcv].start);
    314  1.1  mrg     for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
    315  1.1  mrg       vm_physmem[lcv].pgs[i].phys_addr = paddr;
    316  1.1  mrg       if (atop(paddr) >= vm_physmem[lcv].avail_start &&
    317  1.1  mrg           atop(paddr) <= vm_physmem[lcv].avail_end) {
    318  1.1  mrg 	uvmexp.npages++;
    319  1.1  mrg         uvm_pagefree(&vm_physmem[lcv].pgs[i]);	/* add page to free pool */
    320  1.1  mrg       }
    321  1.1  mrg     }
    322  1.1  mrg   }
    323  1.1  mrg   /*
    324  1.1  mrg    * step 5: pass up the values of virtual_space_start and
    325  1.1  mrg    * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    326  1.1  mrg    * layers of the VM.
    327  1.1  mrg    */
    328  1.1  mrg 
    329  1.1  mrg   *kvm_startp = round_page(virtual_space_start);
    330  1.1  mrg   *kvm_endp = trunc_page(virtual_space_end);
    331  1.1  mrg 
    332  1.1  mrg   /*
    333  1.1  mrg    * step 6: init pagedaemon lock
    334  1.1  mrg    */
    335  1.1  mrg 
    336  1.1  mrg   simple_lock_init(&uvm.pagedaemon_lock);
    337  1.1  mrg 
    338  1.1  mrg   /*
    339  1.1  mrg    * done!
    340  1.1  mrg    */
    341  1.1  mrg 
    342  1.1  mrg }
    343  1.1  mrg 
    344  1.1  mrg /*
    345  1.1  mrg  * uvm_setpagesize: set the page size
    346  1.1  mrg  *
    347  1.1  mrg  * => sets page_shift and page_mask from uvmexp.pagesize.
    348  1.1  mrg  * => XXXCDC: move global vars.
    349  1.1  mrg  */
    350  1.1  mrg 
    351  1.1  mrg void uvm_setpagesize()
    352  1.1  mrg {
    353  1.1  mrg   if (uvmexp.pagesize == 0)
    354  1.1  mrg     uvmexp.pagesize = DEFAULT_PAGE_SIZE;
    355  1.1  mrg   uvmexp.pagemask = uvmexp.pagesize - 1;
    356  1.1  mrg   if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    357  1.1  mrg     panic("uvm_setpagesize: page size not a power of two");
    358  1.1  mrg   for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    359  1.1  mrg     if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    360  1.1  mrg       break;
    361  1.1  mrg }
    362  1.1  mrg 
    363  1.1  mrg /*
    364  1.1  mrg  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    365  1.1  mrg  */
    366  1.1  mrg 
    367  1.1  mrg vm_offset_t uvm_pageboot_alloc(size)
    368  1.1  mrg 
    369  1.1  mrg vm_size_t size;
    370  1.1  mrg 
    371  1.1  mrg {
    372  1.1  mrg #if defined(PMAP_STEAL_MEMORY)
    373  1.1  mrg   vm_offset_t addr;
    374  1.1  mrg 
    375  1.1  mrg   /*
    376  1.1  mrg    * defer bootstrap allocation to MD code (it may want to allocate
    377  1.1  mrg    * from a direct-mapped segment).  pmap_steal_memory should round
    378  1.1  mrg    * off virtual_space_start/virtual_space_end.
    379  1.1  mrg    */
    380  1.1  mrg 
    381  1.1  mrg   addr = pmap_steal_memory(size, &virtual_space_start, &virtual_space_end);
    382  1.1  mrg 
    383  1.1  mrg   return(addr);
    384  1.1  mrg 
    385  1.1  mrg #else /* !PMAP_STEAL_MEMORY */
    386  1.1  mrg 
    387  1.1  mrg   vm_offset_t addr, vaddr, paddr;
    388  1.1  mrg 
    389  1.1  mrg   /* round the size to an integer multiple */
    390  1.1  mrg   size = (size + 3) &~ 3; /* XXX */
    391  1.1  mrg 
    392  1.1  mrg   /*
    393  1.1  mrg    * on first call to this function init ourselves.   we detect this
    394  1.1  mrg    * by checking virtual_space_start/end which are in the zero'd BSS area.
    395  1.1  mrg    */
    396  1.1  mrg 
    397  1.1  mrg   if (virtual_space_start == virtual_space_end) {
    398  1.1  mrg     pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    399  1.1  mrg 
    400  1.1  mrg     /* round it the way we like it */
    401  1.1  mrg     virtual_space_start = round_page(virtual_space_start);
    402  1.1  mrg     virtual_space_end = trunc_page(virtual_space_end);
    403  1.1  mrg   }
    404  1.1  mrg 
    405  1.1  mrg   /*
    406  1.1  mrg    * allocate virtual memory for this request
    407  1.1  mrg    */
    408  1.1  mrg 
    409  1.1  mrg   addr = virtual_space_start;
    410  1.1  mrg   virtual_space_start += size;
    411  1.1  mrg 
    412  1.1  mrg     /*
    413  1.1  mrg    * allocate and mapin physical pages to back new virtual pages
    414  1.1  mrg    */
    415  1.1  mrg 
    416  1.1  mrg   for (vaddr = round_page(addr) ; vaddr < addr + size ; vaddr += PAGE_SIZE) {
    417  1.1  mrg 
    418  1.1  mrg     if (!uvm_page_physget(&paddr))
    419  1.1  mrg       panic("uvm_pageboot_alloc: out of memory");
    420  1.1  mrg 
    421  1.1  mrg     /* XXX: should be wired, but some pmaps don't like that ... */
    422  1.1  mrg #if defined(PMAP_NEW)
    423  1.1  mrg     pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
    424  1.1  mrg #else
    425  1.1  mrg     pmap_enter(pmap_kernel(), vaddr, paddr,
    426  1.1  mrg                VM_PROT_READ|VM_PROT_WRITE, FALSE);
    427  1.1  mrg #endif
    428  1.1  mrg 
    429  1.1  mrg   }
    430  1.1  mrg 
    431  1.1  mrg   return(addr);
    432  1.1  mrg #endif	/* PMAP_STEAL_MEMORY */
    433  1.1  mrg }
    434  1.1  mrg 
    435  1.1  mrg #if !defined(PMAP_STEAL_MEMORY)
    436  1.1  mrg /*
    437  1.1  mrg  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    438  1.1  mrg  *
    439  1.1  mrg  * => attempt to allocate it off the end of a segment in which the "avail"
    440  1.1  mrg  *    values match the start/end values.   if we can't do that, then we
    441  1.1  mrg  *    will advance both values (making them equal, and removing some
    442  1.1  mrg  *    vm_page structures from the non-avail area).
    443  1.1  mrg  * => return false if out of memory.
    444  1.1  mrg  */
    445  1.1  mrg 
    446  1.1  mrg static boolean_t uvm_page_physget(paddrp)
    447  1.1  mrg 
    448  1.1  mrg vm_offset_t *paddrp;
    449  1.1  mrg 
    450  1.1  mrg {
    451  1.1  mrg   int lcv, x;
    452  1.1  mrg 
    453  1.1  mrg   /* pass 1: try allocating from a matching end */
    454  1.1  mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    455  1.1  mrg   for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    456  1.1  mrg #else
    457  1.1  mrg   for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    458  1.1  mrg #endif
    459  1.1  mrg   {
    460  1.1  mrg 
    461  1.1  mrg     if (vm_physmem[lcv].pgs)
    462  1.1  mrg       panic("vm_page_physget: called _after_ bootstrap");
    463  1.1  mrg 
    464  1.1  mrg     /* try from front */
    465  1.1  mrg     if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
    466  1.1  mrg         vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    467  1.1  mrg       *paddrp = ptoa(vm_physmem[lcv].avail_start);
    468  1.1  mrg       vm_physmem[lcv].avail_start++;
    469  1.1  mrg       vm_physmem[lcv].start++;
    470  1.1  mrg       /* nothing left?   nuke it */
    471  1.1  mrg       if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
    472  1.1  mrg         if (vm_nphysseg == 1)
    473  1.1  mrg           panic("vm_page_physget: out of memory!");
    474  1.1  mrg         vm_nphysseg--;
    475  1.1  mrg         for (x = lcv ; x < vm_nphysseg ; x++)
    476  1.1  mrg           vm_physmem[x] = vm_physmem[x+1];  /* structure copy */
    477  1.1  mrg       }
    478  1.1  mrg       return(TRUE);
    479  1.1  mrg     }
    480  1.1  mrg 
    481  1.1  mrg     /* try from rear */
    482  1.1  mrg     if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
    483  1.1  mrg         vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    484  1.1  mrg       *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
    485  1.1  mrg       vm_physmem[lcv].avail_end--;
    486  1.1  mrg       vm_physmem[lcv].end--;
    487  1.1  mrg       /* nothing left?   nuke it */
    488  1.1  mrg       if (vm_physmem[lcv].avail_end == vm_physmem[lcv].start) {
    489  1.1  mrg         if (vm_nphysseg == 1)
    490  1.1  mrg           panic("vm_page_physget: out of memory!");
    491  1.1  mrg         vm_nphysseg--;
    492  1.1  mrg         for (x = lcv ; x < vm_nphysseg ; x++)
    493  1.1  mrg           vm_physmem[x] = vm_physmem[x+1];  /* structure copy */
    494  1.1  mrg       }
    495  1.1  mrg       return(TRUE);
    496  1.1  mrg     }
    497  1.1  mrg   }
    498  1.1  mrg 
    499  1.1  mrg   /* pass2: forget about matching ends, just allocate something */
    500  1.1  mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    501  1.1  mrg   for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    502  1.1  mrg #else
    503  1.1  mrg   for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    504  1.1  mrg #endif
    505  1.1  mrg   {
    506  1.1  mrg 
    507  1.1  mrg     /* any room in this bank? */
    508  1.1  mrg     if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
    509  1.1  mrg       continue;  /* nope */
    510  1.1  mrg 
    511  1.1  mrg     *paddrp = ptoa(vm_physmem[lcv].avail_start);
    512  1.1  mrg     vm_physmem[lcv].avail_start++;
    513  1.1  mrg     vm_physmem[lcv].start = vm_physmem[lcv].avail_start; /* truncate! */
    514  1.1  mrg     /* nothing left?   nuke it */
    515  1.1  mrg     if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
    516  1.1  mrg       if (vm_nphysseg == 1)
    517  1.1  mrg         panic("vm_page_physget: out of memory!");
    518  1.1  mrg       vm_nphysseg--;
    519  1.1  mrg       for (x = lcv ; x < vm_nphysseg ; x++)
    520  1.1  mrg         vm_physmem[x] = vm_physmem[x+1];  /* structure copy */
    521  1.1  mrg     }
    522  1.1  mrg     return(TRUE);
    523  1.1  mrg   }
    524  1.1  mrg 
    525  1.1  mrg   return(FALSE);        /* whoops! */
    526  1.1  mrg }
    527  1.1  mrg #endif /* PMAP_STEAL_MEMORY */
    528  1.1  mrg 
    529  1.1  mrg /*
    530  1.1  mrg  * uvm_page_physload: load physical memory into VM system
    531  1.1  mrg  *
    532  1.1  mrg  * => all args are PFs
    533  1.1  mrg  * => all pages in start/end get vm_page structures
    534  1.1  mrg  * => areas marked by avail_start/avail_end get added to the free page pool
    535  1.1  mrg  * => we are limited to VM_PHYSSEG_MAX physical memory segments
    536  1.1  mrg  */
    537  1.1  mrg 
    538  1.1  mrg void uvm_page_physload(start, end, avail_start, avail_end)
    539  1.1  mrg 
    540  1.1  mrg vm_offset_t start, end, avail_start, avail_end;
    541  1.1  mrg 
    542  1.1  mrg {
    543  1.1  mrg   int preload, lcv, npages;
    544  1.1  mrg   struct vm_page *pgs;
    545  1.1  mrg   struct vm_physseg *ps;
    546  1.1  mrg 
    547  1.1  mrg   if (uvmexp.pagesize == 0)
    548  1.1  mrg     panic("vm_page_physload: page size not set!");
    549  1.1  mrg 
    550  1.1  mrg   /*
    551  1.1  mrg    * do we have room?
    552  1.1  mrg    */
    553  1.1  mrg   if (vm_nphysseg == VM_PHYSSEG_MAX) {
    554  1.1  mrg     printf("vm_page_physload: unable to load physical memory segment\n");
    555  1.1  mrg     printf("\t%d segments allocated, ignoring 0x%lx -> 0x%lx\n",
    556  1.1  mrg            VM_PHYSSEG_MAX, start, end);
    557  1.1  mrg     return;
    558  1.1  mrg   }
    559  1.1  mrg 
    560  1.1  mrg   /*
    561  1.1  mrg    * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
    562  1.1  mrg    * called yet, so malloc is not available).
    563  1.1  mrg    */
    564  1.1  mrg   for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    565  1.1  mrg     if (vm_physmem[lcv].pgs)
    566  1.1  mrg       break;
    567  1.1  mrg   }
    568  1.1  mrg   preload = (lcv == vm_nphysseg);
    569  1.1  mrg 
    570  1.1  mrg   /*
    571  1.1  mrg    * if VM is already running, attempt to malloc() vm_page structures
    572  1.1  mrg    */
    573  1.1  mrg   if (!preload) {
    574  1.1  mrg #if defined(VM_PHYSSEG_NOADD)
    575  1.1  mrg     panic("vm_page_physload: tried to add RAM after vm_mem_init");
    576  1.1  mrg #else
    577  1.1  mrg     /* XXXCDC: need some sort of lockout for this case */
    578  1.1  mrg     vm_offset_t paddr;
    579  1.1  mrg     npages = end - start;  /* # of pages */
    580  1.1  mrg     MALLOC(pgs, struct vm_page *, sizeof(struct vm_page) * npages,
    581  1.1  mrg            M_VMPAGE, M_NOWAIT);
    582  1.1  mrg     if (pgs == NULL) {
    583  1.1  mrg       printf("vm_page_physload: can not malloc vm_page structs for segment\n");
    584  1.1  mrg       printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
    585  1.1  mrg       return;
    586  1.1  mrg     }
    587  1.1  mrg     /* zero data, init phys_addr, and free pages */
    588  1.1  mrg     bzero(pgs, sizeof(struct vm_page) * npages);
    589  1.1  mrg     for (lcv = 0, paddr = ptoa(start) ;
    590  1.1  mrg          lcv < npages ; lcv++, paddr += PAGE_SIZE) {
    591  1.1  mrg       pgs[lcv].phys_addr = paddr;
    592  1.1  mrg       if (atop(paddr) >= avail_start && atop(paddr) <= avail_end)
    593  1.1  mrg         vm_page_free(&pgs[i]);
    594  1.1  mrg     }
    595  1.1  mrg     /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
    596  1.1  mrg     /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
    597  1.1  mrg #endif
    598  1.1  mrg   } else {
    599  1.1  mrg 
    600  1.1  mrg     /* gcc complains if these don't get init'd */
    601  1.1  mrg     pgs = NULL;
    602  1.1  mrg     npages = 0;
    603  1.1  mrg 
    604  1.1  mrg   }
    605  1.1  mrg 
    606  1.1  mrg   /*
    607  1.1  mrg    * now insert us in the proper place in vm_physmem[]
    608  1.1  mrg    */
    609  1.1  mrg 
    610  1.1  mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
    611  1.1  mrg 
    612  1.1  mrg   /* random: put it at the end (easy!) */
    613  1.1  mrg   ps = &vm_physmem[vm_nphysseg];
    614  1.1  mrg 
    615  1.1  mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    616  1.1  mrg 
    617  1.1  mrg   {
    618  1.1  mrg     int x;
    619  1.1  mrg     /* sort by address for binary search */
    620  1.1  mrg     for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    621  1.1  mrg       if (start < vm_physmem[lcv].start)
    622  1.1  mrg         break;
    623  1.1  mrg     ps = &vm_physmem[lcv];
    624  1.1  mrg     /* move back other entries, if necessary ... */
    625  1.1  mrg     for (x = vm_nphysseg ; x > lcv ; x--)
    626  1.1  mrg       vm_physmem[x] = vm_physmem[x - 1];        /* structure copy */
    627  1.1  mrg   }
    628  1.1  mrg 
    629  1.1  mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    630  1.1  mrg 
    631  1.1  mrg   {
    632  1.1  mrg     int x;
    633  1.1  mrg     /* sort by largest segment first */
    634  1.1  mrg     for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    635  1.1  mrg       if ((end - start) > (vm_physmem[lcv].end - vm_physmem[lcv].start))
    636  1.1  mrg         break;
    637  1.1  mrg     ps = &vm_physmem[lcv];
    638  1.1  mrg     /* move back other entries, if necessary ... */
    639  1.1  mrg     for (x = vm_nphysseg ; x > lcv ; x--)
    640  1.1  mrg       vm_physmem[x] = vm_physmem[x - 1];        /* structure copy */
    641  1.1  mrg   }
    642  1.1  mrg 
    643  1.1  mrg #else
    644  1.1  mrg 
    645  1.1  mrg   panic("vm_page_physload: unknown physseg strategy selected!");
    646  1.1  mrg 
    647  1.1  mrg #endif
    648  1.1  mrg 
    649  1.1  mrg   ps->start = start;
    650  1.1  mrg   ps->end = end;
    651  1.1  mrg   ps->avail_start = avail_start;
    652  1.1  mrg   ps->avail_end = avail_end;
    653  1.1  mrg   if (preload) {
    654  1.1  mrg     ps->pgs = NULL;
    655  1.1  mrg   } else {
    656  1.1  mrg     ps->pgs = pgs;
    657  1.1  mrg     ps->lastpg = pgs + npages - 1;
    658  1.1  mrg   }
    659  1.1  mrg   vm_nphysseg++;
    660  1.1  mrg 
    661  1.1  mrg   /*
    662  1.1  mrg    * done!
    663  1.1  mrg    */
    664  1.1  mrg 
    665  1.1  mrg   if (!preload)
    666  1.1  mrg     uvm_page_rehash();
    667  1.1  mrg 
    668  1.1  mrg   return;
    669  1.1  mrg }
    670  1.1  mrg 
    671  1.1  mrg /*
    672  1.1  mrg  * uvm_page_rehash: reallocate hash table based on number of free pages.
    673  1.1  mrg  */
    674  1.1  mrg 
    675  1.1  mrg void uvm_page_rehash()
    676  1.1  mrg 
    677  1.1  mrg {
    678  1.1  mrg   int freepages, lcv, bucketcount, s, oldcount;
    679  1.1  mrg   struct pglist *newbuckets, *oldbuckets;
    680  1.1  mrg   struct vm_page *pg;
    681  1.1  mrg 
    682  1.1  mrg   /*
    683  1.1  mrg    * compute number of pages that can go in the free pool
    684  1.1  mrg    */
    685  1.1  mrg 
    686  1.1  mrg   freepages = 0;
    687  1.1  mrg   for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    688  1.1  mrg     freepages = freepages +
    689  1.1  mrg       (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
    690  1.1  mrg 
    691  1.1  mrg   /*
    692  1.1  mrg    * compute number of buckets needed for this number of pages
    693  1.1  mrg    */
    694  1.1  mrg 
    695  1.1  mrg   bucketcount = 1;
    696  1.1  mrg   while (bucketcount < freepages)
    697  1.1  mrg     bucketcount = bucketcount * 2;
    698  1.1  mrg 
    699  1.1  mrg   /*
    700  1.1  mrg    * malloc new buckets
    701  1.1  mrg    */
    702  1.1  mrg 
    703  1.1  mrg   MALLOC(newbuckets, struct pglist *, sizeof(struct pglist) * bucketcount,
    704  1.1  mrg            M_VMPBUCKET, M_NOWAIT);
    705  1.1  mrg   if (newbuckets == NULL) {
    706  1.1  mrg     printf("vm_page_physrehash: WARNING: could not grow page hash table\n");
    707  1.1  mrg     return;
    708  1.1  mrg   }
    709  1.1  mrg   for (lcv = 0 ; lcv < bucketcount ; lcv++)
    710  1.1  mrg     TAILQ_INIT(&newbuckets[lcv]);
    711  1.1  mrg 
    712  1.1  mrg   /*
    713  1.1  mrg    * now replace the old buckets with the new ones and rehash everything
    714  1.1  mrg    */
    715  1.1  mrg 
    716  1.1  mrg   s = splimp();
    717  1.1  mrg   simple_lock(&uvm.hashlock);
    718  1.1  mrg   /* swap old for new ... */
    719  1.1  mrg   oldbuckets = uvm.page_hash;
    720  1.1  mrg   oldcount = uvm.page_nhash;
    721  1.1  mrg   uvm.page_hash = newbuckets;
    722  1.1  mrg   uvm.page_nhash = bucketcount;
    723  1.1  mrg   uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
    724  1.1  mrg 
    725  1.1  mrg   /* ... and rehash */
    726  1.1  mrg   for (lcv = 0 ; lcv < oldcount ; lcv++) {
    727  1.1  mrg     while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
    728  1.1  mrg       TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
    729  1.1  mrg       TAILQ_INSERT_TAIL(
    730  1.1  mrg         &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)], pg, hashq);
    731  1.1  mrg     }
    732  1.1  mrg   }
    733  1.1  mrg   simple_unlock(&uvm.hashlock);
    734  1.1  mrg   splx(s);
    735  1.1  mrg 
    736  1.1  mrg   /*
    737  1.1  mrg    * free old bucket array if we malloc'd it previously
    738  1.1  mrg    */
    739  1.1  mrg 
    740  1.1  mrg   if (oldbuckets != &uvm_bootbucket)
    741  1.1  mrg     FREE(oldbuckets, M_VMPBUCKET);
    742  1.1  mrg 
    743  1.1  mrg   /*
    744  1.1  mrg    * done
    745  1.1  mrg    */
    746  1.1  mrg   return;
    747  1.1  mrg }
    748  1.1  mrg 
    749  1.1  mrg 
    750  1.1  mrg #if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
    751  1.1  mrg 
    752  1.1  mrg void uvm_page_physdump __P((void)); /* SHUT UP GCC */
    753  1.1  mrg 
    754  1.1  mrg /* call from DDB */
    755  1.1  mrg void uvm_page_physdump() {
    756  1.1  mrg   int lcv;
    757  1.1  mrg   printf("rehash: physical memory config [segs=%d of %d]:\n",
    758  1.1  mrg          vm_nphysseg, VM_PHYSSEG_MAX);
    759  1.1  mrg   for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    760  1.1  mrg     printf("0x%lx->0x%lx [0x%lx->0x%lx]\n", vm_physmem[lcv].start,
    761  1.1  mrg            vm_physmem[lcv].end, vm_physmem[lcv].avail_start,
    762  1.1  mrg            vm_physmem[lcv].avail_end);
    763  1.1  mrg   printf("STRATEGY = ");
    764  1.1  mrg   switch (VM_PHYSSEG_STRAT) {
    765  1.1  mrg   case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
    766  1.1  mrg   case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
    767  1.1  mrg   case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
    768  1.1  mrg   default: printf("<<UNKNOWN>>!!!!\n");
    769  1.1  mrg   }
    770  1.1  mrg   printf("number of buckets = %d\n", uvm.page_nhash);
    771  1.1  mrg }
    772  1.1  mrg #endif
    773  1.1  mrg 
    774  1.1  mrg /*
    775  1.1  mrg  * uvm_pagealloc: allocate vm_page.
    776  1.1  mrg  *
    777  1.1  mrg  * => return null if no pages free
    778  1.1  mrg  * => wake up pagedaemon if number of free pages drops below low water mark
    779  1.1  mrg  * => if obj != NULL, obj must be locked (to put in hash)
    780  1.1  mrg  * => if anon != NULL, anon must be locked (to put in anon)
    781  1.1  mrg  * => only one of obj or anon can be non-null
    782  1.1  mrg  * => caller must activate/deactivate page if it is not wired.
    783  1.1  mrg  */
    784  1.1  mrg 
    785  1.1  mrg struct vm_page *uvm_pagealloc(obj, off, anon)
    786  1.1  mrg 
    787  1.1  mrg struct uvm_object *obj;
    788  1.1  mrg vm_offset_t off;
    789  1.1  mrg struct vm_anon *anon;
    790  1.1  mrg 
    791  1.1  mrg {
    792  1.1  mrg   int s, nfree;
    793  1.1  mrg   struct vm_page *pg;
    794  1.1  mrg 
    795  1.1  mrg #ifdef DIAGNOSTIC
    796  1.1  mrg   /* sanity check */
    797  1.1  mrg   if (obj && anon)
    798  1.1  mrg     panic("uvm_pagealloc: obj and anon != NULL");
    799  1.1  mrg #endif
    800  1.1  mrg 
    801  1.1  mrg   s = splimp();
    802  1.1  mrg 
    803  1.1  mrg   uvm_lock_fpageq();		/* lock free page queue */
    804  1.1  mrg 
    805  1.1  mrg   if ((pg = uvm.page_free.tqh_first) == NULL) {
    806  1.1  mrg     uvm_unlock_fpageq();
    807  1.1  mrg     splx(s);
    808  1.1  mrg     /* XXX: not waking pagedaemon, ok to assume it is already going? */
    809  1.1  mrg     return(NULL);
    810  1.1  mrg   }
    811  1.1  mrg 
    812  1.1  mrg   TAILQ_REMOVE(&uvm.page_free, pg, pageq);
    813  1.1  mrg   nfree = --uvmexp.free;
    814  1.1  mrg 
    815  1.1  mrg   uvm_unlock_fpageq();		/* unlock free page queue */
    816  1.1  mrg   splx(s);
    817  1.1  mrg 
    818  1.1  mrg   /*
    819  1.1  mrg    * check to see if we need to generate some free pages waking
    820  1.1  mrg    * the pagedaemon.
    821  1.1  mrg    * XXX: we read uvm.free without locking
    822  1.1  mrg    */
    823  1.1  mrg 
    824  1.1  mrg   if (uvmexp.free < uvmexp.freemin ||
    825  1.1  mrg       (uvmexp.free < uvmexp.freetarg && uvmexp.inactive < uvmexp.inactarg)) {
    826  1.1  mrg 
    827  1.1  mrg     thread_wakeup(&uvm.pagedaemon);
    828  1.1  mrg   }
    829  1.1  mrg 
    830  1.1  mrg   pg->offset = off;
    831  1.1  mrg   pg->uobject = obj;
    832  1.1  mrg   pg->uanon = anon;
    833  1.1  mrg   pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
    834  1.1  mrg   pg->version++;
    835  1.1  mrg   pg->wire_count = 0;
    836  1.1  mrg   pg->loan_count = 0;
    837  1.1  mrg   if (anon) {
    838  1.1  mrg     anon->u.an_page = pg;
    839  1.1  mrg     pg->pqflags = PQ_ANON;
    840  1.1  mrg   } else {
    841  1.1  mrg     if (obj)
    842  1.1  mrg       uvm_pageinsert(pg);
    843  1.1  mrg     pg->pqflags = 0;
    844  1.1  mrg   }
    845  1.1  mrg #if defined(UVM_PAGE_TRKOWN)
    846  1.1  mrg   pg->owner_tag = NULL;
    847  1.1  mrg #endif
    848  1.1  mrg   UVM_PAGE_OWN(pg, "new alloc");
    849  1.1  mrg 
    850  1.1  mrg   return(pg);
    851  1.1  mrg }
    852  1.1  mrg 
    853  1.1  mrg /*
    854  1.1  mrg  * uvm_pagerealloc: reallocate a page from one object to another
    855  1.1  mrg  *
    856  1.1  mrg  * => both objects must be locked
    857  1.1  mrg  */
    858  1.1  mrg 
    859  1.1  mrg void uvm_pagerealloc(pg, newobj, newoff)
    860  1.1  mrg 
    861  1.1  mrg struct vm_page *pg;
    862  1.1  mrg struct uvm_object *newobj;
    863  1.1  mrg vm_offset_t newoff;
    864  1.1  mrg 
    865  1.1  mrg {
    866  1.1  mrg   /*
    867  1.1  mrg    * remove it from the old object
    868  1.1  mrg    */
    869  1.1  mrg 
    870  1.1  mrg   if (pg->uobject) {
    871  1.1  mrg     uvm_pageremove(pg);
    872  1.1  mrg   }
    873  1.1  mrg 
    874  1.1  mrg   /*
    875  1.1  mrg    * put it in the new object
    876  1.1  mrg    */
    877  1.1  mrg 
    878  1.1  mrg   if (newobj) {
    879  1.1  mrg     pg->uobject = newobj;
    880  1.1  mrg     pg->offset = newoff;
    881  1.1  mrg     pg->version++;
    882  1.1  mrg     uvm_pageinsert(pg);
    883  1.1  mrg   }
    884  1.1  mrg 
    885  1.1  mrg   return;
    886  1.1  mrg }
    887  1.1  mrg 
    888  1.1  mrg 
    889  1.1  mrg /*
    890  1.1  mrg  * uvm_pagefree: free page
    891  1.1  mrg  *
    892  1.1  mrg  * => erase page's identity (i.e. remove from hash/object)
    893  1.1  mrg  * => put page on free list
    894  1.1  mrg  * => caller must lock owning object (either anon or uvm_object)
    895  1.1  mrg  * => caller must lock page queues
    896  1.1  mrg  * => assumes all valid mappings of pg are gone
    897  1.1  mrg  */
    898  1.1  mrg 
    899  1.1  mrg void uvm_pagefree(pg)
    900  1.1  mrg 
    901  1.1  mrg struct vm_page *pg;
    902  1.1  mrg 
    903  1.1  mrg {
    904  1.1  mrg   int s;
    905  1.1  mrg   int saved_loan_count = pg->loan_count;
    906  1.1  mrg 
    907  1.1  mrg   /*
    908  1.1  mrg    * if the page was an object page (and thus "TABLED"), remove it
    909  1.1  mrg    * from the object.
    910  1.1  mrg    */
    911  1.1  mrg 
    912  1.1  mrg   if (pg->flags & PG_TABLED) {
    913  1.1  mrg 
    914  1.1  mrg     /*
    915  1.1  mrg      * if the object page is on loan we are going to drop ownership.
    916  1.1  mrg      * it is possible that an anon will take over as owner for this
    917  1.1  mrg      * page later on.   the anon will want a !PG_CLEAN page so that
    918  1.1  mrg      * it knows it needs to allocate swap if it wants to page the
    919  1.1  mrg      * page out.
    920  1.1  mrg      */
    921  1.1  mrg 
    922  1.1  mrg     if (saved_loan_count)
    923  1.1  mrg       pg->flags &= ~PG_CLEAN;	/* in case an anon takes over */
    924  1.1  mrg 
    925  1.1  mrg     uvm_pageremove(pg);
    926  1.1  mrg 
    927  1.1  mrg     /*
    928  1.1  mrg      * if our page was on loan, then we just lost control over it
    929  1.1  mrg      * (in fact, if it was loaned to an anon, the anon may have
    930  1.1  mrg      * already taken over ownership of the page by now and thus
    931  1.1  mrg      * changed the loan_count [e.g. in uvmfault_anonget()]) we just
    932  1.1  mrg      * return (when the last loan is dropped, then the page can be
    933  1.1  mrg      * freed by whatever was holding the last loan).
    934  1.1  mrg      */
    935  1.1  mrg     if (saved_loan_count)
    936  1.1  mrg       return;
    937  1.1  mrg 
    938  1.1  mrg   } else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
    939  1.1  mrg 
    940  1.1  mrg     /*
    941  1.1  mrg      * if our page is owned by an anon and is loaned out to the kernel
    942  1.1  mrg      * then we just want to drop ownership and return.   the kernel
    943  1.1  mrg      * must free the page when all its loans clear ...  note that the
    944  1.1  mrg      * kernel can't change the loan status of our page as long as we
    945  1.1  mrg      * are holding PQ lock.
    946  1.1  mrg      */
    947  1.1  mrg     pg->pqflags &= ~PQ_ANON;
    948  1.1  mrg     pg->uanon = NULL;
    949  1.1  mrg     return;
    950  1.1  mrg 
    951  1.1  mrg   }
    952  1.1  mrg 
    953  1.1  mrg #ifdef DIAGNOSTIC
    954  1.1  mrg   if (saved_loan_count) {
    955  1.1  mrg     printf("uvm_pagefree: warning: freeing page with a loan count of %d\n",
    956  1.1  mrg 	saved_loan_count);
    957  1.1  mrg     panic("uvm_pagefree: loan count");
    958  1.1  mrg   }
    959  1.1  mrg #endif
    960  1.1  mrg 
    961  1.1  mrg 
    962  1.1  mrg   /*
    963  1.1  mrg    * now remove the page from the queues
    964  1.1  mrg    */
    965  1.1  mrg 
    966  1.1  mrg   if (pg->pqflags & PQ_ACTIVE) {
    967  1.1  mrg     TAILQ_REMOVE(&uvm.page_active, pg, pageq);
    968  1.1  mrg     pg->pqflags &= ~PQ_ACTIVE;
    969  1.1  mrg     uvmexp.active--;
    970  1.1  mrg   }
    971  1.1  mrg   if (pg->pqflags & PQ_INACTIVE) {
    972  1.1  mrg     if (pg->pqflags & PQ_SWAPBACKED)
    973  1.1  mrg       TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
    974  1.1  mrg     else
    975  1.1  mrg       TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
    976  1.1  mrg     pg->pqflags &= ~PQ_INACTIVE;
    977  1.1  mrg     uvmexp.inactive--;
    978  1.1  mrg   }
    979  1.1  mrg 
    980  1.1  mrg   /*
    981  1.1  mrg    * and put on free queue
    982  1.1  mrg    */
    983  1.1  mrg 
    984  1.1  mrg   s = splimp();
    985  1.1  mrg   uvm_lock_fpageq();
    986  1.1  mrg   TAILQ_INSERT_TAIL(&uvm.page_free, pg, pageq);
    987  1.1  mrg   pg->pqflags = PQ_FREE;
    988  1.1  mrg   uvmexp.free++;
    989  1.1  mrg   uvm_unlock_fpageq();
    990  1.1  mrg   splx(s);
    991  1.1  mrg 
    992  1.1  mrg }
    993  1.1  mrg 
    994  1.1  mrg #if defined(UVM_PAGE_TRKOWN)
    995  1.1  mrg /*
    996  1.1  mrg  * uvm_page_own: set or release page ownership
    997  1.1  mrg  *
    998  1.1  mrg  * => this is a debugging function that keeps track of who sets PG_BUSY
    999  1.1  mrg  *	and where they do it.   it can be used to track down problems
   1000  1.1  mrg  *	such a process setting "PG_BUSY" and never releasing it.
   1001  1.1  mrg  * => page's object [if any] must be locked
   1002  1.1  mrg  * => if "tag" is NULL then we are releasing page ownership
   1003  1.1  mrg  */
   1004  1.1  mrg void uvm_page_own(pg, tag)
   1005  1.1  mrg 
   1006  1.1  mrg struct vm_page *pg;
   1007  1.1  mrg char *tag;
   1008  1.1  mrg 
   1009  1.1  mrg {
   1010  1.1  mrg   /* gain ownership? */
   1011  1.1  mrg   if (tag) {
   1012  1.1  mrg     if (pg->owner_tag) {
   1013  1.1  mrg       printf("uvm_page_own: page %p already owned by proc %d [%s]\n", pg,
   1014  1.1  mrg 	     pg->owner, pg->owner_tag);
   1015  1.1  mrg       panic("uvm_page_own");
   1016  1.1  mrg     }
   1017  1.1  mrg     pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
   1018  1.1  mrg     pg->owner_tag = tag;
   1019  1.1  mrg     return;
   1020  1.1  mrg   }
   1021  1.1  mrg 
   1022  1.1  mrg   /* drop ownership */
   1023  1.1  mrg   if (pg->owner_tag == NULL) {
   1024  1.1  mrg     printf("uvm_page_own: dropping ownership of an non-owned page (%p)\n", pg);
   1025  1.1  mrg     panic("uvm_page_own");
   1026  1.1  mrg   }
   1027  1.1  mrg   pg->owner_tag = NULL;
   1028  1.1  mrg   return;
   1029  1.1  mrg }
   1030  1.1  mrg #endif
   1031