uvm_page.c revision 1.111 1 1.110 yamt /* $NetBSD: uvm_page.c,v 1.111 2006/02/12 09:19:27 yamt Exp $ */
2 1.1 mrg
3 1.62 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.62 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.62 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
42 1.4 mrg * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.62 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.62 chs *
54 1.62 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.62 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.62 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.1 mrg /*
70 1.1 mrg * uvm_page.c: page ops.
71 1.1 mrg */
72 1.71 lukem
73 1.71 lukem #include <sys/cdefs.h>
74 1.110 yamt __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.111 2006/02/12 09:19:27 yamt Exp $");
75 1.6 mrg
76 1.44 chs #include "opt_uvmhist.h"
77 1.44 chs
78 1.1 mrg #include <sys/param.h>
79 1.1 mrg #include <sys/systm.h>
80 1.1 mrg #include <sys/malloc.h>
81 1.35 thorpej #include <sys/sched.h>
82 1.44 chs #include <sys/kernel.h>
83 1.51 chs #include <sys/vnode.h>
84 1.68 chs #include <sys/proc.h>
85 1.1 mrg
86 1.1 mrg #include <uvm/uvm.h>
87 1.1 mrg
88 1.1 mrg /*
89 1.1 mrg * global vars... XXXCDC: move to uvm. structure.
90 1.1 mrg */
91 1.1 mrg
92 1.1 mrg /*
93 1.1 mrg * physical memory config is stored in vm_physmem.
94 1.1 mrg */
95 1.1 mrg
96 1.1 mrg struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
97 1.1 mrg int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
98 1.1 mrg
99 1.1 mrg /*
100 1.36 thorpej * Some supported CPUs in a given architecture don't support all
101 1.36 thorpej * of the things necessary to do idle page zero'ing efficiently.
102 1.36 thorpej * We therefore provide a way to disable it from machdep code here.
103 1.34 thorpej */
104 1.44 chs /*
105 1.44 chs * XXX disabled until we can find a way to do this without causing
106 1.95 wiz * problems for either CPU caches or DMA latency.
107 1.44 chs */
108 1.44 chs boolean_t vm_page_zero_enable = FALSE;
109 1.34 thorpej
110 1.34 thorpej /*
111 1.1 mrg * local variables
112 1.1 mrg */
113 1.1 mrg
114 1.1 mrg /*
115 1.88 thorpej * these variables record the values returned by vm_page_bootstrap,
116 1.88 thorpej * for debugging purposes. The implementation of uvm_pageboot_alloc
117 1.88 thorpej * and pmap_startup here also uses them internally.
118 1.88 thorpej */
119 1.88 thorpej
120 1.88 thorpej static vaddr_t virtual_space_start;
121 1.88 thorpej static vaddr_t virtual_space_end;
122 1.88 thorpej
123 1.88 thorpej /*
124 1.1 mrg * we use a hash table with only one bucket during bootup. we will
125 1.30 thorpej * later rehash (resize) the hash table once the allocator is ready.
126 1.30 thorpej * we static allocate the one bootstrap bucket below...
127 1.1 mrg */
128 1.1 mrg
129 1.1 mrg static struct pglist uvm_bootbucket;
130 1.1 mrg
131 1.1 mrg /*
132 1.60 thorpej * we allocate an initial number of page colors in uvm_page_init(),
133 1.60 thorpej * and remember them. We may re-color pages as cache sizes are
134 1.60 thorpej * discovered during the autoconfiguration phase. But we can never
135 1.60 thorpej * free the initial set of buckets, since they are allocated using
136 1.60 thorpej * uvm_pageboot_alloc().
137 1.60 thorpej */
138 1.60 thorpej
139 1.60 thorpej static boolean_t have_recolored_pages /* = FALSE */;
140 1.83 thorpej
141 1.83 thorpej MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
142 1.60 thorpej
143 1.91 yamt #ifdef DEBUG
144 1.91 yamt vaddr_t uvm_zerocheckkva;
145 1.91 yamt #endif /* DEBUG */
146 1.91 yamt
147 1.60 thorpej /*
148 1.1 mrg * local prototypes
149 1.1 mrg */
150 1.1 mrg
151 1.97 junyoung static void uvm_pageinsert(struct vm_page *);
152 1.97 junyoung static void uvm_pageinsert_after(struct vm_page *, struct vm_page *);
153 1.97 junyoung static void uvm_pageremove(struct vm_page *);
154 1.1 mrg
155 1.1 mrg /*
156 1.1 mrg * inline functions
157 1.1 mrg */
158 1.1 mrg
159 1.1 mrg /*
160 1.1 mrg * uvm_pageinsert: insert a page in the object and the hash table
161 1.96 yamt * uvm_pageinsert_after: insert a page into the specified place in listq
162 1.1 mrg *
163 1.1 mrg * => caller must lock object
164 1.1 mrg * => caller must lock page queues
165 1.1 mrg * => call should have already set pg's object and offset pointers
166 1.1 mrg * and bumped the version counter
167 1.1 mrg */
168 1.1 mrg
169 1.109 perry inline static void
170 1.105 thorpej uvm_pageinsert_after(struct vm_page *pg, struct vm_page *where)
171 1.1 mrg {
172 1.7 mrg struct pglist *buck;
173 1.67 chs struct uvm_object *uobj = pg->uobject;
174 1.1 mrg
175 1.51 chs KASSERT((pg->flags & PG_TABLED) == 0);
176 1.96 yamt KASSERT(where == NULL || (where->flags & PG_TABLED));
177 1.96 yamt KASSERT(where == NULL || (where->uobject == uobj));
178 1.67 chs buck = &uvm.page_hash[uvm_pagehash(uobj, pg->offset)];
179 1.7 mrg simple_lock(&uvm.hashlock);
180 1.67 chs TAILQ_INSERT_TAIL(buck, pg, hashq);
181 1.7 mrg simple_unlock(&uvm.hashlock);
182 1.7 mrg
183 1.94 yamt if (UVM_OBJ_IS_VNODE(uobj)) {
184 1.94 yamt if (uobj->uo_npages == 0) {
185 1.94 yamt struct vnode *vp = (struct vnode *)uobj;
186 1.94 yamt
187 1.94 yamt vholdl(vp);
188 1.94 yamt }
189 1.94 yamt if (UVM_OBJ_IS_VTEXT(uobj)) {
190 1.94 yamt uvmexp.execpages++;
191 1.94 yamt } else {
192 1.94 yamt uvmexp.filepages++;
193 1.94 yamt }
194 1.86 yamt } else if (UVM_OBJ_IS_AOBJ(uobj)) {
195 1.78 chs uvmexp.anonpages++;
196 1.78 chs }
197 1.78 chs
198 1.96 yamt if (where)
199 1.96 yamt TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq);
200 1.96 yamt else
201 1.96 yamt TAILQ_INSERT_TAIL(&uobj->memq, pg, listq);
202 1.7 mrg pg->flags |= PG_TABLED;
203 1.67 chs uobj->uo_npages++;
204 1.1 mrg }
205 1.1 mrg
206 1.109 perry inline static void
207 1.105 thorpej uvm_pageinsert(struct vm_page *pg)
208 1.96 yamt {
209 1.96 yamt
210 1.96 yamt uvm_pageinsert_after(pg, NULL);
211 1.96 yamt }
212 1.96 yamt
213 1.1 mrg /*
214 1.1 mrg * uvm_page_remove: remove page from object and hash
215 1.1 mrg *
216 1.1 mrg * => caller must lock object
217 1.1 mrg * => caller must lock page queues
218 1.1 mrg */
219 1.1 mrg
220 1.109 perry static inline void
221 1.105 thorpej uvm_pageremove(struct vm_page *pg)
222 1.1 mrg {
223 1.7 mrg struct pglist *buck;
224 1.67 chs struct uvm_object *uobj = pg->uobject;
225 1.1 mrg
226 1.44 chs KASSERT(pg->flags & PG_TABLED);
227 1.80 simonb buck = &uvm.page_hash[uvm_pagehash(uobj, pg->offset)];
228 1.7 mrg simple_lock(&uvm.hashlock);
229 1.7 mrg TAILQ_REMOVE(buck, pg, hashq);
230 1.7 mrg simple_unlock(&uvm.hashlock);
231 1.7 mrg
232 1.94 yamt if (UVM_OBJ_IS_VNODE(uobj)) {
233 1.94 yamt if (uobj->uo_npages == 1) {
234 1.94 yamt struct vnode *vp = (struct vnode *)uobj;
235 1.94 yamt
236 1.94 yamt holdrelel(vp);
237 1.94 yamt }
238 1.94 yamt if (UVM_OBJ_IS_VTEXT(uobj)) {
239 1.94 yamt uvmexp.execpages--;
240 1.94 yamt } else {
241 1.94 yamt uvmexp.filepages--;
242 1.94 yamt }
243 1.78 chs } else if (UVM_OBJ_IS_AOBJ(uobj)) {
244 1.78 chs uvmexp.anonpages--;
245 1.51 chs }
246 1.44 chs
247 1.7 mrg /* object should be locked */
248 1.67 chs uobj->uo_npages--;
249 1.67 chs TAILQ_REMOVE(&uobj->memq, pg, listq);
250 1.7 mrg pg->flags &= ~PG_TABLED;
251 1.7 mrg pg->uobject = NULL;
252 1.1 mrg }
253 1.1 mrg
254 1.60 thorpej static void
255 1.60 thorpej uvm_page_init_buckets(struct pgfreelist *pgfl)
256 1.60 thorpej {
257 1.60 thorpej int color, i;
258 1.60 thorpej
259 1.60 thorpej for (color = 0; color < uvmexp.ncolors; color++) {
260 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
261 1.93 simonb TAILQ_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
262 1.60 thorpej }
263 1.60 thorpej }
264 1.60 thorpej }
265 1.60 thorpej
266 1.1 mrg /*
267 1.1 mrg * uvm_page_init: init the page system. called from uvm_init().
268 1.62 chs *
269 1.1 mrg * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
270 1.1 mrg */
271 1.1 mrg
272 1.7 mrg void
273 1.105 thorpej uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
274 1.1 mrg {
275 1.60 thorpej vsize_t freepages, pagecount, bucketcount, n;
276 1.60 thorpej struct pgflbucket *bucketarray;
277 1.63 chs struct vm_page *pagearray;
278 1.81 thorpej int lcv;
279 1.81 thorpej u_int i;
280 1.14 eeh paddr_t paddr;
281 1.7 mrg
282 1.7 mrg /*
283 1.60 thorpej * init the page queues and page queue locks, except the free
284 1.60 thorpej * list; we allocate that later (with the initial vm_page
285 1.60 thorpej * structures).
286 1.7 mrg */
287 1.51 chs
288 1.7 mrg TAILQ_INIT(&uvm.page_active);
289 1.61 ross TAILQ_INIT(&uvm.page_inactive);
290 1.7 mrg simple_lock_init(&uvm.pageqlock);
291 1.7 mrg simple_lock_init(&uvm.fpageqlock);
292 1.7 mrg
293 1.7 mrg /*
294 1.51 chs * init the <obj,offset> => <page> hash table. for now
295 1.51 chs * we just have one bucket (the bootstrap bucket). later on we
296 1.30 thorpej * will allocate new buckets as we dynamically resize the hash table.
297 1.7 mrg */
298 1.7 mrg
299 1.7 mrg uvm.page_nhash = 1; /* 1 bucket */
300 1.44 chs uvm.page_hashmask = 0; /* mask for hash function */
301 1.7 mrg uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */
302 1.7 mrg TAILQ_INIT(uvm.page_hash); /* init hash table */
303 1.7 mrg simple_lock_init(&uvm.hashlock); /* init hash table lock */
304 1.7 mrg
305 1.62 chs /*
306 1.51 chs * allocate vm_page structures.
307 1.7 mrg */
308 1.7 mrg
309 1.7 mrg /*
310 1.7 mrg * sanity check:
311 1.7 mrg * before calling this function the MD code is expected to register
312 1.7 mrg * some free RAM with the uvm_page_physload() function. our job
313 1.7 mrg * now is to allocate vm_page structures for this memory.
314 1.7 mrg */
315 1.7 mrg
316 1.7 mrg if (vm_nphysseg == 0)
317 1.42 mrg panic("uvm_page_bootstrap: no memory pre-allocated");
318 1.62 chs
319 1.7 mrg /*
320 1.62 chs * first calculate the number of free pages...
321 1.7 mrg *
322 1.7 mrg * note that we use start/end rather than avail_start/avail_end.
323 1.7 mrg * this allows us to allocate extra vm_page structures in case we
324 1.7 mrg * want to return some memory to the pool after booting.
325 1.7 mrg */
326 1.62 chs
327 1.7 mrg freepages = 0;
328 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
329 1.7 mrg freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
330 1.7 mrg
331 1.7 mrg /*
332 1.60 thorpej * Let MD code initialize the number of colors, or default
333 1.60 thorpej * to 1 color if MD code doesn't care.
334 1.60 thorpej */
335 1.60 thorpej if (uvmexp.ncolors == 0)
336 1.60 thorpej uvmexp.ncolors = 1;
337 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
338 1.60 thorpej
339 1.60 thorpej /*
340 1.7 mrg * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
341 1.7 mrg * use. for each page of memory we use we need a vm_page structure.
342 1.7 mrg * thus, the total number of pages we can use is the total size of
343 1.7 mrg * the memory divided by the PAGE_SIZE plus the size of the vm_page
344 1.7 mrg * structure. we add one to freepages as a fudge factor to avoid
345 1.7 mrg * truncation errors (since we can only allocate in terms of whole
346 1.7 mrg * pages).
347 1.7 mrg */
348 1.62 chs
349 1.60 thorpej bucketcount = uvmexp.ncolors * VM_NFREELIST;
350 1.15 chs pagecount = ((freepages + 1) << PAGE_SHIFT) /
351 1.7 mrg (PAGE_SIZE + sizeof(struct vm_page));
352 1.60 thorpej
353 1.67 chs bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
354 1.60 thorpej sizeof(struct pgflbucket)) + (pagecount *
355 1.60 thorpej sizeof(struct vm_page)));
356 1.60 thorpej pagearray = (struct vm_page *)(bucketarray + bucketcount);
357 1.60 thorpej
358 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
359 1.60 thorpej uvm.page_free[lcv].pgfl_buckets =
360 1.60 thorpej (bucketarray + (lcv * uvmexp.ncolors));
361 1.60 thorpej uvm_page_init_buckets(&uvm.page_free[lcv]);
362 1.60 thorpej }
363 1.13 perry memset(pagearray, 0, pagecount * sizeof(struct vm_page));
364 1.62 chs
365 1.7 mrg /*
366 1.51 chs * init the vm_page structures and put them in the correct place.
367 1.7 mrg */
368 1.7 mrg
369 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
370 1.7 mrg n = vm_physmem[lcv].end - vm_physmem[lcv].start;
371 1.51 chs
372 1.7 mrg /* set up page array pointers */
373 1.7 mrg vm_physmem[lcv].pgs = pagearray;
374 1.7 mrg pagearray += n;
375 1.7 mrg pagecount -= n;
376 1.7 mrg vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
377 1.7 mrg
378 1.13 perry /* init and free vm_pages (we've already zeroed them) */
379 1.7 mrg paddr = ptoa(vm_physmem[lcv].start);
380 1.7 mrg for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
381 1.7 mrg vm_physmem[lcv].pgs[i].phys_addr = paddr;
382 1.56 thorpej #ifdef __HAVE_VM_PAGE_MD
383 1.55 thorpej VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
384 1.56 thorpej #endif
385 1.7 mrg if (atop(paddr) >= vm_physmem[lcv].avail_start &&
386 1.7 mrg atop(paddr) <= vm_physmem[lcv].avail_end) {
387 1.7 mrg uvmexp.npages++;
388 1.7 mrg /* add page to free pool */
389 1.7 mrg uvm_pagefree(&vm_physmem[lcv].pgs[i]);
390 1.7 mrg }
391 1.7 mrg }
392 1.7 mrg }
393 1.44 chs
394 1.7 mrg /*
395 1.88 thorpej * pass up the values of virtual_space_start and
396 1.88 thorpej * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
397 1.88 thorpej * layers of the VM.
398 1.88 thorpej */
399 1.88 thorpej
400 1.88 thorpej *kvm_startp = round_page(virtual_space_start);
401 1.88 thorpej *kvm_endp = trunc_page(virtual_space_end);
402 1.91 yamt #ifdef DEBUG
403 1.91 yamt /*
404 1.91 yamt * steal kva for uvm_pagezerocheck().
405 1.91 yamt */
406 1.91 yamt uvm_zerocheckkva = *kvm_startp;
407 1.91 yamt *kvm_startp += PAGE_SIZE;
408 1.91 yamt #endif /* DEBUG */
409 1.88 thorpej
410 1.88 thorpej /*
411 1.51 chs * init locks for kernel threads
412 1.7 mrg */
413 1.7 mrg
414 1.7 mrg simple_lock_init(&uvm.pagedaemon_lock);
415 1.44 chs simple_lock_init(&uvm.aiodoned_lock);
416 1.7 mrg
417 1.7 mrg /*
418 1.51 chs * init various thresholds.
419 1.7 mrg */
420 1.51 chs
421 1.7 mrg uvmexp.reserve_pagedaemon = 1;
422 1.7 mrg uvmexp.reserve_kernel = 5;
423 1.51 chs uvmexp.anonminpct = 10;
424 1.72 chs uvmexp.fileminpct = 10;
425 1.72 chs uvmexp.execminpct = 5;
426 1.72 chs uvmexp.anonmaxpct = 80;
427 1.72 chs uvmexp.filemaxpct = 50;
428 1.72 chs uvmexp.execmaxpct = 30;
429 1.51 chs uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
430 1.72 chs uvmexp.filemin = uvmexp.fileminpct * 256 / 100;
431 1.72 chs uvmexp.execmin = uvmexp.execminpct * 256 / 100;
432 1.72 chs uvmexp.anonmax = uvmexp.anonmaxpct * 256 / 100;
433 1.72 chs uvmexp.filemax = uvmexp.filemaxpct * 256 / 100;
434 1.72 chs uvmexp.execmax = uvmexp.execmaxpct * 256 / 100;
435 1.108 yamt uvm_pctparam_set(&uvmexp.inactivepct, 33);
436 1.7 mrg
437 1.7 mrg /*
438 1.51 chs * determine if we should zero pages in the idle loop.
439 1.34 thorpej */
440 1.51 chs
441 1.34 thorpej uvm.page_idle_zero = vm_page_zero_enable;
442 1.34 thorpej
443 1.34 thorpej /*
444 1.7 mrg * done!
445 1.7 mrg */
446 1.1 mrg
447 1.32 thorpej uvm.page_init_done = TRUE;
448 1.1 mrg }
449 1.1 mrg
450 1.1 mrg /*
451 1.1 mrg * uvm_setpagesize: set the page size
452 1.62 chs *
453 1.1 mrg * => sets page_shift and page_mask from uvmexp.pagesize.
454 1.62 chs */
455 1.1 mrg
456 1.7 mrg void
457 1.105 thorpej uvm_setpagesize(void)
458 1.1 mrg {
459 1.85 thorpej
460 1.85 thorpej /*
461 1.85 thorpej * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
462 1.85 thorpej * to be a constant (indicated by being a non-zero value).
463 1.85 thorpej */
464 1.85 thorpej if (uvmexp.pagesize == 0) {
465 1.85 thorpej if (PAGE_SIZE == 0)
466 1.85 thorpej panic("uvm_setpagesize: uvmexp.pagesize not set");
467 1.85 thorpej uvmexp.pagesize = PAGE_SIZE;
468 1.85 thorpej }
469 1.7 mrg uvmexp.pagemask = uvmexp.pagesize - 1;
470 1.7 mrg if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
471 1.7 mrg panic("uvm_setpagesize: page size not a power of two");
472 1.7 mrg for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
473 1.7 mrg if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
474 1.7 mrg break;
475 1.1 mrg }
476 1.1 mrg
477 1.1 mrg /*
478 1.1 mrg * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
479 1.1 mrg */
480 1.1 mrg
481 1.14 eeh vaddr_t
482 1.105 thorpej uvm_pageboot_alloc(vsize_t size)
483 1.1 mrg {
484 1.52 thorpej static boolean_t initialized = FALSE;
485 1.14 eeh vaddr_t addr;
486 1.52 thorpej #if !defined(PMAP_STEAL_MEMORY)
487 1.52 thorpej vaddr_t vaddr;
488 1.14 eeh paddr_t paddr;
489 1.52 thorpej #endif
490 1.1 mrg
491 1.7 mrg /*
492 1.19 thorpej * on first call to this function, initialize ourselves.
493 1.7 mrg */
494 1.19 thorpej if (initialized == FALSE) {
495 1.88 thorpej pmap_virtual_space(&virtual_space_start, &virtual_space_end);
496 1.1 mrg
497 1.7 mrg /* round it the way we like it */
498 1.88 thorpej virtual_space_start = round_page(virtual_space_start);
499 1.88 thorpej virtual_space_end = trunc_page(virtual_space_end);
500 1.19 thorpej
501 1.19 thorpej initialized = TRUE;
502 1.7 mrg }
503 1.52 thorpej
504 1.52 thorpej /* round to page size */
505 1.52 thorpej size = round_page(size);
506 1.52 thorpej
507 1.52 thorpej #if defined(PMAP_STEAL_MEMORY)
508 1.52 thorpej
509 1.62 chs /*
510 1.62 chs * defer bootstrap allocation to MD code (it may want to allocate
511 1.52 thorpej * from a direct-mapped segment). pmap_steal_memory should adjust
512 1.88 thorpej * virtual_space_start/virtual_space_end if necessary.
513 1.52 thorpej */
514 1.52 thorpej
515 1.88 thorpej addr = pmap_steal_memory(size, &virtual_space_start,
516 1.88 thorpej &virtual_space_end);
517 1.52 thorpej
518 1.52 thorpej return(addr);
519 1.52 thorpej
520 1.52 thorpej #else /* !PMAP_STEAL_MEMORY */
521 1.1 mrg
522 1.7 mrg /*
523 1.7 mrg * allocate virtual memory for this request
524 1.7 mrg */
525 1.88 thorpej if (virtual_space_start == virtual_space_end ||
526 1.88 thorpej (virtual_space_end - virtual_space_start) < size)
527 1.19 thorpej panic("uvm_pageboot_alloc: out of virtual space");
528 1.20 thorpej
529 1.88 thorpej addr = virtual_space_start;
530 1.20 thorpej
531 1.20 thorpej #ifdef PMAP_GROWKERNEL
532 1.20 thorpej /*
533 1.20 thorpej * If the kernel pmap can't map the requested space,
534 1.20 thorpej * then allocate more resources for it.
535 1.20 thorpej */
536 1.20 thorpej if (uvm_maxkaddr < (addr + size)) {
537 1.20 thorpej uvm_maxkaddr = pmap_growkernel(addr + size);
538 1.20 thorpej if (uvm_maxkaddr < (addr + size))
539 1.20 thorpej panic("uvm_pageboot_alloc: pmap_growkernel() failed");
540 1.19 thorpej }
541 1.20 thorpej #endif
542 1.1 mrg
543 1.88 thorpej virtual_space_start += size;
544 1.1 mrg
545 1.9 thorpej /*
546 1.7 mrg * allocate and mapin physical pages to back new virtual pages
547 1.7 mrg */
548 1.1 mrg
549 1.7 mrg for (vaddr = round_page(addr) ; vaddr < addr + size ;
550 1.7 mrg vaddr += PAGE_SIZE) {
551 1.1 mrg
552 1.7 mrg if (!uvm_page_physget(&paddr))
553 1.7 mrg panic("uvm_pageboot_alloc: out of memory");
554 1.1 mrg
555 1.23 thorpej /*
556 1.23 thorpej * Note this memory is no longer managed, so using
557 1.23 thorpej * pmap_kenter is safe.
558 1.23 thorpej */
559 1.7 mrg pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
560 1.7 mrg }
561 1.66 chris pmap_update(pmap_kernel());
562 1.7 mrg return(addr);
563 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
564 1.1 mrg }
565 1.1 mrg
566 1.1 mrg #if !defined(PMAP_STEAL_MEMORY)
567 1.1 mrg /*
568 1.1 mrg * uvm_page_physget: "steal" one page from the vm_physmem structure.
569 1.1 mrg *
570 1.1 mrg * => attempt to allocate it off the end of a segment in which the "avail"
571 1.1 mrg * values match the start/end values. if we can't do that, then we
572 1.1 mrg * will advance both values (making them equal, and removing some
573 1.1 mrg * vm_page structures from the non-avail area).
574 1.1 mrg * => return false if out of memory.
575 1.1 mrg */
576 1.1 mrg
577 1.28 drochner /* subroutine: try to allocate from memory chunks on the specified freelist */
578 1.97 junyoung static boolean_t uvm_page_physget_freelist(paddr_t *, int);
579 1.28 drochner
580 1.28 drochner static boolean_t
581 1.105 thorpej uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
582 1.1 mrg {
583 1.7 mrg int lcv, x;
584 1.1 mrg
585 1.7 mrg /* pass 1: try allocating from a matching end */
586 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
587 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
588 1.1 mrg #else
589 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
590 1.1 mrg #endif
591 1.7 mrg {
592 1.1 mrg
593 1.32 thorpej if (uvm.page_init_done == TRUE)
594 1.42 mrg panic("uvm_page_physget: called _after_ bootstrap");
595 1.1 mrg
596 1.28 drochner if (vm_physmem[lcv].free_list != freelist)
597 1.28 drochner continue;
598 1.28 drochner
599 1.7 mrg /* try from front */
600 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
601 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
602 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
603 1.7 mrg vm_physmem[lcv].avail_start++;
604 1.7 mrg vm_physmem[lcv].start++;
605 1.7 mrg /* nothing left? nuke it */
606 1.7 mrg if (vm_physmem[lcv].avail_start ==
607 1.7 mrg vm_physmem[lcv].end) {
608 1.7 mrg if (vm_nphysseg == 1)
609 1.89 wiz panic("uvm_page_physget: out of memory!");
610 1.7 mrg vm_nphysseg--;
611 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
612 1.7 mrg /* structure copy */
613 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
614 1.7 mrg }
615 1.7 mrg return (TRUE);
616 1.7 mrg }
617 1.7 mrg
618 1.7 mrg /* try from rear */
619 1.7 mrg if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
620 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
621 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
622 1.7 mrg vm_physmem[lcv].avail_end--;
623 1.7 mrg vm_physmem[lcv].end--;
624 1.7 mrg /* nothing left? nuke it */
625 1.7 mrg if (vm_physmem[lcv].avail_end ==
626 1.7 mrg vm_physmem[lcv].start) {
627 1.7 mrg if (vm_nphysseg == 1)
628 1.42 mrg panic("uvm_page_physget: out of memory!");
629 1.7 mrg vm_nphysseg--;
630 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
631 1.7 mrg /* structure copy */
632 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
633 1.7 mrg }
634 1.7 mrg return (TRUE);
635 1.7 mrg }
636 1.7 mrg }
637 1.1 mrg
638 1.7 mrg /* pass2: forget about matching ends, just allocate something */
639 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
640 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
641 1.1 mrg #else
642 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
643 1.1 mrg #endif
644 1.7 mrg {
645 1.1 mrg
646 1.7 mrg /* any room in this bank? */
647 1.7 mrg if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
648 1.7 mrg continue; /* nope */
649 1.7 mrg
650 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
651 1.7 mrg vm_physmem[lcv].avail_start++;
652 1.7 mrg /* truncate! */
653 1.7 mrg vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
654 1.7 mrg
655 1.7 mrg /* nothing left? nuke it */
656 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
657 1.7 mrg if (vm_nphysseg == 1)
658 1.42 mrg panic("uvm_page_physget: out of memory!");
659 1.7 mrg vm_nphysseg--;
660 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
661 1.7 mrg /* structure copy */
662 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
663 1.7 mrg }
664 1.7 mrg return (TRUE);
665 1.7 mrg }
666 1.1 mrg
667 1.7 mrg return (FALSE); /* whoops! */
668 1.28 drochner }
669 1.28 drochner
670 1.28 drochner boolean_t
671 1.105 thorpej uvm_page_physget(paddr_t *paddrp)
672 1.28 drochner {
673 1.28 drochner int i;
674 1.28 drochner
675 1.28 drochner /* try in the order of freelist preference */
676 1.28 drochner for (i = 0; i < VM_NFREELIST; i++)
677 1.28 drochner if (uvm_page_physget_freelist(paddrp, i) == TRUE)
678 1.28 drochner return (TRUE);
679 1.28 drochner return (FALSE);
680 1.1 mrg }
681 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
682 1.1 mrg
683 1.1 mrg /*
684 1.1 mrg * uvm_page_physload: load physical memory into VM system
685 1.1 mrg *
686 1.1 mrg * => all args are PFs
687 1.1 mrg * => all pages in start/end get vm_page structures
688 1.1 mrg * => areas marked by avail_start/avail_end get added to the free page pool
689 1.1 mrg * => we are limited to VM_PHYSSEG_MAX physical memory segments
690 1.1 mrg */
691 1.1 mrg
692 1.7 mrg void
693 1.105 thorpej uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
694 1.105 thorpej paddr_t avail_end, int free_list)
695 1.1 mrg {
696 1.14 eeh int preload, lcv;
697 1.14 eeh psize_t npages;
698 1.7 mrg struct vm_page *pgs;
699 1.7 mrg struct vm_physseg *ps;
700 1.7 mrg
701 1.7 mrg if (uvmexp.pagesize == 0)
702 1.42 mrg panic("uvm_page_physload: page size not set!");
703 1.12 thorpej if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
704 1.79 provos panic("uvm_page_physload: bad free list %d", free_list);
705 1.26 drochner if (start >= end)
706 1.26 drochner panic("uvm_page_physload: start >= end");
707 1.12 thorpej
708 1.7 mrg /*
709 1.7 mrg * do we have room?
710 1.7 mrg */
711 1.67 chs
712 1.7 mrg if (vm_nphysseg == VM_PHYSSEG_MAX) {
713 1.42 mrg printf("uvm_page_physload: unable to load physical memory "
714 1.7 mrg "segment\n");
715 1.37 soda printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
716 1.37 soda VM_PHYSSEG_MAX, (long long)start, (long long)end);
717 1.43 christos printf("\tincrease VM_PHYSSEG_MAX\n");
718 1.7 mrg return;
719 1.7 mrg }
720 1.7 mrg
721 1.7 mrg /*
722 1.7 mrg * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
723 1.7 mrg * called yet, so malloc is not available).
724 1.7 mrg */
725 1.67 chs
726 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
727 1.7 mrg if (vm_physmem[lcv].pgs)
728 1.7 mrg break;
729 1.7 mrg }
730 1.7 mrg preload = (lcv == vm_nphysseg);
731 1.7 mrg
732 1.7 mrg /*
733 1.7 mrg * if VM is already running, attempt to malloc() vm_page structures
734 1.7 mrg */
735 1.67 chs
736 1.7 mrg if (!preload) {
737 1.1 mrg #if defined(VM_PHYSSEG_NOADD)
738 1.42 mrg panic("uvm_page_physload: tried to add RAM after vm_mem_init");
739 1.1 mrg #else
740 1.7 mrg /* XXXCDC: need some sort of lockout for this case */
741 1.14 eeh paddr_t paddr;
742 1.7 mrg npages = end - start; /* # of pages */
743 1.40 thorpej pgs = malloc(sizeof(struct vm_page) * npages,
744 1.40 thorpej M_VMPAGE, M_NOWAIT);
745 1.7 mrg if (pgs == NULL) {
746 1.42 mrg printf("uvm_page_physload: can not malloc vm_page "
747 1.7 mrg "structs for segment\n");
748 1.7 mrg printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
749 1.7 mrg return;
750 1.7 mrg }
751 1.12 thorpej /* zero data, init phys_addr and free_list, and free pages */
752 1.13 perry memset(pgs, 0, sizeof(struct vm_page) * npages);
753 1.7 mrg for (lcv = 0, paddr = ptoa(start) ;
754 1.7 mrg lcv < npages ; lcv++, paddr += PAGE_SIZE) {
755 1.7 mrg pgs[lcv].phys_addr = paddr;
756 1.12 thorpej pgs[lcv].free_list = free_list;
757 1.7 mrg if (atop(paddr) >= avail_start &&
758 1.7 mrg atop(paddr) <= avail_end)
759 1.8 chuck uvm_pagefree(&pgs[lcv]);
760 1.7 mrg }
761 1.7 mrg /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
762 1.7 mrg /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
763 1.1 mrg #endif
764 1.7 mrg } else {
765 1.7 mrg pgs = NULL;
766 1.7 mrg npages = 0;
767 1.7 mrg }
768 1.1 mrg
769 1.7 mrg /*
770 1.7 mrg * now insert us in the proper place in vm_physmem[]
771 1.7 mrg */
772 1.1 mrg
773 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
774 1.7 mrg /* random: put it at the end (easy!) */
775 1.7 mrg ps = &vm_physmem[vm_nphysseg];
776 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
777 1.7 mrg {
778 1.7 mrg int x;
779 1.7 mrg /* sort by address for binary search */
780 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
781 1.7 mrg if (start < vm_physmem[lcv].start)
782 1.7 mrg break;
783 1.7 mrg ps = &vm_physmem[lcv];
784 1.7 mrg /* move back other entries, if necessary ... */
785 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
786 1.7 mrg /* structure copy */
787 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
788 1.7 mrg }
789 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
790 1.7 mrg {
791 1.7 mrg int x;
792 1.7 mrg /* sort by largest segment first */
793 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
794 1.7 mrg if ((end - start) >
795 1.7 mrg (vm_physmem[lcv].end - vm_physmem[lcv].start))
796 1.7 mrg break;
797 1.7 mrg ps = &vm_physmem[lcv];
798 1.7 mrg /* move back other entries, if necessary ... */
799 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
800 1.7 mrg /* structure copy */
801 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
802 1.7 mrg }
803 1.1 mrg #else
804 1.42 mrg panic("uvm_page_physload: unknown physseg strategy selected!");
805 1.1 mrg #endif
806 1.1 mrg
807 1.7 mrg ps->start = start;
808 1.7 mrg ps->end = end;
809 1.7 mrg ps->avail_start = avail_start;
810 1.7 mrg ps->avail_end = avail_end;
811 1.7 mrg if (preload) {
812 1.7 mrg ps->pgs = NULL;
813 1.7 mrg } else {
814 1.7 mrg ps->pgs = pgs;
815 1.7 mrg ps->lastpg = pgs + npages - 1;
816 1.7 mrg }
817 1.12 thorpej ps->free_list = free_list;
818 1.7 mrg vm_nphysseg++;
819 1.7 mrg
820 1.7 mrg if (!preload)
821 1.7 mrg uvm_page_rehash();
822 1.1 mrg }
823 1.1 mrg
824 1.1 mrg /*
825 1.1 mrg * uvm_page_rehash: reallocate hash table based on number of free pages.
826 1.1 mrg */
827 1.1 mrg
828 1.7 mrg void
829 1.105 thorpej uvm_page_rehash(void)
830 1.1 mrg {
831 1.67 chs int freepages, lcv, bucketcount, oldcount;
832 1.7 mrg struct pglist *newbuckets, *oldbuckets;
833 1.7 mrg struct vm_page *pg;
834 1.30 thorpej size_t newsize, oldsize;
835 1.7 mrg
836 1.7 mrg /*
837 1.7 mrg * compute number of pages that can go in the free pool
838 1.7 mrg */
839 1.7 mrg
840 1.7 mrg freepages = 0;
841 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
842 1.7 mrg freepages +=
843 1.7 mrg (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
844 1.7 mrg
845 1.7 mrg /*
846 1.7 mrg * compute number of buckets needed for this number of pages
847 1.7 mrg */
848 1.7 mrg
849 1.7 mrg bucketcount = 1;
850 1.7 mrg while (bucketcount < freepages)
851 1.7 mrg bucketcount = bucketcount * 2;
852 1.7 mrg
853 1.7 mrg /*
854 1.30 thorpej * compute the size of the current table and new table.
855 1.7 mrg */
856 1.7 mrg
857 1.30 thorpej oldbuckets = uvm.page_hash;
858 1.30 thorpej oldcount = uvm.page_nhash;
859 1.30 thorpej oldsize = round_page(sizeof(struct pglist) * oldcount);
860 1.30 thorpej newsize = round_page(sizeof(struct pglist) * bucketcount);
861 1.30 thorpej
862 1.30 thorpej /*
863 1.30 thorpej * allocate the new buckets
864 1.30 thorpej */
865 1.30 thorpej
866 1.102 yamt newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize,
867 1.102 yamt 0, UVM_KMF_WIRED);
868 1.7 mrg if (newbuckets == NULL) {
869 1.30 thorpej printf("uvm_page_physrehash: WARNING: could not grow page "
870 1.7 mrg "hash table\n");
871 1.7 mrg return;
872 1.7 mrg }
873 1.7 mrg for (lcv = 0 ; lcv < bucketcount ; lcv++)
874 1.7 mrg TAILQ_INIT(&newbuckets[lcv]);
875 1.7 mrg
876 1.7 mrg /*
877 1.7 mrg * now replace the old buckets with the new ones and rehash everything
878 1.7 mrg */
879 1.7 mrg
880 1.7 mrg simple_lock(&uvm.hashlock);
881 1.7 mrg uvm.page_hash = newbuckets;
882 1.7 mrg uvm.page_nhash = bucketcount;
883 1.7 mrg uvm.page_hashmask = bucketcount - 1; /* power of 2 */
884 1.7 mrg
885 1.7 mrg /* ... and rehash */
886 1.7 mrg for (lcv = 0 ; lcv < oldcount ; lcv++) {
887 1.7 mrg while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
888 1.7 mrg TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
889 1.7 mrg TAILQ_INSERT_TAIL(
890 1.7 mrg &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
891 1.7 mrg pg, hashq);
892 1.7 mrg }
893 1.7 mrg }
894 1.7 mrg simple_unlock(&uvm.hashlock);
895 1.7 mrg
896 1.7 mrg /*
897 1.30 thorpej * free old bucket array if is not the boot-time table
898 1.7 mrg */
899 1.7 mrg
900 1.7 mrg if (oldbuckets != &uvm_bootbucket)
901 1.102 yamt uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize,
902 1.102 yamt UVM_KMF_WIRED);
903 1.1 mrg }
904 1.1 mrg
905 1.60 thorpej /*
906 1.60 thorpej * uvm_page_recolor: Recolor the pages if the new bucket count is
907 1.60 thorpej * larger than the old one.
908 1.60 thorpej */
909 1.60 thorpej
910 1.60 thorpej void
911 1.60 thorpej uvm_page_recolor(int newncolors)
912 1.60 thorpej {
913 1.60 thorpej struct pgflbucket *bucketarray, *oldbucketarray;
914 1.60 thorpej struct pgfreelist pgfl;
915 1.63 chs struct vm_page *pg;
916 1.60 thorpej vsize_t bucketcount;
917 1.60 thorpej int s, lcv, color, i, ocolors;
918 1.60 thorpej
919 1.60 thorpej if (newncolors <= uvmexp.ncolors)
920 1.60 thorpej return;
921 1.77 wrstuden
922 1.77 wrstuden if (uvm.page_init_done == FALSE) {
923 1.77 wrstuden uvmexp.ncolors = newncolors;
924 1.77 wrstuden return;
925 1.77 wrstuden }
926 1.60 thorpej
927 1.60 thorpej bucketcount = newncolors * VM_NFREELIST;
928 1.60 thorpej bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
929 1.60 thorpej M_VMPAGE, M_NOWAIT);
930 1.60 thorpej if (bucketarray == NULL) {
931 1.60 thorpej printf("WARNING: unable to allocate %ld page color buckets\n",
932 1.60 thorpej (long) bucketcount);
933 1.60 thorpej return;
934 1.60 thorpej }
935 1.60 thorpej
936 1.60 thorpej s = uvm_lock_fpageq();
937 1.60 thorpej
938 1.60 thorpej /* Make sure we should still do this. */
939 1.60 thorpej if (newncolors <= uvmexp.ncolors) {
940 1.60 thorpej uvm_unlock_fpageq(s);
941 1.60 thorpej free(bucketarray, M_VMPAGE);
942 1.60 thorpej return;
943 1.60 thorpej }
944 1.60 thorpej
945 1.60 thorpej oldbucketarray = uvm.page_free[0].pgfl_buckets;
946 1.60 thorpej ocolors = uvmexp.ncolors;
947 1.60 thorpej
948 1.60 thorpej uvmexp.ncolors = newncolors;
949 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
950 1.60 thorpej
951 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
952 1.60 thorpej pgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
953 1.60 thorpej uvm_page_init_buckets(&pgfl);
954 1.60 thorpej for (color = 0; color < ocolors; color++) {
955 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
956 1.60 thorpej while ((pg = TAILQ_FIRST(&uvm.page_free[
957 1.60 thorpej lcv].pgfl_buckets[color].pgfl_queues[i]))
958 1.60 thorpej != NULL) {
959 1.60 thorpej TAILQ_REMOVE(&uvm.page_free[
960 1.60 thorpej lcv].pgfl_buckets[
961 1.60 thorpej color].pgfl_queues[i], pg, pageq);
962 1.60 thorpej TAILQ_INSERT_TAIL(&pgfl.pgfl_buckets[
963 1.60 thorpej VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
964 1.60 thorpej i], pg, pageq);
965 1.60 thorpej }
966 1.60 thorpej }
967 1.60 thorpej }
968 1.60 thorpej uvm.page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
969 1.60 thorpej }
970 1.60 thorpej
971 1.60 thorpej if (have_recolored_pages) {
972 1.60 thorpej uvm_unlock_fpageq(s);
973 1.60 thorpej free(oldbucketarray, M_VMPAGE);
974 1.60 thorpej return;
975 1.60 thorpej }
976 1.60 thorpej
977 1.60 thorpej have_recolored_pages = TRUE;
978 1.60 thorpej uvm_unlock_fpageq(s);
979 1.60 thorpej }
980 1.1 mrg
981 1.1 mrg /*
982 1.54 thorpej * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
983 1.54 thorpej */
984 1.54 thorpej
985 1.109 perry static inline struct vm_page *
986 1.54 thorpej uvm_pagealloc_pgfl(struct pgfreelist *pgfl, int try1, int try2,
987 1.69 simonb int *trycolorp)
988 1.54 thorpej {
989 1.54 thorpej struct pglist *freeq;
990 1.54 thorpej struct vm_page *pg;
991 1.58 enami int color, trycolor = *trycolorp;
992 1.54 thorpej
993 1.58 enami color = trycolor;
994 1.58 enami do {
995 1.54 thorpej if ((pg = TAILQ_FIRST((freeq =
996 1.54 thorpej &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL)
997 1.54 thorpej goto gotit;
998 1.54 thorpej if ((pg = TAILQ_FIRST((freeq =
999 1.54 thorpej &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL)
1000 1.54 thorpej goto gotit;
1001 1.60 thorpej color = (color + 1) & uvmexp.colormask;
1002 1.58 enami } while (color != trycolor);
1003 1.54 thorpej
1004 1.54 thorpej return (NULL);
1005 1.54 thorpej
1006 1.54 thorpej gotit:
1007 1.54 thorpej TAILQ_REMOVE(freeq, pg, pageq);
1008 1.54 thorpej uvmexp.free--;
1009 1.54 thorpej
1010 1.54 thorpej /* update zero'd page count */
1011 1.54 thorpej if (pg->flags & PG_ZERO)
1012 1.54 thorpej uvmexp.zeropages--;
1013 1.54 thorpej
1014 1.54 thorpej if (color == trycolor)
1015 1.54 thorpej uvmexp.colorhit++;
1016 1.54 thorpej else {
1017 1.54 thorpej uvmexp.colormiss++;
1018 1.54 thorpej *trycolorp = color;
1019 1.54 thorpej }
1020 1.54 thorpej
1021 1.54 thorpej return (pg);
1022 1.54 thorpej }
1023 1.54 thorpej
1024 1.54 thorpej /*
1025 1.12 thorpej * uvm_pagealloc_strat: allocate vm_page from a particular free list.
1026 1.1 mrg *
1027 1.1 mrg * => return null if no pages free
1028 1.1 mrg * => wake up pagedaemon if number of free pages drops below low water mark
1029 1.1 mrg * => if obj != NULL, obj must be locked (to put in hash)
1030 1.1 mrg * => if anon != NULL, anon must be locked (to put in anon)
1031 1.1 mrg * => only one of obj or anon can be non-null
1032 1.1 mrg * => caller must activate/deactivate page if it is not wired.
1033 1.12 thorpej * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
1034 1.34 thorpej * => policy decision: it is more important to pull a page off of the
1035 1.34 thorpej * appropriate priority free list than it is to get a zero'd or
1036 1.34 thorpej * unknown contents page. This is because we live with the
1037 1.34 thorpej * consequences of a bad free list decision for the entire
1038 1.34 thorpej * lifetime of the page, e.g. if the page comes from memory that
1039 1.34 thorpej * is slower to access.
1040 1.1 mrg */
1041 1.1 mrg
1042 1.7 mrg struct vm_page *
1043 1.105 thorpej uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
1044 1.105 thorpej int flags, int strat, int free_list)
1045 1.1 mrg {
1046 1.54 thorpej int lcv, try1, try2, s, zeroit = 0, color;
1047 1.7 mrg struct vm_page *pg;
1048 1.18 chs boolean_t use_reserve;
1049 1.1 mrg
1050 1.44 chs KASSERT(obj == NULL || anon == NULL);
1051 1.44 chs KASSERT(off == trunc_page(off));
1052 1.48 thorpej LOCK_ASSERT(obj == NULL || simple_lock_held(&obj->vmobjlock));
1053 1.48 thorpej LOCK_ASSERT(anon == NULL || simple_lock_held(&anon->an_lock));
1054 1.48 thorpej
1055 1.44 chs s = uvm_lock_fpageq();
1056 1.1 mrg
1057 1.7 mrg /*
1058 1.54 thorpej * This implements a global round-robin page coloring
1059 1.54 thorpej * algorithm.
1060 1.54 thorpej *
1061 1.95 wiz * XXXJRT: Should we make the `nextcolor' per-CPU?
1062 1.54 thorpej * XXXJRT: What about virtually-indexed caches?
1063 1.54 thorpej */
1064 1.67 chs
1065 1.54 thorpej color = uvm.page_free_nextcolor;
1066 1.54 thorpej
1067 1.54 thorpej /*
1068 1.7 mrg * check to see if we need to generate some free pages waking
1069 1.7 mrg * the pagedaemon.
1070 1.7 mrg */
1071 1.7 mrg
1072 1.64 thorpej UVM_KICK_PDAEMON();
1073 1.7 mrg
1074 1.7 mrg /*
1075 1.7 mrg * fail if any of these conditions is true:
1076 1.7 mrg * [1] there really are no free pages, or
1077 1.7 mrg * [2] only kernel "reserved" pages remain and
1078 1.7 mrg * the page isn't being allocated to a kernel object.
1079 1.7 mrg * [3] only pagedaemon "reserved" pages remain and
1080 1.7 mrg * the requestor isn't the pagedaemon.
1081 1.7 mrg */
1082 1.7 mrg
1083 1.18 chs use_reserve = (flags & UVM_PGA_USERESERVE) ||
1084 1.22 thorpej (obj && UVM_OBJ_IS_KERN_OBJECT(obj));
1085 1.18 chs if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
1086 1.7 mrg (uvmexp.free <= uvmexp.reserve_pagedaemon &&
1087 1.18 chs !(use_reserve && curproc == uvm.pagedaemon_proc)))
1088 1.12 thorpej goto fail;
1089 1.12 thorpej
1090 1.34 thorpej #if PGFL_NQUEUES != 2
1091 1.34 thorpej #error uvm_pagealloc_strat needs to be updated
1092 1.34 thorpej #endif
1093 1.34 thorpej
1094 1.34 thorpej /*
1095 1.34 thorpej * If we want a zero'd page, try the ZEROS queue first, otherwise
1096 1.34 thorpej * we try the UNKNOWN queue first.
1097 1.34 thorpej */
1098 1.34 thorpej if (flags & UVM_PGA_ZERO) {
1099 1.34 thorpej try1 = PGFL_ZEROS;
1100 1.34 thorpej try2 = PGFL_UNKNOWN;
1101 1.34 thorpej } else {
1102 1.34 thorpej try1 = PGFL_UNKNOWN;
1103 1.34 thorpej try2 = PGFL_ZEROS;
1104 1.34 thorpej }
1105 1.34 thorpej
1106 1.12 thorpej again:
1107 1.12 thorpej switch (strat) {
1108 1.12 thorpej case UVM_PGA_STRAT_NORMAL:
1109 1.12 thorpej /* Check all freelists in descending priority order. */
1110 1.12 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1111 1.54 thorpej pg = uvm_pagealloc_pgfl(&uvm.page_free[lcv],
1112 1.54 thorpej try1, try2, &color);
1113 1.54 thorpej if (pg != NULL)
1114 1.12 thorpej goto gotit;
1115 1.12 thorpej }
1116 1.12 thorpej
1117 1.12 thorpej /* No pages free! */
1118 1.12 thorpej goto fail;
1119 1.12 thorpej
1120 1.12 thorpej case UVM_PGA_STRAT_ONLY:
1121 1.12 thorpej case UVM_PGA_STRAT_FALLBACK:
1122 1.12 thorpej /* Attempt to allocate from the specified free list. */
1123 1.44 chs KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1124 1.54 thorpej pg = uvm_pagealloc_pgfl(&uvm.page_free[free_list],
1125 1.54 thorpej try1, try2, &color);
1126 1.54 thorpej if (pg != NULL)
1127 1.12 thorpej goto gotit;
1128 1.12 thorpej
1129 1.12 thorpej /* Fall back, if possible. */
1130 1.12 thorpej if (strat == UVM_PGA_STRAT_FALLBACK) {
1131 1.12 thorpej strat = UVM_PGA_STRAT_NORMAL;
1132 1.12 thorpej goto again;
1133 1.12 thorpej }
1134 1.12 thorpej
1135 1.12 thorpej /* No pages free! */
1136 1.12 thorpej goto fail;
1137 1.12 thorpej
1138 1.12 thorpej default:
1139 1.12 thorpej panic("uvm_pagealloc_strat: bad strat %d", strat);
1140 1.12 thorpej /* NOTREACHED */
1141 1.7 mrg }
1142 1.7 mrg
1143 1.12 thorpej gotit:
1144 1.54 thorpej /*
1145 1.54 thorpej * We now know which color we actually allocated from; set
1146 1.54 thorpej * the next color accordingly.
1147 1.54 thorpej */
1148 1.67 chs
1149 1.60 thorpej uvm.page_free_nextcolor = (color + 1) & uvmexp.colormask;
1150 1.34 thorpej
1151 1.34 thorpej /*
1152 1.34 thorpej * update allocation statistics and remember if we have to
1153 1.34 thorpej * zero the page
1154 1.34 thorpej */
1155 1.67 chs
1156 1.34 thorpej if (flags & UVM_PGA_ZERO) {
1157 1.34 thorpej if (pg->flags & PG_ZERO) {
1158 1.34 thorpej uvmexp.pga_zerohit++;
1159 1.34 thorpej zeroit = 0;
1160 1.34 thorpej } else {
1161 1.34 thorpej uvmexp.pga_zeromiss++;
1162 1.34 thorpej zeroit = 1;
1163 1.34 thorpej }
1164 1.34 thorpej }
1165 1.67 chs uvm_unlock_fpageq(s);
1166 1.7 mrg
1167 1.7 mrg pg->offset = off;
1168 1.7 mrg pg->uobject = obj;
1169 1.7 mrg pg->uanon = anon;
1170 1.7 mrg pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1171 1.7 mrg if (anon) {
1172 1.103 yamt anon->an_page = pg;
1173 1.7 mrg pg->pqflags = PQ_ANON;
1174 1.45 simonb uvmexp.anonpages++;
1175 1.7 mrg } else {
1176 1.67 chs if (obj) {
1177 1.7 mrg uvm_pageinsert(pg);
1178 1.67 chs }
1179 1.7 mrg pg->pqflags = 0;
1180 1.7 mrg }
1181 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1182 1.7 mrg pg->owner_tag = NULL;
1183 1.1 mrg #endif
1184 1.7 mrg UVM_PAGE_OWN(pg, "new alloc");
1185 1.33 thorpej
1186 1.33 thorpej if (flags & UVM_PGA_ZERO) {
1187 1.33 thorpej /*
1188 1.34 thorpej * A zero'd page is not clean. If we got a page not already
1189 1.34 thorpej * zero'd, then we have to zero it ourselves.
1190 1.33 thorpej */
1191 1.33 thorpej pg->flags &= ~PG_CLEAN;
1192 1.34 thorpej if (zeroit)
1193 1.34 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1194 1.33 thorpej }
1195 1.1 mrg
1196 1.7 mrg return(pg);
1197 1.12 thorpej
1198 1.12 thorpej fail:
1199 1.21 thorpej uvm_unlock_fpageq(s);
1200 1.12 thorpej return (NULL);
1201 1.1 mrg }
1202 1.1 mrg
1203 1.1 mrg /*
1204 1.96 yamt * uvm_pagereplace: replace a page with another
1205 1.96 yamt *
1206 1.96 yamt * => object must be locked
1207 1.96 yamt */
1208 1.96 yamt
1209 1.96 yamt void
1210 1.105 thorpej uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
1211 1.96 yamt {
1212 1.97 junyoung
1213 1.96 yamt KASSERT((oldpg->flags & PG_TABLED) != 0);
1214 1.96 yamt KASSERT(oldpg->uobject != NULL);
1215 1.96 yamt KASSERT((newpg->flags & PG_TABLED) == 0);
1216 1.96 yamt KASSERT(newpg->uobject == NULL);
1217 1.96 yamt LOCK_ASSERT(simple_lock_held(&oldpg->uobject->vmobjlock));
1218 1.96 yamt
1219 1.96 yamt newpg->uobject = oldpg->uobject;
1220 1.96 yamt newpg->offset = oldpg->offset;
1221 1.96 yamt
1222 1.96 yamt uvm_pageinsert_after(newpg, oldpg);
1223 1.96 yamt uvm_pageremove(oldpg);
1224 1.96 yamt }
1225 1.96 yamt
1226 1.96 yamt /*
1227 1.1 mrg * uvm_pagerealloc: reallocate a page from one object to another
1228 1.1 mrg *
1229 1.1 mrg * => both objects must be locked
1230 1.1 mrg */
1231 1.1 mrg
1232 1.7 mrg void
1233 1.105 thorpej uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1234 1.1 mrg {
1235 1.7 mrg /*
1236 1.7 mrg * remove it from the old object
1237 1.7 mrg */
1238 1.7 mrg
1239 1.7 mrg if (pg->uobject) {
1240 1.7 mrg uvm_pageremove(pg);
1241 1.7 mrg }
1242 1.7 mrg
1243 1.7 mrg /*
1244 1.7 mrg * put it in the new object
1245 1.7 mrg */
1246 1.7 mrg
1247 1.7 mrg if (newobj) {
1248 1.7 mrg pg->uobject = newobj;
1249 1.7 mrg pg->offset = newoff;
1250 1.7 mrg uvm_pageinsert(pg);
1251 1.7 mrg }
1252 1.1 mrg }
1253 1.1 mrg
1254 1.91 yamt #ifdef DEBUG
1255 1.91 yamt /*
1256 1.91 yamt * check if page is zero-filled
1257 1.91 yamt *
1258 1.91 yamt * - called with free page queue lock held.
1259 1.91 yamt */
1260 1.91 yamt void
1261 1.91 yamt uvm_pagezerocheck(struct vm_page *pg)
1262 1.91 yamt {
1263 1.91 yamt int *p, *ep;
1264 1.91 yamt
1265 1.91 yamt KASSERT(uvm_zerocheckkva != 0);
1266 1.91 yamt LOCK_ASSERT(simple_lock_held(&uvm.fpageqlock));
1267 1.91 yamt
1268 1.91 yamt /*
1269 1.91 yamt * XXX assuming pmap_kenter_pa and pmap_kremove never call
1270 1.91 yamt * uvm page allocator.
1271 1.91 yamt *
1272 1.95 wiz * it might be better to have "CPU-local temporary map" pmap interface.
1273 1.91 yamt */
1274 1.91 yamt pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ);
1275 1.91 yamt p = (int *)uvm_zerocheckkva;
1276 1.91 yamt ep = (int *)((char *)p + PAGE_SIZE);
1277 1.92 yamt pmap_update(pmap_kernel());
1278 1.91 yamt while (p < ep) {
1279 1.91 yamt if (*p != 0)
1280 1.91 yamt panic("PG_ZERO page isn't zero-filled");
1281 1.91 yamt p++;
1282 1.91 yamt }
1283 1.91 yamt pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
1284 1.91 yamt }
1285 1.91 yamt #endif /* DEBUG */
1286 1.91 yamt
1287 1.1 mrg /*
1288 1.1 mrg * uvm_pagefree: free page
1289 1.1 mrg *
1290 1.1 mrg * => erase page's identity (i.e. remove from hash/object)
1291 1.1 mrg * => put page on free list
1292 1.1 mrg * => caller must lock owning object (either anon or uvm_object)
1293 1.1 mrg * => caller must lock page queues
1294 1.1 mrg * => assumes all valid mappings of pg are gone
1295 1.1 mrg */
1296 1.1 mrg
1297 1.44 chs void
1298 1.105 thorpej uvm_pagefree(struct vm_page *pg)
1299 1.1 mrg {
1300 1.7 mrg int s;
1301 1.90 yamt struct pglist *pgfl;
1302 1.90 yamt boolean_t iszero;
1303 1.67 chs
1304 1.67 chs KASSERT((pg->flags & PG_PAGEOUT) == 0);
1305 1.67 chs LOCK_ASSERT(simple_lock_held(&uvm.pageqlock) ||
1306 1.67 chs (pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) == 0);
1307 1.70 chs LOCK_ASSERT(pg->uobject == NULL ||
1308 1.70 chs simple_lock_held(&pg->uobject->vmobjlock));
1309 1.70 chs LOCK_ASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1310 1.70 chs simple_lock_held(&pg->uanon->an_lock));
1311 1.1 mrg
1312 1.44 chs #ifdef DEBUG
1313 1.44 chs if (pg->uobject == (void *)0xdeadbeef &&
1314 1.44 chs pg->uanon == (void *)0xdeadbeef) {
1315 1.79 provos panic("uvm_pagefree: freeing free page %p", pg);
1316 1.44 chs }
1317 1.91 yamt #endif /* DEBUG */
1318 1.44 chs
1319 1.7 mrg /*
1320 1.67 chs * if the page is loaned, resolve the loan instead of freeing.
1321 1.7 mrg */
1322 1.7 mrg
1323 1.67 chs if (pg->loan_count) {
1324 1.70 chs KASSERT(pg->wire_count == 0);
1325 1.7 mrg
1326 1.7 mrg /*
1327 1.67 chs * if the page is owned by an anon then we just want to
1328 1.70 chs * drop anon ownership. the kernel will free the page when
1329 1.70 chs * it is done with it. if the page is owned by an object,
1330 1.70 chs * remove it from the object and mark it dirty for the benefit
1331 1.70 chs * of possible anon owners.
1332 1.70 chs *
1333 1.70 chs * regardless of previous ownership, wakeup any waiters,
1334 1.70 chs * unbusy the page, and we're done.
1335 1.7 mrg */
1336 1.7 mrg
1337 1.73 chs if (pg->uobject != NULL) {
1338 1.70 chs uvm_pageremove(pg);
1339 1.67 chs pg->flags &= ~PG_CLEAN;
1340 1.73 chs } else if (pg->uanon != NULL) {
1341 1.73 chs if ((pg->pqflags & PQ_ANON) == 0) {
1342 1.73 chs pg->loan_count--;
1343 1.73 chs } else {
1344 1.73 chs pg->pqflags &= ~PQ_ANON;
1345 1.99 yamt uvmexp.anonpages--;
1346 1.73 chs }
1347 1.103 yamt pg->uanon->an_page = NULL;
1348 1.73 chs pg->uanon = NULL;
1349 1.67 chs }
1350 1.70 chs if (pg->flags & PG_WANTED) {
1351 1.70 chs wakeup(pg);
1352 1.70 chs }
1353 1.84 perseant pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
1354 1.70 chs #ifdef UVM_PAGE_TRKOWN
1355 1.70 chs pg->owner_tag = NULL;
1356 1.70 chs #endif
1357 1.73 chs if (pg->loan_count) {
1358 1.75 enami uvm_pagedequeue(pg);
1359 1.73 chs return;
1360 1.73 chs }
1361 1.67 chs }
1362 1.62 chs
1363 1.67 chs /*
1364 1.67 chs * remove page from its object or anon.
1365 1.67 chs */
1366 1.44 chs
1367 1.73 chs if (pg->uobject != NULL) {
1368 1.67 chs uvm_pageremove(pg);
1369 1.73 chs } else if (pg->uanon != NULL) {
1370 1.103 yamt pg->uanon->an_page = NULL;
1371 1.73 chs uvmexp.anonpages--;
1372 1.7 mrg }
1373 1.1 mrg
1374 1.7 mrg /*
1375 1.70 chs * now remove the page from the queues.
1376 1.7 mrg */
1377 1.7 mrg
1378 1.67 chs uvm_pagedequeue(pg);
1379 1.7 mrg
1380 1.7 mrg /*
1381 1.7 mrg * if the page was wired, unwire it now.
1382 1.7 mrg */
1383 1.44 chs
1384 1.34 thorpej if (pg->wire_count) {
1385 1.7 mrg pg->wire_count = 0;
1386 1.7 mrg uvmexp.wired--;
1387 1.44 chs }
1388 1.7 mrg
1389 1.7 mrg /*
1390 1.44 chs * and put on free queue
1391 1.7 mrg */
1392 1.7 mrg
1393 1.90 yamt iszero = (pg->flags & PG_ZERO);
1394 1.90 yamt pgfl = &uvm.page_free[uvm_page_lookup_freelist(pg)].
1395 1.90 yamt pgfl_buckets[VM_PGCOLOR_BUCKET(pg)].
1396 1.90 yamt pgfl_queues[iszero ? PGFL_ZEROS : PGFL_UNKNOWN];
1397 1.34 thorpej
1398 1.7 mrg pg->pqflags = PQ_FREE;
1399 1.3 chs #ifdef DEBUG
1400 1.7 mrg pg->uobject = (void *)0xdeadbeef;
1401 1.7 mrg pg->offset = 0xdeadbeef;
1402 1.7 mrg pg->uanon = (void *)0xdeadbeef;
1403 1.3 chs #endif
1404 1.90 yamt
1405 1.90 yamt s = uvm_lock_fpageq();
1406 1.91 yamt
1407 1.91 yamt #ifdef DEBUG
1408 1.91 yamt if (iszero)
1409 1.91 yamt uvm_pagezerocheck(pg);
1410 1.91 yamt #endif /* DEBUG */
1411 1.91 yamt
1412 1.100 yamt TAILQ_INSERT_HEAD(pgfl, pg, pageq);
1413 1.7 mrg uvmexp.free++;
1414 1.90 yamt if (iszero)
1415 1.90 yamt uvmexp.zeropages++;
1416 1.34 thorpej
1417 1.34 thorpej if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1418 1.34 thorpej uvm.page_idle_zero = vm_page_zero_enable;
1419 1.34 thorpej
1420 1.21 thorpej uvm_unlock_fpageq(s);
1421 1.44 chs }
1422 1.44 chs
1423 1.44 chs /*
1424 1.44 chs * uvm_page_unbusy: unbusy an array of pages.
1425 1.44 chs *
1426 1.44 chs * => pages must either all belong to the same object, or all belong to anons.
1427 1.44 chs * => if pages are object-owned, object must be locked.
1428 1.67 chs * => if pages are anon-owned, anons must be locked.
1429 1.76 enami * => caller must lock page queues if pages may be released.
1430 1.98 yamt * => caller must make sure that anon-owned pages are not PG_RELEASED.
1431 1.44 chs */
1432 1.44 chs
1433 1.44 chs void
1434 1.105 thorpej uvm_page_unbusy(struct vm_page **pgs, int npgs)
1435 1.44 chs {
1436 1.44 chs struct vm_page *pg;
1437 1.44 chs int i;
1438 1.44 chs UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1439 1.44 chs
1440 1.44 chs for (i = 0; i < npgs; i++) {
1441 1.44 chs pg = pgs[i];
1442 1.82 enami if (pg == NULL || pg == PGO_DONTCARE) {
1443 1.44 chs continue;
1444 1.44 chs }
1445 1.98 yamt
1446 1.98 yamt LOCK_ASSERT(pg->uobject == NULL ||
1447 1.98 yamt simple_lock_held(&pg->uobject->vmobjlock));
1448 1.98 yamt LOCK_ASSERT(pg->uobject != NULL ||
1449 1.98 yamt (pg->uanon != NULL &&
1450 1.98 yamt simple_lock_held(&pg->uanon->an_lock)));
1451 1.98 yamt
1452 1.98 yamt KASSERT(pg->flags & PG_BUSY);
1453 1.98 yamt KASSERT((pg->flags & PG_PAGEOUT) == 0);
1454 1.44 chs if (pg->flags & PG_WANTED) {
1455 1.44 chs wakeup(pg);
1456 1.44 chs }
1457 1.44 chs if (pg->flags & PG_RELEASED) {
1458 1.44 chs UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1459 1.98 yamt KASSERT(pg->uobject != NULL ||
1460 1.98 yamt (pg->uanon != NULL && pg->uanon->an_ref > 0));
1461 1.67 chs pg->flags &= ~PG_RELEASED;
1462 1.67 chs uvm_pagefree(pg);
1463 1.44 chs } else {
1464 1.44 chs UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1465 1.44 chs pg->flags &= ~(PG_WANTED|PG_BUSY);
1466 1.44 chs UVM_PAGE_OWN(pg, NULL);
1467 1.44 chs }
1468 1.44 chs }
1469 1.1 mrg }
1470 1.1 mrg
1471 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1472 1.1 mrg /*
1473 1.1 mrg * uvm_page_own: set or release page ownership
1474 1.1 mrg *
1475 1.1 mrg * => this is a debugging function that keeps track of who sets PG_BUSY
1476 1.1 mrg * and where they do it. it can be used to track down problems
1477 1.1 mrg * such a process setting "PG_BUSY" and never releasing it.
1478 1.1 mrg * => page's object [if any] must be locked
1479 1.1 mrg * => if "tag" is NULL then we are releasing page ownership
1480 1.1 mrg */
1481 1.7 mrg void
1482 1.105 thorpej uvm_page_own(struct vm_page *pg, const char *tag)
1483 1.1 mrg {
1484 1.67 chs KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1485 1.67 chs
1486 1.7 mrg /* gain ownership? */
1487 1.7 mrg if (tag) {
1488 1.7 mrg if (pg->owner_tag) {
1489 1.7 mrg printf("uvm_page_own: page %p already owned "
1490 1.7 mrg "by proc %d [%s]\n", pg,
1491 1.74 enami pg->owner, pg->owner_tag);
1492 1.7 mrg panic("uvm_page_own");
1493 1.7 mrg }
1494 1.7 mrg pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1495 1.7 mrg pg->owner_tag = tag;
1496 1.7 mrg return;
1497 1.7 mrg }
1498 1.7 mrg
1499 1.7 mrg /* drop ownership */
1500 1.7 mrg if (pg->owner_tag == NULL) {
1501 1.7 mrg printf("uvm_page_own: dropping ownership of an non-owned "
1502 1.7 mrg "page (%p)\n", pg);
1503 1.7 mrg panic("uvm_page_own");
1504 1.7 mrg }
1505 1.74 enami KASSERT((pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) ||
1506 1.74 enami (pg->uanon == NULL && pg->uobject == NULL) ||
1507 1.74 enami pg->uobject == uvm.kernel_object ||
1508 1.74 enami pg->wire_count > 0 ||
1509 1.74 enami (pg->loan_count == 1 && pg->uanon == NULL) ||
1510 1.74 enami pg->loan_count > 1);
1511 1.7 mrg pg->owner_tag = NULL;
1512 1.1 mrg }
1513 1.1 mrg #endif
1514 1.34 thorpej
1515 1.34 thorpej /*
1516 1.34 thorpej * uvm_pageidlezero: zero free pages while the system is idle.
1517 1.34 thorpej *
1518 1.54 thorpej * => try to complete one color bucket at a time, to reduce our impact
1519 1.54 thorpej * on the CPU cache.
1520 1.34 thorpej * => we loop until we either reach the target or whichqs indicates that
1521 1.34 thorpej * there is a process ready to run.
1522 1.34 thorpej */
1523 1.34 thorpej void
1524 1.105 thorpej uvm_pageidlezero(void)
1525 1.34 thorpej {
1526 1.34 thorpej struct vm_page *pg;
1527 1.34 thorpej struct pgfreelist *pgfl;
1528 1.58 enami int free_list, s, firstbucket;
1529 1.54 thorpej static int nextbucket;
1530 1.54 thorpej
1531 1.101 yamt KERNEL_LOCK(LK_EXCLUSIVE | LK_CANRECURSE);
1532 1.54 thorpej s = uvm_lock_fpageq();
1533 1.58 enami firstbucket = nextbucket;
1534 1.58 enami do {
1535 1.101 yamt if (sched_whichqs != 0)
1536 1.101 yamt goto quit;
1537 1.54 thorpej if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1538 1.34 thorpej uvm.page_idle_zero = FALSE;
1539 1.101 yamt goto quit;
1540 1.34 thorpej }
1541 1.54 thorpej for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1542 1.54 thorpej pgfl = &uvm.page_free[free_list];
1543 1.54 thorpej while ((pg = TAILQ_FIRST(&pgfl->pgfl_buckets[
1544 1.54 thorpej nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1545 1.101 yamt if (sched_whichqs != 0)
1546 1.101 yamt goto quit;
1547 1.54 thorpej
1548 1.54 thorpej TAILQ_REMOVE(&pgfl->pgfl_buckets[
1549 1.54 thorpej nextbucket].pgfl_queues[PGFL_UNKNOWN],
1550 1.54 thorpej pg, pageq);
1551 1.54 thorpej uvmexp.free--;
1552 1.54 thorpej uvm_unlock_fpageq(s);
1553 1.101 yamt KERNEL_UNLOCK();
1554 1.34 thorpej #ifdef PMAP_PAGEIDLEZERO
1555 1.67 chs if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1556 1.67 chs
1557 1.54 thorpej /*
1558 1.54 thorpej * The machine-dependent code detected
1559 1.54 thorpej * some reason for us to abort zeroing
1560 1.54 thorpej * pages, probably because there is a
1561 1.54 thorpej * process now ready to run.
1562 1.54 thorpej */
1563 1.67 chs
1564 1.101 yamt KERNEL_LOCK(
1565 1.101 yamt LK_EXCLUSIVE | LK_CANRECURSE);
1566 1.54 thorpej s = uvm_lock_fpageq();
1567 1.54 thorpej TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
1568 1.54 thorpej nextbucket].pgfl_queues[
1569 1.54 thorpej PGFL_UNKNOWN], pg, pageq);
1570 1.54 thorpej uvmexp.free++;
1571 1.54 thorpej uvmexp.zeroaborts++;
1572 1.101 yamt goto quit;
1573 1.54 thorpej }
1574 1.54 thorpej #else
1575 1.54 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1576 1.54 thorpej #endif /* PMAP_PAGEIDLEZERO */
1577 1.54 thorpej pg->flags |= PG_ZERO;
1578 1.54 thorpej
1579 1.101 yamt KERNEL_LOCK(LK_EXCLUSIVE | LK_CANRECURSE);
1580 1.54 thorpej s = uvm_lock_fpageq();
1581 1.54 thorpej TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
1582 1.54 thorpej nextbucket].pgfl_queues[PGFL_ZEROS],
1583 1.54 thorpej pg, pageq);
1584 1.54 thorpej uvmexp.free++;
1585 1.54 thorpej uvmexp.zeropages++;
1586 1.54 thorpej }
1587 1.41 thorpej }
1588 1.60 thorpej nextbucket = (nextbucket + 1) & uvmexp.colormask;
1589 1.58 enami } while (nextbucket != firstbucket);
1590 1.101 yamt quit:
1591 1.54 thorpej uvm_unlock_fpageq(s);
1592 1.101 yamt KERNEL_UNLOCK();
1593 1.34 thorpej }
1594 1.110 yamt
1595 1.110 yamt /*
1596 1.110 yamt * uvm_lock_fpageq: lock the free page queue
1597 1.110 yamt *
1598 1.110 yamt * => free page queue can be accessed in interrupt context, so this
1599 1.110 yamt * blocks all interrupts that can cause memory allocation, and
1600 1.110 yamt * returns the previous interrupt level.
1601 1.110 yamt */
1602 1.110 yamt
1603 1.110 yamt int
1604 1.110 yamt uvm_lock_fpageq(void)
1605 1.110 yamt {
1606 1.110 yamt int s;
1607 1.110 yamt
1608 1.110 yamt s = splvm();
1609 1.110 yamt simple_lock(&uvm.fpageqlock);
1610 1.110 yamt return (s);
1611 1.110 yamt }
1612 1.110 yamt
1613 1.110 yamt /*
1614 1.110 yamt * uvm_unlock_fpageq: unlock the free page queue
1615 1.110 yamt *
1616 1.110 yamt * => caller must supply interrupt level returned by uvm_lock_fpageq()
1617 1.110 yamt * so that it may be restored.
1618 1.110 yamt */
1619 1.110 yamt
1620 1.110 yamt void
1621 1.110 yamt uvm_unlock_fpageq(int s)
1622 1.110 yamt {
1623 1.110 yamt
1624 1.110 yamt simple_unlock(&uvm.fpageqlock);
1625 1.110 yamt splx(s);
1626 1.110 yamt }
1627 1.110 yamt
1628 1.110 yamt /*
1629 1.110 yamt * uvm_pagelookup: look up a page
1630 1.110 yamt *
1631 1.110 yamt * => caller should lock object to keep someone from pulling the page
1632 1.110 yamt * out from under it
1633 1.110 yamt */
1634 1.110 yamt
1635 1.110 yamt struct vm_page *
1636 1.110 yamt uvm_pagelookup(struct uvm_object *obj, voff_t off)
1637 1.110 yamt {
1638 1.110 yamt struct vm_page *pg;
1639 1.110 yamt struct pglist *buck;
1640 1.110 yamt
1641 1.110 yamt buck = &uvm.page_hash[uvm_pagehash(obj,off)];
1642 1.110 yamt simple_lock(&uvm.hashlock);
1643 1.110 yamt TAILQ_FOREACH(pg, buck, hashq) {
1644 1.110 yamt if (pg->uobject == obj && pg->offset == off) {
1645 1.110 yamt break;
1646 1.110 yamt }
1647 1.110 yamt }
1648 1.110 yamt simple_unlock(&uvm.hashlock);
1649 1.110 yamt KASSERT(pg == NULL || obj->uo_npages != 0);
1650 1.110 yamt KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1651 1.110 yamt (pg->flags & PG_BUSY) != 0);
1652 1.110 yamt return(pg);
1653 1.110 yamt }
1654 1.110 yamt
1655 1.110 yamt /*
1656 1.110 yamt * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1657 1.110 yamt *
1658 1.110 yamt * => caller must lock page queues
1659 1.110 yamt */
1660 1.110 yamt
1661 1.110 yamt void
1662 1.110 yamt uvm_pagewire(struct vm_page *pg)
1663 1.110 yamt {
1664 1.110 yamt UVM_LOCK_ASSERT_PAGEQ();
1665 1.110 yamt if (pg->wire_count == 0) {
1666 1.110 yamt uvm_pagedequeue(pg);
1667 1.110 yamt uvmexp.wired++;
1668 1.110 yamt }
1669 1.110 yamt pg->wire_count++;
1670 1.110 yamt }
1671 1.110 yamt
1672 1.110 yamt /*
1673 1.110 yamt * uvm_pageunwire: unwire the page.
1674 1.110 yamt *
1675 1.110 yamt * => activate if wire count goes to zero.
1676 1.110 yamt * => caller must lock page queues
1677 1.110 yamt */
1678 1.110 yamt
1679 1.110 yamt void
1680 1.110 yamt uvm_pageunwire(struct vm_page *pg)
1681 1.110 yamt {
1682 1.110 yamt UVM_LOCK_ASSERT_PAGEQ();
1683 1.110 yamt pg->wire_count--;
1684 1.110 yamt if (pg->wire_count == 0) {
1685 1.111 yamt uvm_pageactivate(pg);
1686 1.110 yamt uvmexp.wired--;
1687 1.110 yamt }
1688 1.110 yamt }
1689 1.110 yamt
1690 1.110 yamt /*
1691 1.110 yamt * uvm_pagedeactivate: deactivate page
1692 1.110 yamt *
1693 1.110 yamt * => caller must lock page queues
1694 1.110 yamt * => caller must check to make sure page is not wired
1695 1.110 yamt * => object that page belongs to must be locked (so we can adjust pg->flags)
1696 1.110 yamt * => caller must clear the reference on the page before calling
1697 1.110 yamt */
1698 1.110 yamt
1699 1.110 yamt void
1700 1.110 yamt uvm_pagedeactivate(struct vm_page *pg)
1701 1.110 yamt {
1702 1.110 yamt UVM_LOCK_ASSERT_PAGEQ();
1703 1.110 yamt if (pg->pqflags & PQ_ACTIVE) {
1704 1.110 yamt TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1705 1.110 yamt pg->pqflags &= ~PQ_ACTIVE;
1706 1.110 yamt uvmexp.active--;
1707 1.110 yamt }
1708 1.110 yamt if ((pg->pqflags & PQ_INACTIVE) == 0) {
1709 1.110 yamt KASSERT(pg->wire_count == 0);
1710 1.110 yamt TAILQ_INSERT_TAIL(&uvm.page_inactive, pg, pageq);
1711 1.110 yamt pg->pqflags |= PQ_INACTIVE;
1712 1.110 yamt uvmexp.inactive++;
1713 1.110 yamt }
1714 1.110 yamt }
1715 1.110 yamt
1716 1.110 yamt /*
1717 1.110 yamt * uvm_pageactivate: activate page
1718 1.110 yamt *
1719 1.110 yamt * => caller must lock page queues
1720 1.110 yamt */
1721 1.110 yamt
1722 1.110 yamt void
1723 1.110 yamt uvm_pageactivate(struct vm_page *pg)
1724 1.110 yamt {
1725 1.110 yamt UVM_LOCK_ASSERT_PAGEQ();
1726 1.110 yamt uvm_pagedequeue(pg);
1727 1.110 yamt if (pg->wire_count == 0) {
1728 1.110 yamt TAILQ_INSERT_TAIL(&uvm.page_active, pg, pageq);
1729 1.110 yamt pg->pqflags |= PQ_ACTIVE;
1730 1.110 yamt uvmexp.active++;
1731 1.110 yamt }
1732 1.110 yamt }
1733 1.110 yamt
1734 1.110 yamt /*
1735 1.110 yamt * uvm_pagedequeue: remove a page from any paging queue
1736 1.110 yamt */
1737 1.110 yamt
1738 1.110 yamt void
1739 1.110 yamt uvm_pagedequeue(struct vm_page *pg)
1740 1.110 yamt {
1741 1.110 yamt if (pg->pqflags & PQ_ACTIVE) {
1742 1.110 yamt UVM_LOCK_ASSERT_PAGEQ();
1743 1.110 yamt TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1744 1.110 yamt pg->pqflags &= ~PQ_ACTIVE;
1745 1.110 yamt uvmexp.active--;
1746 1.110 yamt } else if (pg->pqflags & PQ_INACTIVE) {
1747 1.110 yamt UVM_LOCK_ASSERT_PAGEQ();
1748 1.110 yamt TAILQ_REMOVE(&uvm.page_inactive, pg, pageq);
1749 1.110 yamt pg->pqflags &= ~PQ_INACTIVE;
1750 1.110 yamt uvmexp.inactive--;
1751 1.110 yamt }
1752 1.110 yamt }
1753 1.110 yamt
1754 1.110 yamt /*
1755 1.110 yamt * uvm_pagezero: zero fill a page
1756 1.110 yamt *
1757 1.110 yamt * => if page is part of an object then the object should be locked
1758 1.110 yamt * to protect pg->flags.
1759 1.110 yamt */
1760 1.110 yamt
1761 1.110 yamt void
1762 1.110 yamt uvm_pagezero(struct vm_page *pg)
1763 1.110 yamt {
1764 1.110 yamt pg->flags &= ~PG_CLEAN;
1765 1.110 yamt pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1766 1.110 yamt }
1767 1.110 yamt
1768 1.110 yamt /*
1769 1.110 yamt * uvm_pagecopy: copy a page
1770 1.110 yamt *
1771 1.110 yamt * => if page is part of an object then the object should be locked
1772 1.110 yamt * to protect pg->flags.
1773 1.110 yamt */
1774 1.110 yamt
1775 1.110 yamt void
1776 1.110 yamt uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1777 1.110 yamt {
1778 1.110 yamt
1779 1.110 yamt dst->flags &= ~PG_CLEAN;
1780 1.110 yamt pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
1781 1.110 yamt }
1782 1.110 yamt
1783 1.110 yamt /*
1784 1.110 yamt * uvm_page_lookup_freelist: look up the free list for the specified page
1785 1.110 yamt */
1786 1.110 yamt
1787 1.110 yamt int
1788 1.110 yamt uvm_page_lookup_freelist(struct vm_page *pg)
1789 1.110 yamt {
1790 1.110 yamt int lcv;
1791 1.110 yamt
1792 1.110 yamt lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
1793 1.110 yamt KASSERT(lcv != -1);
1794 1.110 yamt return (vm_physmem[lcv].free_list);
1795 1.110 yamt }
1796