uvm_page.c revision 1.130 1 1.130 ad /* $NetBSD: uvm_page.c,v 1.130 2008/02/27 14:24:24 ad Exp $ */
2 1.1 mrg
3 1.62 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.62 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.62 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
42 1.4 mrg * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.62 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.62 chs *
54 1.62 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.62 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.62 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.1 mrg /*
70 1.1 mrg * uvm_page.c: page ops.
71 1.1 mrg */
72 1.71 lukem
73 1.71 lukem #include <sys/cdefs.h>
74 1.130 ad __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.130 2008/02/27 14:24:24 ad Exp $");
75 1.6 mrg
76 1.44 chs #include "opt_uvmhist.h"
77 1.113 yamt #include "opt_readahead.h"
78 1.44 chs
79 1.1 mrg #include <sys/param.h>
80 1.1 mrg #include <sys/systm.h>
81 1.1 mrg #include <sys/malloc.h>
82 1.35 thorpej #include <sys/sched.h>
83 1.44 chs #include <sys/kernel.h>
84 1.51 chs #include <sys/vnode.h>
85 1.68 chs #include <sys/proc.h>
86 1.126 ad #include <sys/atomic.h>
87 1.1 mrg
88 1.1 mrg #include <uvm/uvm.h>
89 1.113 yamt #include <uvm/uvm_pdpolicy.h>
90 1.1 mrg
91 1.1 mrg /*
92 1.1 mrg * global vars... XXXCDC: move to uvm. structure.
93 1.1 mrg */
94 1.1 mrg
95 1.1 mrg /*
96 1.1 mrg * physical memory config is stored in vm_physmem.
97 1.1 mrg */
98 1.1 mrg
99 1.1 mrg struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
100 1.1 mrg int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
101 1.1 mrg
102 1.1 mrg /*
103 1.36 thorpej * Some supported CPUs in a given architecture don't support all
104 1.36 thorpej * of the things necessary to do idle page zero'ing efficiently.
105 1.36 thorpej * We therefore provide a way to disable it from machdep code here.
106 1.34 thorpej */
107 1.44 chs /*
108 1.44 chs * XXX disabled until we can find a way to do this without causing
109 1.95 wiz * problems for either CPU caches or DMA latency.
110 1.44 chs */
111 1.119 thorpej bool vm_page_zero_enable = false;
112 1.34 thorpej
113 1.34 thorpej /*
114 1.1 mrg * local variables
115 1.1 mrg */
116 1.1 mrg
117 1.1 mrg /*
118 1.88 thorpej * these variables record the values returned by vm_page_bootstrap,
119 1.88 thorpej * for debugging purposes. The implementation of uvm_pageboot_alloc
120 1.88 thorpej * and pmap_startup here also uses them internally.
121 1.88 thorpej */
122 1.88 thorpej
123 1.88 thorpej static vaddr_t virtual_space_start;
124 1.88 thorpej static vaddr_t virtual_space_end;
125 1.88 thorpej
126 1.88 thorpej /*
127 1.1 mrg * we use a hash table with only one bucket during bootup. we will
128 1.30 thorpej * later rehash (resize) the hash table once the allocator is ready.
129 1.30 thorpej * we static allocate the one bootstrap bucket below...
130 1.1 mrg */
131 1.1 mrg
132 1.1 mrg static struct pglist uvm_bootbucket;
133 1.1 mrg
134 1.1 mrg /*
135 1.60 thorpej * we allocate an initial number of page colors in uvm_page_init(),
136 1.60 thorpej * and remember them. We may re-color pages as cache sizes are
137 1.60 thorpej * discovered during the autoconfiguration phase. But we can never
138 1.60 thorpej * free the initial set of buckets, since they are allocated using
139 1.60 thorpej * uvm_pageboot_alloc().
140 1.60 thorpej */
141 1.60 thorpej
142 1.119 thorpej static bool have_recolored_pages /* = false */;
143 1.83 thorpej
144 1.83 thorpej MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
145 1.60 thorpej
146 1.91 yamt #ifdef DEBUG
147 1.91 yamt vaddr_t uvm_zerocheckkva;
148 1.91 yamt #endif /* DEBUG */
149 1.91 yamt
150 1.60 thorpej /*
151 1.124 ad * locks on the hash table. allocated in 32 byte chunks to try
152 1.124 ad * and reduce cache traffic between CPUs.
153 1.124 ad */
154 1.124 ad
155 1.124 ad #define UVM_HASHLOCK_CNT 32
156 1.124 ad #define uvm_hashlock(hash) \
157 1.124 ad (&uvm_hashlocks[(hash) & (UVM_HASHLOCK_CNT - 1)].lock)
158 1.124 ad
159 1.124 ad static union {
160 1.124 ad kmutex_t lock;
161 1.124 ad uint8_t pad[32];
162 1.124 ad } uvm_hashlocks[UVM_HASHLOCK_CNT] __aligned(32);
163 1.124 ad
164 1.124 ad /*
165 1.1 mrg * local prototypes
166 1.1 mrg */
167 1.1 mrg
168 1.97 junyoung static void uvm_pageinsert(struct vm_page *);
169 1.97 junyoung static void uvm_pageinsert_after(struct vm_page *, struct vm_page *);
170 1.97 junyoung static void uvm_pageremove(struct vm_page *);
171 1.1 mrg
172 1.1 mrg /*
173 1.1 mrg * inline functions
174 1.1 mrg */
175 1.1 mrg
176 1.1 mrg /*
177 1.1 mrg * uvm_pageinsert: insert a page in the object and the hash table
178 1.96 yamt * uvm_pageinsert_after: insert a page into the specified place in listq
179 1.1 mrg *
180 1.1 mrg * => caller must lock object
181 1.1 mrg * => caller must lock page queues
182 1.1 mrg * => call should have already set pg's object and offset pointers
183 1.1 mrg * and bumped the version counter
184 1.1 mrg */
185 1.1 mrg
186 1.109 perry inline static void
187 1.105 thorpej uvm_pageinsert_after(struct vm_page *pg, struct vm_page *where)
188 1.1 mrg {
189 1.7 mrg struct pglist *buck;
190 1.67 chs struct uvm_object *uobj = pg->uobject;
191 1.123 ad kmutex_t *lock;
192 1.123 ad u_int hash;
193 1.1 mrg
194 1.127 ad KASSERT(mutex_owned(&uobj->vmobjlock));
195 1.51 chs KASSERT((pg->flags & PG_TABLED) == 0);
196 1.96 yamt KASSERT(where == NULL || (where->flags & PG_TABLED));
197 1.96 yamt KASSERT(where == NULL || (where->uobject == uobj));
198 1.123 ad
199 1.123 ad hash = uvm_pagehash(uobj, pg->offset);
200 1.123 ad buck = &uvm.page_hash[hash];
201 1.123 ad lock = uvm_hashlock(hash);
202 1.123 ad mutex_spin_enter(lock);
203 1.67 chs TAILQ_INSERT_TAIL(buck, pg, hashq);
204 1.123 ad mutex_spin_exit(lock);
205 1.7 mrg
206 1.94 yamt if (UVM_OBJ_IS_VNODE(uobj)) {
207 1.94 yamt if (uobj->uo_npages == 0) {
208 1.94 yamt struct vnode *vp = (struct vnode *)uobj;
209 1.94 yamt
210 1.94 yamt vholdl(vp);
211 1.94 yamt }
212 1.94 yamt if (UVM_OBJ_IS_VTEXT(uobj)) {
213 1.126 ad atomic_inc_uint(&uvmexp.execpages);
214 1.94 yamt } else {
215 1.126 ad atomic_inc_uint(&uvmexp.filepages);
216 1.94 yamt }
217 1.86 yamt } else if (UVM_OBJ_IS_AOBJ(uobj)) {
218 1.126 ad atomic_inc_uint(&uvmexp.anonpages);
219 1.78 chs }
220 1.78 chs
221 1.96 yamt if (where)
222 1.96 yamt TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq);
223 1.96 yamt else
224 1.96 yamt TAILQ_INSERT_TAIL(&uobj->memq, pg, listq);
225 1.7 mrg pg->flags |= PG_TABLED;
226 1.67 chs uobj->uo_npages++;
227 1.1 mrg }
228 1.1 mrg
229 1.109 perry inline static void
230 1.105 thorpej uvm_pageinsert(struct vm_page *pg)
231 1.96 yamt {
232 1.96 yamt
233 1.96 yamt uvm_pageinsert_after(pg, NULL);
234 1.96 yamt }
235 1.96 yamt
236 1.1 mrg /*
237 1.1 mrg * uvm_page_remove: remove page from object and hash
238 1.1 mrg *
239 1.1 mrg * => caller must lock object
240 1.1 mrg * => caller must lock page queues
241 1.1 mrg */
242 1.1 mrg
243 1.109 perry static inline void
244 1.105 thorpej uvm_pageremove(struct vm_page *pg)
245 1.1 mrg {
246 1.7 mrg struct pglist *buck;
247 1.67 chs struct uvm_object *uobj = pg->uobject;
248 1.123 ad kmutex_t *lock;
249 1.123 ad u_int hash;
250 1.1 mrg
251 1.127 ad KASSERT(mutex_owned(&uobj->vmobjlock));
252 1.44 chs KASSERT(pg->flags & PG_TABLED);
253 1.123 ad
254 1.123 ad hash = uvm_pagehash(uobj, pg->offset);
255 1.123 ad buck = &uvm.page_hash[hash];
256 1.123 ad lock = uvm_hashlock(hash);
257 1.123 ad mutex_spin_enter(lock);
258 1.7 mrg TAILQ_REMOVE(buck, pg, hashq);
259 1.123 ad mutex_spin_exit(lock);
260 1.7 mrg
261 1.94 yamt if (UVM_OBJ_IS_VNODE(uobj)) {
262 1.94 yamt if (uobj->uo_npages == 1) {
263 1.94 yamt struct vnode *vp = (struct vnode *)uobj;
264 1.94 yamt
265 1.94 yamt holdrelel(vp);
266 1.94 yamt }
267 1.94 yamt if (UVM_OBJ_IS_VTEXT(uobj)) {
268 1.126 ad atomic_dec_uint(&uvmexp.execpages);
269 1.94 yamt } else {
270 1.126 ad atomic_dec_uint(&uvmexp.filepages);
271 1.94 yamt }
272 1.78 chs } else if (UVM_OBJ_IS_AOBJ(uobj)) {
273 1.126 ad atomic_dec_uint(&uvmexp.anonpages);
274 1.51 chs }
275 1.44 chs
276 1.7 mrg /* object should be locked */
277 1.67 chs uobj->uo_npages--;
278 1.67 chs TAILQ_REMOVE(&uobj->memq, pg, listq);
279 1.7 mrg pg->flags &= ~PG_TABLED;
280 1.7 mrg pg->uobject = NULL;
281 1.1 mrg }
282 1.1 mrg
283 1.60 thorpej static void
284 1.60 thorpej uvm_page_init_buckets(struct pgfreelist *pgfl)
285 1.60 thorpej {
286 1.60 thorpej int color, i;
287 1.60 thorpej
288 1.60 thorpej for (color = 0; color < uvmexp.ncolors; color++) {
289 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
290 1.93 simonb TAILQ_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
291 1.60 thorpej }
292 1.60 thorpej }
293 1.60 thorpej }
294 1.60 thorpej
295 1.1 mrg /*
296 1.1 mrg * uvm_page_init: init the page system. called from uvm_init().
297 1.62 chs *
298 1.1 mrg * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
299 1.1 mrg */
300 1.1 mrg
301 1.7 mrg void
302 1.105 thorpej uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
303 1.1 mrg {
304 1.60 thorpej vsize_t freepages, pagecount, bucketcount, n;
305 1.60 thorpej struct pgflbucket *bucketarray;
306 1.63 chs struct vm_page *pagearray;
307 1.81 thorpej int lcv;
308 1.81 thorpej u_int i;
309 1.14 eeh paddr_t paddr;
310 1.7 mrg
311 1.7 mrg /*
312 1.60 thorpej * init the page queues and page queue locks, except the free
313 1.60 thorpej * list; we allocate that later (with the initial vm_page
314 1.60 thorpej * structures).
315 1.7 mrg */
316 1.51 chs
317 1.113 yamt uvmpdpol_init();
318 1.127 ad mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
319 1.123 ad mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
320 1.7 mrg
321 1.7 mrg /*
322 1.51 chs * init the <obj,offset> => <page> hash table. for now
323 1.51 chs * we just have one bucket (the bootstrap bucket). later on we
324 1.30 thorpej * will allocate new buckets as we dynamically resize the hash table.
325 1.7 mrg */
326 1.7 mrg
327 1.7 mrg uvm.page_nhash = 1; /* 1 bucket */
328 1.44 chs uvm.page_hashmask = 0; /* mask for hash function */
329 1.7 mrg uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */
330 1.7 mrg TAILQ_INIT(uvm.page_hash); /* init hash table */
331 1.123 ad
332 1.123 ad /*
333 1.123 ad * init hashtable locks. these must be spinlocks, as they are
334 1.123 ad * called from sites in the pmap modules where we cannot block.
335 1.123 ad * if taking multiple locks, the order is: low numbered first,
336 1.123 ad * high numbered second.
337 1.123 ad */
338 1.123 ad
339 1.123 ad for (i = 0; i < UVM_HASHLOCK_CNT; i++)
340 1.124 ad mutex_init(&uvm_hashlocks[i].lock, MUTEX_SPIN, IPL_VM);
341 1.7 mrg
342 1.62 chs /*
343 1.51 chs * allocate vm_page structures.
344 1.7 mrg */
345 1.7 mrg
346 1.7 mrg /*
347 1.7 mrg * sanity check:
348 1.7 mrg * before calling this function the MD code is expected to register
349 1.7 mrg * some free RAM with the uvm_page_physload() function. our job
350 1.7 mrg * now is to allocate vm_page structures for this memory.
351 1.7 mrg */
352 1.7 mrg
353 1.7 mrg if (vm_nphysseg == 0)
354 1.42 mrg panic("uvm_page_bootstrap: no memory pre-allocated");
355 1.62 chs
356 1.7 mrg /*
357 1.62 chs * first calculate the number of free pages...
358 1.7 mrg *
359 1.7 mrg * note that we use start/end rather than avail_start/avail_end.
360 1.7 mrg * this allows us to allocate extra vm_page structures in case we
361 1.7 mrg * want to return some memory to the pool after booting.
362 1.7 mrg */
363 1.62 chs
364 1.7 mrg freepages = 0;
365 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
366 1.7 mrg freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
367 1.7 mrg
368 1.7 mrg /*
369 1.60 thorpej * Let MD code initialize the number of colors, or default
370 1.60 thorpej * to 1 color if MD code doesn't care.
371 1.60 thorpej */
372 1.60 thorpej if (uvmexp.ncolors == 0)
373 1.60 thorpej uvmexp.ncolors = 1;
374 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
375 1.60 thorpej
376 1.60 thorpej /*
377 1.7 mrg * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
378 1.7 mrg * use. for each page of memory we use we need a vm_page structure.
379 1.7 mrg * thus, the total number of pages we can use is the total size of
380 1.7 mrg * the memory divided by the PAGE_SIZE plus the size of the vm_page
381 1.7 mrg * structure. we add one to freepages as a fudge factor to avoid
382 1.7 mrg * truncation errors (since we can only allocate in terms of whole
383 1.7 mrg * pages).
384 1.7 mrg */
385 1.62 chs
386 1.60 thorpej bucketcount = uvmexp.ncolors * VM_NFREELIST;
387 1.15 chs pagecount = ((freepages + 1) << PAGE_SHIFT) /
388 1.7 mrg (PAGE_SIZE + sizeof(struct vm_page));
389 1.60 thorpej
390 1.67 chs bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
391 1.60 thorpej sizeof(struct pgflbucket)) + (pagecount *
392 1.60 thorpej sizeof(struct vm_page)));
393 1.60 thorpej pagearray = (struct vm_page *)(bucketarray + bucketcount);
394 1.60 thorpej
395 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
396 1.60 thorpej uvm.page_free[lcv].pgfl_buckets =
397 1.60 thorpej (bucketarray + (lcv * uvmexp.ncolors));
398 1.60 thorpej uvm_page_init_buckets(&uvm.page_free[lcv]);
399 1.60 thorpej }
400 1.13 perry memset(pagearray, 0, pagecount * sizeof(struct vm_page));
401 1.62 chs
402 1.7 mrg /*
403 1.51 chs * init the vm_page structures and put them in the correct place.
404 1.7 mrg */
405 1.7 mrg
406 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
407 1.7 mrg n = vm_physmem[lcv].end - vm_physmem[lcv].start;
408 1.51 chs
409 1.7 mrg /* set up page array pointers */
410 1.7 mrg vm_physmem[lcv].pgs = pagearray;
411 1.7 mrg pagearray += n;
412 1.7 mrg pagecount -= n;
413 1.7 mrg vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
414 1.7 mrg
415 1.13 perry /* init and free vm_pages (we've already zeroed them) */
416 1.7 mrg paddr = ptoa(vm_physmem[lcv].start);
417 1.7 mrg for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
418 1.7 mrg vm_physmem[lcv].pgs[i].phys_addr = paddr;
419 1.56 thorpej #ifdef __HAVE_VM_PAGE_MD
420 1.55 thorpej VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
421 1.56 thorpej #endif
422 1.7 mrg if (atop(paddr) >= vm_physmem[lcv].avail_start &&
423 1.7 mrg atop(paddr) <= vm_physmem[lcv].avail_end) {
424 1.7 mrg uvmexp.npages++;
425 1.7 mrg /* add page to free pool */
426 1.7 mrg uvm_pagefree(&vm_physmem[lcv].pgs[i]);
427 1.7 mrg }
428 1.7 mrg }
429 1.7 mrg }
430 1.44 chs
431 1.7 mrg /*
432 1.88 thorpej * pass up the values of virtual_space_start and
433 1.88 thorpej * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
434 1.88 thorpej * layers of the VM.
435 1.88 thorpej */
436 1.88 thorpej
437 1.88 thorpej *kvm_startp = round_page(virtual_space_start);
438 1.88 thorpej *kvm_endp = trunc_page(virtual_space_end);
439 1.91 yamt #ifdef DEBUG
440 1.91 yamt /*
441 1.91 yamt * steal kva for uvm_pagezerocheck().
442 1.91 yamt */
443 1.91 yamt uvm_zerocheckkva = *kvm_startp;
444 1.91 yamt *kvm_startp += PAGE_SIZE;
445 1.91 yamt #endif /* DEBUG */
446 1.88 thorpej
447 1.88 thorpej /*
448 1.51 chs * init various thresholds.
449 1.7 mrg */
450 1.51 chs
451 1.7 mrg uvmexp.reserve_pagedaemon = 1;
452 1.7 mrg uvmexp.reserve_kernel = 5;
453 1.7 mrg
454 1.7 mrg /*
455 1.51 chs * determine if we should zero pages in the idle loop.
456 1.34 thorpej */
457 1.51 chs
458 1.34 thorpej uvm.page_idle_zero = vm_page_zero_enable;
459 1.34 thorpej
460 1.34 thorpej /*
461 1.7 mrg * done!
462 1.7 mrg */
463 1.1 mrg
464 1.119 thorpej uvm.page_init_done = true;
465 1.1 mrg }
466 1.1 mrg
467 1.1 mrg /*
468 1.1 mrg * uvm_setpagesize: set the page size
469 1.62 chs *
470 1.1 mrg * => sets page_shift and page_mask from uvmexp.pagesize.
471 1.62 chs */
472 1.1 mrg
473 1.7 mrg void
474 1.105 thorpej uvm_setpagesize(void)
475 1.1 mrg {
476 1.85 thorpej
477 1.85 thorpej /*
478 1.85 thorpej * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
479 1.85 thorpej * to be a constant (indicated by being a non-zero value).
480 1.85 thorpej */
481 1.85 thorpej if (uvmexp.pagesize == 0) {
482 1.85 thorpej if (PAGE_SIZE == 0)
483 1.85 thorpej panic("uvm_setpagesize: uvmexp.pagesize not set");
484 1.85 thorpej uvmexp.pagesize = PAGE_SIZE;
485 1.85 thorpej }
486 1.7 mrg uvmexp.pagemask = uvmexp.pagesize - 1;
487 1.7 mrg if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
488 1.7 mrg panic("uvm_setpagesize: page size not a power of two");
489 1.7 mrg for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
490 1.7 mrg if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
491 1.7 mrg break;
492 1.1 mrg }
493 1.1 mrg
494 1.1 mrg /*
495 1.1 mrg * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
496 1.1 mrg */
497 1.1 mrg
498 1.14 eeh vaddr_t
499 1.105 thorpej uvm_pageboot_alloc(vsize_t size)
500 1.1 mrg {
501 1.119 thorpej static bool initialized = false;
502 1.14 eeh vaddr_t addr;
503 1.52 thorpej #if !defined(PMAP_STEAL_MEMORY)
504 1.52 thorpej vaddr_t vaddr;
505 1.14 eeh paddr_t paddr;
506 1.52 thorpej #endif
507 1.1 mrg
508 1.7 mrg /*
509 1.19 thorpej * on first call to this function, initialize ourselves.
510 1.7 mrg */
511 1.119 thorpej if (initialized == false) {
512 1.88 thorpej pmap_virtual_space(&virtual_space_start, &virtual_space_end);
513 1.1 mrg
514 1.7 mrg /* round it the way we like it */
515 1.88 thorpej virtual_space_start = round_page(virtual_space_start);
516 1.88 thorpej virtual_space_end = trunc_page(virtual_space_end);
517 1.19 thorpej
518 1.119 thorpej initialized = true;
519 1.7 mrg }
520 1.52 thorpej
521 1.52 thorpej /* round to page size */
522 1.52 thorpej size = round_page(size);
523 1.52 thorpej
524 1.52 thorpej #if defined(PMAP_STEAL_MEMORY)
525 1.52 thorpej
526 1.62 chs /*
527 1.62 chs * defer bootstrap allocation to MD code (it may want to allocate
528 1.52 thorpej * from a direct-mapped segment). pmap_steal_memory should adjust
529 1.88 thorpej * virtual_space_start/virtual_space_end if necessary.
530 1.52 thorpej */
531 1.52 thorpej
532 1.88 thorpej addr = pmap_steal_memory(size, &virtual_space_start,
533 1.88 thorpej &virtual_space_end);
534 1.52 thorpej
535 1.52 thorpej return(addr);
536 1.52 thorpej
537 1.52 thorpej #else /* !PMAP_STEAL_MEMORY */
538 1.1 mrg
539 1.7 mrg /*
540 1.7 mrg * allocate virtual memory for this request
541 1.7 mrg */
542 1.88 thorpej if (virtual_space_start == virtual_space_end ||
543 1.88 thorpej (virtual_space_end - virtual_space_start) < size)
544 1.19 thorpej panic("uvm_pageboot_alloc: out of virtual space");
545 1.20 thorpej
546 1.88 thorpej addr = virtual_space_start;
547 1.20 thorpej
548 1.20 thorpej #ifdef PMAP_GROWKERNEL
549 1.20 thorpej /*
550 1.20 thorpej * If the kernel pmap can't map the requested space,
551 1.20 thorpej * then allocate more resources for it.
552 1.20 thorpej */
553 1.20 thorpej if (uvm_maxkaddr < (addr + size)) {
554 1.20 thorpej uvm_maxkaddr = pmap_growkernel(addr + size);
555 1.20 thorpej if (uvm_maxkaddr < (addr + size))
556 1.20 thorpej panic("uvm_pageboot_alloc: pmap_growkernel() failed");
557 1.19 thorpej }
558 1.20 thorpej #endif
559 1.1 mrg
560 1.88 thorpej virtual_space_start += size;
561 1.1 mrg
562 1.9 thorpej /*
563 1.7 mrg * allocate and mapin physical pages to back new virtual pages
564 1.7 mrg */
565 1.1 mrg
566 1.7 mrg for (vaddr = round_page(addr) ; vaddr < addr + size ;
567 1.7 mrg vaddr += PAGE_SIZE) {
568 1.1 mrg
569 1.7 mrg if (!uvm_page_physget(&paddr))
570 1.7 mrg panic("uvm_pageboot_alloc: out of memory");
571 1.1 mrg
572 1.23 thorpej /*
573 1.23 thorpej * Note this memory is no longer managed, so using
574 1.23 thorpej * pmap_kenter is safe.
575 1.23 thorpej */
576 1.7 mrg pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
577 1.7 mrg }
578 1.66 chris pmap_update(pmap_kernel());
579 1.7 mrg return(addr);
580 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
581 1.1 mrg }
582 1.1 mrg
583 1.1 mrg #if !defined(PMAP_STEAL_MEMORY)
584 1.1 mrg /*
585 1.1 mrg * uvm_page_physget: "steal" one page from the vm_physmem structure.
586 1.1 mrg *
587 1.1 mrg * => attempt to allocate it off the end of a segment in which the "avail"
588 1.1 mrg * values match the start/end values. if we can't do that, then we
589 1.1 mrg * will advance both values (making them equal, and removing some
590 1.1 mrg * vm_page structures from the non-avail area).
591 1.1 mrg * => return false if out of memory.
592 1.1 mrg */
593 1.1 mrg
594 1.28 drochner /* subroutine: try to allocate from memory chunks on the specified freelist */
595 1.118 thorpej static bool uvm_page_physget_freelist(paddr_t *, int);
596 1.28 drochner
597 1.118 thorpej static bool
598 1.105 thorpej uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
599 1.1 mrg {
600 1.7 mrg int lcv, x;
601 1.1 mrg
602 1.7 mrg /* pass 1: try allocating from a matching end */
603 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
604 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
605 1.1 mrg #else
606 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
607 1.1 mrg #endif
608 1.7 mrg {
609 1.1 mrg
610 1.119 thorpej if (uvm.page_init_done == true)
611 1.42 mrg panic("uvm_page_physget: called _after_ bootstrap");
612 1.1 mrg
613 1.28 drochner if (vm_physmem[lcv].free_list != freelist)
614 1.28 drochner continue;
615 1.28 drochner
616 1.7 mrg /* try from front */
617 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
618 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
619 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
620 1.7 mrg vm_physmem[lcv].avail_start++;
621 1.7 mrg vm_physmem[lcv].start++;
622 1.7 mrg /* nothing left? nuke it */
623 1.7 mrg if (vm_physmem[lcv].avail_start ==
624 1.7 mrg vm_physmem[lcv].end) {
625 1.7 mrg if (vm_nphysseg == 1)
626 1.89 wiz panic("uvm_page_physget: out of memory!");
627 1.7 mrg vm_nphysseg--;
628 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
629 1.7 mrg /* structure copy */
630 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
631 1.7 mrg }
632 1.119 thorpej return (true);
633 1.7 mrg }
634 1.7 mrg
635 1.7 mrg /* try from rear */
636 1.7 mrg if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
637 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
638 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
639 1.7 mrg vm_physmem[lcv].avail_end--;
640 1.7 mrg vm_physmem[lcv].end--;
641 1.7 mrg /* nothing left? nuke it */
642 1.7 mrg if (vm_physmem[lcv].avail_end ==
643 1.7 mrg vm_physmem[lcv].start) {
644 1.7 mrg if (vm_nphysseg == 1)
645 1.42 mrg panic("uvm_page_physget: out of memory!");
646 1.7 mrg vm_nphysseg--;
647 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
648 1.7 mrg /* structure copy */
649 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
650 1.7 mrg }
651 1.119 thorpej return (true);
652 1.7 mrg }
653 1.7 mrg }
654 1.1 mrg
655 1.7 mrg /* pass2: forget about matching ends, just allocate something */
656 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
657 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
658 1.1 mrg #else
659 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
660 1.1 mrg #endif
661 1.7 mrg {
662 1.1 mrg
663 1.7 mrg /* any room in this bank? */
664 1.7 mrg if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
665 1.7 mrg continue; /* nope */
666 1.7 mrg
667 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
668 1.7 mrg vm_physmem[lcv].avail_start++;
669 1.7 mrg /* truncate! */
670 1.7 mrg vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
671 1.7 mrg
672 1.7 mrg /* nothing left? nuke it */
673 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
674 1.7 mrg if (vm_nphysseg == 1)
675 1.42 mrg panic("uvm_page_physget: out of memory!");
676 1.7 mrg vm_nphysseg--;
677 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
678 1.7 mrg /* structure copy */
679 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
680 1.7 mrg }
681 1.119 thorpej return (true);
682 1.7 mrg }
683 1.1 mrg
684 1.119 thorpej return (false); /* whoops! */
685 1.28 drochner }
686 1.28 drochner
687 1.118 thorpej bool
688 1.105 thorpej uvm_page_physget(paddr_t *paddrp)
689 1.28 drochner {
690 1.28 drochner int i;
691 1.28 drochner
692 1.28 drochner /* try in the order of freelist preference */
693 1.28 drochner for (i = 0; i < VM_NFREELIST; i++)
694 1.119 thorpej if (uvm_page_physget_freelist(paddrp, i) == true)
695 1.119 thorpej return (true);
696 1.119 thorpej return (false);
697 1.1 mrg }
698 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
699 1.1 mrg
700 1.1 mrg /*
701 1.1 mrg * uvm_page_physload: load physical memory into VM system
702 1.1 mrg *
703 1.1 mrg * => all args are PFs
704 1.1 mrg * => all pages in start/end get vm_page structures
705 1.1 mrg * => areas marked by avail_start/avail_end get added to the free page pool
706 1.1 mrg * => we are limited to VM_PHYSSEG_MAX physical memory segments
707 1.1 mrg */
708 1.1 mrg
709 1.7 mrg void
710 1.105 thorpej uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
711 1.105 thorpej paddr_t avail_end, int free_list)
712 1.1 mrg {
713 1.14 eeh int preload, lcv;
714 1.14 eeh psize_t npages;
715 1.7 mrg struct vm_page *pgs;
716 1.7 mrg struct vm_physseg *ps;
717 1.7 mrg
718 1.7 mrg if (uvmexp.pagesize == 0)
719 1.42 mrg panic("uvm_page_physload: page size not set!");
720 1.12 thorpej if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
721 1.79 provos panic("uvm_page_physload: bad free list %d", free_list);
722 1.26 drochner if (start >= end)
723 1.26 drochner panic("uvm_page_physload: start >= end");
724 1.12 thorpej
725 1.7 mrg /*
726 1.7 mrg * do we have room?
727 1.7 mrg */
728 1.67 chs
729 1.7 mrg if (vm_nphysseg == VM_PHYSSEG_MAX) {
730 1.42 mrg printf("uvm_page_physload: unable to load physical memory "
731 1.7 mrg "segment\n");
732 1.37 soda printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
733 1.37 soda VM_PHYSSEG_MAX, (long long)start, (long long)end);
734 1.43 christos printf("\tincrease VM_PHYSSEG_MAX\n");
735 1.7 mrg return;
736 1.7 mrg }
737 1.7 mrg
738 1.7 mrg /*
739 1.7 mrg * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
740 1.7 mrg * called yet, so malloc is not available).
741 1.7 mrg */
742 1.67 chs
743 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
744 1.7 mrg if (vm_physmem[lcv].pgs)
745 1.7 mrg break;
746 1.7 mrg }
747 1.7 mrg preload = (lcv == vm_nphysseg);
748 1.7 mrg
749 1.7 mrg /*
750 1.7 mrg * if VM is already running, attempt to malloc() vm_page structures
751 1.7 mrg */
752 1.67 chs
753 1.7 mrg if (!preload) {
754 1.1 mrg #if defined(VM_PHYSSEG_NOADD)
755 1.42 mrg panic("uvm_page_physload: tried to add RAM after vm_mem_init");
756 1.1 mrg #else
757 1.7 mrg /* XXXCDC: need some sort of lockout for this case */
758 1.14 eeh paddr_t paddr;
759 1.7 mrg npages = end - start; /* # of pages */
760 1.40 thorpej pgs = malloc(sizeof(struct vm_page) * npages,
761 1.40 thorpej M_VMPAGE, M_NOWAIT);
762 1.7 mrg if (pgs == NULL) {
763 1.42 mrg printf("uvm_page_physload: can not malloc vm_page "
764 1.7 mrg "structs for segment\n");
765 1.7 mrg printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
766 1.7 mrg return;
767 1.7 mrg }
768 1.12 thorpej /* zero data, init phys_addr and free_list, and free pages */
769 1.13 perry memset(pgs, 0, sizeof(struct vm_page) * npages);
770 1.7 mrg for (lcv = 0, paddr = ptoa(start) ;
771 1.7 mrg lcv < npages ; lcv++, paddr += PAGE_SIZE) {
772 1.7 mrg pgs[lcv].phys_addr = paddr;
773 1.12 thorpej pgs[lcv].free_list = free_list;
774 1.7 mrg if (atop(paddr) >= avail_start &&
775 1.7 mrg atop(paddr) <= avail_end)
776 1.8 chuck uvm_pagefree(&pgs[lcv]);
777 1.7 mrg }
778 1.7 mrg /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
779 1.7 mrg /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
780 1.1 mrg #endif
781 1.7 mrg } else {
782 1.7 mrg pgs = NULL;
783 1.7 mrg npages = 0;
784 1.7 mrg }
785 1.1 mrg
786 1.7 mrg /*
787 1.7 mrg * now insert us in the proper place in vm_physmem[]
788 1.7 mrg */
789 1.1 mrg
790 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
791 1.7 mrg /* random: put it at the end (easy!) */
792 1.7 mrg ps = &vm_physmem[vm_nphysseg];
793 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
794 1.7 mrg {
795 1.7 mrg int x;
796 1.7 mrg /* sort by address for binary search */
797 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
798 1.7 mrg if (start < vm_physmem[lcv].start)
799 1.7 mrg break;
800 1.7 mrg ps = &vm_physmem[lcv];
801 1.7 mrg /* move back other entries, if necessary ... */
802 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
803 1.7 mrg /* structure copy */
804 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
805 1.7 mrg }
806 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
807 1.7 mrg {
808 1.7 mrg int x;
809 1.7 mrg /* sort by largest segment first */
810 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
811 1.7 mrg if ((end - start) >
812 1.7 mrg (vm_physmem[lcv].end - vm_physmem[lcv].start))
813 1.7 mrg break;
814 1.7 mrg ps = &vm_physmem[lcv];
815 1.7 mrg /* move back other entries, if necessary ... */
816 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
817 1.7 mrg /* structure copy */
818 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
819 1.7 mrg }
820 1.1 mrg #else
821 1.42 mrg panic("uvm_page_physload: unknown physseg strategy selected!");
822 1.1 mrg #endif
823 1.1 mrg
824 1.7 mrg ps->start = start;
825 1.7 mrg ps->end = end;
826 1.7 mrg ps->avail_start = avail_start;
827 1.7 mrg ps->avail_end = avail_end;
828 1.7 mrg if (preload) {
829 1.7 mrg ps->pgs = NULL;
830 1.7 mrg } else {
831 1.7 mrg ps->pgs = pgs;
832 1.7 mrg ps->lastpg = pgs + npages - 1;
833 1.7 mrg }
834 1.12 thorpej ps->free_list = free_list;
835 1.7 mrg vm_nphysseg++;
836 1.7 mrg
837 1.113 yamt if (!preload) {
838 1.7 mrg uvm_page_rehash();
839 1.113 yamt uvmpdpol_reinit();
840 1.113 yamt }
841 1.1 mrg }
842 1.1 mrg
843 1.1 mrg /*
844 1.1 mrg * uvm_page_rehash: reallocate hash table based on number of free pages.
845 1.1 mrg */
846 1.1 mrg
847 1.7 mrg void
848 1.105 thorpej uvm_page_rehash(void)
849 1.1 mrg {
850 1.123 ad int freepages, lcv, bucketcount, oldcount, i;
851 1.7 mrg struct pglist *newbuckets, *oldbuckets;
852 1.7 mrg struct vm_page *pg;
853 1.30 thorpej size_t newsize, oldsize;
854 1.7 mrg
855 1.7 mrg /*
856 1.7 mrg * compute number of pages that can go in the free pool
857 1.7 mrg */
858 1.7 mrg
859 1.7 mrg freepages = 0;
860 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
861 1.7 mrg freepages +=
862 1.7 mrg (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
863 1.7 mrg
864 1.7 mrg /*
865 1.7 mrg * compute number of buckets needed for this number of pages
866 1.7 mrg */
867 1.7 mrg
868 1.7 mrg bucketcount = 1;
869 1.7 mrg while (bucketcount < freepages)
870 1.7 mrg bucketcount = bucketcount * 2;
871 1.7 mrg
872 1.7 mrg /*
873 1.30 thorpej * compute the size of the current table and new table.
874 1.7 mrg */
875 1.7 mrg
876 1.30 thorpej oldbuckets = uvm.page_hash;
877 1.30 thorpej oldcount = uvm.page_nhash;
878 1.30 thorpej oldsize = round_page(sizeof(struct pglist) * oldcount);
879 1.30 thorpej newsize = round_page(sizeof(struct pglist) * bucketcount);
880 1.30 thorpej
881 1.30 thorpej /*
882 1.30 thorpej * allocate the new buckets
883 1.30 thorpej */
884 1.30 thorpej
885 1.102 yamt newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize,
886 1.102 yamt 0, UVM_KMF_WIRED);
887 1.7 mrg if (newbuckets == NULL) {
888 1.30 thorpej printf("uvm_page_physrehash: WARNING: could not grow page "
889 1.7 mrg "hash table\n");
890 1.7 mrg return;
891 1.7 mrg }
892 1.7 mrg for (lcv = 0 ; lcv < bucketcount ; lcv++)
893 1.7 mrg TAILQ_INIT(&newbuckets[lcv]);
894 1.7 mrg
895 1.7 mrg /*
896 1.7 mrg * now replace the old buckets with the new ones and rehash everything
897 1.7 mrg */
898 1.7 mrg
899 1.123 ad for (i = 0; i < UVM_HASHLOCK_CNT; i++)
900 1.124 ad mutex_spin_enter(&uvm_hashlocks[i].lock);
901 1.123 ad
902 1.7 mrg uvm.page_hash = newbuckets;
903 1.7 mrg uvm.page_nhash = bucketcount;
904 1.7 mrg uvm.page_hashmask = bucketcount - 1; /* power of 2 */
905 1.7 mrg
906 1.7 mrg /* ... and rehash */
907 1.7 mrg for (lcv = 0 ; lcv < oldcount ; lcv++) {
908 1.7 mrg while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
909 1.7 mrg TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
910 1.7 mrg TAILQ_INSERT_TAIL(
911 1.7 mrg &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
912 1.7 mrg pg, hashq);
913 1.7 mrg }
914 1.7 mrg }
915 1.123 ad
916 1.123 ad for (i = 0; i < UVM_HASHLOCK_CNT; i++)
917 1.124 ad mutex_spin_exit(&uvm_hashlocks[i].lock);
918 1.7 mrg
919 1.7 mrg /*
920 1.30 thorpej * free old bucket array if is not the boot-time table
921 1.7 mrg */
922 1.7 mrg
923 1.7 mrg if (oldbuckets != &uvm_bootbucket)
924 1.102 yamt uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize,
925 1.102 yamt UVM_KMF_WIRED);
926 1.1 mrg }
927 1.1 mrg
928 1.60 thorpej /*
929 1.60 thorpej * uvm_page_recolor: Recolor the pages if the new bucket count is
930 1.60 thorpej * larger than the old one.
931 1.60 thorpej */
932 1.60 thorpej
933 1.60 thorpej void
934 1.60 thorpej uvm_page_recolor(int newncolors)
935 1.60 thorpej {
936 1.60 thorpej struct pgflbucket *bucketarray, *oldbucketarray;
937 1.60 thorpej struct pgfreelist pgfl;
938 1.63 chs struct vm_page *pg;
939 1.60 thorpej vsize_t bucketcount;
940 1.123 ad int lcv, color, i, ocolors;
941 1.60 thorpej
942 1.60 thorpej if (newncolors <= uvmexp.ncolors)
943 1.60 thorpej return;
944 1.77 wrstuden
945 1.119 thorpej if (uvm.page_init_done == false) {
946 1.77 wrstuden uvmexp.ncolors = newncolors;
947 1.77 wrstuden return;
948 1.77 wrstuden }
949 1.60 thorpej
950 1.60 thorpej bucketcount = newncolors * VM_NFREELIST;
951 1.60 thorpej bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
952 1.60 thorpej M_VMPAGE, M_NOWAIT);
953 1.60 thorpej if (bucketarray == NULL) {
954 1.60 thorpej printf("WARNING: unable to allocate %ld page color buckets\n",
955 1.60 thorpej (long) bucketcount);
956 1.60 thorpej return;
957 1.60 thorpej }
958 1.60 thorpej
959 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
960 1.60 thorpej
961 1.60 thorpej /* Make sure we should still do this. */
962 1.60 thorpej if (newncolors <= uvmexp.ncolors) {
963 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
964 1.60 thorpej free(bucketarray, M_VMPAGE);
965 1.60 thorpej return;
966 1.60 thorpej }
967 1.60 thorpej
968 1.60 thorpej oldbucketarray = uvm.page_free[0].pgfl_buckets;
969 1.60 thorpej ocolors = uvmexp.ncolors;
970 1.60 thorpej
971 1.60 thorpej uvmexp.ncolors = newncolors;
972 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
973 1.60 thorpej
974 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
975 1.60 thorpej pgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
976 1.60 thorpej uvm_page_init_buckets(&pgfl);
977 1.60 thorpej for (color = 0; color < ocolors; color++) {
978 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
979 1.60 thorpej while ((pg = TAILQ_FIRST(&uvm.page_free[
980 1.60 thorpej lcv].pgfl_buckets[color].pgfl_queues[i]))
981 1.60 thorpej != NULL) {
982 1.60 thorpej TAILQ_REMOVE(&uvm.page_free[
983 1.60 thorpej lcv].pgfl_buckets[
984 1.60 thorpej color].pgfl_queues[i], pg, pageq);
985 1.60 thorpej TAILQ_INSERT_TAIL(&pgfl.pgfl_buckets[
986 1.60 thorpej VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
987 1.60 thorpej i], pg, pageq);
988 1.60 thorpej }
989 1.60 thorpej }
990 1.60 thorpej }
991 1.60 thorpej uvm.page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
992 1.60 thorpej }
993 1.60 thorpej
994 1.60 thorpej if (have_recolored_pages) {
995 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
996 1.60 thorpej free(oldbucketarray, M_VMPAGE);
997 1.60 thorpej return;
998 1.60 thorpej }
999 1.60 thorpej
1000 1.119 thorpej have_recolored_pages = true;
1001 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1002 1.60 thorpej }
1003 1.1 mrg
1004 1.1 mrg /*
1005 1.54 thorpej * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
1006 1.54 thorpej */
1007 1.54 thorpej
1008 1.114 thorpej static struct vm_page *
1009 1.54 thorpej uvm_pagealloc_pgfl(struct pgfreelist *pgfl, int try1, int try2,
1010 1.69 simonb int *trycolorp)
1011 1.54 thorpej {
1012 1.54 thorpej struct pglist *freeq;
1013 1.54 thorpej struct vm_page *pg;
1014 1.58 enami int color, trycolor = *trycolorp;
1015 1.54 thorpej
1016 1.130 ad KASSERT(mutex_owned(&uvm_fpageqlock));
1017 1.130 ad
1018 1.58 enami color = trycolor;
1019 1.58 enami do {
1020 1.54 thorpej if ((pg = TAILQ_FIRST((freeq =
1021 1.54 thorpej &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL)
1022 1.54 thorpej goto gotit;
1023 1.54 thorpej if ((pg = TAILQ_FIRST((freeq =
1024 1.54 thorpej &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL)
1025 1.54 thorpej goto gotit;
1026 1.60 thorpej color = (color + 1) & uvmexp.colormask;
1027 1.58 enami } while (color != trycolor);
1028 1.54 thorpej
1029 1.54 thorpej return (NULL);
1030 1.54 thorpej
1031 1.54 thorpej gotit:
1032 1.54 thorpej TAILQ_REMOVE(freeq, pg, pageq);
1033 1.54 thorpej uvmexp.free--;
1034 1.54 thorpej
1035 1.54 thorpej /* update zero'd page count */
1036 1.54 thorpej if (pg->flags & PG_ZERO)
1037 1.54 thorpej uvmexp.zeropages--;
1038 1.54 thorpej
1039 1.54 thorpej if (color == trycolor)
1040 1.54 thorpej uvmexp.colorhit++;
1041 1.54 thorpej else {
1042 1.54 thorpej uvmexp.colormiss++;
1043 1.54 thorpej *trycolorp = color;
1044 1.54 thorpej }
1045 1.54 thorpej
1046 1.54 thorpej return (pg);
1047 1.54 thorpej }
1048 1.54 thorpej
1049 1.54 thorpej /*
1050 1.12 thorpej * uvm_pagealloc_strat: allocate vm_page from a particular free list.
1051 1.1 mrg *
1052 1.1 mrg * => return null if no pages free
1053 1.1 mrg * => wake up pagedaemon if number of free pages drops below low water mark
1054 1.1 mrg * => if obj != NULL, obj must be locked (to put in hash)
1055 1.1 mrg * => if anon != NULL, anon must be locked (to put in anon)
1056 1.1 mrg * => only one of obj or anon can be non-null
1057 1.1 mrg * => caller must activate/deactivate page if it is not wired.
1058 1.12 thorpej * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
1059 1.34 thorpej * => policy decision: it is more important to pull a page off of the
1060 1.34 thorpej * appropriate priority free list than it is to get a zero'd or
1061 1.34 thorpej * unknown contents page. This is because we live with the
1062 1.34 thorpej * consequences of a bad free list decision for the entire
1063 1.34 thorpej * lifetime of the page, e.g. if the page comes from memory that
1064 1.34 thorpej * is slower to access.
1065 1.1 mrg */
1066 1.1 mrg
1067 1.7 mrg struct vm_page *
1068 1.105 thorpej uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
1069 1.105 thorpej int flags, int strat, int free_list)
1070 1.1 mrg {
1071 1.123 ad int lcv, try1, try2, zeroit = 0, color;
1072 1.7 mrg struct vm_page *pg;
1073 1.118 thorpej bool use_reserve;
1074 1.1 mrg
1075 1.44 chs KASSERT(obj == NULL || anon == NULL);
1076 1.113 yamt KASSERT(anon == NULL || off == 0);
1077 1.44 chs KASSERT(off == trunc_page(off));
1078 1.127 ad KASSERT(obj == NULL || mutex_owned(&obj->vmobjlock));
1079 1.127 ad KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
1080 1.48 thorpej
1081 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1082 1.1 mrg
1083 1.7 mrg /*
1084 1.54 thorpej * This implements a global round-robin page coloring
1085 1.54 thorpej * algorithm.
1086 1.54 thorpej *
1087 1.95 wiz * XXXJRT: Should we make the `nextcolor' per-CPU?
1088 1.54 thorpej * XXXJRT: What about virtually-indexed caches?
1089 1.54 thorpej */
1090 1.67 chs
1091 1.54 thorpej color = uvm.page_free_nextcolor;
1092 1.54 thorpej
1093 1.54 thorpej /*
1094 1.7 mrg * check to see if we need to generate some free pages waking
1095 1.7 mrg * the pagedaemon.
1096 1.7 mrg */
1097 1.7 mrg
1098 1.113 yamt uvm_kick_pdaemon();
1099 1.7 mrg
1100 1.7 mrg /*
1101 1.7 mrg * fail if any of these conditions is true:
1102 1.7 mrg * [1] there really are no free pages, or
1103 1.7 mrg * [2] only kernel "reserved" pages remain and
1104 1.7 mrg * the page isn't being allocated to a kernel object.
1105 1.7 mrg * [3] only pagedaemon "reserved" pages remain and
1106 1.7 mrg * the requestor isn't the pagedaemon.
1107 1.7 mrg */
1108 1.7 mrg
1109 1.18 chs use_reserve = (flags & UVM_PGA_USERESERVE) ||
1110 1.22 thorpej (obj && UVM_OBJ_IS_KERN_OBJECT(obj));
1111 1.18 chs if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
1112 1.7 mrg (uvmexp.free <= uvmexp.reserve_pagedaemon &&
1113 1.122 ad !(use_reserve && curlwp == uvm.pagedaemon_lwp)))
1114 1.12 thorpej goto fail;
1115 1.12 thorpej
1116 1.34 thorpej #if PGFL_NQUEUES != 2
1117 1.34 thorpej #error uvm_pagealloc_strat needs to be updated
1118 1.34 thorpej #endif
1119 1.34 thorpej
1120 1.34 thorpej /*
1121 1.34 thorpej * If we want a zero'd page, try the ZEROS queue first, otherwise
1122 1.34 thorpej * we try the UNKNOWN queue first.
1123 1.34 thorpej */
1124 1.34 thorpej if (flags & UVM_PGA_ZERO) {
1125 1.34 thorpej try1 = PGFL_ZEROS;
1126 1.34 thorpej try2 = PGFL_UNKNOWN;
1127 1.34 thorpej } else {
1128 1.34 thorpej try1 = PGFL_UNKNOWN;
1129 1.34 thorpej try2 = PGFL_ZEROS;
1130 1.34 thorpej }
1131 1.34 thorpej
1132 1.12 thorpej again:
1133 1.12 thorpej switch (strat) {
1134 1.12 thorpej case UVM_PGA_STRAT_NORMAL:
1135 1.12 thorpej /* Check all freelists in descending priority order. */
1136 1.12 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1137 1.54 thorpej pg = uvm_pagealloc_pgfl(&uvm.page_free[lcv],
1138 1.54 thorpej try1, try2, &color);
1139 1.54 thorpej if (pg != NULL)
1140 1.12 thorpej goto gotit;
1141 1.12 thorpej }
1142 1.12 thorpej
1143 1.12 thorpej /* No pages free! */
1144 1.12 thorpej goto fail;
1145 1.12 thorpej
1146 1.12 thorpej case UVM_PGA_STRAT_ONLY:
1147 1.12 thorpej case UVM_PGA_STRAT_FALLBACK:
1148 1.12 thorpej /* Attempt to allocate from the specified free list. */
1149 1.44 chs KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1150 1.54 thorpej pg = uvm_pagealloc_pgfl(&uvm.page_free[free_list],
1151 1.54 thorpej try1, try2, &color);
1152 1.54 thorpej if (pg != NULL)
1153 1.12 thorpej goto gotit;
1154 1.12 thorpej
1155 1.12 thorpej /* Fall back, if possible. */
1156 1.12 thorpej if (strat == UVM_PGA_STRAT_FALLBACK) {
1157 1.12 thorpej strat = UVM_PGA_STRAT_NORMAL;
1158 1.12 thorpej goto again;
1159 1.12 thorpej }
1160 1.12 thorpej
1161 1.12 thorpej /* No pages free! */
1162 1.12 thorpej goto fail;
1163 1.12 thorpej
1164 1.12 thorpej default:
1165 1.12 thorpej panic("uvm_pagealloc_strat: bad strat %d", strat);
1166 1.12 thorpej /* NOTREACHED */
1167 1.7 mrg }
1168 1.7 mrg
1169 1.12 thorpej gotit:
1170 1.54 thorpej /*
1171 1.54 thorpej * We now know which color we actually allocated from; set
1172 1.54 thorpej * the next color accordingly.
1173 1.54 thorpej */
1174 1.67 chs
1175 1.60 thorpej uvm.page_free_nextcolor = (color + 1) & uvmexp.colormask;
1176 1.34 thorpej
1177 1.34 thorpej /*
1178 1.34 thorpej * update allocation statistics and remember if we have to
1179 1.34 thorpej * zero the page
1180 1.34 thorpej */
1181 1.67 chs
1182 1.34 thorpej if (flags & UVM_PGA_ZERO) {
1183 1.34 thorpej if (pg->flags & PG_ZERO) {
1184 1.34 thorpej uvmexp.pga_zerohit++;
1185 1.34 thorpej zeroit = 0;
1186 1.34 thorpej } else {
1187 1.34 thorpej uvmexp.pga_zeromiss++;
1188 1.34 thorpej zeroit = 1;
1189 1.34 thorpej }
1190 1.34 thorpej }
1191 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1192 1.7 mrg
1193 1.7 mrg pg->offset = off;
1194 1.7 mrg pg->uobject = obj;
1195 1.7 mrg pg->uanon = anon;
1196 1.7 mrg pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1197 1.7 mrg if (anon) {
1198 1.103 yamt anon->an_page = pg;
1199 1.7 mrg pg->pqflags = PQ_ANON;
1200 1.126 ad atomic_inc_uint(&uvmexp.anonpages);
1201 1.7 mrg } else {
1202 1.67 chs if (obj) {
1203 1.7 mrg uvm_pageinsert(pg);
1204 1.67 chs }
1205 1.7 mrg pg->pqflags = 0;
1206 1.7 mrg }
1207 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1208 1.7 mrg pg->owner_tag = NULL;
1209 1.1 mrg #endif
1210 1.7 mrg UVM_PAGE_OWN(pg, "new alloc");
1211 1.33 thorpej
1212 1.33 thorpej if (flags & UVM_PGA_ZERO) {
1213 1.33 thorpej /*
1214 1.34 thorpej * A zero'd page is not clean. If we got a page not already
1215 1.34 thorpej * zero'd, then we have to zero it ourselves.
1216 1.33 thorpej */
1217 1.33 thorpej pg->flags &= ~PG_CLEAN;
1218 1.34 thorpej if (zeroit)
1219 1.34 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1220 1.33 thorpej }
1221 1.1 mrg
1222 1.7 mrg return(pg);
1223 1.12 thorpej
1224 1.12 thorpej fail:
1225 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1226 1.12 thorpej return (NULL);
1227 1.1 mrg }
1228 1.1 mrg
1229 1.1 mrg /*
1230 1.96 yamt * uvm_pagereplace: replace a page with another
1231 1.96 yamt *
1232 1.96 yamt * => object must be locked
1233 1.96 yamt */
1234 1.96 yamt
1235 1.96 yamt void
1236 1.105 thorpej uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
1237 1.96 yamt {
1238 1.97 junyoung
1239 1.96 yamt KASSERT((oldpg->flags & PG_TABLED) != 0);
1240 1.96 yamt KASSERT(oldpg->uobject != NULL);
1241 1.96 yamt KASSERT((newpg->flags & PG_TABLED) == 0);
1242 1.96 yamt KASSERT(newpg->uobject == NULL);
1243 1.127 ad KASSERT(mutex_owned(&oldpg->uobject->vmobjlock));
1244 1.96 yamt
1245 1.96 yamt newpg->uobject = oldpg->uobject;
1246 1.96 yamt newpg->offset = oldpg->offset;
1247 1.96 yamt
1248 1.96 yamt uvm_pageinsert_after(newpg, oldpg);
1249 1.96 yamt uvm_pageremove(oldpg);
1250 1.96 yamt }
1251 1.96 yamt
1252 1.96 yamt /*
1253 1.1 mrg * uvm_pagerealloc: reallocate a page from one object to another
1254 1.1 mrg *
1255 1.1 mrg * => both objects must be locked
1256 1.1 mrg */
1257 1.1 mrg
1258 1.7 mrg void
1259 1.105 thorpej uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1260 1.1 mrg {
1261 1.7 mrg /*
1262 1.7 mrg * remove it from the old object
1263 1.7 mrg */
1264 1.7 mrg
1265 1.7 mrg if (pg->uobject) {
1266 1.7 mrg uvm_pageremove(pg);
1267 1.7 mrg }
1268 1.7 mrg
1269 1.7 mrg /*
1270 1.7 mrg * put it in the new object
1271 1.7 mrg */
1272 1.7 mrg
1273 1.7 mrg if (newobj) {
1274 1.7 mrg pg->uobject = newobj;
1275 1.7 mrg pg->offset = newoff;
1276 1.7 mrg uvm_pageinsert(pg);
1277 1.7 mrg }
1278 1.1 mrg }
1279 1.1 mrg
1280 1.91 yamt #ifdef DEBUG
1281 1.91 yamt /*
1282 1.91 yamt * check if page is zero-filled
1283 1.91 yamt *
1284 1.91 yamt * - called with free page queue lock held.
1285 1.91 yamt */
1286 1.91 yamt void
1287 1.91 yamt uvm_pagezerocheck(struct vm_page *pg)
1288 1.91 yamt {
1289 1.91 yamt int *p, *ep;
1290 1.91 yamt
1291 1.91 yamt KASSERT(uvm_zerocheckkva != 0);
1292 1.123 ad KASSERT(mutex_owned(&uvm_fpageqlock));
1293 1.91 yamt
1294 1.91 yamt /*
1295 1.91 yamt * XXX assuming pmap_kenter_pa and pmap_kremove never call
1296 1.91 yamt * uvm page allocator.
1297 1.91 yamt *
1298 1.95 wiz * it might be better to have "CPU-local temporary map" pmap interface.
1299 1.91 yamt */
1300 1.91 yamt pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ);
1301 1.91 yamt p = (int *)uvm_zerocheckkva;
1302 1.91 yamt ep = (int *)((char *)p + PAGE_SIZE);
1303 1.92 yamt pmap_update(pmap_kernel());
1304 1.91 yamt while (p < ep) {
1305 1.91 yamt if (*p != 0)
1306 1.91 yamt panic("PG_ZERO page isn't zero-filled");
1307 1.91 yamt p++;
1308 1.91 yamt }
1309 1.91 yamt pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
1310 1.129 chris pmap_update(pmap_kernel());
1311 1.91 yamt }
1312 1.91 yamt #endif /* DEBUG */
1313 1.91 yamt
1314 1.1 mrg /*
1315 1.1 mrg * uvm_pagefree: free page
1316 1.1 mrg *
1317 1.1 mrg * => erase page's identity (i.e. remove from hash/object)
1318 1.1 mrg * => put page on free list
1319 1.1 mrg * => caller must lock owning object (either anon or uvm_object)
1320 1.1 mrg * => caller must lock page queues
1321 1.1 mrg * => assumes all valid mappings of pg are gone
1322 1.1 mrg */
1323 1.1 mrg
1324 1.44 chs void
1325 1.105 thorpej uvm_pagefree(struct vm_page *pg)
1326 1.1 mrg {
1327 1.90 yamt struct pglist *pgfl;
1328 1.118 thorpej bool iszero;
1329 1.67 chs
1330 1.44 chs #ifdef DEBUG
1331 1.44 chs if (pg->uobject == (void *)0xdeadbeef &&
1332 1.44 chs pg->uanon == (void *)0xdeadbeef) {
1333 1.79 provos panic("uvm_pagefree: freeing free page %p", pg);
1334 1.44 chs }
1335 1.91 yamt #endif /* DEBUG */
1336 1.44 chs
1337 1.123 ad KASSERT((pg->flags & PG_PAGEOUT) == 0);
1338 1.128 yamt KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
1339 1.128 yamt KASSERT(pg->uobject == NULL || mutex_owned(&pg->uobject->vmobjlock));
1340 1.127 ad KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1341 1.127 ad mutex_owned(&pg->uanon->an_lock));
1342 1.123 ad
1343 1.7 mrg /*
1344 1.67 chs * if the page is loaned, resolve the loan instead of freeing.
1345 1.7 mrg */
1346 1.7 mrg
1347 1.67 chs if (pg->loan_count) {
1348 1.70 chs KASSERT(pg->wire_count == 0);
1349 1.7 mrg
1350 1.7 mrg /*
1351 1.67 chs * if the page is owned by an anon then we just want to
1352 1.70 chs * drop anon ownership. the kernel will free the page when
1353 1.70 chs * it is done with it. if the page is owned by an object,
1354 1.70 chs * remove it from the object and mark it dirty for the benefit
1355 1.70 chs * of possible anon owners.
1356 1.70 chs *
1357 1.70 chs * regardless of previous ownership, wakeup any waiters,
1358 1.70 chs * unbusy the page, and we're done.
1359 1.7 mrg */
1360 1.7 mrg
1361 1.73 chs if (pg->uobject != NULL) {
1362 1.70 chs uvm_pageremove(pg);
1363 1.67 chs pg->flags &= ~PG_CLEAN;
1364 1.73 chs } else if (pg->uanon != NULL) {
1365 1.73 chs if ((pg->pqflags & PQ_ANON) == 0) {
1366 1.73 chs pg->loan_count--;
1367 1.73 chs } else {
1368 1.73 chs pg->pqflags &= ~PQ_ANON;
1369 1.126 ad atomic_dec_uint(&uvmexp.anonpages);
1370 1.73 chs }
1371 1.103 yamt pg->uanon->an_page = NULL;
1372 1.73 chs pg->uanon = NULL;
1373 1.67 chs }
1374 1.70 chs if (pg->flags & PG_WANTED) {
1375 1.70 chs wakeup(pg);
1376 1.70 chs }
1377 1.84 perseant pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
1378 1.70 chs #ifdef UVM_PAGE_TRKOWN
1379 1.70 chs pg->owner_tag = NULL;
1380 1.70 chs #endif
1381 1.73 chs if (pg->loan_count) {
1382 1.115 yamt KASSERT(pg->uobject == NULL);
1383 1.115 yamt if (pg->uanon == NULL) {
1384 1.115 yamt uvm_pagedequeue(pg);
1385 1.115 yamt }
1386 1.73 chs return;
1387 1.73 chs }
1388 1.67 chs }
1389 1.62 chs
1390 1.67 chs /*
1391 1.67 chs * remove page from its object or anon.
1392 1.67 chs */
1393 1.44 chs
1394 1.73 chs if (pg->uobject != NULL) {
1395 1.67 chs uvm_pageremove(pg);
1396 1.73 chs } else if (pg->uanon != NULL) {
1397 1.103 yamt pg->uanon->an_page = NULL;
1398 1.126 ad atomic_dec_uint(&uvmexp.anonpages);
1399 1.7 mrg }
1400 1.1 mrg
1401 1.7 mrg /*
1402 1.70 chs * now remove the page from the queues.
1403 1.7 mrg */
1404 1.7 mrg
1405 1.67 chs uvm_pagedequeue(pg);
1406 1.7 mrg
1407 1.7 mrg /*
1408 1.7 mrg * if the page was wired, unwire it now.
1409 1.7 mrg */
1410 1.44 chs
1411 1.34 thorpej if (pg->wire_count) {
1412 1.7 mrg pg->wire_count = 0;
1413 1.7 mrg uvmexp.wired--;
1414 1.44 chs }
1415 1.7 mrg
1416 1.7 mrg /*
1417 1.44 chs * and put on free queue
1418 1.7 mrg */
1419 1.7 mrg
1420 1.90 yamt iszero = (pg->flags & PG_ZERO);
1421 1.90 yamt pgfl = &uvm.page_free[uvm_page_lookup_freelist(pg)].
1422 1.90 yamt pgfl_buckets[VM_PGCOLOR_BUCKET(pg)].
1423 1.90 yamt pgfl_queues[iszero ? PGFL_ZEROS : PGFL_UNKNOWN];
1424 1.34 thorpej
1425 1.7 mrg pg->pqflags = PQ_FREE;
1426 1.3 chs #ifdef DEBUG
1427 1.7 mrg pg->uobject = (void *)0xdeadbeef;
1428 1.7 mrg pg->offset = 0xdeadbeef;
1429 1.7 mrg pg->uanon = (void *)0xdeadbeef;
1430 1.3 chs #endif
1431 1.90 yamt
1432 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1433 1.91 yamt
1434 1.91 yamt #ifdef DEBUG
1435 1.91 yamt if (iszero)
1436 1.91 yamt uvm_pagezerocheck(pg);
1437 1.91 yamt #endif /* DEBUG */
1438 1.91 yamt
1439 1.100 yamt TAILQ_INSERT_HEAD(pgfl, pg, pageq);
1440 1.7 mrg uvmexp.free++;
1441 1.90 yamt if (iszero)
1442 1.90 yamt uvmexp.zeropages++;
1443 1.34 thorpej
1444 1.34 thorpej if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1445 1.34 thorpej uvm.page_idle_zero = vm_page_zero_enable;
1446 1.34 thorpej
1447 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1448 1.44 chs }
1449 1.44 chs
1450 1.44 chs /*
1451 1.44 chs * uvm_page_unbusy: unbusy an array of pages.
1452 1.44 chs *
1453 1.44 chs * => pages must either all belong to the same object, or all belong to anons.
1454 1.44 chs * => if pages are object-owned, object must be locked.
1455 1.67 chs * => if pages are anon-owned, anons must be locked.
1456 1.76 enami * => caller must lock page queues if pages may be released.
1457 1.98 yamt * => caller must make sure that anon-owned pages are not PG_RELEASED.
1458 1.44 chs */
1459 1.44 chs
1460 1.44 chs void
1461 1.105 thorpej uvm_page_unbusy(struct vm_page **pgs, int npgs)
1462 1.44 chs {
1463 1.44 chs struct vm_page *pg;
1464 1.44 chs int i;
1465 1.44 chs UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1466 1.44 chs
1467 1.44 chs for (i = 0; i < npgs; i++) {
1468 1.44 chs pg = pgs[i];
1469 1.82 enami if (pg == NULL || pg == PGO_DONTCARE) {
1470 1.44 chs continue;
1471 1.44 chs }
1472 1.98 yamt
1473 1.127 ad KASSERT(pg->uobject == NULL ||
1474 1.127 ad mutex_owned(&pg->uobject->vmobjlock));
1475 1.127 ad KASSERT(pg->uobject != NULL ||
1476 1.128 yamt (pg->uanon != NULL && mutex_owned(&pg->uanon->an_lock)));
1477 1.98 yamt
1478 1.98 yamt KASSERT(pg->flags & PG_BUSY);
1479 1.98 yamt KASSERT((pg->flags & PG_PAGEOUT) == 0);
1480 1.44 chs if (pg->flags & PG_WANTED) {
1481 1.44 chs wakeup(pg);
1482 1.44 chs }
1483 1.44 chs if (pg->flags & PG_RELEASED) {
1484 1.44 chs UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1485 1.98 yamt KASSERT(pg->uobject != NULL ||
1486 1.98 yamt (pg->uanon != NULL && pg->uanon->an_ref > 0));
1487 1.67 chs pg->flags &= ~PG_RELEASED;
1488 1.67 chs uvm_pagefree(pg);
1489 1.44 chs } else {
1490 1.44 chs UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1491 1.44 chs pg->flags &= ~(PG_WANTED|PG_BUSY);
1492 1.44 chs UVM_PAGE_OWN(pg, NULL);
1493 1.44 chs }
1494 1.44 chs }
1495 1.1 mrg }
1496 1.1 mrg
1497 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1498 1.1 mrg /*
1499 1.1 mrg * uvm_page_own: set or release page ownership
1500 1.1 mrg *
1501 1.1 mrg * => this is a debugging function that keeps track of who sets PG_BUSY
1502 1.1 mrg * and where they do it. it can be used to track down problems
1503 1.1 mrg * such a process setting "PG_BUSY" and never releasing it.
1504 1.1 mrg * => page's object [if any] must be locked
1505 1.1 mrg * => if "tag" is NULL then we are releasing page ownership
1506 1.1 mrg */
1507 1.7 mrg void
1508 1.105 thorpej uvm_page_own(struct vm_page *pg, const char *tag)
1509 1.1 mrg {
1510 1.112 yamt struct uvm_object *uobj;
1511 1.112 yamt struct vm_anon *anon;
1512 1.112 yamt
1513 1.67 chs KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1514 1.67 chs
1515 1.112 yamt uobj = pg->uobject;
1516 1.112 yamt anon = pg->uanon;
1517 1.112 yamt if (uobj != NULL) {
1518 1.127 ad KASSERT(mutex_owned(&uobj->vmobjlock));
1519 1.112 yamt } else if (anon != NULL) {
1520 1.127 ad KASSERT(mutex_owned(&anon->an_lock));
1521 1.112 yamt }
1522 1.112 yamt
1523 1.112 yamt KASSERT((pg->flags & PG_WANTED) == 0);
1524 1.112 yamt
1525 1.7 mrg /* gain ownership? */
1526 1.7 mrg if (tag) {
1527 1.112 yamt KASSERT((pg->flags & PG_BUSY) != 0);
1528 1.7 mrg if (pg->owner_tag) {
1529 1.7 mrg printf("uvm_page_own: page %p already owned "
1530 1.7 mrg "by proc %d [%s]\n", pg,
1531 1.74 enami pg->owner, pg->owner_tag);
1532 1.7 mrg panic("uvm_page_own");
1533 1.7 mrg }
1534 1.7 mrg pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1535 1.120 perseant pg->lowner = (curlwp) ? curlwp->l_lid : (lwpid_t) -1;
1536 1.7 mrg pg->owner_tag = tag;
1537 1.7 mrg return;
1538 1.7 mrg }
1539 1.7 mrg
1540 1.7 mrg /* drop ownership */
1541 1.112 yamt KASSERT((pg->flags & PG_BUSY) == 0);
1542 1.7 mrg if (pg->owner_tag == NULL) {
1543 1.7 mrg printf("uvm_page_own: dropping ownership of an non-owned "
1544 1.7 mrg "page (%p)\n", pg);
1545 1.7 mrg panic("uvm_page_own");
1546 1.7 mrg }
1547 1.115 yamt if (!uvmpdpol_pageisqueued_p(pg)) {
1548 1.115 yamt KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
1549 1.115 yamt pg->wire_count > 0);
1550 1.115 yamt } else {
1551 1.115 yamt KASSERT(pg->wire_count == 0);
1552 1.115 yamt }
1553 1.7 mrg pg->owner_tag = NULL;
1554 1.1 mrg }
1555 1.1 mrg #endif
1556 1.34 thorpej
1557 1.34 thorpej /*
1558 1.34 thorpej * uvm_pageidlezero: zero free pages while the system is idle.
1559 1.34 thorpej *
1560 1.54 thorpej * => try to complete one color bucket at a time, to reduce our impact
1561 1.54 thorpej * on the CPU cache.
1562 1.121 yamt * => we loop until we either reach the target or there is a lwp ready to run.
1563 1.34 thorpej */
1564 1.34 thorpej void
1565 1.105 thorpej uvm_pageidlezero(void)
1566 1.34 thorpej {
1567 1.34 thorpej struct vm_page *pg;
1568 1.34 thorpej struct pgfreelist *pgfl;
1569 1.123 ad int free_list, firstbucket;
1570 1.54 thorpej static int nextbucket;
1571 1.54 thorpej
1572 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1573 1.58 enami firstbucket = nextbucket;
1574 1.58 enami do {
1575 1.121 yamt if (sched_curcpu_runnable_p()) {
1576 1.101 yamt goto quit;
1577 1.121 yamt }
1578 1.54 thorpej if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1579 1.119 thorpej uvm.page_idle_zero = false;
1580 1.101 yamt goto quit;
1581 1.34 thorpej }
1582 1.54 thorpej for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1583 1.54 thorpej pgfl = &uvm.page_free[free_list];
1584 1.54 thorpej while ((pg = TAILQ_FIRST(&pgfl->pgfl_buckets[
1585 1.54 thorpej nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1586 1.121 yamt if (sched_curcpu_runnable_p())
1587 1.101 yamt goto quit;
1588 1.54 thorpej
1589 1.54 thorpej TAILQ_REMOVE(&pgfl->pgfl_buckets[
1590 1.54 thorpej nextbucket].pgfl_queues[PGFL_UNKNOWN],
1591 1.54 thorpej pg, pageq);
1592 1.54 thorpej uvmexp.free--;
1593 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1594 1.34 thorpej #ifdef PMAP_PAGEIDLEZERO
1595 1.67 chs if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1596 1.67 chs
1597 1.54 thorpej /*
1598 1.54 thorpej * The machine-dependent code detected
1599 1.54 thorpej * some reason for us to abort zeroing
1600 1.54 thorpej * pages, probably because there is a
1601 1.54 thorpej * process now ready to run.
1602 1.54 thorpej */
1603 1.67 chs
1604 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1605 1.54 thorpej TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
1606 1.54 thorpej nextbucket].pgfl_queues[
1607 1.54 thorpej PGFL_UNKNOWN], pg, pageq);
1608 1.54 thorpej uvmexp.free++;
1609 1.54 thorpej uvmexp.zeroaborts++;
1610 1.101 yamt goto quit;
1611 1.54 thorpej }
1612 1.54 thorpej #else
1613 1.54 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1614 1.54 thorpej #endif /* PMAP_PAGEIDLEZERO */
1615 1.54 thorpej pg->flags |= PG_ZERO;
1616 1.54 thorpej
1617 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1618 1.54 thorpej TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
1619 1.54 thorpej nextbucket].pgfl_queues[PGFL_ZEROS],
1620 1.54 thorpej pg, pageq);
1621 1.54 thorpej uvmexp.free++;
1622 1.54 thorpej uvmexp.zeropages++;
1623 1.54 thorpej }
1624 1.41 thorpej }
1625 1.60 thorpej nextbucket = (nextbucket + 1) & uvmexp.colormask;
1626 1.58 enami } while (nextbucket != firstbucket);
1627 1.101 yamt quit:
1628 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1629 1.34 thorpej }
1630 1.110 yamt
1631 1.110 yamt /*
1632 1.110 yamt * uvm_pagelookup: look up a page
1633 1.110 yamt *
1634 1.110 yamt * => caller should lock object to keep someone from pulling the page
1635 1.110 yamt * out from under it
1636 1.110 yamt */
1637 1.110 yamt
1638 1.110 yamt struct vm_page *
1639 1.110 yamt uvm_pagelookup(struct uvm_object *obj, voff_t off)
1640 1.110 yamt {
1641 1.110 yamt struct vm_page *pg;
1642 1.110 yamt struct pglist *buck;
1643 1.123 ad kmutex_t *lock;
1644 1.123 ad u_int hash;
1645 1.110 yamt
1646 1.127 ad KASSERT(mutex_owned(&obj->vmobjlock));
1647 1.123 ad
1648 1.123 ad hash = uvm_pagehash(obj, off);
1649 1.123 ad buck = &uvm.page_hash[hash];
1650 1.123 ad lock = uvm_hashlock(hash);
1651 1.123 ad mutex_spin_enter(lock);
1652 1.110 yamt TAILQ_FOREACH(pg, buck, hashq) {
1653 1.110 yamt if (pg->uobject == obj && pg->offset == off) {
1654 1.110 yamt break;
1655 1.110 yamt }
1656 1.110 yamt }
1657 1.123 ad mutex_spin_exit(lock);
1658 1.110 yamt KASSERT(pg == NULL || obj->uo_npages != 0);
1659 1.110 yamt KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1660 1.110 yamt (pg->flags & PG_BUSY) != 0);
1661 1.110 yamt return(pg);
1662 1.110 yamt }
1663 1.110 yamt
1664 1.110 yamt /*
1665 1.110 yamt * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1666 1.110 yamt *
1667 1.110 yamt * => caller must lock page queues
1668 1.110 yamt */
1669 1.110 yamt
1670 1.110 yamt void
1671 1.110 yamt uvm_pagewire(struct vm_page *pg)
1672 1.110 yamt {
1673 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1674 1.113 yamt #if defined(READAHEAD_STATS)
1675 1.113 yamt if ((pg->pqflags & PQ_READAHEAD) != 0) {
1676 1.113 yamt uvm_ra_hit.ev_count++;
1677 1.113 yamt pg->pqflags &= ~PQ_READAHEAD;
1678 1.113 yamt }
1679 1.113 yamt #endif /* defined(READAHEAD_STATS) */
1680 1.110 yamt if (pg->wire_count == 0) {
1681 1.110 yamt uvm_pagedequeue(pg);
1682 1.110 yamt uvmexp.wired++;
1683 1.110 yamt }
1684 1.110 yamt pg->wire_count++;
1685 1.110 yamt }
1686 1.110 yamt
1687 1.110 yamt /*
1688 1.110 yamt * uvm_pageunwire: unwire the page.
1689 1.110 yamt *
1690 1.110 yamt * => activate if wire count goes to zero.
1691 1.110 yamt * => caller must lock page queues
1692 1.110 yamt */
1693 1.110 yamt
1694 1.110 yamt void
1695 1.110 yamt uvm_pageunwire(struct vm_page *pg)
1696 1.110 yamt {
1697 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1698 1.110 yamt pg->wire_count--;
1699 1.110 yamt if (pg->wire_count == 0) {
1700 1.111 yamt uvm_pageactivate(pg);
1701 1.110 yamt uvmexp.wired--;
1702 1.110 yamt }
1703 1.110 yamt }
1704 1.110 yamt
1705 1.110 yamt /*
1706 1.110 yamt * uvm_pagedeactivate: deactivate page
1707 1.110 yamt *
1708 1.110 yamt * => caller must lock page queues
1709 1.110 yamt * => caller must check to make sure page is not wired
1710 1.110 yamt * => object that page belongs to must be locked (so we can adjust pg->flags)
1711 1.110 yamt * => caller must clear the reference on the page before calling
1712 1.110 yamt */
1713 1.110 yamt
1714 1.110 yamt void
1715 1.110 yamt uvm_pagedeactivate(struct vm_page *pg)
1716 1.110 yamt {
1717 1.113 yamt
1718 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1719 1.113 yamt KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
1720 1.113 yamt uvmpdpol_pagedeactivate(pg);
1721 1.110 yamt }
1722 1.110 yamt
1723 1.110 yamt /*
1724 1.110 yamt * uvm_pageactivate: activate page
1725 1.110 yamt *
1726 1.110 yamt * => caller must lock page queues
1727 1.110 yamt */
1728 1.110 yamt
1729 1.110 yamt void
1730 1.110 yamt uvm_pageactivate(struct vm_page *pg)
1731 1.110 yamt {
1732 1.113 yamt
1733 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1734 1.113 yamt #if defined(READAHEAD_STATS)
1735 1.113 yamt if ((pg->pqflags & PQ_READAHEAD) != 0) {
1736 1.113 yamt uvm_ra_hit.ev_count++;
1737 1.113 yamt pg->pqflags &= ~PQ_READAHEAD;
1738 1.113 yamt }
1739 1.113 yamt #endif /* defined(READAHEAD_STATS) */
1740 1.113 yamt if (pg->wire_count != 0) {
1741 1.113 yamt return;
1742 1.110 yamt }
1743 1.113 yamt uvmpdpol_pageactivate(pg);
1744 1.110 yamt }
1745 1.110 yamt
1746 1.110 yamt /*
1747 1.110 yamt * uvm_pagedequeue: remove a page from any paging queue
1748 1.110 yamt */
1749 1.110 yamt
1750 1.110 yamt void
1751 1.110 yamt uvm_pagedequeue(struct vm_page *pg)
1752 1.110 yamt {
1753 1.113 yamt
1754 1.113 yamt if (uvmpdpol_pageisqueued_p(pg)) {
1755 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1756 1.110 yamt }
1757 1.123 ad
1758 1.113 yamt uvmpdpol_pagedequeue(pg);
1759 1.113 yamt }
1760 1.113 yamt
1761 1.113 yamt /*
1762 1.113 yamt * uvm_pageenqueue: add a page to a paging queue without activating.
1763 1.113 yamt * used where a page is not really demanded (yet). eg. read-ahead
1764 1.113 yamt */
1765 1.113 yamt
1766 1.113 yamt void
1767 1.113 yamt uvm_pageenqueue(struct vm_page *pg)
1768 1.113 yamt {
1769 1.113 yamt
1770 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1771 1.113 yamt if (pg->wire_count != 0) {
1772 1.113 yamt return;
1773 1.113 yamt }
1774 1.113 yamt uvmpdpol_pageenqueue(pg);
1775 1.110 yamt }
1776 1.110 yamt
1777 1.110 yamt /*
1778 1.110 yamt * uvm_pagezero: zero fill a page
1779 1.110 yamt *
1780 1.110 yamt * => if page is part of an object then the object should be locked
1781 1.110 yamt * to protect pg->flags.
1782 1.110 yamt */
1783 1.110 yamt
1784 1.110 yamt void
1785 1.110 yamt uvm_pagezero(struct vm_page *pg)
1786 1.110 yamt {
1787 1.110 yamt pg->flags &= ~PG_CLEAN;
1788 1.110 yamt pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1789 1.110 yamt }
1790 1.110 yamt
1791 1.110 yamt /*
1792 1.110 yamt * uvm_pagecopy: copy a page
1793 1.110 yamt *
1794 1.110 yamt * => if page is part of an object then the object should be locked
1795 1.110 yamt * to protect pg->flags.
1796 1.110 yamt */
1797 1.110 yamt
1798 1.110 yamt void
1799 1.110 yamt uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1800 1.110 yamt {
1801 1.110 yamt
1802 1.110 yamt dst->flags &= ~PG_CLEAN;
1803 1.110 yamt pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
1804 1.110 yamt }
1805 1.110 yamt
1806 1.110 yamt /*
1807 1.110 yamt * uvm_page_lookup_freelist: look up the free list for the specified page
1808 1.110 yamt */
1809 1.110 yamt
1810 1.110 yamt int
1811 1.110 yamt uvm_page_lookup_freelist(struct vm_page *pg)
1812 1.110 yamt {
1813 1.110 yamt int lcv;
1814 1.110 yamt
1815 1.110 yamt lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
1816 1.110 yamt KASSERT(lcv != -1);
1817 1.110 yamt return (vm_physmem[lcv].free_list);
1818 1.110 yamt }
1819